
Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

Reengineering

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.1 General Idea

• Reengineering is the examination, analysis, and restructuring of an
existing software system to reconstitute it in a new form, and the
subsequent implementation of the new form.

• Example: initially Unix was developed in assembly language. When
language C came into existence, Unix was re-engineered in C,
because working in assembly language was difficult.

• The goal of reengineering is to:

• understand the existing software system artifacts, namely,
specification, design, implementation, and documentation, and

• improve the functionality and quality attributes of the system.

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.1 General Idea

• Software systems are re engineered by keeping one or
more of the following four general objectives in mind:

• Improving maintainability.

• Migrating to a new technology.

• Improving quality.

• Preparing for functional enhancement.

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.2 Reengineering Concepts

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.2 Reengineering Concepts

Figure 4.1 levels of abstraction and refinement
© IEEE, 1992

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.2 Reengineering Concepts

• An optional principle called alteration underlies
many reengineering methods.

• Principle of alteration: The alteration principle
refers to the conduction of one or more changes
in system abstraction without changing the level.

• Reengineering principles are represented by
means of arrows. Abstraction is represented by
an up-arrow, alteration is represented by a
horizontal arrow, and refinement by a down-
arrow.

• The arrows depicting refinement and abstraction
are slanted, thereby indicating the increase and
decrease, respectively, of system information.

• It may be noted that alteration is non-essential
for reengineering.

Figure 4.2 Conceptual basis for the
reengineering process © IEEE, 1992

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.3 A General Model For Software Reengineering

• The reengineering process accepts as input the existing code of
a system and produces the code of the renovated system.

• The reengineering process may be as straightforward as
translating with a tool the source code from the given language
to source code in another language.

• For example, a program written in BASIC can be translated
into a new program in C.

• The reengineering process may be very complex as explained
below:

• recreate a design from the existing source code.

• find the requirements of the system being reengineered.

• compare the existing requirements with the new ones.

• remove those requirements that are not needed in the renovated system.

• make a new design of the desired system.

• code the new system.

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.3 A General Model For Software Reengineering

• The model in the figure proposed by Eric J. Byrne suggests that
reengineering is a sequence of three activities:

– reverse engineering, re-design, and forward engineering

– strongly founded in three principles, namely, abstraction, alteration, and
refinement.

Figure: General model of software reengineering © IEEE, 1992

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.3 A General Model For Software Reengineering

• A visual metaphor called horseshoe, as depicted in Figure 4.4, was developed by
Kazman et al. to describe a three-step architectural reengineering process.

• Three distinct segments of the horseshoe are the left side, the top part, and the right
side. Those three parts denote the three steps of the reengineering process.

Figure 4.4 Horseshoe model of reengineering © IEEE, 1998

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.3 A General Model For Software Reengineering

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.3.1 Types of Change

Based on the type of changes required, system characteristics are divided into
groups: rethink, respecify, redesign, and re-code.

Recode:

• Implementation characteristics of the source program are changed by re-coding it.
Source-code level changes are performed by means of rephrasing and program
translation.

• In the latter approach, a program is transformed into a program in a different language.
On the other hand, rephrasing keeps the program in the same language

• Examples of translation scenarios are compilation, decompilation, and migration.

• Examples of rephrasing scenarios are normalization, optimization, refactoring, and
renovation.

Redesign:

• The design characteristics of the software are altered by re-designing the

system. Common changes to the software design include:

(i) restructuring the architecture;

(ii) Modifying the data model of the system; and

(iii) replacing a procedure or an algorithm with a more efficient one.

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.3.1 Types of Change

Respecify:

• This means changing the requirement characteristics of the system in two
ways:

(i) change the form of the requirements, and

(ii) change the scope of the requirements.

Rethink:

• Re-thinking a system means manipulating the concepts embodied in an
existing system to create a system that operates in a different problem domain.

• It involves changing the conceptual characteristics of the system, and it can
lead to the system being changed in a fundamental way.

• Moving from the development of an ordinary cellular phone to the
development of smartphone system is an example of Re-think.

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.3.2 Software Reengineering Strategies

Three strategies that specify the basic steps of reengineering are rewrite,
rework, and replace.

Rewrite strategy:

This strategy reflects the principle of alteration. By means of alteration, an
operational system is transformed into a new system, while preserving the
abstraction level of the original system. For example, the Fortran code of a
system can be rewritten in the C language.

Figure 4.5 Conceptual basis for reengineering strategies © IEEE, 1992

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.3.2 Software Reengineering Strategies

Rework strategy:

• The rework strategy applies all the three principles.

• Let the goal of a reengineering project is to replace the unstructured
control flow constructs, namely GOTOs, with more commonly used
structured constructs, say, a “for” loop.

• A classical, rework strategy based approach is as follows:

• Application of abstraction: By parsing the code, generate a control-flow graph
(CFG) for the given system.

• Application of alteration: Apply a restructuring algorithm to the control-flow
graph to produce a structured control-flow graph.

• Application of refinement: Translate the new, structured control-flow graph
back into the original programming language.

Figure 4.5 Conceptual basis for reengineering strategies © IEEE, 1992

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.3.2 Software Reengineering Strategies

Replace strategy:

• The replace strategy applies two principles, namely, abstraction and
refinement.

• To change a certain characteristic of a system:

(i) the system is reconstructed at a higher level of abstraction by hiding the details of
the characteristic; and

(ii) a suitable representation for the target system is generated at a lower level of
abstraction by applying refinement.

• Let us reconsider the GOTO example. By means of abstraction, a program is
represented at a higher level without using control flow concepts.

• Next, by means of refinement, the system is represented at a lower level of
abstraction with a new structured control flow.

Figure 4.5 Conceptual basis for reengineering strategies © IEEE, 1992

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.4 Reengineering Process

• An ordered set of activities designed to perform a specific task is called a
process.

• For ease of understanding and communication, processes are described by
means of process models.

• For example, in the software development domain, the Waterfall process model
is widely used in developing well-understood software systems.

• Process models are used to comprehend, evaluate, reason about, and improve
processes.

• Intuitively, process models are described by means of important relationships
among data objects, human roles, activities, and tools.

• We will discuss five process models for software reengineering.

• The five approaches are different in two aspects:

(i) the extent of reengineering performed, and

(ii) the rate of substitution of the operational system with the new one.

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.4.1 Reengineering Approaches

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.4.1 Reengineering Approaches

Incremental Approach

• In this approach a system is reengineered gradually, one step closer to the
target system at a time.

• For a large system, several new interim versions are produced and released.

• Successive interim versions satisfy increasingly more project goals than their
preceding versions.

• The advantages of this approach are as follows:

(i) locating errors becomes easier, because one can clearly identify the newly
added components, and

(ii) It becomes easy for the customer to notice progress, because interim
versions are released.

• The disadvantages of the incremental approach are as follows:

(i) with multiple interim versions and their careful version controls, the
incremental approach takes much longer to complete, and

(ii) even if there is a need, the entire architecture of the system cannot be
changed.

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.4.1 Reengineering Approaches

Partial Approach

• In this approach, only a part of the system is reengineered and then it is
integrated with the non-engineered portion of the system.

• One must decide whether to use a “Big Bang” approach or an “Incremental”
approach for the portion to be reengineered.

• The following three steps are followed in the partial approach:

• In the first step, the existing system is partitioned into two parts: one part
is identified to be reengineered and the remaining part to be not
reengineered.

• In the second step, reengineering work is performed using either the “Big
Bang” or the “Incremental” approach.

• In the third step, the two parts, namely, the not-to-be-reengineered part and
the reengineered part of the system, are integrated to make up the new
system.

• The partial approach has the advantage of reducing the scope of reengineering
that is less time and costs less.

• A disadvantage of the partial approach is that modifications are not performed
to the interface between the portion modified and the portion not modified.

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.4.1 Reengineering Approaches

Iterative Approach
• The reengineering process is applied on the source code of a few procedures

at a time, with each reengineering operation lasting for a short time.

• This process is repeatedly executed on different components in different
stages.

• During the execution of the process, ensure that the four types of components
can coexist:

– old components not reengineered,

– components currently being reengineered,

– components already reengineered, and

– new components added to the system.

• There are two advantages of the iterative reengineering process:
(i) it guarantees the continued operation of the system during the execution of

the reengineering process, and

(ii) the maintainers’ and the users’ familiarities with the system are preserved.

• The disadvantage of this approach is the need to keep track of the four types
of components during the reengineering process.

• In addition, both the old and the newly reengineered components need to be
maintained.

Software Evolution and Maintenance (Chapter 4: Reengineering) © Tripathy & Naik

4.4.1 Reengineering Approaches

Evolutionary Approach

• In the ”Evolutionary” approach components of the original system are substituted
with re-engineered components.

• In this approach, the existing components are grouped by functions and
reengineered into new components.

• Software engineers focus their reengineering efforts on identifying functional
objects irrespective of the locations of those components within the current system.

• As a result, the new system is built with functionally cohesive components as
needed.

• There are two advantages of the “Evolutionary” approach:

(i) the resulting design is more cohesive, and

(ii) the scope of individual components is reduced.

• A major disadvantage:

(i) all the functions with much similarities must be first identified throughout the
operational system.

(ii) next, those functions are refined as one unit in the new system.

