
Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

Software Evolution and Maintenance
A Practitioner’s Approach

Chapter 1

Basic Concepts and Preliminaries

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

Outline of the Chapter

1.1 Evolution versus Maintenance

1.1.1 Software Evolution

1.1.2 Software Maintenance

1.2 Software Evolution Models and Processes

1.3 Reengineering

1.4 Legacy Systems

1.5 Impact Analysis

1.6 Refactoring

1.7 Program Comprehension

1.8 Software Reuse

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1 Evolution Versus Maintenance

• The terms evolution and maintenance are used interchangeably.

• However there is a semantic difference.

• Lowell Jay Arthur distinguish the two terms as follows:

“Software maintenance means to preserve from failure or decline.”

“Software evolution means a continuous change from lesser, simpler,
or worse state to a higher or better state.”

• Keith H. Bennett and Lie Xu use the term:

“maintenance for all post-delivery support and evolution to those
driven by changes in requirements.”

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1 Evolution Versus Maintenance

• Maintenance is considered to be set of planned activities whereas
evolution concern whatever happens to a system over time.

• Mehdi Jazayer’s view on software evolution:

“Over time what evolves is not the software but our knowledge
about a particular type of software.”

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1.1 Software Evolution

• In 1965, Mark Halpern used the term evolution to define the
dynamic growth of software.

• The term evolution in relation to application systems took gradually
in the 1970s.

• Lehman and his collaborators from IBM are generally credited with
pioneering the research field of software evolution.

• Lehman formulated a set of observations that he called laws of
evolution.

• These laws are the results of studies of the evolution of large-scale
proprietary or closed source system (CSS).

• The laws concern what Lehman called E-type systems:

“Monolithic systems produced by a team within an organization
that solve a real world problem and have human users.”

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1.1 Software Evolution: Laws of Lehman

• Continuing change (1st) – A system will become progressively less
satisfying to its user over time, unless it is continually adapted to
meet new needs.

• Increasing complexity (2nd) – A system will become progressively
more complex, unless work is done to explicitly reduce the
complexity.

• Self-regulation (3rd) – The process of software evolution is self
regulating with respect to the distributions of the products and
process artifacts that are produced.

• Conservation of organizational stability (4th) – The average
effective global activity rate on an evolving system does not change
over time, that is the average amount of work that goes into each
release is about the same.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1.1 Software Evolution: Laws of Lehman

• Conservation of familiarity (5th) – The amount of new content in
each successive release of a system tends to stay constant or
decrease over time.

• Continuing growth (6th) – The amount of functionality in a system
will increase over time, in order to please its users.

• Declining quality (7th) – A system will be perceived as losing
quality over time, unless its design is carefully maintained and
adapted to new operational constraints.

• Feedback system (8th) – Successfully evolving a software system
requires recognition that the development process is a multi-loop,
multi-agent, multi-level feedback system.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1.1 Software Evolution: FOSS System

• In circa 1988, Pirzada pointed out the differences between the
evolution of the Unix OS and system studied by Lehman

• Pirzada argued that the differences in academic and industrial s/w
development could lead to a differences in the evolutionary pattern.

• In circa 2000, empirical study of free and open source software
(FOSS) evolution was conducted by Godfrey and Tu.

• They found that the growth trends from 1994-1999 for the evolution
of FOSS Lunix OS to be super-linear, that is greater than linear.

• Robles and his collaborator concluded that Lehman’s laws, 3, 4, and
5 are not fitted to large scale FOSS system such as Linux.

“FOSS is made available to the general public with either relaxed or
non-existent intellectual property restrictions. The free emphasizes
the freedom to modify and redistribute under the terms of the
original license while open emphasizes the accessibility to the
source code.”

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1.2 Software Maintenance

• There will always be defects in the delivered software application
because software defect removal and quality control are not perfect.

• Therefore, software maintenance is needed to repair these defects in
the released software.

• E. Burton Swanson defined three type of software maintenance:

Corrective, Adaptive & Perfective.

• It is based on the intent of the developer towards the system.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1.2 Software Maintenance

• Swanson definition was later updated in the standard for software
engineering – ISO/IEC 14764.

• Introduced a fourth category called preventive maintenance.

• Some researchers and developers view preventive maintenance as a
subset of perfective maintenance.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1.2 Software Maintenance

• Kitchenham described maintenance modifications in a hierarchical
ways based on the concept of activity:

– Activities to make corrections: If there are discrepancies between the
expected behavior of a system and the actual behavior, then some activities
are performed to eliminate or reduce the discrepancies.

– Activities to make enhancements: A number of activities are
performed to implement a change to the system, thereby changing the
behavior or implementation of the system.

This category is subdivided into three types:

• enhancements that change existing requirement,

• enhancements that add new system requirements, and

• enhancements that change the implementation but not the requirements.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1.2 Software Maintenance

Chapin et al. expanded the typology of Swanson into an evidence-
based classification of 12 different types of software maintenance:

• Consultive

• Reformative

• Groomative

• Performance

• Reductive

• Enhancive

• Training

• Evaluate

• Updative

• Preventive

• Adaptive

• Corrective

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.1.2 Software Maintenance: COTS

The major differences between component-based software systems
(CBS) and custom-built software systems:

• Skills of system maintenance teams.

• Infrastructure and organization.

• COTS maintenance cost.

• Larger user community.

• Modernization.

• Split maintenance function.

• More complex planning.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.2 Software Evolution Models and Processes

• Software maintenance have its own software maintenance
life cycle (SMLC) model.

• Three popular SMLC models:

• Staged model of maintenance and evolution.

• Iterative models.

• Change mini-cycle models.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.2 Software Evolution Models and Processes

Software Maintenance Standards

• IEEE and ISO have both addressed s/w maintenance processes.

• IEEE/EIA 1219 and ISO/IEC 14764 as a part of ISO/IEC12207
(life cycle process).

• IEEE/EIA 1219 organizes the maintenance process in seven phases:

– problem identification, analysis, design, implementation, system test,
acceptance test and delivery.

• ISO/IEC 14764 describes s/w maintenance as an iterative process
for managing and executing software maintenance activities.

• The activities which comprise the maintenance process are:

– process implementation, problem and modification analysis, modification
implementation, maintenance review/acceptance, migration and retirement.

• Each of these maintenance activity is made up of tasks. Each task
describes a specific action with inputs and outputs.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.2 Software Evolution Models and Processes

Software Configuration Management

• SCM is the discipline of managing and controlling change in the
evolution of software system.

• It ensures that the released software is not contaminated by
uncontrolled or unapproved changes.

• An SCM system has four different elements, each element
addressing a distinct user need as follows:

• Identification of software configurations.

• Control of software configurations.

• Auditing software configurations.

• Accounting software configuration status.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.3 Reengineering

• Reengineering is done to transform an existing “lesser or simpler”
system into a new “better” system.

• Reengineering is the examination, analysis and restructuring of an
existing software system to reconstitute it in a new form, and the
subsequent implementation of the new form.

• Chikofsky and Cross II defines reengineering as:

“the examination and alteration of a subject system to reconstitute it in a new
form and the subsequent implementation of the new form.”

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.3 Reengineering

• Jacobson and Lindstorm defined following formula:

Reengineering = Reverse engineering + + Forward engineering.

• Reverse engineering is the activity of defining a more abstract, and
easier to understand, representation of the system

• The core of reverse engineering is the process of examination, not a
process of change, therefore it does not involve changing the
software under examination.

• The third element “forward engineering,” is the traditional process
of moving from high-level abstraction and logical, implementation-
independent designs to the physical implementation of the system.

• The second element captures alteration that is change of the
system.





Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.4 Legacy System

• A legacy system is an old system which is valuable for the company
which often developed and owns it.

• It is the phase out stage of the software evolution model of Rajlich
and Bennet described earlier.

• Bennett used the following definition:

“large software systems that we don’t know how to cope with but that are vital
to our organization.”

• Similarly, Brodie and Stonebraker: define a legacy system as

“any information system that significantly resists modification and evolution to
meet new and constantly changing business requirements.”

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.4 Legacy System

• There are a number of options available to manage legacy systems.
Typical solution include:

– Freeze: The organization decides no further work on the legacy system should
be performed.

– Outsource: An organization may decide that supporting software is not core
business, and may outsource it to a specialist organization offering this service.

– Carry on maintenance: Despite all the problems of support, the organization
decides to carry on maintenance for another period.

– Discard and redevelop: Throw all the software away and redevelop the
application once again from scratch.

– Wrap: It is a black-box modernization technique – surrounds the legacy system
with a software layer that hides the unwanted complexity of the existing data,
individual programs, application systems, and interfaces with the new interfaces.

– Migrate: Legacy system migration basically moves an existing, operational
system to a new platform, retaining the legacy system’s functionality and
causing minimal disruption to the existing operational business environment as
possible.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.5 Impact Analysis

• Impact analysis is the task of estimating the parts of the software that
can be affected if a proposed change request is made.

• Impact analysis techniques can be partitioned into two classes:

– Traceability analysis In this approach the high-level artifacts such as
requirements, design, code and test cases related to the feature to be changed are
identified. A model of inter-artifacts such that each artifact in one level links to
other artifacts is constructed, which helps to locate a pieces of design, code and
test cases that need to be maintained.

– Dependency (or source-code) analysis Dependency analysis attempt to assess
the affects of change on semantic dependencies between program entities. This
is achieved by identifying the syntactic dependencies that may signal the
presence of such semantic dependencies.

• The two dependency-based impact analysis techniques are: call graph based
analysis and dependency graph based analysis.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.5 Impact Analysis

• Two additional notions related to impact analysis are very common
among practitioners:

– Ripple effect.

– Change propagation.

• Ripple effect analysis measures the impact, or how likely it is that a
change to a particular module may cause problems in the rest of the
program.

• Measuring ripple effect can provide knowledge about the system as a
whole through its evolution:

– how much its complexity has increased or decreased since the previous version,

– how complex individual parts of a system are in relation to other parts of the
system, and

– to look at the effect that a new module has on the complexity of a system as a
whole when it is added.

• The change propagation activity ensures that a change made in one
component is propagated properly throughout the entire system.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.6 Refactoring

• Refactoring is the process of making a change to the internal structure
of software to make it easier to understand and cheaper to modify
without changing its observable behavior.

• It is the object-oriented equivalent of restructuring.

• Refactoring, which aims to improve the internal structure of the code,
achieve through the removal of duplicate code, simplification, making
code easier to understand, help to find defects and adding flexibility to
program faster.

• There are two aspects of the above definition:

– It must preserve the “observable behavior” of the software system (through
regression).

– To improve the internal structure of a software system (improve
maintainability).

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.7 Program Comprehension

• Program understanding or comprehension is

“the task of building mental models of an underlying software system at various
abstraction levels, ranging from models of the code itself to ones of the
underlying application domain, for software maintenance, evolution and re-
engineering purposes.”

• A mental model describes a programmer’s mental representation of
the program to be comprehended.

• Program comprehension deals with the cognitive processes involved
in constructing a mental model of the program.

• A common element of such cognitive models is generating hypotheses
and investigating whether they hold or must be rejected.

– Hypotheses are a way to understand code in an incremental manner.

– After some understanding of the code, the programmer forms a hypothesis and
verifies it by reading code.

– By continuously formulating new hypotheses and verifying them, the
programmer understands more and more code and in increasing details.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.7 Program Comprehension

• Several strategies can be used to arrive at relevant hypotheses such as:

– bottom up (starting from the code).

– top down (starting from high-level goal).

– opportunistic combinations of the two.

• A strategy is formulated by identifying actions to achieve a goal.

• Strategies guide two mechanisms, namely chunking and cross-
referencing to produce higher-level abstraction structures.

– Chunking creates new, higher level abstraction structures from lower level
structures.

– Cross-referencing means being able to make links elements of different
abstraction levels.

• Chunking and cross-referencing helps in building mental model of the
program under study at different levels of abstractions.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.8 Software Reuse

• Software reuse was introduced by Dough McIlroy in his 1968 seminal
paper:

The development of an industry of reusable source-code software components and
the industrialization of the production of application software from off-the-shelf
components.

• Other significant early reuse research developments include:

– Program families (David Parnas).

– Domain analysis (Jim Neighbors).

• Program families are sets of programs whose common properties are
so extensive that it becomes advantageous to study the common
properties of these programs before analyzing individual differences.

• Whereas domain analysis is an activity of identifying objects and
operations of a class of similar systems in a particular problem
domain.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.8 Software Reuse

• Software reuse is using existing artifacts or software knowledge
during the construction of a new software system.

– Reusable assets can be either reusable artifacts or software knowledge.

• Capers Jones identified four types of reusable artifacts:

– data reuse, involving a standardization of data formats,

– arhitectural reuse, which consists of standardizing a set of design and
programming conventions dealing with the logical organization of software,

– design reuse, for some common business applications, and

– program reuse, which deals with reusing executable code.

• Software reuse of previously written code is a way to increase

– software development productivity.

– quality of the software.

• The cost savings during maintenance as a consequence of reuse are
nearly twice the corresponding savings during development.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.8 Software Reuse

• Reusability is a property of a software assets that indicates the degree
to which it can be reused.

• For software component to be reusable, it must exhibit the following
characteristics that directly encourage its use is similar situation:

– Environmental independence - The components can be reused irrespective of the
environment from which they were originally captured.

– High cohesion - The components that implement a single operation or set of
related operations.

– Loose coupling - The components that have minimal links to other components.

– Adaptability - The components that are adaptable so they can be customized to
fit a range of similar situation.

– Understandability - The components which are easily understandable that users
can quickly interpret functionality.

– Reliability - The components that are error-free.

– Portability - The components that are not restricted in terms of the software or
hardware environment they operate in.

Software Evolution and Maintenance (Chapter 1: Basic Concepts and Preliminaries) © Tripathy & Naik

1.8 Software Reuse

Benefits of Reuse

• Increased reliability.

• Reduced process risk.

• Increase productivity.

• Standards compliance.

• Accelerated development.

• Improve maintainability.

• Reduction in maintenance time and effort.

