
Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

Impact Analysis

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.1 General Idea

• The maintenance process is started by performing impact analysis.

• Impact analysis basically means identifying the components that are impacted
by the Change Request (CR).

• Impact of the changes are analyzed for the following reasons:

– to estimate the cost of executing the change request.

– to determine whether some critical portions of the system are going to be
impacted due to the requested change.

– to determine the portions of the software that need to be subjected to
regression testing after a change is effected.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2 Impact Analysis Process

Figure 6.1 Impact analysis process ©IEEE, 2008

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2 Impact Analysis Process

• Starting Impact Set (SIS): The initial set of objects (or components) presumed
to be impacted by a software CR is called SIS.

• Candidate Impact Set (CIS): The set of objects (or components) estimated to
be impacted according to a certain impact analysis approach is called CIS.

• Discovered Impact Set (DIS): DIS is defined as the set of new objects (or
components), not contained in CIS, discovered to be impacted while
implementing a CR. DIS is also called False Negative Impact Set (FNIS)

• Actual Impact Set (AIS): The set of objects (or components) actually changed
as a result of performing a CR is denoted by AIS.

• False Positive Impact Set (FPIS): FPIS is defined as the set of objects (or
components) estimated to be impacted by an implementation of a CR but not
actually impacted by the CR. Precisely, FPIS = (CIS U DIS) \ AIS.

where U denotes set union and \ denotes set difference.

• In the process of impact analysis it is important to minimize the differences
between AIS and CIS, by eliminating false positives and identifying true
impacts.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2 Impact Analysis Process

Two traditional information retrieval metrics:

• Recall: It measures the degree the CIS cover the real changes and it is computed
as the ratio of |CIS ∩ AIS| to |AIS|.

– The value of recall is 1 when DIS is empty.

• Precision: It represents the fraction of candidate impacts that are actually
impacted, and it is computed as the ratio of |CIS ∩ AIS| to |CIS|.

– For an empty FPIS set, the value of precision is 1.

• Note that if AIS is equal to CIS, both recall and precision are computed to be
equal to 1.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.1 Identifying the Starting Impact Set (SIS)

• Impact analysis begins with identifying the SIS.

• The CR specification, documentation, and source code are analyzed to
find the SIS.

• This step is also called concept location or feature location, which is
the activity of identifying initial location in the source code that
implements functionality in a software system.

• Programmers use feature location to find where in the source code the
initial change needs to be made.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.1 Identifying the Starting Impact Set (SIS)

• There are several methods to identify concepts, or features, in
source code.

• The “grep” pattern matching utility available on most Unix
systems and similar search tools are commonly used by
programmers.

• The technique often fails when the concepts are hidden in the
source code, or when the programmer fails to guess the program
identifiers.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.1 Identifying the Starting Impact Set (SIS)

• Another approach proposed by Wilde and Scully is based on the
idea that some programming concepts are selectable, because their
execution depends on a specific input sequence.

• Selectable program concepts are known as features. By executing a
program twice, one can often find the source code implementing the
features:

(i) execute the program once with a feature and once without the
feature.

(ii) mark portions of the source code that were executed the first
time but not the second time.

(iii) the marked code are likely to be in or close to the code
implementing the feature.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.1 Identifying the Starting Impact Set (SIS)

• Chen and Rajlich proposed a dependency graph based feature
location method for C programs.

• The component dependency graph is searched, generally beginning
at the main().

• Functions are chosen one at a time for a visit.

• The C functions are successively explored to find and understand
all the components related to the given feature.

• The maintenance personnel reads the documentation, code, and
dependency graph to comprehend the component before deciding if
the component is related to the feature under consideration.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.2 Analysis of Traceability Graph

• Software maintenance personnel may choose to execute the CR
differently, or they may not execute it at all, if the complexity
and/or size of the traceability graph increases as a result of making
the proposed change.

• Whenever change is proposed, it is necessary to analyze the
traceability graphs in terms of its complexity and size to assess the
maintainability of the system.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.2 Analysis of Traceability Graph

• The graph shows the horizontal traceability of the system.

• The graph that is so constructed reveals the relationships among work
products.

Figure 6.2 Traceability in software work products ©IEEE, 1991

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.2 Analysis of Traceability Graph

• The graph has four categories of nodes: requirements, design, code, and test.

• The edges within a silo represent vertical traceability for the kind of work

product represented by the silo.

Figure 6.3 Underlying graph for maintenance ©IEEE, 1991

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.2 Analysis of Traceability Graph
• If some changes are made to requirement object “R4,” the results of

horizontal traceability and vertical traceability are shown in Figure 6.4.

• The horizontally traced objects have been shown as lightly shaded circles,
whereas the vertically traced objects have darkly shaded circles.

Figure 6.4 Determine work product impact ©IEEE, 1991

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.2 Analysis of Traceability Graph

• For a node i in a graph, its in-degree in(i) counts the number of
edges for which i is the destination node, and in(i) denotes the
number of nodes having a direct impact on i.

• Similarly, the out-degree of node i, denoted by out(i), is the number
of edges for which i is the source.

• Node i being changed, out(i) is a measure of the number of nodes
which are likely to be modified.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.3 Identifying the Candidate Impact Set

• A CIS is identified in the next step of the impact analysis process.

• The SIS is augmented with software lifecycle objects (SLOs) that
are likely to change because of changes in the elements of the SIS.

• Changes in one part of the software system may have direct impacts
or indirect impacts on other parts.

• Both direct impact and indirect impact are explained in the
following.

– Direct impact: A direct impact relation exists between two
entities, if the two entities are related by a fan-in and/or fan-out
relation.

– Indirect impact: If an entity A directly impacts another entity B
and B directly impacts a third entity C, then we can say that A
indirectly impacts C.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.3 Identifying the Candidate Impact Set

• let us consider the directed graph in Figure 6.5 with ten SLOs.

• Each SLO represents a software artifact connected to other
artifacts.

• Dependencies among SLOs are represented by arrows.

• In the figure, SLO1 has an indirect impact from SLO8 and a direct
impact from SLO9.

• The in-degree of a node i reflects the number of known nodes that
depend on i.

Figure 6.5 Simple directed graph
of SLOs ©IEEE, 2002

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.3 Identifying the Candidate Impact Set

• Figure 6.6 shows the four nodes – SLO0, SLO5, SLO7 and
SLO9 – that are dependent on SLO1, and the in-degree of
SLO1 is four.

• In addition, the out-degree of SLO1 is three.

Figure 6.6 In-degree and out-degree of SLO1 ©IEEE, 2002

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.3 Identifying the Candidate Impact Set

• The connectivity matrix of Table 6.1 is constructed by considering the SLOs
and the relationships shown in Figure 6.5.

• A reachability graph can be easily obtained from a connectivity matrix.

• A reachability graph shows the entities that can be impacted by a modification
to a SLO, and there is a likelihood of over-estimation.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.3 Identifying the Candidate Impact Set

• The dense reachability matrix of Table 6.2 has the risk of over-estimating the CIS.

• To minimize the occurrences of false positives, one might consider Distance based
approach.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.2.3 Identifying the Candidate Impact Set

• Distance based approach: In this approach, SLOs which are farther
than a threshold distance from SLO i are not be considered to be
impacted by changes in SLO i.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3 Dependency-based Impact Analysis

• In general, source code objects are analyzed to obtain vertical
traceability information.

• Dependency based impact analysis techniques identify the impact
of changes by analyzing syntactic dependencies, because syntactic
dependencies are likely to cause semantic dependencies.

• Two traditional impact analysis techniques are explained:

– The first technique is based on call graph.

– the second one is based on dependency graph.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3.1 Call Graph

• A call graph is a directed graph in which a node represents a function, a
component, or a method.

• An edge between two nodes A and B means that A may invoke B

• Programmers use call graphs to understand the potential impacts that a software
change may have.

• An example call graph has been shown in Figure 6.7

• Let P be a program, G be the call graph obtained from P, and p be some
procedure in P

• A key assumption in the call graph-based technique is that some change in p has
the potential to impact changes in all nodes reachable from p in G.

Figure 6.7 Example of a call graph ©IEEE, 2003

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3.1 Call Graph

• The call graph-based approach to impact analysis suffers from the
following disadvantage:

– impact propagations due to procedure returns are not captured in the call graph-
based technique. Suppose that, in Figure, E is modified and control returns to
C. Now, following the return to C, it cannot be inferred whether impacts of
changing E propagates into none, both, A, or B.

Figure 6.7 Impact analysis process ©IEEE, 2003

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3.1 Call Graph

• Let us consider an execution trace as shown in below.

M B r A C D r E r r r r x. Where r and x represent function returns and program
exits.

• The impact of the modification of M with respect to the given trace is computed
by forward searching in the trace to find:

– procedures that are indirectly or directly invoked by E; and

– procedures that are invoked after E terminates.

• One can identify the procedures into which E returns by performing backward
search in the given trace.

• For example, in the given trace, E does not invoke other entities, but it returns into
M, A, and C.

• Due to a modification in E, the set of potentially impacted procedures is {M,A,C,
E}.

Figure 6.7 Impact analysis
process ©IEEE, 2003

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3.2 Program Dependency Graph

• In the program dependency graph (PDG) of a program:

(i) each simple statement is represented by a node, also called a vertex;

(ii) each predicate expression is represented by a node.

• There are two types of edges in a PDG: data dependency edges and
control dependency edges.

• Let vi and vj be two nodes in a PDG.

• If there is a data dependency edge from node vi to node vj , then the
computations performed at node vi are directly dependent upon the
results of computations performed at node vj .

• A control dependency edge from node vi to node vj indicates that
node vi may execute based on the result of evaluation of a condition
at vj .

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3.2 Program Dependency Graph

• Figure 6.10 shows the PDG of the program given in Figure 6.9.

• Data dependencies are shown as solid edges, whereas control dependencies are
shown as dashed edges.

Figure 6.9 Example program ©ACM, 1990

Figure 6.10 Program dependency graph of
the program in Figure 6.9

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3.2 Program Dependency Graph

Static Program Slice

• A static program slice is identified from a PDG as follows:

• for a variable var at node n, identify all reaching definitions
of var.

• find all nodes in the PDG which are reachable from those
nodes.

• The visited nodes in the traversal process constitute the
desired slice.

• Consider the program in the previous slide and variable Y at S10.

• First, find all the reaching definitions of Y at node S10 – and the
answer is the set of nodes {S3, S6 and S8}.

• Next, find the set of all nodes which are reachable from {S3, S6 and
S8} – and the answer is the set {S1, S2, S3, S5, S6, S8}.

• In the program dependency graph the nodes belonging in the slice
have been identified in bold.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3.2 Program Dependency Graph

Dynamic Slice

• A dynamic slice is more useful in localizing the defect than the static
slice.

• Only one of the three assignment statements, S3, S6, or S8, may be
executed for any input value of X.

• Consider the input value −1 for the variable X.

• For −1 as the value of X, only S3 is executed.

• Therefore, with respect to variable Y at S10, the dynamic slice will
contain only {S1, S2 and S3}.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3.2 Program Dependency Graph

Dynamic Slice

• For −1 as the values of X, if the value of Y is incorrect at S10, one can
infer that either fi is erroneous at S3 or the “if” condition at S2 is
incorrect.

• A simple approach to obtaining dynamic program slices is explained
here.

• Given a test and a PDG, let us represent the execution history of the
program as a sequence of vertices < v1, v2,, vn >.

• The execution history hist of a program P for a test case test, and a
variable var is the set of all statements in hist whose execution had
some effect on the value of var as observed at the end of the execution.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3.2 Program Dependency Graph

Dynamic Slice

• Now, in our example discussed before, the static program slice with
respect to variable Y at S10 for the code contains all the three
statements – S3, S6, and S8.

• However, for a given test, one statement from the set {S3, S6, and
S8} is executed.

• A simple way to finding dynamic slices is as follows:

(i) for the current test, mark the executed nodes in the PDG.

(ii) traverse the marked nodes in the graph.

Software Evolution and Maintenance (Chapter 6: Impact Analysis) © Tripathy & Naik

6.3.2 Program Dependency Graph

Dynamic Slice

• Figure 6.11 illustrates how a dynamic slice is obtained from the program with respect
to variable Y at the end of execution.

• For the case X = −1, the executed nodes are: < S1, S2, S3, S4, S10, S11 >.

• Initially, all nodes are drawn with dotted lines.

• If a statement is executed, the corresponding node is made solid.

• Next, beginning at node S3, the graph is traversed only for solid nodes.

• Node S3 is selected because the variable Y is defined at node S3.

• All nodes encountered
while traversing the
graph are represented in
bold.

• The desired dynamic
program slice is
represented by the set
of bold nodes {S1, S2,
S3}.

Figure 6.11 Dynamic program slice for the code in the figure 6.9, test case X= -1
with respect to a variable Y

