
Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

1

Software Evolution and Maintenance
A Practitioner’s Approach

Chapter 8

Program Comprehension

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

2

Outline of the Chapter

8.1 General Idea

8.2 Basic Terms

8.3 Cognition Models for Program Understanding

8.4 Protocol Analysis

8.5 Visualization for Comprehension

8.6 Summary

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

3

8.1 General Idea

• It is important to comprehend a complex system to
be able to maintain it.

• Modification of software with inaccurate and
incomplete understanding is likely to degrade its
performance and reliability.

• Good program comprehension is key to providing
effective software maintenance and effective
evolution of software.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

4

8.1 General Idea

• To understand the role of program comprehension,
consider five kinds of tasks associated with program
maintenance (Table 8.1.)

• Understanding the system or problem is common to
all maintenance and evolution tasks.

• Understanding of a system is a cognitive issue and a
number of cognitive models have been developed
(Table 8.1.)

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

5

8.2 Basic Terms

Table 8.2: Code cognition models [1] (©[1995] IEEE).

Model Maintenance activity Authors

Control-flow Understand Pennington

Functional Understand Pennington

Top-down Understand Soloway,

Adelson, and

Ehrlich

Integrated Understand,

Corrective,

Adaptive,

And Perfective

Von Mayrhauser

and Vans

Other Enhancement

Understand

Letovsky

Brooks

Shneiderman

and Mayer

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

6

8.2 Basic Terms

• To understand the cognition models of Table 8.2, the
following set of terms form the background material:

– Goal of code cognition

– Knowledge

– Mental model

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

8.1 General Idea

7

Maintenance Tasks Activities

Adaptive Understand system

Define adaptation requirements

Develop preliminary and detailed adaptation design

Code changes

Debug

Regression tests

Perfective Understand system

Diagnosis and requirements definition for improvements

Develop preliminary and detailed perfective design

Code changes/additions

Debug

Regression tests

Corrective Understand system

Generate/evaluate hypotheses concerning problem

Repair code

Regression tests

Reuse Understand problem

Find solution based on close fit with reusable components

Locate components

Integrate components

Code coverage Understand problem

Find solution based on predefined components

Reconfigure solution to increase likelihood of using predefined components

Obtain and modify predefined components

Integrate modified components

Table 8.1: Tasks and activities requiring code understanding [1] (c [1995] IEEE).

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

8

8.2.1 Goal of code cognition

• A code maintainer tries to understand a program with
a specific goal in mind.

– Example 1: Debugging a program to detect the cause of a known
failure

– Example 2: Adding a new function to the existing program

• Identifying the goal can help in defining the scope of
program comprehension.

• Scope of program comprehension: complete program
or part of a program

• A program comprehension process is a sequence of
activities that use existing knowledge about the
program to generate new knowledge about it.

• Thus, program comprehension is a process of
knowledge acquisition.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

9

8.2.2 Knowledge

• Programmers possess two kinds of knowledge
– General knowledge

– Software-specific knowledge

• General knowledge: This covers a broad range of topics in
computer systems and software.

– Algorithms and data structures

– Operating systems

– Programming principles

– Programming languages

– Software architecture and design

– Testing and debugging techniques

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

10

8.2.2 Knowledge

• Software-specific knowledge: This represents a detailed
understanding of the software to be modified.

• Some examples of software-specific knowledge are

– The software system has implemented public-key cryptography for data
encryption.

– The software system has been structured as a three-tier client-server
system.

– Module x implements a location server.

– A certain for loop in method y may execute for a random number of
times.

– Variable mcount keeps track of the number of times module z is
invoked.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

11

8.2.2 Knowledge
• In the process of gaining new knowledge about a software

system, a programmer learns the details of the following
aspects:

– Functionality

– Software architecture

– Control flow and data flow

– Exception handling

– Stable storage

– Implementation details

• A programmer goes back and forth between acquiring general
knowledge and software-specific knowledge, as illustrated in
Fig. 8.1.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

12

8.2.2 Knowledge

Figure 8.1: Gaining general knowledge and

software-specific knowledge.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

13

8.2.3 Mental model

• A mental model describes a programmer’s mental
representation of the program being comprehended.

• A mental model of a program is not unique; different
programmers view and interpret a programmer in
different ways.

• A programmer develops a mental model by
identifying both static and dynamic elements of the
program.

• Examples of program elements
– for loop

– A TCP (Transmission Control Protocol) connection

– Over all control flow

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

14

8.2.3 Mental model

• Static elements of a mental model
– Text-structures

– Chunks

– Schemas

– Plans

– Hypotheses

• Dynamic elements of a mental model

– Chunking

– Cross-referencing

– Strategies

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

15

8.2.3 Mental model (static elements)
• Text-structures

– Code and its structure are known as text-structures.

– It is useful in gaining control flow knowledge in program understanding.

– A programmer can easily identify the following text-structures:

• Loop constructs: for, while, and until

• Sequences

• Conditional statements: if-then-else

• Variable definitions and initializations

• Calling hierarchies within and among modules

• Definitions of module parameters

– Understanding text-structures is the beginning of program
comprehension.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

16

8.2.3 Mental model (static elements)

• Chunk
– A program chunk is a block of related code segment.

– Chunks enable programmers to create higher level abstractions from
lower-level abstractions.

– Examples

• A code block initializing a module’s parameters tells the
programmer about the nature of the parameters and their value
ranges.

• Understanding a for loop enables a programmer to create an
abstraction of an internal functional step performed by the program.

• Schema
– Schemas are generic knowledge structures that guide the

programmer’s interpretations, inferences, expectations, and attentions
when passages are comprehended.

– The concept of programming plans correspond to the notion of
schemas.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

17

8.2.3 Mental model (static elements)

• Plans
– A knowledge element is anything that is useful in understanding a

program.

– Plans are broad kinds of knowledge elements used by programmers.

– Examples of knowledge elements

• If the name of a function gives an indication of the activity
performed by the function, then the function identifier is a
knowledge element.

• A block of comments describing a for loop

• A for loop itself is a knowledge element.

• A description of the problem domain of the program

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

18

8.2.3 Mental model (static elements)

• Plans
– Example of plan

• A doubly-linked list is an example of a plan; a designer has planned
to implement certain concepts with this data structure.

– A plan is a kind of schema with two parts:

• Slot type

– Slot types describe generic objects.

– Example: A tree data structure is a generic slot type.

• Slot filler

– Slot fillers are customized to hold elements of particular types.

– Example: A code segment, such as a for loop’s code is a slot filler.

– The programmer links the slot-type and slot-filler structures by means of
the kind-of and is-a modeling relationships.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

19

8.2.3 Mental model (static elements)

• Plans
– There are two broad kinds of plans.

• Domain plans

• Programming plans

– Domain plans

• These include knowledge about the real world problem, including
the program’s environment.

• Example: If the software is for numerical analysis application, plans
will include schemas for different aspects of linear algebra, such as
matrix multiplication and matrix inversion.

• Domain plans help programmers understand the code.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

20

8.2.3 Mental model (static elements)

• Plans
– Programming plans

• Programming plans are program fragments representing action
sequences that programmers repeatedly apply while coding.

• Example: A programmer may design a for loop to search an item in
a data set and repeatedly use the loop in many places in the
program.

• Such a for loop is an example of a programming plan to implement
the system.

• Programming plans differ in their granularities to support low level
or high level tasks.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

21

8.2.3 Mental model (static elements)

• Hypotheses
– As programmers start reading code and the related documents, they start

developing an understanding of the program to varying degrees.

– Programmers can test the results of their understanding as conjectures
(aka hypotheses.)

• Why: Why conjectures hypothesize the purpose of a program element.

– Verification of a why conjecture enables a programmer to have a good
understanding of the program element.

• How: How conjectures hypothesize the method for realizing a program
goal.

– Given a program goal, the programmer needs to know how that goal has
been implemented.

• What: What conjectures enable programmers to classify program
elements.

– A conjecture may not be completely correct.

– By continuously formulating and verifying conjectures, the programmer
understands more and more code.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

22

8.2.3 Mental model (dynamic elements)

• Dynamic elements
– Chunking

– Cross-referencing

– Strategies

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

23

8.2.3 Mental model (dynamic elements)

• Chunking

– In a program, the lowest level of chunks are code segments.

– To understand a program in terms of its higher level
functionalities, a programmer creates higher level abstraction
structures by combining lower level chunks.

– This process of creating higher level chunks is called
chunking.

– The process of chunking is repeatedly applied to create
increasingly higher levels of abstractions.

– When a block of code is recognized, it is replaced by the
programmer with a label representing the functionality of the
code block.

– A block of lower level labels can be replaced with one higher
level label representing a higher level functionality.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

24

8.2.3 Mental model (dynamic elements)

• Cross-referencing

– Cross-referencing means being able to link elements of
different abstraction levels.

– This helps in building a mental model of the program under
study.

– Example:

• Control flow and data-flow can be program elements at
a lower level, whereas functionalities are higher level
program elements.

• There is a need to cross-reference between control-flow and data-
flow elements and program functionalities.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

25

8.2.3 Mental model (dynamic elements)

• Strategies

– A strategy is a planned sequence of actions to reach a
specific goal.

– A strategy is formulated by identifying actions to achieve a
goal.

– Example: if the goal is to understand the code representing a function,
one can define a strategy as follows:

• Understand the overall computational functionality of the function
by reading its specification, if it exists.

• Understand all the input parameters to the function.

• Read all code line by line.

• Identify chunks of related code.

• Create a higher level model of the function in terms of the chunks.

– Strategies guide the two dynamic elements, namely, chunking and
cross-referencing, to produce higher-level abstraction structures.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

26

8.2.4 Understanding Code

• Two key factors influencing code understanding are:

– Acquiring knowledge from code

• Code is a rich source of information.

– The level of expertise of the code reader

• The level of expertise determines how quickly the code
is understood.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

27

8.2.4 Understanding Code

• Acquiring knowledge from code
– Several concepts can be applied while reading code in order to gain a

high-level understanding of programs.

• Beacons

– A beacon is code text that gives a cue to the computation being
performed in a code block.

 Example swap(), sort(), select(), startTimer().

– Code with good quality beacons are easier to understand.

• Rules of programming discourse

– Rules of programming discourse specify the conventions, also called
“rules,” that programmers follow while writing code.

– Some examples of rules are:

 Function name: The function name agrees with what the function
does.

 Variable name: Choose meaningful names for variables and
constants.

– The rules set up expectations in the minds of a reader about what
should be in the program.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

28

8.2.4 Understanding Code

• Levels of expertise of code readers

– Expert programmers tend to possess the following
characteristics:

• Organization of knowledge by functional characteristics

– Novice programmers tend to organize program knowledge in
terms of program syntax.

– Experts tend to organize knowledge in terms of algorithms and
functionalities.

• Comprehension with flexibility

– Experts tend to generate a breadth-first view of the program,
and keep adding useful details as more information is available.

• Development of specialized design schemas

– Design schemas are used to organize complex entities into
constituents.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

29

8.3 Cognition Models for Program
Understanding

• Letovsky model

• Shneiderman and Mayer model

• Brooks model

• Soloway, Adelson, and Ehrlich model (top-down model)

• Pennington model (bottom-up model)

• Integrated metamodel

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

30

Figure 8.2: Letovsky’s program comprehension model.

8.3.1 Letovsky model

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

31

8.3.1 Letovsky model

1. Knowledge base
• Programming expertise

• Programming expertise helps in asking questions, making conjectures,
and searching for specific information in the code.

• The questions are grouped into five categories:

– Why questions are designed to know about the purpose of actions and
design choices.

– How questions assist the programmer to learn about the way some goal of
the code is accomplished.

– What questions are used to find out what a variable or code fragment is.

– Whether questions are asked to know if the code behaves in a certain way.

– Discrepancy questions are meant for resolving confusions and apparent
inconsistencies in the code.

• Some example questions are as follows:

– Why is the variable being reset to zero?

– What is done to the memory block after the data is transmitted?

– Why is the memory block being deleted in two places?

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

32

8.3.1 Letovsky model

• Goals

• A programmer may find recurring computational code blocks, such
as sort, search, delete, connect (to servers), start timers, transmit,
and receive.

• It is useful to know the meaning of those recurring computational
goals in the program, to be able to create a higher level of
abstraction.

• Problem domain

• A good understanding of the application domain serves as a
backdrop for clearly and quickly understanding code segments in
order to identify their goals and creating abstractions.

• Plans

• Programmers have their own ways (also called plans) of finding
solutions to problems.

• They use widely used solutions to some common problems.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

33

8.3.1 Letovsky model

• Rules of discourse

• Programmers have knowledge of stylistic conventions in writing
code, which assist them in recognizing the goals of procedures
and interpreting variables.

• For example, if a constant is called MAX_RECORDS and is used
in a record processing loop, the programmer quickly recognizes
that the loop is going to iterate for a maximum count of
MAX_RECORDS.

2. External Representations

• The external representations of a program include its source code,
documentation in the form of some comments, and manuals.

• The manuals are useful in understanding the high-level goals of
the code, whereas the in-line comments are useful in
understanding the low-level details.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

34

8.3.1 Letovsky model

3. Mental Representation

• By reading code and documents, a programmer may create the
followings:

• Specification of the program

• Here, a specification means a complete and unambiguous description
of the goals of the program. This is done by identifying the user-level
functions, attributes of the functions, and program constraints.

• High-level implementation of the program

• This means producing a complete and unambiguous description of
the actions and data structures of the program.

• Annotation of the program

• Make a two-way association between the goals and the actions and
data structures, by annotating the program as follows:

 How each goal in the specification is accomplished and by which
actions and data structures.

 What goals use the services of a given action or a data structure.

• In other words, establish a traceability matrix between program goals
and actions and datastructures.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

35

8.3.1 Letovsky model

4. Assimilation Process

• Programmers combine their knowledge base and the external
representations to create their mental models. This process is known
as assimilation.

• The assimilation process can work in three ways: top-down, bottom-
up, and opportunistic.

• Top-down: Begin with a goal, followed by possible
implementations of the goal.

• Bottom-up: Identify program plans from code, make annotations,
and move up to the top.

• Opportunistic: Combine both top-down and bottom-up in an
opportunistic manner.

5. Purpose Unit

• This unit captures those goals whose implementations have not been
clearly understood.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

36

Figure 8.3: Shneiderman and Mayer program

comprehension model.

8.3.2 Shneiderman and Mayer model

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

37

8.3.2 Shneiderman and Mayer model

• The model comprises three key components

– Short term memory of the programmer

– The programmer’s knowledge to understand the code

– Internal semantics of the code as understood by the
programmer

• Internal semantics
– An internal semantics lies between the top-level goals of the program

(aka the what aspects) and their detailed implementations.

– In between the two extremes, programmers develop an internal
semantic structure to represent the program.

– An example of intermediate level abstraction is the concept of call
graphs.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

38

8.3.2 Shneiderman and Mayer model

• Knowledge
– Here knowledge refers to the application domain knowledge and

programming knowledge (both syntactic knowledge and semantic
knowledge), which are stored in the long term memory of the
programmer.

• Syntactic knowledge concern individual programming languages.

• Semantic knowledge means programming concepts and
techniques at different levels of abstractions.

• Short term memory

– The capacity of the short term memory is very limited, and, therefore,
the programmer must be able to quickly identify chunks, create their
abstractions, and represent those abstractions in some internal form.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

39

Figure 8.4: An overview of Brooks comprehension model.

8.3.3 Brooks comprehension model

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

40

8.3.3 Brooks comprehension model

• The three key elements of the model are
– Code viewed as performing mappings from a problem domain to the

programming domain

– Understanding the mappings in terms of hypotheses

– Verification and refinement of hypotheses

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

41

8.3.3 Brooks comprehension model

• The three key elements of the model are
– Code viewed as performing mappings from a problem domain to the

programming domain

• Developing a software system can be seen as performing a series
of mappings from one domain to the next, starting from the
problem domain and finishing in the programming domain.

• The results of the mappings are documented with varying degree
of details, whereas the thought processes that perform the
mappings are generally missing from the documentations.

• For correct and complete understanding of the program, it is
important to understand the mappings and their relationships,
which is realized by means of constructing hypotheses and
validating them.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

42

8.3.3 Brooks comprehension model

– Understanding the mappings in terms of hypotheses

• Programmers read all available documentations and try to
reconstruct the mappings as much as they can.

• They are said to have truly comprehended the program if all the
mappings are exactly reconstructed.

• Programmers try to understand the program by formulating
hypotheses in terms of what they find from the available
documentations, their expectations, their current level of
understanding of the program, and their knowledge of the problem
domain and programming in general.

• Hypothesis construction begins with the generation of a primary
hypothesis concerning the global structure of the program in terms
of inputs, outputs, major data structures, and the processing
sequences.

• Hypotheses can be organized in a hierarchical manner to
represent both the breadth and depth of comprehending the
program.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

43

8.3.3 Brooks comprehension model

– Verification and refinement of hypotheses

• A hypothesis represents a programmer’s understanding of a
certain aspect of the program – and that understanding may be
correct, incorrect, or partially correct.

• A hypothesis must be verified or refined by means of further
understanding of the program.

• Programmers verify a hypothesis by searching the program text
and related documentations for beacons that confirm the
hypothesis.

• While reading code to find beacons, programmers try to develop a
broad understanding of the program by having an open mind
about the system, rather than stay focused only on the hypothesis
under consideration.

• A programmer can continue constructing and validating
hypothesis, thereby creating a hierarchical structure of
hypotheses, where the top one is the primary hypothesis and the
others are subsidiary hypotheses, and code segments are bound
to specific hypothesis.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

44

8.3.3 Brooks comprehension model

– Verification and refinement of hypotheses

• Programmers may encounter a number of problems while verifying
hypotheses:

– The programmer fails to find code to bind to a subsidiary hypothesis.

– The same code is bound to multiple subsidiary hypotheses.

– The programmer fails to bind a code segment to any hypothesis.

• The above problems can be resolved by adopting new
hypotheses, refining the existing hypotheses, and altering and
adding to the bindings of code segments to hypotheses.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

45

8.3.3 Brooks comprehension model

• Brooks has identified a number of factors having an impact on
program comprehension:

– Characteristics of source code

– Quality of documentation

– Task differences affect comprehension

– Programmers differ in their ability to comprehend programs

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

46

Figure 8.5: Soloway, Adelson, and Ehrlich comprehension model.

8.3.4 Soloway, Adelson, and Ehrlich model

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

47

8.3.4 Soloway, Adelson, and Ehrlich model

• This model works in a top-down manner, and it applies when
the code is familiar to the programmer.

• Two fundamental concepts in the model are

– programming plans (aka schemas) and

– programming rules of discourse.

• Programmers have and use specific programming plans and
rules of programming discourse to comprehend programs.

• Some concrete rules of programming discourse are:

– The names of the variables reflect their purpose.

– Code that is not going to be executed is not included.

– A tested condition must have the potential of evaluating to true.

– A variable that is initialized by means of an assignment statement is
subsequently updated with assignment statements.

– Use an if statement to execute a code segment once, whereas for()
and while() loops are used to repeatedly execute code segments.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

48

8.3.4 Soloway, Adelson, and Ehrlich model

• Similar to the other models, documentations play a key role in
program understanding in this model.

• The understanding process matches programming plans
found in source code with external documentations using
rules of discourse.

• During the understanding process, the programmer creates a
hierarchical knowledge structure representing their
understanding of the code.

– Comprehension begins with a high level program goal, and finer, lower
level subgoals are generated to realize the upper level goals.

• Comprehension is an iterative process; in each iteration, the
programmer expands their understanding of the code by
refining the already identified subgoals and identifying new
subgoals.

• The process is said to complete when the programmer has
associated all the programming plans with the goal hierarchy.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

49

Figure 8.6: Pennington model.

8.3.5 Pennington Model

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

50

8.3.5 Pennington Model

• The model applies two concepts:

– textbase and

– situation model. is important to

• Pay attention to the loop:

– {Match – Mental representation – Text structure knowledge} followed
by the Textbase.

• The programmer iterates through the loop, thereby
incrementally creating the mental representation.

• Finally, when the programmer stops iterating through the
loop, the final mental representation is known as the textbase.

• There is a similar relationship between the second mental
representation box and the situation model.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

51

8.3.5 Pennington Model

• The concepts of textbase and situation model are explained
as follows:

– Textbase (Program model)

• A textbase represents information that the reader of a text can
recall from memory after reading the text.

• A textbase includes a hierarchy of representations comprising a
surface-level knowledge of the text, a microstructure of
relationships among text propositions, and a macrostructure
organizing the text representation.

• The textbase basically describes a program model in terms of the
control flow of the program, because when programmers read new
code they build a control flow abstraction of the code.

– Situation model

• A situation model represents what the text is about.

• The model requires knowledge of the real-world domains and
objects.

• Situation models are built via cross-referencing and chunking.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

52

8.3.5 Pennington Model

• A high level description of the model is as follows:

– The programmer assimilates their understanding of the code,
knowledge of the text structure, and the situation model to create a
mental model in the form of a textbase.

– The programmer assimilates the documentations, plan knowledge,
and the textbase to create the situation model.

– The textbase and the situation model are cross-referenced to refine
and update the two models.

• While reading code, programmers gain knowledge about the
following aspects of code:

– Operations

– Control Flow

– Data Flow

– State

– Function

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

53

Figure 8.7: Integrated Metamodel [1] (c [1995] IEEE).

8.3.6 Integrated Metamodel

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

54

8.3.6 Integrated Metamodel

• The four major components of the model are
explained in the following:

– Top-down model

• It is also known as domain model and it represents domain
knowledge about the program.

– Program model

• If the programmer understands what the program is doing from the
control flow aspect, then he has a program model of the code.

– Situation model (See the Pennington’s model)

• After building a program model, a programmer builds a situation
model by using control flow and data flow information in a bottom-
up manner.

– Knowledge base

• The knowledge base provides a medium for interactions among
the above three models, and comprises the following three kinds
of knowledge structures. (See next slide.)

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

55

8.3.6 Integrated Metamodel
– Knowledge base (contd.)

• The …. following three kinds of knowledge structures.

– Top-down structures

 These include programming plans and rules of discourse.

 The programming plans are categorized into: strategic plans,
tactical plans, and implementation plans.

– Program model structures

 These include two kinds of knowledge: text-structure knowledge
and plan knowledge.

– Situation model structures

 These are described in terms of problem domain knowledge and
functional knowledge.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

56

8.3.6 Integrated Metamodel

• In the integrated metamodel, all the three models are
simultaneously built.

• The programmer takes an opportunistic approach and
simultaneously builds all the three models by updating the
knowledge base with the understanding of one model and
applying the knowledge to further build another model.

– For example, the knowledge generated from the program model can
be used to expand and/or refine the situation model, and vice versa.

– The programmer uses the knowledge base for guidance to make a
transition from one model to another.

• The knowledge base is also called long-term memory, and it
is generally organized into schemas (aka plans).

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

57

8.4 Protocol Analysis

• Novice programmers can learn by observing how
experienced programmers behave during program
comprehension.

– Similarly, researchers can learn by observing how both novice and
experienced programmers behave during program comprehension.

• Ideally, we want to observe all aspects of programmers’
behavior while they are trying to understand the code:

– What is the programmer studying?

– What is the programmer thinking when he sees something
interesting?

– What does the programmer do after he finds something interesting?

– What is the rational thinking behind the programmer’s action?

• Protocol analysis, studied in the field of psychological
research, is a key concept used in finding answers to the
above questions.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

58

8.4 Protocol Analysis

• Protocol analysis is a methodology for eliciting verbal
reports from participants (programmers in this case)
about their thought sequences as a valid source of
data on thinking.

• Protocol analysis is composed of two steps:
– Concurrent verbalization of a comprehension task: This step produces

textual data (aka protocol data) representing the thought sequence of
a programmer as he performs the comprehension task by reading the
code.

– Analysis of protocol data: The protocol data is analyzed to understand
the characteristics of the thinking performed by the programmer.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

59

8.4 Protocol Analysis

• Concurrent verbalization of a comprehension task

– Programmers are asked to verbalize their thoughts while working on a
specific task, and it is recorded on audio-visual systems.

• Programmers are asked to “think aloud”: they say loudly everything
they think, evaluate, and (mentally) move.

• This is called think aloud protocol (TAP)

– Some examples of concurrent verbalization are:

– I want to read the external documentations. What? No external documentations!
I wanted to speak with the developers who designed and implemented the
system, but they are all gone! I mean they have left the company.

– Okay. I am reading the code prologue.

– Now I know that the system is for enabling customers to make seat reservations
in a restaurant and placing orders.

– I find interesting keywords in the prologue: phone, cell phone, and laptops. I
think one could make reservations by calling a restaurant or on the Web. I guess
... customers might be able to place orders from their cell phones.

– Let me read the module called MakeReservation.

– ….

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

60

8.4 Protocol Analysis

• Analysis of protocol data

– There is no common, detailed procedure to analyze protocol data.

– Rather, a very general description of protocol analysis is as follows:

• Divide protocol data into several segments, say, speech sentences.

• Assign the segments to different predefined categories. This is
called encoding.

– Coding categories are selected with a model of the verbalization
process in mind.

– Coding system of Ericsson and Simon: There are four kinds of
segments: intentions, cognitions, planning, and evaluations.

• Analyze the categorized protocol data to build a comprehension
model of the programmer.

– A comprehension model can be represented as a transition net, which
resembles finite-state machines, where computations (represented with
cognitions and intentions) are associated with states, and planning and
evaluations are associated with transitions

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

61

8.5 Visualization for Comprehension

• (Explained in Sec. 4.6.6 and applied in reverse engineering.)

• Visualization is supported with tools for program
comprehension.

– PUNS (Program Understanding Support environment)

– PAT (Program Analysis Tool)

– Fisheye view

– UML (Unified Modeling Language)

– City metaphor

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

62

8.5 Visualization for Comprehension

• PUNS (Program Understanding Support environment)

– Developed at IBM to provide multiple views of a program.

• A Call graph for a set of procedures

• A Control flow graph for an individual procedure

• A graph showing the relationship between a file and a procedure
that uses it

• A data flow graph

• A definition-use chain for a variable

– By performing static analysis of the code, the tool detects low-level
relationships and organizes them in a user-friendly environment so that
the user can easily navigate through the graphs while switching
between low-level and high-level objects.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

63

8.5 Visualization for Comprehension
• Program Analysis Tool (Harandi and Ning)

– Presents a heuristic-based concept recognition mechanism to extract
high-level functional concepts from source code.

– Assists programmers answer the following questions:

• What high-level concepts does the program implement?

• How are the high-level concepts coded in terms of low-level details?

– Explicitly represents two types of knowledge:

• Program knowledge

– Represented by programming concepts found in the code.

• Analysis knowledge

– Represented by information contained in program plans.

– Manages two databases to manipulate the two types of knowledge:

• A data base of coding heuristics, data structure definitions, and
functional coding pattern.

• A data base of rules for program plans covering value
accumulation, counting, sequential search of ordered and
unordered structures, different types of searching, and sorting.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

64

8.5 Visualization for Comprehension
• Fisheye View (Jakobsen and Hornbaek)

– It supports programmer’s navigation and comprehension.

– A fisheye view displays those parts of the source code that have the
highest degree of interest related to the current focus of the programmer.

– Shows both overview and details.

• An overview of the entire document is displayed to the right of the
detailed view window.

• The overview displays the source code reduced in size to fit the
entire document within the space of the overview area.

• The portion of the code shown in the detail area is visually connected
with its location in the overview.

– The fisheye interface of Jakobsen and Hornbaek possess the following
features:

• Focus and context area

• Degree of interface function

• Magnification function

• User interaction

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

65

8.5 Visualization for Comprehension
• UML

– Class diagrams can aid programmers in code comprehension.

– The concepts of perceptual organization and perceptual segregation
can be applied to organize UML class diagrams.

• Perceptual organization indicates when entities are organized in
near proximity.

• Perceptual segregation indicates when entities are separated.

– The followings are some important principles of perceptual organization:

• Good figure

• Similarity

• Proximity

• Familiarity (Meaningfulness)

• Element connectedness

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

66

8.5 Visualization for Comprehension
• UML

– Perceptual segregation is further explained as follows:

• When one looks at the environment, what is seen is a whole picture
– and not separate parts.

• The following factors make an entity more like a figure that can be
easily recognized.

– Symmetry

– Orientation

– Contours

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

67

8.5 Visualization for Comprehension
• City Metaphor (Wettel and Lanza)

– This is a 3-dimensional visualization concept.

– Classes are represented as buildings located in city districts which in
turn represent packages.

– The concept of habitability is at the core of the city metaphor, and the
corresponding programming concept is familiarity.

• The more familiar a programmer is with the code, the easier it is to
understand the code.

– The concept of locality is supported by providing a navigable
environment.

Software Evolution and Maintenance (Chapter 8: Program Comprehension) © Tripathy & Naik

68

8.6 Summary

• Basic Terms
• Knowledge

• Mental model

• Static elements: text-structures, code chunks, schemas, plans,
andhypotheses

• Dynamic elements: chunking, cross-referencing, and strategies

• Cognition Models for Program Understanding
– Letovsky model, Shneiderman and Mayer model, Brooks model,

Soloway, Adelson and Ehrlich model, Pennington model, and Integrated
metamodel.

• Protocol Analysis
• Think Aloud Protocol

• Visualization for Comprehension
– PUNS, PAT, Fisheye view, UML, and City metaphor

