
SOFTWARE
EVOLUTION AND
MAINTENANCE

PRIYADARSHI TRIPATHY
KSHIRASAGAR NAIK

A PRACTITIONER’S APPROACH

SOFTWARE EVOLUTION
AND MAINTENANCE

SOFTWARE EVOLUTION
AND MAINTENANCE

A Practitioner’s Approach

PRIYADARSHI TRIPATHY
KSHIRASAGAR NAIK

Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herin may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department with the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print,
however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data

Tripathy, Priyadarshi, 1958–
Software evolution and maintenance : a practitioner’s approach / Priyadarshi Tripathy,

Kshirasagar Naik.
pages cm

Includes index.
ISBN 978-0-470-60341-3 (cloth)

1. Software maintenance. I. Naik, Kshirasagar, 1959– II. Title.
QA76.76.S64T75 2015
005.1′6–dc23

2014033541

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com

To our parents
Kunjabihari and Surekha Tripathy

Sukru and Teva Naik

CONTENTS

Preface xiii

List of Figures xvii

List of Tables xxi

1 Basic Concepts and Preliminaries 1

1.1 Evolution Versus Maintenance, 1
1.1.1 Software Evolution, 3
1.1.2 Software Maintenance, 4

1.2 Software Evolution Models and Processes, 6
1.3 Reengineering, 9
1.4 Legacy Systems, 11
1.5 Impact Analysis, 12
1.6 Refactoring, 13
1.7 Program Comprehension, 14
1.8 Software Reuse, 15
1.9 Outline of the Book, 16
References, 18
Exercises, 23

2 Taxonomy of Software Maintenance and Evolution 25

2.1 General Idea, 25
2.1.1 Intention-Based Classification of Software Maintenance, 26
2.1.2 Activity-Based Classification of Software Maintenance, 28
2.1.3 Evidence-Based Classification of Software Maintenance, 28

vii

viii CONTENTS

2.2 Categories of Maintenance Concepts, 37
2.2.1 Maintained Product, 37
2.2.2 Maintenance Types, 40
2.2.3 Maintenance Organization Processes, 41
2.2.4 Peopleware, 43

2.3 Evolution of Software Systems, 44
2.3.1 SPE Taxonomy, 46
2.3.2 Laws of Software Evolution, 49
2.3.3 Empirical Studies, 54
2.3.4 Practical Implications of the Laws, 56
2.3.5 Evolution of FOSS Systems, 58

2.4 Maintenance of Cots-Based Systems, 61
2.4.1 Why Maintenance of CBS Is Difficult?, 62
2.4.2 Maintenance Activities for CBSs, 65
2.4.3 Design Properties of Component-Based Systems, 67

2.5 Summary, 70
Literature Review, 73
References, 75
Exercises, 80

3 Evolution and Maintenance Models 83

3.1 General Idea, 83
3.2 Reuse-Oriented Model, 84
3.3 The Staged Model for Closed Source Software, 87
3.4 The Staged Model for Free, Libre, Open

Source Software, 90
3.5 Change Mini-Cycle Model, 91
3.6 IEEE/EIA Maintenance Process, 94
3.7 ISO/IEC 14764 Maintenance Process, 99
3.8 Software Configuration Management, 111

3.8.1 Brief History, 112
3.8.2 SCM Spectrum of Functionality, 113
3.8.3 SCM Process, 117

3.9 CR Workflow, 119
3.10 Summary, 125
Literature Review, 126
References, 129
Exercises, 131

4 Reengineering 133

4.1 General Idea, 133
4.2 Reengineering Concepts, 135
4.3 A General Model for Software Reengineering, 137

4.3.1 Types of Changes, 140

CONTENTS ix

4.3.2 Software Reengineering Strategies, 141
4.3.3 Reengineering Variations, 143

4.4 Reengineering Process, 144
4.4.1 Reengineering Approaches, 144
4.4.2 Source Code Reengineering Reference Model, 146
4.4.3 Phase Reengineering Model, 150

4.5 Code Reverse Engineering, 153
4.6 Techniques Used for Reverse Engineering, 156

4.6.1 Lexical Analysis, 157
4.6.2 Syntactic Analysis, 157
4.6.3 Control Flow Analysis, 157
4.6.4 Data Flow Analysis, 158
4.6.5 Program Slicing, 158
4.6.6 Visualization, 160
4.6.7 Program Metrics, 162

4.7 Decompilation Versus Reverse Engineering, 164
4.8 Data Reverse Engineering, 165

4.8.1 Data Structure Extraction, 168
4.8.2 Data Structure Conceptualization, 169

4.9 Reverse Engineering Tools, 170
4.10 Summary, 174
Literature Review, 176
References, 178
Exercises, 185

5 Legacy Information Systems 187

5.1 General Idea, 187
5.2 Wrapping, 189

5.2.1 Types of Wrapping, 189
5.2.2 Levels of Encapsulation, 191
5.2.3 Constructing a Wrapper, 192
5.2.4 Adapting a Program for Wrapper, 194
5.2.5 Screen Scraping, 194

5.3 Migration, 195
5.4 Migration Planning, 196
5.5 Migration Methods, 202

5.5.1 Cold Turkey, 202
5.5.2 Database First, 203
5.5.3 Database Last, 204
5.5.4 Composite Database, 205
5.5.5 Chicken Little, 206
5.5.6 Butterfly, 208
5.5.7 Iterative, 212

5.6 Summary, 217

x CONTENTS

Literature Review, 218
References, 219
Exercises, 221

6 Impact Analysis 223

6.1 General Idea, 223
6.2 Impact Analysis Process, 225

6.2.1 Identifying the SIS, 228
6.2.2 Analysis of Traceability Graph, 229
6.2.3 Identifying the Candidate Impact Set, 231

6.3 Dependency-Based Impact Analysis, 234
6.3.1 Call Graph, 234
6.3.2 Program Dependency Graph, 235

6.4 Ripple Effect, 238
6.4.1 Computing Ripple Effect, 238

6.5 Change Propagation Model, 242
6.5.1 Recall and Precision of Change Propagation Heuristics, 243
6.5.2 Heuristics for Change Propagation, 245
6.5.3 Empirical Studies, 246

6.6 Summary, 247
Literature Review, 248
References, 249
Exercises, 253

7 Refactoring 255

7.1 General Idea, 255
7.2 Activities in a Refactoring Process, 258

7.2.1 Identify What to Refactor, 258
7.2.2 Determine Which Refactorings Should be Applied, 259
7.2.3 Ensure that Refactoring Preserves the Behavior of the

Software, 261
7.2.4 Apply the Refactorings to the Chosen Entities, 262
7.2.5 Evaluate the Impacts of the Refactorings on Quality, 263
7.2.6 Maintain Consistency of Software Artifacts, 265

7.3 Formalisms for Refactoring, 265
7.3.1 Assertions, 265
7.3.2 Graph Transformation, 266
7.3.3 Software Metrics, 267

7.4 More Examples of Refactorings, 271
7.5 Initial Work on Software Restructuring, 273

7.5.1 Factors Influencing Software Structure, 273
7.5.2 Classification of Restructuring Approaches, 275
7.5.3 Restructuring Techniques, 276

7.6 Summary, 282

CONTENTS xi

Literature Review, 283
References, 286
Exercises, 288

8 Program Comprehension 289

8.1 General Idea, 289
8.2 Basic Terms, 291

8.2.1 Goal of Code Cognition, 291
8.2.2 Knowledge, 291
8.2.3 Mental Model, 293
8.2.4 Understanding Code, 296

8.3 Cognition Models for Program Understanding, 298
8.3.1 Letovsky Model, 298
8.3.2 Shneiderman and Mayer Model, 301
8.3.3 Brooks Model, 303
8.3.4 Soloway, Adelson, and Ehrlich Model, 308
8.3.5 Pennington Model, 310
8.3.6 Integrated Metamodel, 312

8.4 Protocol Analysis, 315
8.5 Visualization for Comprehension, 317
8.6 Summary, 321
Literature Review, 321
References, 322
Exercises, 324

9 Reuse and Domain Engineering 325

9.1 General Idea, 325
9.1.1 Benefits of Reuse, 327
9.1.2 Reuse Models, 327
9.1.3 Factors Influencing Reuse, 328
9.1.4 Success Factors of Reuse, 329

9.2 Domain Engineering, 329
9.2.1 Draco, 331
9.2.2 DARE, 331
9.2.3 FAST, 331
9.2.4 FORM, 331
9.2.5 KobrA, 332
9.2.6 PLUS, 332
9.2.7 PuLSE, 332
9.2.8 Koala, 332
9.2.9 RSEB, 332

9.3 Reuse Capability, 333
9.4 Maturity Models, 334

9.4.1 Reuse Maturity Model, 334

xii CONTENTS

9.4.2 Reuse Capability Model, 336
9.4.3 RiSE Maturity Model, 338

9.5 Economic Models of Software Reuse, 340
9.5.1 Cost Model of Gaffney and Durek, 346
9.5.2 Application System Cost Model of Gaffney and Cruickshank, 348
9.5.3 Business Model of Poulin and Caruso, 350

9.6 Summary, 352
Literature Review, 352
References, 353
Exercises, 356

Glossary 359

Index 379

PREFACE

karmany eva dhikaras te; ma phalesu kadachana; ma karmaphalahetur bhur; ma te sango
stv akarmani.

Your right is to work only; but never to the fruits thereof; may you not be motivated by
the fruits of actions; nor let your attachment to be towards inaction.

—Bhagavad Gita

We have been witnessing stellar growth of the global software industry for three
decades. As this century progresses the industry is engaged in fixing defects and
enhancing and adding new features to the existing software applications. In fact, more
resources are spent on software maintenance than on actual software development.
The imbalance between software development and maintenance is opening up new
business opportunities for software off-shoring companies. It is also generating much
research interest to develop methods and tools for improving software evolution and
maintenance (SEAM).

Twenty-five years ago, the software industry was a much smaller one, and the
academia used to offer a single, comprehensive course entitled Software Engineering
to educate undergraduate students in the nuts and bolts of software development and
maintenance. Although software maintenance has been a part of the classical software
engineering literature for decades, the subject has not been widely incorporated into
the mainstream undergraduate curriculum. A few universities have started offering an
option in software engineering comprising four specialized courses, namely, Require-
ments Specification, Software Design, Software Testing and Quality Assurance, and
Software Evolution and Maintenance. In addition, some universities have introduced
full undergraduate and graduate degree programs in software engineering.

xiii

xiv PREFACE

Our survey of the subject of software evolution and maintenance reveals that a
large body of work exists in disparate form, including research papers, technical
reports, and reports of working groups. Moreover, there are many excellent books
focusing on specific aspects of a course in software maintenance and evolution.
However, there is no single book that presents the materials in a comprehensive
manner. Absence of a comprehensive textbook explaining most of the aspects of
software evolution and maintenance creates several problems for instructors and
students alike. For example, an instructor needs to refer to many sources to prepare
lecture materials. Consequently, it takes much time on the part of the instructor,
and students do not have access to all those sources. Our goal is to introduce the
students and the instructors to a set of well-rounded educational materials covering the
fundamental developments in software evolution and common maintenance practices
in the industry. We intend to provide students a single, comprehensive textbook
covering most of the topics in evolution and maintenance with much detail so that it
is very easy to get a handle on SEAM without reading a number of books and articles
in this subject. We have not tried to specifically address their research challenges.
Instead, we have presented the evolution theory and practice as a broad stepping
stone which will enable the students and practitioners to understand and develop
maintenance practices for complex software system.

We decided to write this book based on our teaching, research, and industrial
experiences in software maintenance. For the past 20 years, Sagar has been teaching
software engineering, including software testing and maintenance on a regular basis;
Piyu managed software quality assurance teams in industry for the maintenance of
routers, switches, wireless data networks, storage networks, and intrusion prevention
appliances. Our combined experience has helped us in selecting and structuring the
contents of this book to make it suitable as a text.

WHO SHOULD READ THIS BOOK?

We have written this book to introduce students, researchers, and software profession-
als to the fundamental developments in evolution models and common maintenance
practices for software. Undergraduate students in software engineering, computer
science, and computer engineering will be introduced to the subject matter in a step-
by-step manner. Practitioners too will benefit from the structured presentation and
comprehensive nature of the materials. Graduate students can use it as a reference.
After reading the whole book, the reader will have gained a thorough understanding
of the following topics:

� Laws of software evolution and the means to control them
� Evolution and maintenance models, including maintenance of commercial off-

the-shelf systems
� Reengineering techniques and processes for migration of legacy information

systems

PREFACE xv

� Impact analysis and change propagation techniques
� Program comprehension and refactoring
� Reuse and domain engineering models

Each chapter gives a clear understanding of a particular topic in software evolution
by discussing the main ideas with examples. It starts by explaining the basic concepts
about the topic, thereby ensuring a common base of understanding; next, it expands
the presentation by drilling the important aspects deeper.

HOW SHOULD THIS BOOK BE READ?

This book consists of several independent topics in SEAM glued together. Chapters
1, 2, and 3 provide basic understanding of the subject matters. Therefore, the first
three chapters must be read in order. Next, depending upon the interest of the reader,
one can choose any chapter to study without any difficulty. However, we recommend
the reader to study Chapters 4 and 5 together in that order. This is because Chapter 4
(“Reengineering”) introduces basic concepts of reengineering, reverse engineering,
and data reverse engineering, whereas Chapter 5 (“Legacy Information Systems”)
discusses the migration of a system after it is reengineered. Therefore, in our opinion,
the ordering will facilitate easier understanding of the materials, especially for those
who are new to software evolution.

Notes for instructors

The book can be used as a text in an introductory course in SEAM. It is desirable
to cover all the chapters in an introductory course in SEAM. When used as a rec-
ommended text in a software engineering course, the following selected portions can
help students imbibe the essential concepts in software evolution and maintenance:

� Chapter 1: All the sections
� Chapter 2: Sections 2.1 and 2.3
� Chapter 3: Sections 3.1, 3.2, 3.3, 3.4, 3.5 and 3.8
� Chapter 4: Sections 4.1 and 4.2
� Chapter 5: Sections 5.1 and 5.2
� Chapter 6: All the sections
� Chapter 7: Sections 7.1 and 7.2
� Chapter 8: Sections 8.1 and 8.2
� Chapter 9: Section 9.1

Supplementary materials for instructors are available at: http://ece.uwaterloo.ca/∼
snaik/mybook2.html

http://ece.uwaterloo.ca/%E2%88%BCsnaik/mybook2.html
http://ece.uwaterloo.ca/%E2%88%BCsnaik/mybook2.html

xvi PREFACE

ACKNOWLEDGMENTS

While preparing this book, we received invaluable support of different kinds from
many people, including researchers, the publisher, our family members, our friends,
and our colleagues. First, we thank all the researchers who have been shaping this
field ever since programs were started to be written. Without their published work,
this book would not have seen the light of the day. Second, we thank our editors,
namely, George Telecki, Michael Christian, and Whitney A. Lesch, who gave us much
professional guidance and patiently answered our various questions. The first author,
Piyu Tripathy, would like to thank his former colleagues at Cisco Systems, Airvana
Inc., NEC Laboratories America Inc., and present colleagues at Knowledge Trust.

Finally, the supports of our parents, parents-in-law, and spouses deserve a special
mention. I, Piyu Tripathy, thank my dear wife Leena, who has taken many household
and family duties off my hands to give me time that I needed to write this book; I
would like to thank my newly arrived daughter Inu for asking me inquisitive questions
about this book, which helped me in writing this preface.

I, Sagar Naik, thank my loving wife Alaka for her invaluable support. I also thank
my charming daughters, Monisha and Sameeksha, and exciting son, Siddharth, for
their understanding while I was writing this book. Finally, I heartily acknowledge all
the support that my elder brother Gajapati extended to me. We are very pleased that
now we have more time for our families.

Priyadarshi (Piyu) Tripathy

Knowledge Trust
Bhubaneswar, India

Kshirasagar (Sagar) Naik

University of Waterloo
Waterloo, Canada

LIST OF FIGURES

2.1 Groups or clusters and their types 29
2.2 Decision tree types. From Reference 15. © 2001 John Wiley &

Sons 32
2.3 Overview of concept categories affecting software maintenance 38
2.4 Inputs and outputs of software evolution. From Reference 26.

© 1988 John Wiley & Sons 45
2.5 S-type programs 47
2.6 P-type programs 48
2.7 E-type programs 49
2.8 E-type programs with feedback. From Reference 33. © 2006 John

Wiley & Sons 50
2.9 Onion model of FOSS development structure 59
2.10 Growth of the major subsystems (development releases only) of

the Linux OS. From Reference 57. © 2000 IEEE 61
3.1 Traditional SDLC model. From Reference 1. © 1988 John Wiley

& Sons 84
3.2 The quick fix model. From Reference 2. © 1990 IEEE 85
3.3 The iterative enhancement model. From Reference 2. © 1990

IEEE 85
3.4 The full reuse model. From Reference 2. © 1990 IEEE 86
3.5 The simple staged model for the CSS life cycle. From

Reference 6. © 2000 IEEE 88
3.6 The versioned staged model for the CSS life cycle. From

Reference 6. © 2000 IEEE 90
3.7 The staged model for the FLOSS system. From Reference 9.

© 2007 ACM 91

xvii

xviii LIST OF FIGURES

3.8 The change min-cycle. From Reference 12. © 2008 Springer 92
3.9 Seven phases of IEEE maintenance process. From Reference 26.

© 2004 IEEE 95
3.10 Problem identification phase 96
3.11 Analysis phase 97
3.12 Design phase 97
3.13 Implementation phase 98
3.14 System test phase 98
3.15 Acceptance test phase 99
3.16 Delivery phase 100
3.17 ISO/IEC 14764 iterative maintenance process. From

Reference 26. © 2004 IEEE 102
3.18 Process implementation activity 102
3.19 Problem and modification activity 103
3.20 Modification implementation activity 105
3.21 Maintenance review/acceptance activity 106
3.22 Migration activity 107
3.23 Retirement activity 109
3.24 Technical dimensions of SCM systems 113
3.25 An evolution of a file with two branches 114
3.26 A process for implementing SCM 117
3.27 State transition diagram of a CR 120
4.1 Levels of abstraction and refinement. From Reference 5. © 1992

IEEE 136
4.2 Conceptual basis for the reengineering process. From

Reference 5. © 1992 IEEE 137
4.3 General model of software reengineering. From Reference 5.

© 1992 IEEE 138
4.4 Horseshoe model of reengineering. From Reference 7. © 1998

IEEE 139
4.5 Conceptual basis for reengineering strategies. From Reference 5.

© 1992 IEEE 142
4.6 Source code reengineering reference model. From Reference 15.

© 1990 IEEE 147
4.7 The interface nomenclature. From Reference 15. © 1990 IEEE.

“(N)-” represents the Nth layer 147
4.8 Software reengineering process phases. From Reference 14.

© 1992 IEEE 150
4.9 Replacement strategies for recoding 152
4.10 Relationship between reengineering and reverse engineering.

From Reference 6. © 1990 IEEE 154
4.11 A block of code to compute the sum and product of all the even

integers in the range [0, N) for N ≥ 3 159
4.12 The backward slice of code obtained from Figure 4.11 by using

the criterion S < [7]; sum > 159

LIST OF FIGURES xix

4.13 The forward slice of code obtained from Figure 4.11 by using the
criterion S < [3]; product > 160

4.14 Relationship between decompilation and traditional
reengineering. From Reference 83. © 2007 165

4.15 General architecture of the DBRE methodology. From
Reference 95. © 1997 IEEE 169

4.16 Basic structure of reverse engineering tools. From Reference 6.
© 1990 IEEE 171

5.1 Forward wrapper. From Reference 10. © 2006 ACM 190
5.2 Backward wrapper. From Reference 10. © 2006 ACM 190
5.3 Levels of encapsulation. From Reference 11.

© 1996 IEEE 191
5.4 Modules of a wrapping framework 193
5.5 Portfolio analysis chi-square chart 198
5.6 Database first approach. From Reference 19. © 1999 IEEE 203
5.7 Database last approach. From Reference 19. © 1999 IEEE 204
5.8 Composite database approach. From Reference 19. © 1999 IEEE 205
5.9 Application gateway. From Reference 19. © 1999 IEEE 206
5.10 Information system gateway. From Reference 19. © 1999 IEEE 207
5.11 Migrating TempStore in Butterfly methodology. From

Reference 19. © 1999 IEEE 211
5.12 The iterative system architecture methodology during

reengineering. From Reference 29. © 2003 IEEE 214
5.13 The iterative migration process. From Reference 29. © 2003 IEEE 215
6.1 Impact analysis process. From Reference 6. © 2008 IEEE 226
6.2 Traceability in software work products. From Reference 22.

© 1991 IEEE 229
6.3 Underlying graph for maintenance. From Reference 22. © 1991

IEEE 230
6.4 Determine work product impact. From Reference 22. © 1991

IEEE 231
6.5 Simple directed graph of SLOs. From Reference 12. © 2002 IEEE 232
6.6 In-degree and out-degree of SLO1. From Reference 12. © 2002

IEEE 232
6.7 Example of a call graph. From Reference 26. © 2003 IEEE 234
6.8 Execution trace 235
6.9 Example program. From Reference 31. © 1990 ACM 236
6.10 Program dependency graph of the program in Figure 6.9 236
6.11 Dynamic program slice for the code in Figure 6.9, text case

X = −1, with respect to variable Y 237
6.12 Intramodule and intermodule change propagation. From

Reference 36. © 2001 John Wiley & Sons 239
6.13 Change propagation model. From Reference 10. © 2004 IEEE 243
6.14 Change propagation flow for a simple example. From

Reference 10. © 2004 IEEE 244

xx LIST OF FIGURES

6.15 Program 253
7.1 Class diagram of a local area network (LAN) simulator. From

Reference 6. © 2007 Springer 260
7.2 Applications of two refactorings. From Reference 6. © 2007

Springer 263
7.3 An example of a soft-goal graph for maintainability, with one leaf

node. From Reference 11. © 2002 IEEE 264
7.4 An example of a program graph. From Reference 13. © 2006

Elsevier 266
7.5 Program graph obtained after applying push-down method

refactoring to the program graph of Figure 7.4. From
Reference 13. © 2006 Elsevier 267

7.6 An example of a VRML diagram of two classes C1 and C2.
Circles denote methods and squares denote attributes 269

7.7 Illustration of the push-down method refactoring: (a) the class
diagram before refactoring; (b) the class diagram after refactoring 272

7.8 An example of parameterizing a method. There are four methods
in (a), whereas there is one method in (b) with one parameter 273

7.9 Factors which can influence software structure. From
Reference 2. © 1989 IEEE 274

7.10 Broad classification of approaches to software structuring 275
7.11 System sandwich approach to software restructuring. The arrows

represent the flow of data and/or commands 278
7.12 Illustration of system level remodularization. Bullets represent

low level entities. Dotted shapes represent modules. Arrows
represent progression from one level to the next 279

7.13 Illustration of entity level remodularization. Bullets represent low
level entities. Dotted shapes represent modules 279

7.14 Dendogram representation of Figure 7.12 282
8.1 Gaining general knowledge and software-specific knowledge 292
8.2 Letovsky’s program comprehension model 298
8.3 Shneiderman and Mayer program comprehension model 302
8.4 An overview of Brooks comprehension model 304
8.5 Soloway, Adelson, and Ehrlich comprehension model 309
8.6 Pennington model 310
8.7 Integrated Metamodel. From Reference 1. © 1995 IEEE 313
9.1 Feedback between domain and application engineering 330
9.2 Reuse capability. From Reference 40. © 1993 IEEE 334

LIST OF TABLES

2.1 Evidence-Based 12 Mutually Exclusive Maintenance Types 30
2.2 Impact of the Types 31
2.3 Summary of Evidence-Based Types of Software Maintenance 33
2.4 Staged Model Maintenance Task 39
2.5 Laws of Software Evolution 50
2.6 System Data to be Used in Question 14 81
3.1 Template of a Maintenance Plan 101
3.2 Modification Request Task Steps 104
3.3 Option Task Steps 104
3.4 Documentation Task Steps 105
3.5 Review and Approval Task Steps 106
3.6 Migration Plan Task Steps 108
3.7 Operation and Training Task Steps 108
3.8 Retirement Plan Task Steps 110
3.9 Change Request Schema Field Summary 121
3.10 Engineering Change Document Information 124
4.1 Reengineering Process Variations 143
4.2 Tasks—Analysis and Planning Phase 151
4.3 Commonly Used Software Metrics 163
5.1 Common Quantifiable Benefit Metrics 200
5.2 Chicken Little Migration Approach 207
5.3 Phases of Butterfly Methodology 209
5.4 Migration Activities in Phase 1 209
5.5 Migration Activities in Phase 2 210
5.6 Migration Activities in Phase 3 210

xxi

xxii LIST OF TABLES

5.7 Migration Activities in Phase 4 210
5.8 Migration Activities in Phase 5 211
6.1 Relationships Represented by a Connectivity Matrix 233
6.2 Relationships Represented by a Reachability Matrix 233
6.3 Relationship with Distance Indicators 234
6.4 Laws of Software Evolution 242
6.5 Performance of Change Propagation Heuristics for the Five

Software Systems 247
8.1 Tasks and Activities Requiring Code Understanding 290
8.2 Code Cognition Models 290
9.1 Reuse Maturity Model 335
9.2 Critical Success Factors 337
9.3 RiSE Maturity Model Levels: Organizational Factors [42] 341
9.4 RiSE Maturity Model Levels: Business Factors [42] 343
9.5 RiSE Maturity Model Levels: Technological Factors [42] 344
9.6 RiSE Maturity Model Levels: Processes Factors [42] 345
9.7 Relative Costs of Development Activities 347
9.8 Relative Reuse Cost (b) 348

1
BASIC CONCEPTS AND
PRELIMINARIES

Another flaw in the human character is that everybody wants to build and nobody wants
to do maintenance.

—Kurt Vonnegut, Jr.

1.1 EVOLUTION VERSUS MAINTENANCE

In 1965, Mark Halpern introduced the concept of software evolution to describe the
growth characteristics of software [1]. Later, the term “evolution” in the context of
application software was widely used. The concept further attracted the attentions
of researchers after Belady and Lehman published a set of principles determining
evolution of software systems [2, 3]. The principles were very general in nature. In
his landmark article entitled “The Maintenance ‘Iceberg’,” R. G. Canning compared
software maintenance to an “iceberg” to emphasize the fact that software developers
and maintenance personnel face a large number of problems [4]. A few years later,
in 1976, Swanson introduced the term “maintenance” by grouping the maintenance
activities into three basic categories: corrective, adaptive, and perfective [5]. In the
early 1970s, IBM called them “maintenance engineers” or “maintainers” who had
been making intentional modifications to running code that they had not developed
themselves. The main reason for using nondevelopment personnel in maintenance
work was to free up the software development engineers or programmers from support

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

1

2 BASIC CONCEPTS AND PRELIMINARIES

activities [6]. In this book, we will use maintainer, maintenance engineer, developer,
and programmer interchangeably.

Bennett and Rajlich [7] researched the term “software evolution” and found that
there is no widely accepted definition of the term. In addition, some researchers
and practitioners used the phrases “software evolution” and “software maintenance”
interchangeably. However, key semantic differences exist between the two. The two
are distinguished as follows:

� The concept of software maintenance means preventing software from failing
to deliver the intended functionalities by means of bug fixing.

� The concept of software evolution means a continual change from a lesser,
simpler, or worse state to a higher or better state ([8], p. 1).

Bennett and Xu [9] made further distinctions between the two as follows:

� All support activities carried out after delivery of software are put under the
category of maintenance.

� All activities carried out to effect changes in requirements are put under the
category of evolution.

In general, maintenance and evolution are generally differentiated as follows [10]:

� Maintenance of software systems primarily means fixing bugs but preserving
their functionalities. Maintenance tasks are very much planned. For example,
bug fixing must be done and it is a planned activity. In addition to the planned
activities, unplanned activities are also necessitated. For example, a new usage
of the system may emerge. Generally, maintenance does not involve making
major changes to the architecture of the system. In other words, maintenance
means keeping an installed system running with no change to its design [11].

� Evolution of software systems means creating new but related designs from
existing ones. The objectives include supporting new functionalities, making
the system perform better, and making the system run on a different operating
system. Basically, as time passes, the stakeholders develop more knowledge
about the system. Therefore, the system evolves in several ways. As time passes,
not only new usages emerge, but also the users become more knowledgeable.
As Mehdi Jazayeri observed: “Over time what evolves is not the software but
our knowledge about a particular type of software” ([12], p. 3).

While we are on the topic of maintenance, it is useful to glance at the maintenance
of physical systems. Maintenance of physical systems often requires replacing broken
and worn-out parts. For example, owners replace the worn-out tires and broken lamps
of their cars. Similarly, a malfunctioning memory card is replaced with a good one.
On the other hand, software maintenance is different than hardware maintenance.
In hardware maintenance, a system or a component is returned to its original good
state. On the other hand, in software maintenance, a software system is moved from

EVOLUTION VERSUS MAINTENANCE 3

its original erroneous state to an expected good state [13]. Software maintenance
comprises all activities associated with the process of changing software for the
purposes of:

� fixing bugs; and/or
� improving the design of the system so that future changes to the system are less

expensive.

1.1.1 Software Evolution

Although the phrase “software evolution” had been used previously by other
researchers, fundamental work in the field of software evolution was done by Lehman
and his collaborators. Based on empirical studies [2, 14], Lehman and his collabo-
rators formulated some observations and they introduced them as laws of evolution.
The “laws” themselves have “evolved” from three in 1974 to eight by 1997 [15, 16].
Those laws are the results of studies of the evolution of large-scale proprietary or
closed source software (CSS) systems. The laws concern a category of software
systems called E-type systems. The eight laws are briefly explained as follows:

1. Continuing change. Unless a system is continually modified to satisfy emerging
needs of users, the system becomes increasingly less useful.

2. Increasing complexity. Unless additional work is done to explicitly reduce the
complexity of a system, the system will become increasingly more complex
due to maintenance-related changes.

3. Self-regulation. The evolution process is self-regulating in the sense that the
measures of products and processes, that are produced during the evolution,
follow close to normal distributions.

4. Conservation of organizational stability. The average effective global activity
rate on an evolving system is almost constant throughout the lifetime of the
system. In other words, the average amount of additional effort needed to
produce a new release is almost the same.

5. Conservation of familiarity. As a system evolves all kinds of personnel, namely,
developers and users, for example, must gain a desired level of understanding
of the system’s content and behavior to realize satisfactory evolution. A large
incremental growth in a release reduces that understanding. Therefore, the
average incremental growth in an evolving system remains almost the same.

6. Continuing growth. As time passes, the functional content of a system is con-
tinually increased to satisfy user needs.

7. Declining quality. Unless the design of a system is diligently fine-tuned and
adapted to new operational environments, the system’s qualities will be per-
ceived as declining over the lifetime of the system.

8. Feedback system. The system’s evolution process involves multi-loop, multi-
agent, multi-level feedback among different kinds of activities. Developers
must recognize those complex interactions in order to continually evolve an
existing system to deliver more functionalities and higher levels of qualities.

4 BASIC CONCEPTS AND PRELIMINARIES

In circa 1988, Pirzada [17] was the first one to study the differences between
the evolution of the Unix operating system developed by Bell Laboratories and the
systems studied by Lehman and Belady [18]. Pirzada argued that the differences
in academic and industrial software development could lead to differences in the
evolutionary pattern. In circa 2000, after a gap of 12 years, empirical study of
evolution of free and open source software (FOSS) was conducted by Godfrey and
Tu [19]. The authors provided the trend of growth of the popular FOSS operating
system Linux during 1994–1999. They showed the growth rate to be super-linear that
is greater than linear. Robles et al. [20] later replicated the study of Godfrey and Tu
and concluded that Lehman’s laws Nos. 3, 4, and 5 do not hold for large-scale FOSS
systems such as Linux. These studies reveal the changing nature of both software
and software development processes. Lehman’s studies mostly examined proprietary,
monolithic systems developed by a team of developers within a company, whereas
FOSS systems and their developments follow a different evolution paradigm.

Remark: FOSS is available to all with relaxed or nonexistent copyrights. FOSS is
commonly used as a synonym for free software even though “free” and “open” have
different semantics. The term “free” means the freedom to modify and redistribute the
system under the terms of the original agreement, while “open” means accessibility
to the source code.

1.1.2 Software Maintenance

More likely than not, there are defects in delivered software applications, because
defect removal and quality control processes are not perfect. Therefore, mainte-
nance is needed to repair those defects in released software. E. Burton Swanson
[5] initially defined three categories of software maintenance activities, namely, cor-
rective, adaptive, and perfective. Those definitions were later incorporated into the
standard software engineering–software life cycle processes–Maintenance [21] and
introduced a fourth category called preventive maintenance. The reader may note
that some researchers and developers view preventive maintenance as a subset of
perfective maintenance.

Swanson’s classification of maintenance activities is intention based because the
maintenance activities reflect the intents of the developer to carry out specific main-
tenance tasks on the system. In the intention-based classification of maintenance
activities, the intention of an activity depends upon the motivations for the change.
An alternative way of classifying modifications to software is to simply categorize
the modifications in terms of activities performed [22]:

� Activities to make corrections. If there are discrepancies between the expected
behavior of a system and the actual behavior, then some activities are performed
to eliminate or reduce the discrepancies.

� Activities to make enhancements. A number of activities are performed to imple-
ment a change to the system, thereby changing the behavior or implementation

EVOLUTION VERSUS MAINTENANCE 5

of the system. This category of activities is further refined into three subcate-
gories:

– enhancements that modify existing requirements;

– enhancements that create new requirements; and

– enhancements that modify the implementation without changing the require-
ments.

Chapin et al. [6] expanded the typology of Swanson into an evidence-based classi-
fication of 12 different types of software maintenance: training, consultive, evaluative,
reformative, updative, groomative, preventive, performance, adaptive, reductive, cor-
rective, and enhancive. The three objectives for classifying the types of software
maintenance are as follows:

� It is more informative to classify maintenance tasks based on objective evidence
that can be verified with observations and/or comparisons of software before
and after modifications. This does not require accessing the knowledge of the
personnel who originally developed the system.

� The granularity of the proposed classification can be made to accurately reflect
the actual mix of activities observed in the practice of software maintenance
and evolution.

� The classification groups are independent of hardware platform, operating sys-
tem choice, design methodology, implementation language, organizational prac-
tices, and the availability of the personnel doing the original development.

Maintenance of COTS-Based Systems Many present-day software systems are
built from components previously developed for other systems or to be reused in many
systems. In this approach, new components are developed by combining commercial
off-the-shelf (COTS) components, custom-built (in-house) components, and open
source software components. The components are obtained from a variety of sources
and maintained by different vendors, possibly from different countries [23]. The
motivations for performing software maintenance are the same for both component-
based software systems (CBS) and custom-built software systems. However, there
are noticeable differences between the activities in the two approaches. The major
sources of the differences are as follows [24, 25]:

� Skills of system maintenance teams. Maintenance of CBS requires specialized
skills to monitor and integrate COTS products. Those skills are different than the
skills required to perform the more traditional maintenance functions: analyze
and modify source code developed in-house. Maintainers view a CBS as a group
of black-box components, and not as a compiled set of source code modules,
thereby requiring a different set of maintenance skills. The differences in skills
are neither pros nor cons, but it is important that the differences are taken into
consideration for planning, staffing, and training.

6 BASIC CONCEPTS AND PRELIMINARIES

� Infrastructure and organization. Running a support group for in-house products
is necessary to manage a large product. This additional cost may be shared with
other projects.

� COTS maintenance cost. This cost includes the costs of purchasing compo-
nents, licensing components, upgrading components, and training maintenance
personnel. From the perspective of a system’s life cycle, much cost is shifted
from in-house development to license and maintenance fees, thereby increasing
the overall maintenance cost.

� Larger user community. COTS users are part of a broad community of users,
and the community of users can be considered as a resource, which is a positive
factor. However, being part of a community means having less control over
changes and improvements to COTS products.

� Modernization. In general, vendors of COTS components keep pace with chang-
ing technology and continually update the components. As a result, the system
does not become obsolete. However, the flip side is that the costs and risks
of making changes keep increasing even if the application does not require
any changes. In general, control over the evolution and maintenance of signif-
icant portions of the system is relinquished to third-party COTS developers.
Those third-party developers may be motivated to pursue their own commercial
self-interest. In addition, the third-party vendors control not only the nature of
maintenance to be done on the products, but also when it is to be done. Therefore
reliance on third-party products impacts both the type and timing of the main-
tenance performed by COTS-based developers. In a nutshell, unfortunately,
upgrades to products are necessitated by technology and vendor economics.

� Split maintenance function. A COTS product is maintained by its vendor,
whereas the overall system that uses the COTS product is maintained by the sys-
tem’s host organization. As a result, multiple, independent maintenance teams
exist. The advantage of COTS-based development is that the system maintain-
ers receive additional support from the COTS vendors. On the other hand, the
drawback of the approach is that the different COTS pieces need tighter coor-
dination, and the product vendors may stray in all directions with respect to
functionality and standard.

� More complex planning. If a system depends upon multiple technologies and
COTS products, the unpredictability and risk of change become high, and
planning becomes complicated because coordination among a large number of
vendors is more difficult.

1.2 SOFTWARE EVOLUTION MODELS AND PROCESSES

There is much confusion about the terms “software maintenance” and “software
evolution.” The confusion is partly due to a lack of attention paid to models for
sustaining software systems and partly due to considering maintenance to be another
activity in software development. For example, consider the classical Waterfall model
for software development proposed by Winston Royce in circa 1970 [26]. The final

SOFTWARE EVOLUTION MODELS AND PROCESSES 7

phase of the Waterfall model is known as maintenance, which implies that software
maintenance is a part of software development. In this regard it is worth quoting
Norman Schneidewind [27]: “The traditional view of the software life cycle has
done a disservice to maintenance by depicting it solely as a single step at the end of
the cycle” (p. 304). Therefore, software maintenance should have its own software
maintenance life cycle (SMLC) model [28]. A number of SMLC models with some
variations are available in literature [8, 29–35]. Three common features of the SMLC
models found in the literature are:

� understanding the code;
� modifying the code; and
� revalidating the code.

Other models view software development as iterative processes and based on the
idea of change mini-cycle [7, 36–39] as explained in the following:

� Iterative models. The iterative models share the ideas that a complete set of
requirements for a system cannot be completely understood, or the developers
do not know how to build the full system. Therefore, systems are constructed
in builds, each of which is a refinement of requirements of the previous build.
A build is refined by considering feedback from users [40]. One may note that
maintenance and evolution activities do not exist as distinct phases. Rather, they
are closely intertwined.

� Change mini-cycle models. First proposed by Yau et al. [36] in the late 1970s,
these models were recently re-visited by Bennet et al. [7] and Mens [41] among
others. These models consist of five major phases: change request, analyze and
plan change, implement change, verify and validate, and documentation change.
In this process model, several important activities were identified, such as pro-
gram comprehension, impact analysis, refactoring, and change propagation.

A different kind of software evolution model, called staged model of maintenance
and evolution, has been proposed by Rajlich and Bennett [42]. The model is descrip-
tive in nature, and its primary objective is to improve the understanding of how
long-lived software evolves. The model considers four distinct, sequential stages of
the lifetime of a system, as explained below:

1. Initial development. When the initial version of the system is produced, detailed
knowledge about the system is fresh. Before delivery of the system, it undergoes
many changes. Eventually, a system architecture emerges and soon it stabilizes.

2. Evolution. After the initial stability, it is easy to perform simple changes to
the system. Significant changes involve higher cost and higher risk. In the
period immediately following the initial delivery, knowledge about the system
is still almost fresh in the minds of the developers. It is possible that the
development team as a whole does not exist, because many original developers
have taken up new responsibilities in the organization and some might have left

8 BASIC CONCEPTS AND PRELIMINARIES

the organization. In general, for many systems, their lifespan are spent in this
stage, because the systems continue to be of importance to the organizations.

3. Servicing. When the knowledge about the system has significantly decreased,
the developers mainly focus on maintenance tasks, such as fixing bugs, whereas
architectural changes are rarely effected. The developers do not consider the
system to be a key asset. In this stage, the effects of changes are very difficult to
predict. Moreover, the costs and risks of making changes are very significant.

4. Phaseout. When even minimal servicing of a system is not an option, the system
enters its very final stage. The organization decides to replace the system for
various reasons: (i) it is too expensive to maintain the system; or (ii) there is a
newer solution available. Therefore, the organization develops an exit strategy
to move from the current system to a new system. Moving from an existing,
difficult-to-maintain system to a modern solution system has its own challenges
involving wrapping and data migration. After the new system keeps running
satisfactorily, sometimes in parallel with the old system, the old system is
finally completely shut down.

Software Maintenance Standards A well-defined process for software mainte-
nance can be observed and measured, and thus improved. In addition, adoption of
processes allows the dissemination of effective work practices more quickly than
gaining personal experience. Process centric software maintenance is more of an
engineering activity, with predictable time and effort constraints, and less of an art.
Therefore, software maintenance standards have been formulated by ISO and IEEE.
The maintenance standard document from ISO is called ISO/IEC 14764 [21] which
is a part of the standard document ISO/IEC 12207 [43] for life cycle processes. The
maintenance standard document from IEEE is called IEEE/EIA 1219 [44].

Both the standards describe processes for managing and executing activities for
maintenance. The IEEE/EIA 1219 standard organizes the maintenance process in
seven phases: problem identification, analysis, design, implementation, system test,
acceptance test, and delivery. As a quick summary, the standard identifies the different
phases and the sequence of their executions. Next, for each phase, the standard
identifies the input and output deliverables, the supporting processes and the related
activities, and a set of evaluation metrics. Both the standards, namely ISO/IEC 14764
and IEEE/EIA 1219, use the same terminology to describe software maintenance,
with a little difference in their depictions. An iterative process has been described
in ISO/IEC 14764 to manage and execute maintenance activities. The activities
comprising the maintenance process are:

� process implementation;
� problem and modification analysis;
� modification implementation;
� maintenance review/acceptance;
� migration; and
� retirement.

REENGINEERING 9

Each of the aforementioned activities is made up of tasks described with specific
inputs, outputs, and actions.

Software Configuration Management Configuration management (CM) is the dis-
cipline of managing changes in large systems. The goal of CM is to manage and
control the various extensions, adaptations, and corrections that are applied to a sys-
tem over its lifetime. It handles the control of all products/configuration items and
changes to those items. Software configuration management (SCM) is the config-
uration management applied to software systems. SCM is the means by which the
process of software evolution is managed. SCM has been defined in the IEEE 1042
standard [45] as “software configuration management (SCM) is the discipline of man-
aging and controlling change in the evolution of software systems.” SCM provides a
framework for managing changes in a controlled manner. The purpose of SCM is to
reduce communication errors among personnel working on different aspects of the
software project by providing a central repository of information about the project and
a set of agreed upon procedures for coping with changes. It ensures that the released
software is not contaminated by uncontrolled or unapproved changes. Early SCM
tools had limited capabilities in terms of functionality and applicability. However,
modern SCM systems provide advanced capabilities through which many different
artifacts are managed. For example, modern SCM systems support their users in
building an executable program out of its versioned source files. Moreover, it must
be possible to regenerate old versions of the software system. In general, an SCM
system has four different elements, each element addressing a distinct user need as
follows [46, 47]:

� Identification of software configurations. This includes the definitions of the
different artifacts, their baselines or milestones, and the changes to the artifacts.

� Control of software configurations. This element is about controlling the ways
artifacts or configurations are altered with the necessary technical and adminis-
trative support.

� Auditing software configurations. This element is about making the current sta-
tus of the software system in its life cycle visible to management and determining
whether or not the baselines meet their requirements.

� Accounting software configuration status. This element is about providing an
administrative history of how the software system has been altered, by recording
the activities necessitated by the other three SCM elements.

1.3 REENGINEERING

Hongji Yang and Martin Ward [48] defined software evolution as “… the process
of conducting continuous software reengineering” (p. 23). Reengineering implies a
single cycle of taking an existing system and generating from it a new system, whereas
evolution can go forever. In other words, to a large extent, software evolution can

10 BASIC CONCEPTS AND PRELIMINARIES

be seen as repeated software reengineering. Reengineering is done to transform an
existing “lesser or simpler” system into a new “better” system. Chikofsky and Cross
II [49] define reengineering as “the examination and alteration of a subject system to
reconstitute it in a new form and the subsequent implementation of the new form.”

Therefore, reengineering includes some kind of reverse engineering activities to
design an abstract view of a given system. The new abstract view is restructured,
and forward engineering activities are performed to implement the system in its new
form. The aforementioned process is captured by Jacobson and Lindstörm [50] with
the following expression:

Reengineering = Reverse engineering + Δ + Forward engineering.

Let us analyze the right-hand portion of the above equation. The first element “reverse
engineering” is the activity of defining a more abstract and easier to understand
representation of the system. For example, the input to the reverse engineering process
is the source code of the system, and the output is the system architecture. The core
of reverse engineering is the process of examination of the system, and it is not
a process of change. Therefore it does not involve changing the software under
examination. The third element “forward engineering” is the traditional process of
moving from a high-level abstraction and logical, implementation-independent design
to the physical implementation of the system. The second element “Δ” captures
alterations performed to the original system.

While performing reverse engineering on a large system, tools and method-
ologies are generally not stable. Therefore, a high-level organizational paradigm
enables repetitions of processes so that maintenance engineers learn about the system.
Benedusi et al. [51] have proposed a repeatable paradigm, called Goals/Models/Tools,
that describes reverse engineering in three successive stages, namely, Goals, Models,
and Tools.

Goals. In this phase, one analyzes the motivations for setting up the process
to identify the information needs of the process and the abstractions to be
produced.

Models. In this phase, one analyzes the abstractions to construct representation
models that capture the information needed for their production.

Tools. In this phase, software tools are defined, acquired, enhanced, integrated,
or constructed to: (i) execute the Models phase and (ii) transform the program
models into the abstractions identified in the Goals phase.

It is important to note that fact-finding and information gathering from the source
code are keys to the Goal/Models/Tools paradigm. In order to extract information
that is not explicitly available in source code, automated analysis techniques, such
as lexical analysis, syntactic analysis, control flow analysis, data flow analysis, and
program slicing are used to facilitate reverse engineering.

LEGACY SYSTEMS 11

The increased use of data mining techniques in support systems have given rise to
an interest in data reverse engineering (DRE) technology. DRE tackles the question of
what information is stored and how this information can be used in a different context.
DRE is defined by Peter Aiken as “the use of structured techniques to reconstitute
the data assets of an existing system” [52]. The two vital aspects of the DRE process
are to: (i) recover data assets that are useful or valuable and (ii) reconstitute the
recovered data assets to make them more useful. Therefore, DRE can be regarded as
adding value to the existing data assets, making it easier for organizations to conduct
business efficiently and effectively.

1.4 LEGACY SYSTEMS

A legacy software system is an old program that continues to be used because
it still meets the users’ needs, in spite of the availability of newer technology or
more efficient methods of performing the task. More often than not, a legacy system
includes outdated procedures or terminology, and it is very difficult for new developers
to understand the system. Organizations continue to use legacy systems because those
are vital to them and the systems significantly resist modification and evolution to meet
new and constantly changing business requirements [53, 54]. A legacy system falls in
the Phase out stage of the software evolution model of Rajlich and Bennet described
earlier. Organizations in business for a long time generally possess a sizable number
of legacy systems. To manage legacy systems, a number of options are available.
Some commonly chosen options are as follows [55, 56]:

� Freeze. An organization decides to perform no further work on a legacy system.
This implies that either the services of the system are no longer needed or a new
system completely replaces a legacy system.

� Outsource. An organization may decide that supporting legacy software—or
for that matter any software—is not its core business. As an alternative, it may
outsource the support service to a specialist organization.

� Carry on maintenance. In this approach, the organization continues to maintain
the system for another period of time, despite all the difficulties in doing so.

� Discard and redevelop. In this approach, the application is redeveloped once
again from scratch, using new hardware and software platforms, new software
architecture and databases, and modern tools. When the new system is available,
the legacy system is simply discarded.

� Wrap. In this approach, a legacy system is wrapped around with a new software
layer, thereby hiding the unwanted complexity of the existing data, individual
programs, application systems, and interfaces. The old system performs the
actual computations, but users interact with the system in better ways. The
notion of “wrapper” was first introduced by Dietrich et al. at IBM in the late
1980s [57]. Wrapping is a black-box reengineering task, because only the legacy
interface is analyzed while ignoring the system’s internals. A wrapper does

12 BASIC CONCEPTS AND PRELIMINARIES

not directly modify the source code, but it indirectly modifies the software
functionality of the legacy component. Wrapping lets organizations reuse well-
tested components that they trust and leverage their massive investments in
the system. As a result, the lifetime of the legacy system is increased. Many
researchers have proposed techniques for wrapping legacy systems [58–60].

� Migrate. In this approach, an operational legacy system is moved to a new
hardware and/or software platform, while still retaining the legacy system’s
functionality. The idea is to minimize any disruption to the existing business
environment.

Migration is the best alternative if wrapping is unsuitable and redevelopment
is not acceptable due to substantial risk. Migration involves changes to the legacy
system, including restructuring the system and enhancing the functionality of
the system. However, it retains the basic functionality of the existing system
without having to completely redevelop it. Migration projects require careful
planning for smooth execution. Harry M. Sneed [61] suggested five steps for a
good plan: project justification, portfolio analysis, cost estimation, cost-benefit
analysis, and contracting. Project justification is the first step in any planning.
Justifying the project requires analysis of the existing products, the maintenance
process, and the business value of the applications. Portfolio analysis prioritizes
applications to be reengineered according to their business value and technical
quality. Cost estimation gives us an idea about the cost of the migration project.
Cost-benefit analysis tells us the costs of the migration project and the expected
returns. Contracting entails the identification of tasks and the distribution of
efforts. Given the scale, complexity, and risk of failure of migration projects,
a well-defined, easily implementable, detailed approach is essential to their
success. Several migration approaches can be found in the literature: Cold
Turkey, Database First, Database Last, Composite Database, Chicken Little,
Butterfly, and Iterative [62–64].

1.5 IMPACT ANALYSIS

Impact analysis is the task of identifying portions of the software that can potentially
be affected if a proposed change to the system is effected. The outcome of impact
analysis can be used when planning for changes, making changes, and tracking the
effects of changes in order to localize the sources of new faults. Impact analysis
techniques can be categorized into two classes as follows [65]:

� Traceability analysis. In this approach, the high-level artifacts, such as require-
ments, design, code, and test cases related to the feature to be changed, are
identified. A model of associations among artifacts, such that each artifact links
to other artifacts, is constructed. This helps in locating the corresponding por-
tions of the design, code, and test cases that need to be maintained.

� Dependency analysis. Dependency analysis attempts to assess the effects of a
change on the semantic dependencies between program entities. This is achieved

REFACTORING 13

by identifying the syntactic dependencies that may signal the presence of such
semantic dependencies [66]. The two dependency-based impact analysis tech-
niques are [67]: call graph-based analysis and dependency graph-based analysis.
Dependency analysis is also known as source code analysis.

The following two additional notions are found to be keys to understanding impact
analysis:

� Ripple effect analysis. Ripple effect analysis emphasizes the tracing repercus-
sions in source code when the code is changed. It measures the impact of a
change to a particular module on the rest of the program [68]. Impact can be
stated in terms of the problems being created for the rest of the program because
of the change. Analysis of ripple effect can provide information regarding what
changes are occurring and where they are occurring. Measurement of ripple
effect can provide knowledge about the system as a whole through its evolu-
tion: (i) the amount of increase or decrease of its complexity since the previous
version; (ii) the levels of complexity of individual parts of a system in relation
to other parts of the system; and (iii) the effect that a new module has on the
complexity of a system as a whole when it is added.

� Change propagation. Change propagation activities ensure that a change made
in one component is propagated properly throughout the entire system [69–71].
Misunderstanding, lack of experience, and unexpected dependencies are some
reasons for failing to propagate changes throughout the development and main-
tenance cycles of source code. If a change is not propagated correctly, the project
risks the introduction of new interface defects [72].

1.6 REFACTORING

Refactoring means performing changes to the structure of software to make it eas-
ier to comprehend and cheaper to make subsequent changes without changing the
observable behavior of the system. A similar idea for non-object-oriented systems
is called restructuring. Refactoring is achieved through removal of duplicate code,
simplification of code, and moving code to a different class, among others. With-
out continual refactoring, the internal structure of software will eventually deform
beyond comprehension, due to periodic maintenance. Therefore, regular refactoring
helps the system to retain its basic structure [73]. In an agile software methodology,
such as eXtreme Programming (XP), refactoring is continuously applied to: (i) make
the architecture of the software stable; (ii) render the code readable; and (iii) make
the tasks of integrating new functionalities into the system flexible.

An important characteristic of refactoring is that it must preserve the “observ-
able behavior” of the system. Preservation of the observable behavior is verified
by ensuring that all the tests passing before refactoring must pass after refactoring.
Regression testing is used to ensure that the system did not deviate from the original

14 BASIC CONCEPTS AND PRELIMINARIES

system during refactoring. Refactoring does not normally involve code transforma-
tion to implement new requirements. Rather, it can be performed without adding new
requirements to the existing system. Another aspect of refactoring is to enhance the
internal structure of the system. In addition, the concept of program restructuring can
be applied to transform legacy code into a more structured form and migrate it to a
different programming language. That is, restructuring and refactoring can be used
to reengineer software systems.

Refactoring techniques put emphasis on the development of a list of basic refac-
torings, which can be combined to form complex refactorings [74, 75]. The original
list of basic refactorings contained transformations on object-oriented code: (i) add
a class, method, or attribute; (ii) rename a class, method, or attribute; (iii) move an
attribute or method up or down the hierarchy; (iv) remove a class, method, or attribute;
and (v) extract chunks of code into separate methods. Most complex refactoring sce-
narios require small code changes for the refactorings to work correctly. Primitive
refactorings are rarely used in isolation.

1.7 PROGRAM COMPREHENSION

The purpose of program comprehension is to understand an existing software system
for planning, designing, coding, and testing changes. T. A. Corbi [76] observed in
1989 that program comprehension accounts for 50% of the total effort expended
throughout the life cycle of a software system. Therefore, good understanding of the
software is key to raising its quality by means of maintenance at a lower cost. In terms
of concrete activities, program comprehension involves building mental models of an
underlying system at different levels of abstractions, varying from low-level models of
the code to very high-level models of the underlying application domain [77]. Mental
models have been studied by cognitive scientists to understand how human beings
know, perceive, make decisions, and construct behavior in a real world [78, 79]. In
the domain of program comprehension, a mental model describes a programmer’s
mental representation of the program to be comprehended.

Program comprehension involves constructing a mental model of the program by
applying various cognitive processes. A key step in developing mental models is
generating hypotheses, or conjectures, and investigating their validity. Hypotheses
are a way for a programmer to understand code in an incremental manner. After
some understanding of the code, the programmer forms a hypothesis and verifies it
by reading code. Verification of hypothesis results in either accepting the hypothesis
or rejecting it. Sometimes, a hypothesis may not be completely correct because of
incomplete understanding of code by the programmer. By continuously formulating
new hypotheses and verifying them, the programmer understands more and more
code and in increasing details.

One can apply several strategies to arrive at meaningful hypotheses, such as
bottom–up, top–down, and opportunistic combinations of the two. A bottom–up
strategy works by beginning with the code, whereas a top–down strategy operates

SOFTWARE REUSE 15

by working from a high-level goal. A strategy is formulated by identifying actions
to achieve a goal. Strategies guide two mechanisms, namely, chunking and cross-
referencing to produce higher-level abstraction structures. Chunking creates new,
higher-level abstraction structures from lower-level structures. Cross-referencing
means being able to make links between elements of different abstraction levels. This
helps in building a mental model of the program under study at different levels of
abstractions. In general, understanding a program involves a knowledge base, which
represents the expertise and background knowledge a programmer brings to the table,
a mental model, and an assimilation process [80]. The assimilation process guides
the programmer to look at certain pieces of information, such as a code segment or
a comment, and move forward/backward while reading the code. The assimilation
process can work in three ways: top–down, bottom–up, and opportunistic.

1.8 SOFTWARE REUSE

The 1968 NATO (North Atlantic Treaty Organization) conference on software engi-
neering is viewed to have germinated the ever growing field of software engineering
[81]. The conference focused on software crises—the problem of building large, reli-
able software systems in a controlled way. In that conference, the term software crisis
was coined for the first time. Even in the first forum on software systems, software
reuse was pronounced as a means for tackling software crisis. The idea of software
reuse was first introduced by Dough McIlroy in a seminal paper [82] in 1968. He
proposed to realize reuse by means of library components and automated ways for
customizing components to varying degrees of robustness and precision.

Other significant early reuse research developments include David Parnas’s idea
of program families [83] and Jim Neighbors’ introduction of the concepts of domain
analysis [84]. A program family is a set of programs whose common properties are
so extensive that it becomes advantageous to study the common properties of these
programs before analyzing individual differences. On the other hand, domain analysis
is an activity of identifying objects and operations of a class of similar systems in a
particular problem domain.

Simply stated, software reuse means using existing software knowledge or artifacts
during the development of a new system. Reusable assets can include both artifacts
and software knowledge. Note that reuse is not constrained to source code fragments.
Rather, Capers Jones identified four broad types of artifacts for reuse [85]:

� Data reuse. This involves a standardization of data formats. Reusable func-
tions imply a standard data interchange format. Therefore, one of the critical
precursors to full reusable software is that of reusable data.

� Architectural reuse. This consists of standardizing a set of design and program-
ming conventions dealing with the logical organization of software. The goal is
to define a complete set of functional elements which will be needed to create
new systems from standard components.

16 BASIC CONCEPTS AND PRELIMINARIES

� Design reuse. This deals with the reuse of abstract designs that do not include
implementation details. These are then implemented specifically to fit the appli-
cation requirements.

� Program reuse. This deals with reusing running code. The software units that
are reused may be of different sizes. The whole of software system may be
reused by incorporating it without change into other system (COTS product
reuse).

Reusability is a property of software assets, which indicates the degree to which
the software can be reused. For a software component to be reusable, it must exhibit
the following characteristics: high cohesion, low coupling, adaptability, understand-
ability, reliability, and portability. Those characteristics encourage the component’s
reuse in similar situations. There are two advantages of reusing previously written
code [86–88]:

� Better quality. If previously tested modules are reused in a new software project,
the reused modules are likely to have less faults than new modules. This reduces
the overall failure rate of the new software.

� Increased productivity. Organizations can save time and other resources by
reusing operational modules, thereby increasing their overall productivity. How-
ever, the quantum of increase depends upon the size and complexity of the com-
ponents being reused and the overall size and complexity of the new software
which reuses those components. The development cost of any software project
is only about 40% of the total cost over its entire life cycle [89]. Significant
maintenance benefit also results from reusing quality software. The empirical
study conducted by Stephen R. Schach shows that the cost savings during main-
tenance, as a consequence of reuse, are nearly twice the corresponding savings
during development [90].

1.9 OUTLINE OF THE BOOK

Having given the aforementioned brief introduction to software evolution and main-
tenance, now we provide an outline of the remaining chapters. Each chapter focuses
on a specific topic in software evolution and maintenance, and it explains the topic
by covering the technical, process, model, and/or practical aspects of the topic. Con-
sequently, the reader gains a broad understanding of the main concepts in software
evolution and maintenance.

In Chapter 2 we explain three major maintenance classification schemes based
on intention, activity, and evidence. Then we describe Lehman’s classification of
properties of closed source software (CSS) of type S (Specified), P (Problem),
and E (Evolving). The eight laws of software evolution for the E-type CSS sys-
tem including empirical studies and its practical implications have been introduced.
We discuss the origin of FOSS movement and the differences between CSS and

OUTLINE OF THE BOOK 17

FOSS systems with respect to: (i) team structure; (ii) processes; (iii) releases; and
(iv) global factors. In addition, we discuss the empirical research results about the
Linux FOSS system to study the laws of evolution, originally proposed for CSS sys-
tems. We conclude this chapter with a brief discussion on maintenance of component
off-the-shelf-based systems.

Chapter 3 introduces three types of evolution models, namely, reuse-oriented,
staged, and change mini-cycle. Next, we discuss the IEEE/EIA 1219 and the ISO
IEC 14764 maintenance processes. We explain a framework to make a plan for SCM
to control software evolution processes. We close this chapter with a presentation of
a state transition model to track the individual change requests as those flow through
the organization.

Chapter 4 introduces the concepts of software reengineering based on three basic
principles: abstraction, refinement, and alteration. We discuss five basic reengineer-
ing approaches: big bang, incremental, partial, iterative, and evolutionary. Next, we
discuss two specific models for software reengineering: source code reengineering
reference model and phase reengineering model. With the reengineering approaches
and models in place, we introduce the concepts and objectives of reverse engineer-
ing with an introduction to the Goals/Models/Tools paradigm that divides a process
for reverse engineering into three successive phases: Goals, Models, and Tools. In
addition, we examine some low-level reverse engineering tasks such as decompilers
and disassemblers. DRE for data-oriented applications is explained toward the end
of the chapter.

Chapter 5 identifies the problems an organization faces in dealing with legacy
information systems and discusses six viable solutions to the problems: freeze, out
source, carry on, discard and redevelop, wrap, and migrate. We study four types of
wrapping techniques in detail: database wrapper, system service wrapper, application
wrapper, and function wrapper. In addition, we discuss five different levels of encap-
sulations: process level, transaction level, program level, module level, and procedural
level. Next, we focus our attention on migration of information systems. First we dis-
cuss the migration issues, followed by 13 steps for migration planning to minimize
the risk of modernization effort. We discuss seven available migration approaches:
Cold Turkey, Database First, Database Last, Composite Database, Chicken Little,
Butterfly, and Iterative.

Chapter 6 presents the fundamentals of impact analysis, including the related
concepts of ripple effect and change propagation. The reader learns the strengths
and limitations of impact analysis techniques. We have selected topics to provide a
foundation for enduring value of impact analysis and change propagation.

In Chapter 7, we introduce to the reader different refactoring activities. Different
formalisms and techniques to support these activities have been discussed. In addition,
we discuss the initial work on software restructuring, such as elimination-of-goto,
system sandwich, localization and information hiding, and clustering approaches.

Chapter 8 considers the issues and solutions that underpin program understanding
during maintenance. We discuss different models proposed by different researchers.
In addition, the concept of protocol analysis is introduced to the readers. The chapter
ends with a brief discussion of visualization for software comprehension.

18 BASIC CONCEPTS AND PRELIMINARIES

In Chapter 9, we introduce the readers to reuse and domain engineering. Software
reuse has the potential to reduce the maintenance cost more than development cost of
software projects. We present a taxonomy of reuse, followed by a detailed description
of domain and application engineering concepts, including real domain engineering
approaches: DARE, FAST, and Koala. Finally, we discuss maturity and cost models
associated with reuse.

In the glossary section we have defined all the keywords that have been used in
the book. The reader will find about 10 practice questions at the end of each chapter.
A carefully chosen list of references is given at the end of each chapter for those
who are more curious about the details of some of the topics. Finally, each of the
following chapters contains a section on further reading. The further reading section
provides pointers to more advanced materials concerning the topics of the chapter.

REFERENCES

[1] M. I. Halpern. 1965. Machine independence: its technology and economics. Communi-
cations of the ACM, 8(12), 782–785.

[2] L. A. Belady and M. M. Lehman. 1976. A model of large program development. IBM
Systems Journal, 15(1), 225–252.

[3] M. M. Lehman. 1980. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, September, 1060–1076.

[4] R. G. Canning. 1972. The maintenance “iceberg”. EDP Analyzer, 10(10), 1–14.

[5] E. B. Swanson. 1976. The Dimensions of Maintenance. Proceedings of the 2nd Interna-
tional Conference on Software Engineering (ICSE), October 1976, San Francisco, CA.
IEEE Computer Society Press, Los Alamitos, CA. pp. 492–497.

[6] N. Chapin, J. F. Hale, K. M. Khan, J. F. Ramil, and W. G. Tan. 2001. Types of software
evolution and software maintenance. Journal of Software Maintenance and Evolution:
Research and Practice, 13, 3–30.

[7] K. H. Bennett and V. T. Rajlich. 2000, Software Maintenance and Evolution: A Roadmap.
ICSE, The Future of Software Engineering, June 2000, Limerick, Ireland. ACM, New
York. pp. 73–87.

[8] L. J. Arthur. 1988. Software Evolution: The Software Maintenance Challenge. John Wiley
& Sons.

[9] K. H. Bennett and J. Xu. 2003. Software Services and Software Maintenance. Proceedings
of the 7th European Conference on Software Maintenance and Reengineering, March
2003, Benevento, Italy. IEEE Computer Society Press, Los Alamitos, CA. pp. 3–12.

[10] M. W. Godfrey and D. M. German. 2008. The Past, Present, and Future of Software
Evolution. Proceedings of the 2008 Frontiers of Software Maintenance (FoSM), October
2008, Beijing, China. IEEE Computer Society Press, Los Alamitos, CA. pp. 129–138.

[11] D. L. Parnas. 1994. Software Aging. Proceedings of 16th International Conference on
Software Engineering, May 1994, Sorrento, Italy. IEEE Computer Society Press, Los
Alamitos, CA. pp. 279–287.

[12] M. Jazayeri. 2005. Species Evolve, Individuals Age. Proceedings of 8th International
Workshop on Principles of Software Evolution (IWPSE), September 2005, Lisbon,
Portugal. IEEE Computer Society Press, Los Alamitos, CA. pp. 3–9.

REFERENCES 19

[13] P. Stachour and D. C. Brown. 2009. You don’t know jack about software maintenance.
Communications of the ACM, 52(11), 54–58.

[14] M. M. Lehman, D. E. Perry, and J. F. Ramil. 1998. On Evidence Supporting the Feast
Hypothesis and the Laws of Software Evolution. Proceedings of the 5th International
Software Metrics Symposium (Metrics), November 1998. IEEE Computer Society Press,
Los Alamitos, CA. pp. 84–88.

[15] M. M. Lehman and J. F. Ramil. 2006. Software evolution. In: Software Evolution and
Feedback (Eds N. H. Madhavvji, J. F. Ramil, and D. Perry). John Wiley, West Sussex,
England.

[16] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski. 1997. Metrics
and Laws of Software Evolution—The Nineties View. Proceedings of the 4th International
Symposium on Software Metrics (Metrics 97), November 1997. IEEE Computer Society
Press, Los Alamitos, CA, pp. 20–32.

[17] S. S. Pirzada. 1988. A statistical examination of the evolution of the Unix system. PhD
Thesis, Department of Computing, Imperical College, London, England.

[18] M. M. Lehman and L. A. Belady. 1985. Program Evolution: Processess of Software
Change. Academic Press, London.

[19] M. W. Godfrey and Q. Tu. 2000. Evolution in Open Source Software: A Case Study.
Proceedings of the International Conference on Software Maintenance, October 2000.
IEEE Computer Society Press, Los Alamitos, CA, pp. 131–142.

[20] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Herraiz. 2005. Evolution and
Growth in Large Libre Software Projects. Proceedings of the 8th International Workshop
on Principles of Software Evolution (IWPSE), September 2005, Lisbon, Portugal. IEEE
Computer Society Press, Los Alamitos, CA. pp. 165–174.

[21] ISO/IEC 14764:2006 and IEEE Std 14764-2006. 2006. Software Engineering–Software
Life Cycle Processes–Maintenance. Geneva, Switzerland.

[22] B. A. Kitchenham, G. H. Travassos, A. N. Mayrhauser, F. Niessink, N. F. Schneidewind, J.
Singer, S. Takada, R. Vehvilainen, and H. Yang. 1999. Towards an ontologyy of software
maintenance. Journal of Software Maintenance and Evolution: Research and Practice,
11, 365–389.

[23] G. Ramesh and R. Bhattiprolu. 2006. Software Maintenance. Tata McGraw-Hill, New
Delhi.

[24] M. Vigder and A. Kark. 2006. Maintaining Cots-Based Systems: Start with Design.
Proceedings of the 5th International Conference on Commercial-Off-The-Shelf (COTS)-
Based Software Systems, February 2006, Orlando, Florida. IEEE Computer Society
Press, Los Alamitos, CA. pp. 11–18.

[25] D. Hybertson, A. Ta, and W. Thomas. 1997. Maintenance of cots-intensive software
systems. Journal of Software Maintenance and Evolution: Research and Practice, 9,
203–216.

[26] W. W. Royce. 1970. Managing the Development of Large Software System: Concepts
and Techniques. Proceeding of IEEE WESCON, August 1970, pp. 1–9, Republished in
ICSE, Monterey, CA, 1987, pp. 328–338.

[27] N. Schneidewind. 1987. The state of software maintenance. IEEE Transactions on Soft-
ware Engineering, March, 303–309.

[28] N. Chapin. 1988. Software Maintenance Life Cycle. Proceedings of the International
Conference on Software Maintenance (ICSM), October 1988, Phoenix, Arizona. IEEE
Computer Society Press, Los Alamitos, CA, pp. 6–13.

20 BASIC CONCEPTS AND PRELIMINARIES

[29] W. K. Sharpley. 1977. Software Maintenance Planning for Embedded Computer Systems.
Proceedings of the IEEE COMPSAC, November 1977, IEEE Computer Society Press,
Los Alamitos, CA, pp. 520–526.

[30] G. Parikh. 1982. The world of software manitenance. In: Techniques of Program and
System Maintenance (Ed. G. Parikh), pp. 9-13. Little, Brown and Company, Boston,
MA.

[31] J. Martin and C. L. McClure. 1983. Software Maintenance: The Problem and Its Solution.
Prentice-Hall, Englewood Cliffs, NJ.

[32] S. Chen, K. G. Heisler, W. T. Tsai, X. Chen, and E. Leung. 1990. A model for assembly
program maintenance. Journal of Software Maintenance: Research and Practice, March,
pp. 3–32.

[33] D. R. Harjani and J. P. Queille. 1992. A Process Model for the Maintenance of Large Space
Systems Software. Proceedings of the International Conference on Software Maintenance
(ICSM), November 1992, Orlando, FL. IEEE Computer Society Press, Los Alamitos,
CA. pp. 127–136.

[34] S. S. Yau, R. A. Nicholi, J. Tsai, and S. Liu. 1988. An integrated life-cycle model for
software maintenance. IEEE Transactions on Software Engineering, August, pp. 1128–
1144.

[35] S. S. Yau and I. S. Collofello. 1980. Some stability measures for software maintenance.
IEEE Transactions on Software Engineering, November, pp. 545–552.

[36] S. S. Yau, J. S. Collofello, and T. MacGregor. 1978. Ripple Effect Analysis of Software
Maintenance. COMPSAC, Chicago, Illinois. IEEE Computer Society Press, Piscataway,
NJ. pp. 60–65.

[37] B. W. Boehm. 1988. A spiral model of software development and maintenance. IEEE
Computer, May, pp. 61–72.

[38] V. R. Basili. 1990. Viewing maintenance as reuse-oriented software development. IEEE
Software, January, pp. 19–25.

[39] R. G. Martin. 2002. Agile Software Development: Principles, Patterns, and Practices.
Prentice-Hall.

[40] T. Gilb. 1988. Principles of Software Engineering Management. Addison-Wesley, Read-
ing, MA.

[41] T. Mens. 2008. Introduction and roadmap: history and challenges of software evolution.
In: Software Evolution (Eds. T. Mens and S. Demeyer). Springer Verlag, Berlin.

[42] V. T. Rajlich and K. H. Bennett. 2000. A staged model for the software life cycle. IEEE
Computer, July, pp. 2–8.

[43] ISO/IEC 12207:2006 and IEEE Std 12207-2006. 2008. System and Software
Engineering–Software Life Cycle Processes. Geneva, Switzerland.

[44] IEEE Standard 1219-1998. 1998. Standard for Software Maintenance. IEEE Computer
Society Press, Los Alamitos, CA.

[45] IEEE Std 1042-1987. 1988. IEEE Guide to Software Configuration Management. IEEE,
Inc., New York, NY.

[46] K. Narayanaswamy and W. Scacchi. 1987. Maintaining configuration of evolving soft-
ware systems. IEEE Transactions of Software Engineering, March, 13(3), 324–334.

[47] D. Leblang. 1994. The CM challenge: configuration management that works. In: Config-
uration Management, Chapter 1 (Ed. W. F. Tichy). John Wiley, Chichester.

REFERENCES 21

[48] H. Yang and M. Ward. 2003. Successful Evolution of Software Systems. Artech House,
Boston, MA.

[49] E. J. Chikofsky and J. H. Cross II. 1990. Reverse engineering and design recovery. IEEE
Software, January, pp. 13–17.

[50] I. Jacobson and F. Lindstrȯm. 1991. Re-engineering of Old Systems to an Object-
oriented Architecture. Proceedings of the ACM Conference on Object Oriented Program-
ming Systems Languages and Applications, October 1991. ACM Press, New York, NY,
pp. 340–350.

[51] P. Benedusi, A. Cimitile, and U. De Carlini. 1992. Reverse engineering processes, design
document production, and structure charts. Journal of Systems Software, 19, 225–245.

[52] P. Aiken. 1996. Data Reverse Engineering: Staying the Legacy Dragon. McGraw-Hill,
Boston, New York, NY.

[53] K. H. Bennett. 1995. Legacy systems: coping with success. IEEE Software, January,
pp. 19–23.

[54] M. Brodie and M. Stonebraker. 1995. Migrating Legacy Systems. Morgan Kaufmann,
San Mateo, CA.

[55] A. Cimitile, H. Mu̇ller, and R. Klosch (Eds.) 1997. Pulling Together. Proceedings of the
International Conference on Software Engineering, Workshop on Migration Strategies
for Legacy Systems, Available as Technical Report TUV-1841-97-06 from Technical
University University of Vienna, Vienna, Austria.

[56] K. Bennett, M. Ramage, and M. Munro. 1999. Decision Model for Legacy Systems. IEEE
Proceedings on Software, June, pp. 153–159.

[57] W. C. Dietrich Jr., L. R. Nackman, and F. Gracer. 1989. Saving a legacy with objects.
Proceedings of the 1989 ACM OOPSLA Conference on Object-Oriented Programming,
24(10), 77–83. ACM SIGPLAN Notices, ACM, New York, NY.

[58] H. M. Sneed. 1996. Encapsulating Legacy Software for Use in Client/Server Systems. 3rd
Working Conference on Reverse Engineering, Washington, DC. IEEE Computer Society
Press, Los Alamitos, CA. pp. 104–119.

[59] S. Comella-Dorda, K. Wallnau, R. C. Seacord, and J. Robert. 2000. A Survey of Black-box
Modernization Approaches for Information Systems. Proceedings of the International
Conference on Software Maintenance, October, 2000, San Jose, CA. IEEE Computer
Society Press, Los Alamitos, CA. pp. 173–183.

[60] F. P. Coyle. 2000. Legacy integration—changing perpectives. IEEE Software, March/
April, 37–41.

[61] H. M. Sneed. 1995. Planning the reengineeirng of legacy systems. IEEE Software,
January, pp. 24–34.

[62] J. Bisbal, D. Lawless, B. Wu, J. Grimson, V. Wade, R. Richardson, and D. O’Sullivan.
1997. A survey of research into legacy system migration. Technical Report TCD-CS-
1997-01, Computer Science Department, Trinity College, Dublin, January, pp. 39.

[63] M. Battaglia, G. Savoia, and J. Favaro. 1998. Renaissance: A Method to Migrate from
Legacy to Immortal Software Systems. Proceedings of Second Euromicro Conference on
Software Maintenance and Reengineering, 1998, Florence, Italy. IEEE Computer Society
Press, Los Alamitos, CA. pp. 197–200.

[64] A. Bianchi, D. Caivano, V. Marengo, and G. Visaggio. 2003. Iterative reengineering of
legacy systems. IEEE Transactions on Software Engineering, March, 225–241.

22 BASIC CONCEPTS AND PRELIMINARIES

[65] S. A. Bohner and R. S. Arnold. 1996. An introduction to software change impact analysis.
In: Software Change Impact Analysis (Eds. S. A. Bohner and R. S. Arnold). IEEE
Computer Society Press, Los Alamitos, CA.

[66] A. Podgurski and L. Clrke. 1990. A formal model of program dependencies and its
implications for software testing, debugging, and maintenance. IEEE Transactions of
Software Engineering, September, 16(9), 965–979.

[67] M. J. Harrold and B. Malloy. 1993. A unified interprocedural program representation for
maintenance environment. IEEE Transactions of Software Engineering, 19(6), 584–593.

[68] S. Black. 2008. Deriving an approximation algorithm for automatic computation of ripple
effect measures. Information and Software Technology, 50, 723–736.

[69] V. Rajlich. 1997. A Model for Change Propagation Based on Graph Rewriting. Proceed-
ings of the International Conference on Software Maintenance (ICSM), October 1997,
Bari, Italy. IEEE Computer Society Press, Los Alamitos, CA. pp. 84–91.

[70] A. E. Hassan and R. C. Holt. 2004. Predicting Change Propagation in Software Systems.
Proceedings of the International Conference on Software Maintenance (ICSM), October
2004, Chicago, USA. IEEE Computer Society Press, Los Alamitos, CA. pp. 284–293.

[71] N. Ibrahim, W. M. N. Kadir, and S. Deris. 2008. Comparative Evaluation of Change
Propagation Approaches Towards Resilient Software Evolution. Proceedings of the Third
International Conference on Software Engineering Advances, pp. 198–204.

[72] D. E. Perry and W. M. Evangelist. 1987. An Empirical Study of Software Interface Faults—
An Update. Proceedings of the Twentieth Annual Hawaii International Conference on
Systems Sciences, January 1987, Volume II, pp. 113–126.

[73] M. Fowler. 1999. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley.

[74] W. F. Opdyke. 1992. Refactoring: A program restructuring aid in designing object-
oriented application framework. PhD thesis, University of Illinois at Urbana-Champaign.

[75] S. Demeyer. 2008. Object-oriented reengineering. In: Software Evolution (Eds. T. Mens
and S. Demeyer). Springer Verlag, Berlin.

[76] T. A. Corbi. 1989. Program understanding: challenge for the 1990s. IBM Systems Journal,
28(2), pp. 294–306.

[77] H. A. Mu̇ller. 1996. Understanding Software Systems Using Reverse Engineering Tech-
nologies: Research and Practice. Department of Computer Science, University of
Victoria. Available at http://www.rigi.csc.uvic.ca/uvicrevtut/uvicrevtut.html.

[78] P. N. Johnson-laird. 1983. Mental Model. Harvard University Press, Cambridge, MA.

[79] K. J. W. Craik. 1943. The Nature of Explanation. Cambridge University Press,
Cambridge, UK.

[80] S. Letovsky. 1986. Cognitive Processes in Program Comprehension. Proceedings of the
First Workshop in Empirical Studies of Programmers, pp. 58–79.

[81] P. Nauer, B. Randell, and J. N. Buxton (Eds). 1969. Software engineering. Report on
a Conference by the NATO Science Committee, NOATO Scientific Affairs Division,
Brussels, Belgium, Available through Petrocelli-Charter, New York.

[82] M. D. McIlroy. 1969. Mass Produced Software Components. Proceedings of Software
Engineering Concepts and Techniques, 1968 NATO Conference on Software Engineer-
ing (Eds. P. Naur, B. Randell, and J. N. Buxton), pp. 138–155. Petrocelli-Charter,
New York, NY.

http://www.rigi.csc.uvic.ca/uvicrevtut/uvicrevtut.html
http://www.rigi.csc.uvic.ca/uvicrevtut/uvicrevtut.html

EXERCISES 23

[83] D. L. Parnas. 1976. On the design and development of program families. IEEE Transac-
tions of Software Engineering, 2(1), 1–9.

[84] J. M. Neighbors. 1980. Software construction using components. Technical Report 160,
Department of Information and Computer Sciences, University of California, Irvine.

[85] T. C. Jones. 1984. Reusability in programming: a survey of the state of the art. IEEE
Transactions of Software Engineering, 10(5), 488–494.

[86] J. E. Gaffney and T. A. Durek. 1989. Software reuse - key to enhanced productivity:
some quantitative models. Information and Software Technology, 31(5), 258–267.

[87] R. D. Banker and R. J. Kauffman. 1991. Reuse and productivity in integrated computer-
aided software engineering: an emprical study. MIS Quarterly, 15(3), 374–401.

[88] V. R. Basili, L. C. Brand, and W. L. Melo. 1996. Machine independence: Its technology
and economics. Communications of the ACM, 39(10), pp. 104–116.

[89] Gartner Group Inc. 1991. Software engineering strategies. Strategic Analysis Report,
Stamford, CT, April.

[90] S. R. Schach. 1994. The economic impact of software reuse on maintenance. Jour-
nal of Software Maintenance and Evolution: Research and Practice, July/August, 6(4),
pp. 185–196.

EXERCISES

1. Discuss the differences between software evolution and software maintenance.

2. Explain why a software system which is used in a real-world environment must
be changed to not become progressively less useful.

3. What are some characteristics of maintaining software as opposed to new soft-
ware systems?

4. You are asked to make a change to a system that leaves its functional specification
unchanged but affects the design and source code of the system. This can be any
of the four types of maintenance mentioned earlier except one. Identify the
exception and justify your answer.

(a) Corrective maintenance

(b) Adaptive maintenance

(c) Perfective maintenance

(d) Preventive maintenance

5. Discuss the major differences between COTS-based software development and
traditional in-house software development activities.

6. One of the key sources of risks in COTS-based development is the reliance on
one or more third-party software vendors. However, this dependence can also
present new challenges for the evolution of such systems. Which of the following
evolution challenges can be directly attributed to reliance on the vendor?

(a) Lack of control over when errors in components are fixed.

24 BASIC CONCEPTS AND PRELIMINARIES

(b) Number and complexity of inter-component interfaces.

(c) Diversity of inter-component interfaces.

(d) Lack of experience and tools for evolving COTS-based systems.

7. What are the objectives of SCM?

8. A feature of any complex change to an existing software system is that it is likely
to introduce new defects, even if the aim of the change is to remove defects. When
considering whether or not to implement a change request, should this feature
be considered as a cost, benefit, or risk associated with the change request?

9. System A is a mission critical legacy system that captures and stores detailed data
on product sales. Data from system A must be regularly extracted and loaded into
a new system (B), which is to be used to help managers understand the changes
in sales patterns from week to week. Initial estimates suggest that the data for
1 week can be extracted and transformed in around 3 hours. What migration
frequency would you choose for this new application?

(a) Migrate on update.

(b) Migrate daily, every evening at 2.00 a.m.

(c) Migrate weekly, every Sunday evening at 2.00 a.m.

(d) Migrate monthly, on the last Sunday of every month at 2.00 a.m.

10. What are some of the risks of not doing an impact analysis before effecting a
change?

11. What actions can be taken to minimize the impact of fixing defects?

12. What problems do maintainers face when rewriting or reengineering a piece of
code? What are the causes of those problems?

13. Explain the term hypotheses in the context of program understanding.

14. What benefits can be derived from reusing software?

2
TAXONOMY OF SOFTWARE
MAINTENANCE AND EVOLUTION

Evolution is not a force but a process. Not a cause but a law.
—John Morley

2.1 GENERAL IDEA

In the early 1970s, the term “maintenance” was used to refer to tasks for making
intentional modifications to the existing software at IBM. Those who performed
maintenance tasks had not carried out the software development work. The idea
behind having a different set of personnel to carry out maintenance work was to
free the development engineers from support activities. The aforementioned model
continued to influence the activities that are collectively known as “software main-
tenance.” In circa 1972, in his landmark article “The Maintenance ‘Iceberg’,” R. G.
Canning [1] used the iceberg metaphor to describe the enormous mass of potential
problems facing practitioners of software maintenance. Practitioners took a narrow
view of maintenance as correcting errors and expanding the functionalities of the
system. In other words, maintenance consisted of two kinds of activities: correcting
errors and enhancing functionalities of the software. Hence, maintenance can be inap-
propriately seen as a continuation of software development with an extra input—the
existing software system [2].

The ISO/IEC 14764 standard [3] defines software maintenance as “… the totality
of activities required to provide cost-effective support to a software system. Activities

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

25

26 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

are performed during the pre-delivery stage as well as the post-delivery stage” (p. 4).
Post-delivery activities include changing software, providing training, and operating
a help desk. Pre-delivery activities include planning for post-delivery operations. Dur-
ing the development process, maintainability is specified, reviewed, and controlled. If
this is done successfully, the maintainability of the software will improve during the
post-delivery stage. The standard further defines software maintainability as “… the
capability of the software product to be modified. Modification may include correc-
tions, improvements or adaptation of the software to changes in environment, and in
requirements and functional specification” (p. 3).

A major difference exists between software maintenance and software develop-
ment: maintenance is event driven, whereas development is requirements driven [4].
A process for software development begins with the objective of designing and imple-
menting a system to deliver certain functional and nonfunctional requirements. On
the other hand, a maintenance task is scheduled in response to an event. Reception
of a change request from a customer is a kind of event that can trigger software
maintenance. Similarly, recognition of the needs to fix a set of bugs is considered
another kind of event. Events originate from both the customers and from within
the developed organization. Generally, the inputs that invoke maintenance activi-
ties are unscheduled events; execution of the actual maintenance activities might
be scheduled according to a plan, but the events that initiate maintenance activities
occur randomly. A maintenance activity accepts some existing artifacts as inputs and
generates some new and/or modified artifacts.

Now we further explain the idea of a maintenance activity taking in an input and
producing an output. In general, an investigation activity is the first activity in a
maintenance process. In an investigation activity, a maintenance engineer evaluates
the nature of the events, say, a change request (CR). Finding the impact of executing
the CR is an example of investigation activity. Upon completion of the first activity,
the organization decides whether or not to proceed with the modification activity.

In the following subsections, we explain maintenance activities from three view-
points:

� Intention-based classification of software maintenance activities;
� Activity-based classification of software maintenance activities; and
� Evidence-based classification of software maintenance activities.

2.1.1 Intention-Based Classification of Software Maintenance

In the intention-based classification, one categorizes maintenance activities into four
groups based on what we intend to achieve with those activities [5–7]. Based on
the Standard for Software Engineering–Software Maintenance, ISO/IEC 14764 [3],
the four categories of maintenance activities are corrective, adaptive, perfective, and
preventive as explained in the following.

Corrective maintenance. The purpose of corrective maintenance is to correct
failures: processing failures and performance failures. A program producing a wrong
output is an example of processing failure. Similarly, a program not being able to

GENERAL IDEA 27

meet real-time requirements is an example of performance failure. The process of
corrective maintenance includes isolation and correction of defective elements in the
software. The software product is repaired to satisfy requirements. There is a variety
of situations that can be described as corrective maintenance such as correcting a
program that aborts or produces incorrect results. Basically, corrective maintenance
is a reactive process, which means that corrective maintenance is performed after
detecting defects with the system.

Adaptive maintenance. The purpose of adaptive maintenance is to enable the sys-
tem to adapt to changes in its data environment or processing environment. This
process modifies the software to properly interface with a changing or changed
environment. Adaptive maintenance includes system changes, additions, deletions,
modifications, extensions, and enhancements to meet the evolving needs of the envi-
ronment in which the system must operate. Some generic examples are: (i) changing
the system to support new hardware configuration; (ii) converting the system from
batch to online operation; and (iii) changing the system to be compatible with other
applications. A more concrete example is: an application software on a smartphone
can be enhanced to support WiFi-based communication in addition to its present
Third Generation (3G) cellular communication.

Perfective maintenance. The purpose of perfective maintenance is to make a variety
of improvements, namely, user experience, processing efficiency, and maintainabil-
ity. For example, the program outputs can be made more readable for better user
experience; the program can be modified to make it faster, thereby increasing the
processing efficiency; and the program can be restructured to improve its readability,
thereby increasing its maintainability. In general, activities for perfective maintenance
include restructuring of the code, creating and updating documentations, and tuning
the system to improve performance. It is also called “maintenance for the sake of
maintenance” or “reengineering” [8].

Preventive maintenance. The purpose of preventive maintenance is to prevent
problems from occurring by modifying software products. Basically, one should look
ahead, identify future risks and unknown problems, and take actions so that those
problems do not occur. For example, good programming styles can reduce the impact
of change, thereby reducing the number of failures [9]. Therefore, the program can
be restructured to achieve good styles to make later program comprehension easier.
Preventive maintenance is very often performed on safety critical and high available
software systems [10–13]. The concept of “software rejuvenation” is a preventive
maintenance measure to prevent, or at least postpone, the occurrences of failures due
to continuously running the software system. Software rejuvenation is a proactive fault
management technique aimed at cleaning up the system internal state to prevent the
occurrence of more severe crash in the future. It involves occasionally terminating an
application or a system, cleaning its internal state, and restarting it. Rejuvenation may
increase the downtime of the application; however, it prevents the occurrence of more
severe and costly failures. In a safety critical environment, the necessity of performing
preventive maintenance is evident from the example of control software for Patriot
missile: “On 21 February, the office sent out a warning that ‘very long running time’
could affect the targeting accuracy. The troops were not told, however, how many

28 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

hours ‘very long’ was or that it would help to switch the computer off and on again
after 8 hours.” (p. 1347 of Ref. [14]). The purpose of software maintenance activities
of preventive maintenance of a safety critical software system is to eliminate hazard
or reduce their associated risk to an acceptable level. Note that a hazard is a state of a
system or a physical situation which, when combined with certain environment con-
ditions, could lead to an accident. A hazard is a prerequisite for an accident or mishap.

2.1.2 Activity-Based Classification of Software Maintenance

In the intention-based classification of maintenance activities, the intention of an
activity depends upon the reason for the change [7]. On the other hand, Kitchenham
et al. [4] organize maintenance modification activities based on the maintenance activ-
ity. The authors classify the maintenance modification activities into two categories:
corrections and enhancements.

� Corrections. Activities in this category are designed to fix defects in the system,
where a defect is a discrepancy between the expected behavior and the actual
behavior of the system.

� Enhancements. Activities in this category are designed to effect changes to the
system. The changes to the system do not necessarily modify the behavior of
the system. This category of activities is further divided into three subcategories
as follows:

– enhancement activities that modify some of the existing requirements imple-
mented by the system;

– enhancement activities that add new system requirements; and

– enhancement activities that modify the implementation without changing the
requirements implemented by the system.

Now one can find a mapping between Swanson’s terminology and Kitchenham’s
terminology. Enhancement activities which are necessary to change the implemen-
tations of existing requirements are similar to Swanson’s idea of perfective mainte-
nance. Enhancement activities, which add new requirements to a system, are similar
to the idea of adaptive maintenance. Enhancement activities which do not impact
requirements but merely affect the system implementation appear to be similar to
preventive maintenance.

2.1.3 Evidence-Based Classification of Software Maintenance

The intention-based classification of maintenance activities was further refined by
Chapin et al. [15]. The objectives of the classification are as follows:

� base the classification on objective evidence that can be measured from obser-
vations and comparisons of software before and after modifications;

� set the coarseness of the classification to truly reflect a representative mix of
observed activities;

GENERAL IDEA 29

� make the classification independent of the execution and development envi-
ronments: hardware, operating system (OS), organizational practices, design
methodology, implementation language, and personnel involved in mainte-
nance.

Modifications performed, detected, or observed on four aspects of the system being
maintained are used as the criteria to cluster the types of maintenance activities:

� the whole software;
� the external documentation;
� the properties of the program code; and
� the system functionality experienced by the customer.

Classification of maintenance activities is based on changes in the aforementioned
four kinds of entities. Evidence of changes to those entities is gathered by comparing
the appropriate portions of the software before the activity with the appropriate parts
after the execution of the activity. In general, software maintenance or evolution
involves many activities that may result in some kind of modifications to the software.
A dominant categorization of activities emerges from all the modifications made,
detected, or observed. The classification proposed by Chapin [16] was exhaustive
in nature. His mutually exclusive types were grouped into clusters as illustrated in
Figure 2.1. The definitions of the 12 types of maintenance activities are given in
Table 2.1.

Software properties

Business rules

Adaptive

Cluster Groomative

Preventive

Performance

Reductive

Corrective

Enhancive

Training

Consultive

Evaluative

Reformative

Updative

Documentation

Support interface

Type

Type

Type

Type

High impact

Low impact

FIGURE 2.1 Groups or clusters and their types

30 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

TABLE 2.1 Evidence-Based 12 Mutually Exclusive Maintenance Types

Types of
Maintenance Definitions

Training This means training the stakeholders about the implementation
of the system.

Consultive In this type, cost and length of time are estimated for
maintenance work, personnel run a help desk, customers are
assisted to prepare maintenance work requests, and
personnel make expert knowledge about the available
resources and the system to others in the organization to
improve efficiency.

Evaluative In this type, common activities include reviewing the program
code and documentations, examining the ripple effect of a
proposed change, designing and executing tests, examining
the programming support provided by the operating system,
and finding the required data and debugging.

Reformative Ordinary activities in this type improve the readability of the
documentation, make the documentation consistent with
other changes in the system, prepare training materials, and
add entries to a data dictionary.

Updative Ordinary activities in this type are substituting out-of-date
documentation with up-to-date documentation, making
semi-formal, say, in UML to document current program
code, and updating the documentation with test plans.

Groomative Ordinary activities in this type are substituting components and
algorithms with more efficient and simpler ones, modifying
the conventions for naming data, changing access
authorizations, compiling source code, and doing backups.

Preventive Ordinary activities in this type perform changes to enhance
maintainability and establish a base for making a future
transition to an emerging technology.

Performance Activities in performance type produce results that impact the
user. Those activities improve system up time and replace
components and algorithms with faster ones.

Adaptive Ordinary activities in this type port the software to a different
execution platform and increase the utilization of COTS
components.

Reductive Ordinary activities in this type drop some data generated for the
customer, decreasing the amount of data input to the system
and decreasing the amount of data produced by the system.

Corrective Ordinary activities in this type are correcting identified bugs,
adding defensive programming strategies and modifying the
ways exceptions are handled.

Enhancive Ordinary activities in this type are adding and modifying
business rules to enhance the system’s functionality
available to the customer and adding new data flows into or
out of the software.

GENERAL IDEA 31

TABLE 2.2 Impact of the Types

Impact on Software
Impact on Business
Low ← − − − − − → High Cluster and Type

Low Support interface
↑ ⋄ ⋄ ⋄ ⋄ ⋄ Training| ⋄ ⋄ ⋄ ⋄ Consultive| ⋄ ⋄ Evaluative| Documentation| ⋄ ⋄ Reformative| ⋄ ⋄ Updative| Software properties| ⋄ ⋄ Groomative| ⋄ ⋄ ⋄ Preventive| ⋄ ⋄ ⋄ Performance| ⋄ ⋄ Adaptive| Business rules| ⋄ Reductive| ⋄ ⋄ ⋄ Corrective
↓ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄ Enhancive

High

Source: From Reference 15. © 2001 John Wiley & Sons.

The impacts of the different types or clusters of maintenance activities are summa-
rized in Table 2.2. The first dimension of the impact of the evolution is the customer’s
ability to perform its business functions effectively while continuing to use the sys-
tem. The impact is represented as low or high. The number of diamonds in a row
indicates the more probable range of impact on the business process of the customer.
As an example, if the software is enhanced with new functionalities, then the customer
is more likely to be able to achieve its business goals than modifications on noncode
documentation. The second dimension is the software itself. This is arranged from
top to bottom. As an example, rewriting a few pages of a user’s manual has almost
no impact on the software compared to rewriting a block of code to fix a defect.
Figure 2.1 illustrates the relationship among the different types of activities in terms
of impacts.

Decision Tree-Based Criteria The classification of maintenance activities have
been illustrated in Figure 2.1. The classification is based on modifications performed
—modifications deliberately done, modifications observed, modifications mani-
fested, and modifications detected—in various physical and conceptual entities:

� A—the whole software system.
� B—the program code.
� C—the functionalities experienced by customers.

32 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

The idea of objective evidence about activities is key to making the classification.
The fundamental acts of observation of behavior and comparison of behavior of two
entities reveal the evidence, and evidence of change-producing activities serves as
the criteria. Note that observation is performed on the artifacts and the activities
operating on them. On the other hand, comparison is performed on the relevant parts
of the software before and after a maintenance activity is performed. Activities are
classified into different types by applying a two-step decision process:

� First, apply criteria-based decisions to make the clusters of types.
� Next, apply the type decisions to identify one type within the cluster.

Figure 2.2 summarizes the aforementioned two steps in a hierarchical manner. The
decision tree shown in Figure 2.2 is an objective evidence-based classification of
maintenance types. The three-criteria decision involving A, B, and C lead to the
right types of cluster. The decisions characterize the types within each cluster. In
a maintenance process, we are interested in the impacts of maintenance activities
not only on the software but also the business processes of the software. Due to the
impact characteristics summarized in Table 2.2, one reads Figure 2.2 by beginning on
the left-hand side and moving toward the right for increasing impact on the software
and/or the business processes. First, clusters of maintenance types are identified by
using the type (namely, A, B, and C) decisions. Next, the types within a cluster are

Business rules

D-3: Enhancive*
D-2: Corrective
D-1: Reductive

Software properties

C-4: Adaptive*
C-3: Performance
C-2: Preventive
C-1: Groomative

Documentation

B-2: Updative*
B-1: Reformative

Support interface

A-3: Evaluative*
A-2: Consultive
A-1: Training

C: Was function
changed?

B: Was source
code changed?

A: Was software
changed?

No

No

No Yes

YesYes

Types of software maintenance
Notes:
Types is read from left to right, bottom to top.
Questions have been listed in Table 2.2.
Italics show the type name when the type decision at the left of it is ‘Yes’
For “cc”, read “change to code”

.
* indicates the default type in the cluster.

FIGURE 2.2 Decision tree types. From Reference 15. © 2001 John Wiley & Sons

GENERAL IDEA 33

TABLE 2.3 Summary of Evidence-Based Types of Software Maintenance

Criteria Type Decision Question Type

A-1 To train the stakeholders, did the activities utilize the
software as subject?

Training

A-2 As a basis for consultation, did the activities employ the
software?

Consultive

A-3 Did the activities evaluate the software? Evaluative

B-1 To meet stakeholder needs, did the activities modify the
noncode documentation?

Reformative

B-2 To conform to implementation, did the activities modify the
noncode documentation?

Updative

C-1 Was maintainability or security changed by the activities? Groomative
C-2 Did the activities constrain the scope of future maintenance

activities?
Preventive

C-3 Were performance properties or characteristics modified by
the activities?

Performance

C-4 Were different technology or resources used by the activities? Adaptive

D-1 Did the activities constrain, reduce, or remove some
functionalities experienced by the customer?

Reductive

D-2 Did the activities fix bugs in customer-experienced
functionality?

Corrective

D-3 Did the activities substitute, add to, or expand some
functionalities experienced by the customers?

Enhancive

identified by using type decisions. To make type decisions, one asks questions about a
specific evidence. A type is only applicable if the answer to the type decision question
is “Yes.” For specific type decision questions, the reader is referred to Table 2.3.
Sometimes, an objective evidence may be found to be ambiguous. In that case, clusters
have their designated default types for use. The overall default type is evaluative if
there are ambiguities in an activity. Ambiguities can be present in observations and
the available documentation evidence. Trivially, no type of software maintenance
has been conducted if observations indicate that no activities are performed on the
software, except merely executing it.

Since software maintenance involves many activities, a variety of questions are
answered to determine their types, as illustrated in Figure 2.2, in the structure of a
decision tree. All the three cluster decision criteria A, B, and C shown in the three
dotted boxes of Figure 2.2 and, listed below as well, must be asked:

� A: Was software changed?
� B: Was source code changed?
� C: Was function changed?

A “No” response to any of the aforementioned questions leads to a cluster, where one
or more type decisions result in an “Yes.” As an example, if the answer to question

34 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

A is “No,” then at least one question in the box labeled “Support interface” produces
a “Yes” answer. In addition, if the answer to question C is “Yes,” then at least one
question in the box labeled “Business rules” produces a “Yes” answer. The basic idea
is to move upward from the bottom of the rightmost column of leaves in Figure 2.1
as far up as possible. The aforementioned traversal is similar to traversing the tree
shown in Figure 2.2. Next, we explain the four kinds of clusters, namely, support
interface, documentation, software properties, and business rules one by one.

Support Interface Cluster This cluster relates to the modifications on how service
and/or maintenance personnel interact with stakeholders and customers. The support
interface cluster is invoked if the answer to the A criteria decision question “Was
software changed?” is a “No.” It consists of maintenance type decision in the order
of A-1, A-2, and A-3, because of their increasing impact. The default type here is
Evaluative. In the following, we explain the three type decisions one by one.

� Type decision A-1. “To train the stakeholders, did the activities utilize the soft-
ware as subject?” is the A-1-type decision. In the training type, common activ-
ities include: (i) in-class lessons for customers and (ii) a variety of training
spanning from on-site to web-based training using training materials from the
documentations. The idea is to provide training to the stakeholders in the details
of the system that has been implemented by the software.

� Type decision A-2. This type decision is “As a basis for consultation, did the
activities employ the software?,” and it is of consultive type. This type decision
is commonly performed as it involves such activities as estimating the cost
of the planned maintenance task, providing support from a help desk, helping
customers in preparing a CR, and making specific knowledge about the system
or resources available to others in the organization.

� Type decision A-3. This decision, which is of evaluative type, is “Did the activ-
ities evaluate the software?” A-3 is a commonly used decision as it includes the
following activities: searching, examining, auditing, diagnostic testing, regres-
sion testing, understanding the software without modifying it, and computing
different types of metrics.

Documentation Cluster For the A criterion decision, if assessment of the objective
evidence is “Yes,” then it implies that the software was modified. Next, we analyze
the B decision, which is about source code. The documentation cluster is invoked
by a “No” answer to the B criterion question “Did the activities change the code?”
It concerns modifications in the documentation except source code. The cluster
comprises two decisions, namely, B-1 and B-2. Documentation cluster activities
normally appear after the software interface cluster.

� Type decision B-1. The B-1 decision is “To meet stakeholder needs, did
the activities modify the noncode documentation?” Ordinary activities in
reformative type improve the readability of the documentation, change the

GENERAL IDEA 35

documentation to incorporate the effects of modifications in the manuals, pre-
pare training materials, and change the style of the documentation for noncode
entities. In other words, it involves reformulation of documentation for noncode
entities by modifying its style while preserving the code.

� Type decision B-2. The B-2 decision is “To conform to implementation, did
the activities modify the noncode documentation?” This updative type involves
activities for replacing out-of-date documentation with up-to-date documenta-
tion, making semi-formal models to describe current source code, and combin-
ing test plans with the documentation, without modifying the code. Out of the
two types, the default type is update.

Software Properties Cluster The code is said to be modified if the B criterion
decision produces a “Yes” outcome. Next, one analyzes decision C which queries
about modifications in the functionality of the system observed by the user. The
software properties cluster is invoked by a “No” answer to the C criteria decision “Did
the activities change the customer-experienced functionality?” This cluster comprises
four type decisions, namely, C-1, C-2, C-3, and C-4, with increasing impact in that
order. The cluster concerns modifications in the attributes of the software without
involving modifications in the functionality delivered by the software. Activities in
this group commonly follow the documentation cluster and the support interface
cluster. The default type here is adaptive, and the details of the type decisions in this
cluster are as follows:

� Type decision C-1. “Was maintainability or security changed by the activities?”
is the C-1-type decision, and it is of groomative type. The decision involves “anti-
regression” activities for source code grooming, such as substituting algorithms
and modules with better ones, modifying conventions for data naming, making
backups, changing access authorizations, altering code understandability, and
recompiling the code.

� Type decision C-2. C-2 is a preventive type decision asking the question “Did
the activities constrain the scope of future maintenance activities?” This type
of activities makes modifications to the code without changing either the exist-
ing functionality experienced by the customers or the resources utilized or the
existing technology. The impacts of such activities are generally not visible to
the customer. The common activities are making changes to improve maintain-
ability.

� Type decision C-3. “Were performance properties or characteristics modified
by the activities?” is a C-3-type decision, and it is of performance type. This
involves improving system up time, substituting algorithms and modules with
the ones with better efficiency, reducing the demand for storage, and improving
the system’s robustness and reliability. The customer often observes the changes
in those properties.

� Type decision C-4. “Were different technology or resources used by the activ-
ities?” is a C-4-type decision, and it is an adaptive type. This type includes

36 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

activities such as porting the software to a new execution platform, increased
utilization of commercial off-the-shelf (COTS), changing the supported commu-
nication protocols, and moving to object-oriented technologies. Those activities
can change customer-perceivable system properties, but similar to C-1, C-2, and
C-3, type C-4 does not modify the functionality experienced by the customers.
Type C-4 is the default in this group.

Business Rules Cluster This cluster is invoked by a “Yes” answer to the C cri-
teria decision question “Did the activities change the customer-experienced func-
tionality?” This cluster comprises the D-1, D-2, and D-3-type decisions. These
types of activities occur most frequently, and activities from other clusters are
needed to support these activities. This cluster involves the user- and business-level
functionalities.

� Type decision D-1. Type decision D-1 is “Did the activities constrain, reduce,
or remove some functionalities experienced by the customers?” and it is of
reductive type. This type of activities delete portions or all of the mod-
ules to constrain or remove some business rules. When organizations merge,
their business rules undergo such actions as elimination, restriction, and
reduction.

� Type decision D-2. Type decision D-2 is “Did the activities fix bugs in customer-
experienced functionality?” The major tasks fix defects, introduce defensive
programming, and modify the ways exceptions are handled.

� Type decision D-3. Type decision D-3 is “Did the activities substitute, add to,
or expand some functionalities experienced by the customers?,” and it is of
enhancive type. This type implements modifications by enhancing the business
rules to support more functionalities of the system. The major tasks are to add
new subsystems and algorithms and modify the current ones to enhance their
scope. The changes may affect customer experience of system functionality.
D-3 is the default type in this group.

Example: A maintenance engineer, after analyzing all the documentation along with
the program code, modified the program code for one component without modifying
other documentation, built the rewritten component, executed the regression test suite,
checked it into the version control, and embedded it into the production system. The
only consequence the customer observed was improved latency. Question: Identify
the type of software maintenance performed by the engineer [15].

From the activities reported it is apparent that criteria A and B evaluate to “Yes,”
whereas criterion C evaluates to “No.” The given evidence leads to a “Yes” decision
for the performance type in the Software Properties cluster. In addition, the evidence
leads us to the evaluative type in the cluster Support Interface. In Figure 2.1, we
identify the two types, namely, performance and evaluative, and note that the first
type is higher up than the second one. Because performance type is higher up than

CATEGORIES OF MAINTENANCE CONCEPTS 37

evaluative type, one expects evidence of the consultive, training, reformative, upda-
tive, preventive, and groomative type, but not of the adoptive, enhancive, corrective,
or reductive types. Therefore, performance is the dominant maintenance type for
this example.

2.2 CATEGORIES OF MAINTENANCE CONCEPTS

In the previous section, we discussed different views of software maintenance. In
this section, we describe some ways to organize maintenance activities. Organization
of maintenance activities is conceptually similar to the organization of activities for
software development. However, maintenance activities focus on product correction
and adaptation, whereas development activities transform high-level requirements
into working code. In this section, the key factors influencing the maintenance process
are identified.

The domain concepts that influence software maintenance process can be classified
into four categories:

� the product to be maintained;
� the types of maintenance to be performed;
� the maintenance organization processes to be followed; and
� the peopleware involved, that is, the people in the maintenance organization and

in the customer/client organization.

The four categories and the concepts that influence the maintenance process have
been illustrated in Figure 2.3. The concepts in each category are defined to understand
the relationships among maintenance concepts. Next, we describe the characteristics
of these concepts and their impacts on maintenance activities. This categorization
enables one to know to what degree methods, tools, and skills for maintenance differ
from those for software development [4]. In the following subsections, we explain
the four dimensions of maintenance as depicted in Figure 2.3.

2.2.1 Maintained Product

The maintained product dimension is characterized by three concepts: product, prod-
uct upgrade, and artifacts. We explain the characteristics of these concepts and their
impacts on maintenance process.

Product. A product is a coherent collection of several different artifacts. Source
code is the key component of a software product. Other artifacts of interest
include print manuals and online help.

Product upgrade. Baseline is an arrangement of related entities that make up a
particular software configuration. Any change or upgrade made to a software

38 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

Maintained product

Product

Product upgrade

Artifact

Maintenance

process

Activity

Investigation activity

Modification activity

Management activity

QA activity

Resources

Peopleware

Client organization

Maintenance

Organization

Human resource

Maintenance

Maintenance types

Organization processes

Service level agreement

Maintenance management

Change control

Configuration management

Management event

Investigation report

FIGURE 2.3 Overview of concept categories affecting software maintenance

product relates to a specific baseline. Note that an upgrade can create a new
version of the system being maintained, a patch code for an object, or even a
notice explaining a restriction on the use of the system. A restriction notice can
be a release note saying that the product may not work with a specific version
of a hardware.

Artifact. A number of different artifacts are used in the design of a software product
and, similarly, a number of artifacts simultaneously exist along side a software
product. One can find the following types of artifacts: textual and graphical
documents, component off-the-shelf products, and object code components.
Textual documents are readily understood by human readers: requirements
specifications, plans, designs, and source code listings.

The key elements of the maintained product are size, age, application type, compo-
sition, and quality. The key characteristics of the aforementioned elements affecting
maintenance performance are explained below.

The size of a software system affects the number of personnel needed to maintain
the system. A small-size product can be maintained by a single person, whereas
a medium-size product needs a team. However, for a large product one may need
multiple maintenance teams. Maintenance activities on relatively large systems are
generally less efficient than activities on small systems, because in a large product it

CATEGORIES OF MAINTENANCE CONCEPTS 39

is more difficult to: (i) conduct root cause analysis of some problems and (ii) identify
ripple effects on the modules to support large enhancements.

The age of a software product, also known as software geriatrics, is the number
of calendar years elapsed since its first release. The age of a software product can
affect maintenance activities in various ways [17, 18]. It is difficult to maintain too
old products for the following reasons: (i) it is difficult to find maintenance personnel
for too old products, because of changes in development technologies; (ii) finding
tools, namely, compilers and code analyzers, for very old systems is difficult; and
(iii) the original or up-to-date development documentation may not be available for
old products.

The life cycle stages of a software product have been listed in the first column of
Table 2.4. The maintenance life cycle starts after the initial development and ends
when the product is withdrawn from the market, as discussed in Section 3.3. The
second column represents the corresponding maintenance tasks for each stage of
maintenance. The third column represents typical size of user population associated
with the product in that stage of its life cycle. It may be noted that large enhancements
at the evolution stage can cause several patch releases at the servicing stage, consid-
ering the need for fixing faults (See Lehman’s fifth law “conservation of familiarity.”)
Table 2.4 shows different types of maintenance tasks performed by an organization
that are related to the maturity of a system.

Knowledge about the application domain influences productivities of software
development and maintenance activities [19]. For example, a computer engineer will
have stronger knowledge of IP (Internet Protocol) networking than an aerospace
engineer. Hence, a computer engineer will be more productive in maintaining an
IP network, whereas an aerospace engineer will be more productive in maintaining
a software product to design airplane wings. In addition, application domains put
constraints on maintenance of products and artifacts. For example, while maintaining
a safety critical system, such as air traffic control, one must preserve—and, even
increase—the product’s reliability. On the other hand, in another application domain
the concept of time-to-market may cause early deployment of a newer version of a
system. Therefore, different application domains affect the same aspect of mainte-
nance to different degrees.

The level of abstraction of the product component determines the skills required
by the maintenance personnel and the tools they need to support the component. If
the product has been derived from an in-house design, the maintenance personnel

TABLE 2.4 Staged Model Maintenance Task

Life Cycle Stage Maintenance Task User Population

Initial development – –
Evolution Corrections, enhancements Small
Servicing Corrections Growing
Phaseout Corrections Maximum
Closedown Corrections Declining

40 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

need access to the Computer-Aided Software Engineering (CASE) tools used by the
software developers. On the other hand, if the product is composed of COTS com-
ponents obtained from third parties, the maintenance engineers need integration and
acceptance testing skills, and the required skills include development of supporting
components such as wrapper, glue, and tailoring.

The product quality initially delivered to the customer places constraints on the
subsequent maintenance activities. Intuitively, good quality artifacts are easier to
maintain than poor quality ones. In the absence of communication between main-
tenance personnel and the original developers, quality of the product essentially
determines the level of difficulty of maintaining the product. Documentation is often
poor or even nonexistent for old products so maintenance personnel need specialized
tools to reengineer the system.

2.2.2 Maintenance Types

We discussed different types of maintenance activities in Section 2.1. In this subsec-
tion, different types of maintenance activities are defined, followed by the impacts of
those activities on maintenance performance.

Activity. A number of different broad classes of maintenance activities are per-
formed on software products, including investigation, modification, manage-
ment, and quality assurance. An activity may be composed of several smaller
sub-activities. Usually, an activity accepts some artifacts as inputs and produces
new or changed artifacts. In the following, we briefly explain the four kinds of
activities.

Investigation activity. This kind of activities evaluate the impact of making a
certain change to the system.

Modification activity. This kind of activities change the system’s implementation.

Management activity. This kind of activities relate to the configuration control of
the maintained system or the management of the maintenance process.

Quality assurance activity. This kind of activities ensure that modifications per-
formed on a system do not damage the integrity of the system. For example,
regression testing is an example of quality assurance activities.

Maintenance personnel require different levels of understanding of the product
by means of development tools so that they can execute the different maintenance
modifications. For example, a corrective maintenance activity requires the ability
to find the precise location of the faulty code and perform localized modifications.
The maintenance engineers need to reproduce the bug in the test environment and
may want to use tools to step through the suspected portion of code. On the other
hand, an activity for quality or functionality enhancement requires a broad compre-
hension of large portions of the system. In addition, the maintenance engineer needs
the development environment, such as version control, to check out and check in

CATEGORIES OF MAINTENANCE CONCEPTS 41

the code. The maintenance engineer may require re-engineering tools if the docu-
mentation is poor. The size and priority of the change are important features that
impact the productivity and efficiency of the activities. Specifically, an enhancement
with a large scope will involve a large number of maintenance personnel and it
will incur more communication and coordination overhead. The priority of a main-
tenance activity affects the length of time needed for the change to be delivered
to clients.

The efficiency and quality of investigation activities depend upon the knowledge of
the maintenance engineers possess about the current status of the release, outstanding
issues, and any planned modifications about the portion of the system involved.
The effectiveness of the configuration control mechanism and control of the change
process impact the availability of those information. To identify the status of each
system component, a good configuration control process is required.

2.2.3 Maintenance Organization Processes

Two different levels of maintenance processes are followed within a maintenance
organization:

� the individual-level maintenance processes followed by maintenance personnel
to implement a specific CR and

� the organization-level process followed to manage the CRs from maintenance
personnel, users, and customers/clients; this higher level of process is referred
to as the maintenance organization process.

The software maintenance concepts defined below are used to modify one or more
artifacts to implement a CR:

Development technology. This refers to the technology that was used to develop
the original system and its constituent artifacts. The development technology
constraints the maintenance procedures.

Paradigm. This refers to the philosophy adopted at the time of developing the
original system. Some examples are procedural paradigm and object-oriented
paradigm. This too constraints the possible maintenance procedures.

Procedure. A procedure can be a method, a technique, or a script. From a set of
procedures, one is chosen to perform a specific activity.

Method. A method is a general, systematic procedure giving clear steps and
heuristics to implement some activities.

Technique. A technique is a less rigorously defined procedure to realize an activity.

Script. A script is a general guideline to construct or amend a specific type of
document.

42 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

Artifacts include plans, documents, system representations, and source and object
code items. Artifacts are created during the software development process and
changed during maintenance. A multitude of different scripts, techniques, and meth-
ods are used to create and change such artifacts. The performance of maintenance
activities are impacted by the selection of development paradigm and development
technology. It is also impacted by the degree of automation of procedures. In general,
development paradigm and development technologies put limitations on maintenance
activities and skill requirements. For example, if the service-oriented architecture
(SOA) paradigm is used for the software development process, then the maintenance
engineers must be well versed with the SOA.

Next, we briefly define the concepts of the maintenance organization processes
and then discuss the impact of these concepts on maintenance.

Service-level agreement (SLA). This is a contract between the customers and the
providers of a maintenance service. Performance targets for the maintenance
services are specified in the SLA.

Maintenance management. This process is used to manage the maintenance ser-
vice, which is not the same as managing individual CRs. An organization
process is set up and run by the senior management. They create a structure of
the maintenance team so that service-level agreement can be executed. In addi-
tion to fulfilling the roles of regular processes, such as project management and
quality assurance, maintenance management handles events, change control,
and configuration control.

Event management. The stream of events, namely, all the CRs from various
sources, received by the maintenance organization, is handled in an event
management process.

Change control. Evaluation of results of investigations of maintenance events is
performed in a process called change control. Based on the evaluation, the
organization approves a system change.

Configuration management. A system’s integrity is maintained by means of a
configuration management process. Integrity of a product is maintained in
terms of its modification status and version number.

Maintenance organization structure. This is the hierarchy of roles assigned to
maintenance personnel to perform administrative tasks.

Maintenance event. This is a problem report or a CR originating from within the
maintenance organization or from the customers.

Investigation report. This is the outcome of assessing the cause and impacts of a
maintenance event.

Three major elements of a maintenance organization are event management,
configuration management, and change control system, as explained before in this
section. A maintenance organization handles maintenance requests from users, cus-
tomers, and maintainers. If any of the three elements is not adequate, maintenance

CATEGORIES OF MAINTENANCE CONCEPTS 43

will be inefficient and product quality is likely to be compromised. The efficiency of
maintenance activities is highly influenced by support tools. There are many tools,
namely, ManageEngine and Zendesk, to assist event management. The type and vol-
ume of CRs affect the performance of the maintenance organization. As an example,
if many defects are reported in a short time, there may not be enough resources to
carry out modifications.

After an initial investigation of a CR, a management process is put in place for
approving change activities. Approval of a CR is normally the responsibility of a
change control board. A change control board is organized as a formal process with
meetings between maintenance managers, clients, users, and customers. A proposed
modification activity is scheduled only after the modification is approved by the
board and an SLA is signed with the client. The level of formality adopted in change
control board procedures can affect the quality and efficiency of performing changes.
A formal change control board generally slows down the maintenance process but is
better at protecting the integrity of the systems being maintained.

SLAs describe the maintenance organization’s performance targets. It can be used
by maintenance personnel as a guidance to meet customer’s expectations. SLAs
should be based on results rather than effort, and maintenance organizations must
be prepared to meet their SLAs. In general, maintenance organizations use three
different support levels to organize the staff:

� Level 1. This group files problem reports and identifies the technical support
person who can best assist the person reporting a problem.

� Level 2. This level includes experts who know how to communicate with users
and analyze their problems. These people recommend quick fixes and temporary
workarounds.

� Level 3. This level includes programmers who can perform actual changes to
the product software.

Note that not all maintenance works cause changes in the system. In many situa-
tions, users may need advice on how to continue to use the system or in what ways
they can bypass a problem.

2.2.4 Peopleware

Maintenance activities cannot ignore the human element, because software pro-
duction and maintenance are human-intensive activities. The three people-centric
concepts related to maintenance are as follows:

Maintenance organization. This is the organization that maintains the product(s).

Client organization. A client organization uses the maintained system and it has
a clear relationship with the maintenance organization. The said relationship is
described in the SLA.

44 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

Human resource. Human resource includes personnel from the maintenance and
client organizations. Maintenance organization personnel include managers and
engineers, whereas client organization personnel include customers and users.
The management negotiates with the customers to find out the SLA, scheduling
of requirement enhancements, and cost.

In general, maintenance tasks are perceived to be less challenging, and, hence, less
well rewarded than original work. Often maintenance tasks are partly assigned to
newly recruited programmers, which has a significant impact on productivity and
quality. A novice programmer may introduce new defects while resolving an incident
because of an absence in understanding the whole system. Normally, more skilled
maintenance personnel produce more and better quality works.

Separation between development staff and maintenance staff impacts the main-
tenance process. On one hand, there is no real separation between maintenance and
development. In such a scenario, the product undergoes continual evolution. The
developers incorporate maintenance activities into a continuing process for planned
enhancements. In this case, the tools and procedures are the same for both the devel-
opment and maintenance activities. On the other hand, there are maintenance organi-
zations which operate with minimal interactions with the development departments.
Occasionally, the maintenance group may not be located in the same organization
that produced the software. In such a scenario, maintenance engineers may need spe-
cially designed tools. Maintenance managers need to focus on the aforementioned
issues when signing SLAs. Finally, the following user and customer issues affect
maintenance:

� Size. The size of the customer base and the number of licenses they hold affect
the amount of effort needed to support a system.

� Variability. High variability in the customer base impacts the scope of mainte-
nance tasks.

� Common goals. The extent to which the users and the customer have common
goals affects the SLAs. Ultimately, customers fund maintenance activities. If
the customers do not have a good understanding of the requirements of the
actual users, some SLAs may not be appropriate to the end users.

2.3 EVOLUTION OF SOFTWARE SYSTEMS

The term evolution was used by Mark I. Halpern in circa 1965 to define the dynamic
growth of software [20]. It attracted more attention in the 1980s after Meir M.
Lehman proposed eight broad principles about how certain types of software systems
evolve [21–24]. Bennett and Rajlich [25] researched the term “software evolution,”
but found no widely accepted definition of the term. However, some researchers and

EVOLUTION OF SOFTWARE SYSTEMS 45

Software

evolution
Revised

software

People

Existing

software

Machine

(CPUs)

Money

(Resources)

FIGURE 2.4 Inputs and outputs of software evolution. From Reference 26. © 1988 John
Wiley & Sons

practitioners used the term software evolution as a substitute for the term software
maintenance. Lowell Jay Arthur distinguished the two terms as follows:

� Maintenance means preserving software from decline or failure.
� Evolution means a continuously changing software from a worse state to a better

state (p. 1 of Ref. [26]). Software evolution is like a computer program, with
inputs, processes, and outputs (p. 246 of Ref. [26]) (See Figure 2.4).

Keith H. Bennett and Jie Xu [27] use “maintenance” for all post-delivery support,
whereas they use “evolution” to refer to perfective modifications—modifications
triggered by changes in requirements. Ned Chapin defines software evolution as:

“the applications of software maintenance activities and processes that generate a new
operational software version with a changed customer-experienced functionality or
properties from a prior operational version, where the time period between versions may
last from less than a minute to decades, together with the associated quality assurance
activities and processes, and with the management of the activities and processes”
(p. 21 of Ref. [15]).

The majority of software maintenance changes are concerned with evolutions
triggered by user requests for changes in the requirements. The following are the key
properties of software evolution as desired by the stakeholders:

� Changes are accomplished quickly and in a cost-effective manner.
� The reliability of the software should not be degraded by those changes.
� The maintainability of the system should not degrade. Otherwise, future changes

will be more expensive to carry out.

Software evolution is studied with two broad, complementary approaches, namely,
explanatory and process improvement, and those describe the what and how aspects,
respectively, of software evolution.

� Explanatory (what/why). This approach attempts to explain the causes of soft-
ware evolution, the processes used, and the effects of software evolution. The

46 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

explanatory approach studies evolution from a scientific view point. In this
approach, the nature of the evolution phenomenon is studied, and one strives to
understand its driving factors and impacts.

� Process improvement (how). This approach attempts to manage the effects
of software evolution by developing better methods and tools, namely,
design, maintenance, refactoring, and reengineering. The process improvement
approach studies evolution from an engineering view point. It focuses on the
more pragmatic aspects that assist the developers in their daily routines. There-
fore, methods, tools, and activities that provide the means to direct, implement,
and control software evolution are at the core of the process improvement
approach.

2.3.1 SPE Taxonomy

The abbreviation SPE refers to S (Specified), P (Problem), and E (Evolving) pro-
grams. In circa 1980, Meir M. Lehman [24] proposed an SPE classification scheme
to explain the ways in which programs vary in their evolutionary characteristics.
The classification scheme is characterized by: (i) how a program interacts with its
environment and (ii) the degree to which the environment and the underlying prob-
lem that the program addresses can change. He observed a key difference between
software developed to meet a fixed set of requirements and software developed to
solve a real-world problem which changes with time. The observation leads to the
identification of types S (Specified), P (Problem), and E (Evolving) programs. In the
following, we explain the SPE concepts in detail.

S-type programs: S-type programs have the following characteristics:

� All the nonfunctional and functional program properties that are important to
its stakeholders are formally and completely defined.

� Correctness of the program with respect to its formal specification is the only
criterion of the acceptability of the solution to its stakeholders.

A formal definition of the problem is viewed as the specification of the program.
S-type programs solve problems that are fully defined in abstract and closed ways.
Examples of S-type programs include calculation of the lowest common multiple of
two integers and to perform matrix addition, multiplication, and inversion [28]. The
problem is completely defined, and there are one or more correct solutions to the
problem as stated. The solution is well known, so the developer is concerned not
with the correctness of the solution but with the correctness of the implementation
of the solution. As illustrated in Figure 2.5, the specification directs and controls the
programmers in creating the program that defines the desired solution. The problem
statement, the program, and the solution may relate to a real world—and the real
world can change. However, if the real world changes, the original problem turns into
a completely new problem that must be respecified. But then it has a new program to
provide a solution. It may be possible and time saving to derive a new program from

EVOLUTION OF SOFTWARE SYSTEMS 47

Real world

Formal statement

of problem

Requirements

specification

Program

Solution

Compare

Static

Change

FIGURE 2.5 S-type programs

the old one, but it is a different program that defines a solution to a different problem.
The program remains almost the same in the sense that it does not accommodate
changes in the problem that generates it [29]. In the real world, S-type systems are
rare. However, it is an important concept that evolution of software does not occur
under some conditions.

P-type programs: With many real problems, the system outputs are accurate to a
constrained level of precision. The concept of correctness is difficult to define in
those programs. Therefore, approximate solutions are developed for pragmatic rea-
sons. Numerical problems, except computations with integers and rational numbers,
are resolved through approximations. For example, consider a program to play chess.
Since the rules of chess are completely defined, the problem can be completely spec-
ified. At each step of the game a solution might involve calculating the various moves
and their impacts to determine the next best move. However, complete implementa-
tion of such a solution may not be possible, because the number of moves is too large
to be evaluated in a given time duration. Therefore, one must develop an approximate
solution that is more practical while being acceptable.

In order to develop this type of solution, we describe the problem in an abstract
way and write the requirement specification accordingly. A program developed this
way is of P-type because it is based on a practical abstraction of the problem, instead
of relying on a completely defined specification. Even though an exact solution may
exist, the solution produced by a P-type program is tampered by the environment
in which it must be produced. The solution of a P-type program is accepted if the
program outcomes make sense to the stakeholder(s) in the world in which the prob-
lem is embedded. As illustrated in Figure 2.6, P-type programs are more dynamic
than S-type programs. P-type programs are likely to change in an incremental fash-
ion. If the output of the solution is unacceptable, then the problem abstraction may

48 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

Real world

Formal statement

of problem

Requirements

specification

Program

Solution

Compare

Change

Abstraction

FIGURE 2.6 P-type programs

be changed and the requirements modified to make the new solution more realis-
tic. Note that the program resulting from the changes cannot be considered a new
solution to a new problem. Rather, it is a modification of the old solution to better
fit the existing problem. In addition, the real world may change, hence the problem
changes.

E-type programs: An E-type program is one that is embedded in the real world and
it changes as the world does. These programs mechanize a human or society activity,
make simplifying assumptions, and interface with the external world by requiring or
providing services. An E-type system is to be regularly adapted to: (i) stay true to its
domain of application; (ii) remain compatible with its executing environment; and
(iii) meet the goals and expectations of its stakeholders [30].

Figure 2.7 illustrates the dependence of an E-type program on its environment
and the consequent changeability. The acceptance of an E-type program entirely
depends upon the stakeholders’ opinion and judgment of the solution. Their descrip-
tions cannot be completely formalized to permit the demonstration of correctness,
and their operational domains are potentially unbounded. The first characteristic of
an E-type program is that the outcome of executing the program is not definitely pre-
dictable. Therefore, for E-type programs, the concept of correctness is left up to the
stakeholders. That is, the criterion of acceptability is the stakeholders’ satisfac-
tion with each program execution [31]. An E-type program’s second characteristic

EVOLUTION OF SOFTWARE SYSTEMS 49

Real world

Formal statement

of problem

Requirements

specification

Program

Solution

Compare

Change

Abstraction

FIGURE 2.7 E-type programs

is that program execution changes its operational domain, and the evolution pro-
cess is viewed as a feedback system [32]. Figure 2.8 [33] succinctly illustrates the
feedback process.

2.3.2 Laws of Software Evolution

Lehman and his colleagues have postulated eight “laws” over 20 years starting from
the mid-1970s to explain some key observations about the evolution of E-type soft-
ware systems [34, 35]. The laws themselves have evolved from three in 1974 to eight
by 1997, as listed in Table 2.5. The eight laws are the results of empirical stud-
ies of the evolution of large-scale proprietary software—also called closed source
software (CSS)—in a variety of corporate settings. The laws primarily relate to
perfective maintenance. These laws are largely based on the concept of feedback
existing in the software environment. Their description of the phenomena are inter-
twined, and the laws are not to be studied separately. The numbering of the laws has
no significance apart from the sequence of their development.

50 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

Program domain

Program

concept

Operational

program

Bounding

Development

Step 1

Development

Step 2

Development

Step 3

Development

Step i-1

Development

Step i

Program

Exogenous

change

FIGURE 2.8 E-type programs with feedback. From Reference 33. © 2006 John Wiley &
Sons

TABLE 2.5 Laws of Software Evolution

Names of the Laws Brief Descriptions

I. Continuing change (1974) E-type programs must be continually adapted,
else they become progressively less
satisfactory.

II. Increasing complexity (1974) As an E-type program evolves, its complexity
increases unless work is done to maintain or
reduce it.

III. Self-regulation (1974) The evolution process of E-type programs is
self-regulating, with the time distribution of
measures of processes and products being close
to normal.

IV. Conservation of organizational
stability (1978)

The average effective global activity rate in an
evolving E-type program is invariant over the
product’s lifetime.

V. Conservation of familiarity
(1978)

The average content of successive releases is
constant during the life cycle of an evolving
E-type program.

VI. Continuing growth (1991) To maintain user satisfaction with the program
over its lifetime, the functional content of an
E-type program must be continually increased.

VII. Declining quality (1996) An E-type program is perceived by its
stakeholders to have declining quality if it is
not maintained and adapted to its environment.

VIII. Feedback system (1971–1996) The evolution processes in E-type programs
constitute multi-agent, multi-level, multi-loop
feedback systems.

Source: Adapted from Lehman et al. [34]. ©1997 IEEE.

EVOLUTION OF SOFTWARE SYSTEMS 51

Lehman’s laws were not meant to be used in a mathematical sense, as, say,
Newton’s laws are used in physics. Rather, those were intended to capture stable,
long-term knowledge about the common features of changing software systems, in
the same sense social scientists use laws to characterize general principles applying
to some classes of social situations [30]. The term “laws” was used because the
observed phenomena were beyond the influence of managers and developers. The
laws were an attempt to study the nature of software evolutions and the evolutionary
trajectory likely taken by software.

First Law Continuing change: E-type programs must be continually adapted, else
they become progressively less satisfactory. Many assumptions are embedded in an
E-type program. A subset of those assumptions may be complete and valid at the
initial release of the product; that is, the program performed satisfactorily even if
not all assumptions were satisfied. As users continue to use a system over time, they
gain more experience, and their needs and expectations grow. As the application’s
environment changes in terms of the number of sophisticated users, a growing number
of assumptions become invalid. Consequently, new requirements and new CRs will
emerge. In addition, changes in the real world will occur and the application will be
impacted, requiring changes to be made to the program to restore it to an acceptable
model. When the updated and modified program is reintroduced into the operational
domain, it continues to satisfy user needs for a while; next, more changes occur in
the operation environment, additional user needs are identified, and additional CRs
are made. As a result, the evolution process moves into a vicious cycle.

Second Law Increasing complexity: As an E-type program evolves, its complexity
increases unless work is done to maintain or reduce it. As the program evolves, its
complexity grows because of the imposition of changes after changes on the pro-
gram. In order to incorporate new changes, more objects, modules, and sub-systems
are added to the system. As a consequence, there is much increase in: (i) the effort
expended to ensure an adequate and correct interface between the old and new
elements; (ii) the number of errors and omissions; and (iii) the possibility of incon-
sistency in their assumptions. Such increases lead to a decline in the product quality
and in the evolution rate, unless additional work is performed to arrest the decline.
The only way to avoid this from happening is to invest in preventive maintenance,
where one spends time to improve the structure of the software without adding to its
functionality.

Third Law Self-regulation: The evolution process of E-type programs is self-
regulating, with the time distribution of measures of processes and products being
close to normal. This law states that large programs have a dynamics of their own;
attributes such as size, time between releases, and the number of reported faults are
approximately invariant from release to release because of fundamental structural
and organizational factors. In an industrial setup E-type programs are designed and
coded by a team of experts working in a larger context comprising a variety of
management entities, namely, finance, business, human resource, sales, marketing,
support, and user process. The various groups within the large organization apply
constraining information controls and reinforcing information controls influenced

52 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

by past and present performance indicators. Their actions control, check, and bal-
ance the resource usage, which is a kind of feedback-driven growth and stabilization
mechanism. This establishes a self-controlled dynamic system whose process and
product parameters are normally distributed as a result of a huge number of largely
independent implementation and managerial decisions [36].

Fourth Law Conservation of organizational stability: The average effective global
activity rate in an evolving E-type program is invariant over the product’s lifetime.
This law suggests that most large software projects work in a “stationary” state, which
means that changes in resources or staffing have small effects on long-term evolution
of the software. To a certain extent management certainly do control resource allo-
cation and planning of activities. However, as suggested by the third law, program
evolution is essentially independent of management decisions. In some instances, as
indicated by Brooks [37], situations may arise where additional resources may reduce
the effective rate of productivity output due to higher communication overhead or
decrease in process quality. In reality, activities during the life cycle of a system
are not exclusively decided by management but by a wide spectrum of controls and
feedback inputs [38].

Fifth Law Conservation of familiarity: The average content of successive releases
is constant during the life cycle of an evolving E-type program. As an E-type system
evolves, both developers and users must try to develop mastery of its content and
behavior. Thus, after every major release, established familiarity with the application
and the system in general is counterbalanced by a decline in the detail knowledge and
mastery of the system. This would be expected to produce a temporary slow down
in the growth rate of the system as it is recognized that the system must be cleaned
up to simplify the process of re-familiarization. In practice, adding new features to a
program invariably introduces new program faults due to unfamiliarity with the new
functionality and the new operational environment. The more changes are made in a
new release, the more faults will be introduced. The law suggests that one should not
include a large number of features in a new release without taking into account the
need for fixing the newly introduced faults. Conservation of familiarity implies that
maintenance engineers need to have the same high level of understanding of a new
release even if more functionalities have been added to it.

Sixth Law Continuing growth: To maintain user satisfaction with the program over
its lifetime, the functional content of an E-type program must be continually increased.
It is useful to note that programs exhibit finite behaviors, which implies that they
have limited properties relative to the potential of the application domain. Properties
excluded by the limitedness of the programs eventually become a source of perfor-
mance constraints, errors, and irritation. To eliminate all those negative attributes, it
is needed to make the system grow.

It is important to distinguish this law from the first law which focuses on “Con-
tinuing Change.” The first law captures the fact that an E-type software’s operational
domain undergoes continual changes. Those changes are partly driven by installation
and operation of the system and partly by other forces; an example of other forces
is human desire for improvement and perfection. These two laws—the first and

EVOLUTION OF SOFTWARE SYSTEMS 53

the sixth—reflect distinct phenomena and different mechanisms. When phenomena
are observed, it is often difficult to determine which of the two laws underlies the
observation.

Seventh Law Declining quality: An E-type program is perceived by its stakehold-
ers to have declining quality if it is not maintained and adapted to its environment.
This law directly follows from the first and the sixth laws. An E-Type program must
undergo changes in the forms of adaptations and extensions to remain satisfactory in
a changing operational domain. Those changes are very likely to degrade the perfor-
mance and will potentially inject more faults into the evolving program. In addition,
the complexity (e.g., the cyclomatic measure) of the program in terms of interactions
between its components increases, and the program structure deteriorates. The term
for this increase in complexity over time is called entropy. The average rate at which
software entropy increases is about 1–3 per calendar year [17]. There is significant
decline in stakeholder satisfaction because of growing entropy, declining perfor-
mance, increasing number of faults, and mismatch of operational domains. The afore-
mentioned factors also cause a decline in software quality from the user’s perspective
[39]. The decline of software quality over time is related to the growth in entropy
associated with software product aging [18] or code decay [8]. Therefore, it is impor-
tant to continually undertake preventive measures to reduce the entropy by improving
the software’s overall architecture, high-level and low-level design, and coding.

Eighth Law Feedback system: The evolution processes in E-type programs consti-
tute multi-agent, multi-level, multi-loop feedback systems. Several laws of software
revolution refer to the role of information feedback in the life cycles of software. The
eighth law is based on the observation that evolution process of the E-type software
constitutes a multi-level, multi-loop, multi-agent feedback system: (i) multi-loop
means that it is an iterative process; (ii) multi-level refers to the fact that it occurs in
more than one aspect of the software and its documentation; and (iii) a multi-agent
software system is a computational system where software agents cooperate and
compete to achieve some individual or collective tasks. Feedback will determine and
constrain the manner in which the software agents communicate among themselves
to change their behavior [40].

Remark: There are two types of aging in software life cycles: software process
execution aging and software product aging. The first one manifests in degradation in
performance or transient failures in continuously running the software system. The
second one manifests in degradation of quality of software code and documentation
due to frequent changes. The following aging-related symptoms in software were
identified by Visaggio [41]:

� Pollution. Pollution means that there are many modules or components in a
system which are not used in the delivery of the business functions of the
system.

� Embedded knowledge. Embedded knowledge is the knowledge about the appli-
cation domain that has been spread throughout the program such that the knowl-
edge cannot be precisely gathered from the documentation.

54 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

� Poor lexicon. Poor lexicon means that the component identifiers have little
lexical meaning or are incompatible with the commonly understood meaning
of the components that they identify.

� Coupling. Coupling means that the programs and their components are linked
by an elaborate network of control flows and data flows.

Remark: The code is said to have decayed if it is very difficult to change it, as
reflected by the following three key responses: (i) the cost of the change, which is
effective only on the personnel cost for the developers who implement it; (ii) the
calendar or clock time to make the changes; and (iii) the quality of the changed
software. It is important to note that code decay is antithesis of evolution in the sense
that while the evolution process is intended to make the code better, changes are
generally degenerative thereby leading to code decay.

2.3.3 Empirical Studies

Empirical studies are aimed at acquiring knowledge about the effectiveness of pro-
cesses, methods, techniques, and tools used in software development and mainte-
nance. Similarly, the laws of software evolution are prime candidates for empirical
studies, because we want to know to what extent they hold. In circa 1976, Belady
and Lehman [22] studied 20 releases of the OS/360 operating system. The results of
their study led them to postulate five laws of software evolution: continuing change,
increasing complexity, self-regulation, conservation of organizational stability, and
conservation of familiarity. Those laws were further developed in an article pub-
lished in 1980 [24]. Yuen [36, 42] further studied their five laws of evolution. He
re-examined three different systems from Belady and Lehman [22] and several other
systems and examined a variety of dependent variables. The number and percentage
of modules handled are examples of dependent variables. After re-examining the data
from previous studies, he observed that the characteristics observed for OS/360 did
not necessarily hold for other systems. Specifically, the first two laws were supported,
while the remaining three laws were not. Yuen, a collaborator of Lehman, notes that
these three laws are more based upon those of human organizations involved in the
maintenance process rather than the properties of the software itself.

Later, in a project entitled FEAST (Feedback, Evolution, And Software Tech-
nology), Lehman and his colleagues studied evolution of releases from four CSS
systems: (i) two operating systems (OS/360 of IBM and VME OS of ICL); (ii) one
financial system (Logica’s FW banking transaction system); and (iii) a real-time
telecommunication system (Lucent Technologies). Their results are summarized as
a set of growth curves, as described by Lehman, Perry, and Ramil [43]. The studies
suggest that during the maintenance process a system tracks a growth curve that can
be approximated either as linear or inverse square [44]. The inverse square model
represents the growth phenomena as an inverse square of the continuing effort. Those
trends increase the confidence of validity of the following six laws: Continuing change
(I), Increasing complexity (II), Self-regulation (III), Conservation of familiarity (V),

EVOLUTION OF SOFTWARE SYSTEMS 55

Continuing growth (VI), and Feedback system (VII). Confidence in the seventh law
“Declining quality” is based on the theoretical analysis, whereas the fourth law “Con-
servation of organizational stability” is neither supported nor falsified based on the
metric presented. In 1982, there was an independent study by Lawrence [45], who
took a statistical approach to observe some evidence supporting laws I and II, while
laws III–V were not supported by the data.

Inverse square law. According to the fourth law, the incremental effort, denoted
by E, expended on each release stays the same during the evolution of the system. It
is assumed that the incremental effort expended on each release is almost the same
during the system evolution. Let Δi denote the incremental change of the system size
and assume that it is solely due to the effort E expended on the ith release. To relate E
and Δi, we need to consider a conceptual factor si, which behaves in this context like
mass in dynamic physical systems. A larger si implies a greater resistance to change,
and a smaller Δi will be obtained from expending effort E. Thus, Δi = E∕si is the
first, simple relation that appears in the view. Assume that the size of the system is
expressed in terms of number of modules, and complexity is expressed in terms of
the number of intermodule interactions. By considering the number of intermodule
interactions to be proportional to the square of the number of modules, one can
obtain a relationship as follows: Δi = E∕s2

i , which is called the inverse square law.
We assume that the law is valid and obtain the following expressions:

s1 = s1

s2 = s1 + E∕s2
1

s3 = s2 + E∕s2
2

…

By means of substitution we get:

s1 = s1

s2 = s1 + E∕s2
1

s3 = s2 + E∕s2
2 = s1 + E

(
1∕s2

1 + 1∕s2
2

)
…

Similarly, we get:

E1 =
s2 − s1

1∕s2
1

E2 =
s3 − s1

1∕s2
1 + 1∕s2

2
…

56 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

where the right-hand sides of the equations contain data about releases and nothing
else. Thus, one can compute the mean of n values of E as E = (

∑n
i=1 Ei)∕n. E can

be interpreted as the mean effort required per release, which can be considered to
be a good approximation of the “constant” effort throughout the system evolution.
Employing E, system evolution is described by using the inverse square law as
follows:

s1 = s1

s2 = s1 + E∕s2
1

s3 = s2 + E∕s2
2

…

sn = sn−1 + E∕s2
n−1

The aforementioned relationship is consistent with the view that increasing com-
plexity, captured in the second law, restrains growth. The inverse square law has an
interesting property. By showing that the model closely matches the evolution pattern
of a system, one may accurately predict the size of the subsequent releases after the
data about the first few releases are available.

2.3.4 Practical Implications of the Laws

Based on the eight laws, Lehman suggested more than 50 rules for management, con-
trol, and planning [35] of software evolution. Those 50+ rules are put into three broad
categories: assumptions management, evolution management, and release manage-
ment [46].

Assumptions management. Several assumptions are made by different personnel
involved throughout the life cycle of a project. When a software project fails, the
primary source of failure can be traced back to those assumptions. It is generally
found that some of those assumptions were never valid in the first place, or it is more
likely that some of the assumptions became invalid as a result of changes outside
the software system. Therefore, management of assumptions plays a key role in
successful execution of projects involving E-type software. The following is a list of
activities for managing assumptions.

� Identify and capture the assumptions pertinent to the project. The difficulty lies
in completely identifying all the assumptions.

� Initiate periodic reviews to assess any need to correct or update the list of
assumptions.

� Review and revalidate the assumptions whenever a change occurs in the speci-
fication, design, implementation, or operational domain.

EVOLUTION OF SOFTWARE SYSTEMS 57

� Where software operates in a rapidly changing environment, complement
detailed assumption review process with re-writing of appropriate components
of the software.

� Develop and use tools to track all the above activities.

Evolution management. In this section, the discussion has mainly referred to the
evolution of software as reflected in a series of releases or upgrades. Recommendation
relating to evolution and maintenance process includes the following list of items:

� Consistently assess and pursue antiregressive work such as complexity control,
restructuring, and full documentation. The phrase antiregressive work means the
work to be performed to reduce a program’s complexity with no modifications
to the user perceived functionality delivered by the system. As part of the
development and maintenance responsibility, carry out antiregressive activities.
This may not have an immediate impact on stakeholders, but this will facilitate
future evolvability.

� Ensure that documentation includes identification and recording of assumptions.
� Assess the trends in the evolutions of the functional and nonfunctional require-

ments of the software product in advance. Review those trends during the release
planning while taking the operational domain into consideration.

� Involve application and operational domain specialists in the assessment.
� Use tools to support data collection, modeling, and related activities.
� Acquire, plot, model, and interpret historical evolution metrics to project trends,

patterns, growth, and their rate of changes in order to improve planning and
processes.

� When validating incremental growth, assess the impact on the unchanged parts
of the system and assumptions.

� Establish baselines of key measures over time to support evolution and mainte-
nance planning and control.

Release management. A software release can be categorized as safe, risky, or
unsafe according to the condition described as follows. Let m be the mean of the
incremental growth mi of the system in going from release i to release i + 1 and s be
the standard deviation of the incremental growth. The release is safe if the content
of the ith desired release (say, mi) is less than or equal to m. The release is said to
be risky if the content of the desired release is greater than m but less than m + 2s.
Finally, the release is unsafe if the content of the desired release is close to or greater
than m + 2s. Based on the aforementioned concepts of safety, concrete activities for
release management are as follows:

� Ensure that the release is safe.
� When the release is not safe, then distribute the growth across several releases

to make individual releases safe.

58 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

� If excessive functional increments are unavoidable, plan for follow-on clean-up
releases with a focus on fixing defects and updating documentation.

� Follow established software engineering principles, namely, information hiding
to minimize spread of changes between system elements.

� By allocating resources, put emphasis on antiregressive work, namely, restruc-
turing, eliminating dead code, and reengineering.

� Consider the alternation of enhancement and extension with clean-up and
restructuring releases.

The model discussed in this section concentrated on systems developed under
industrial software process paradigm, namely, Closed Source Software (CSS) and
extension of the waterfall model. The discussion has mainly referred to the evolution
of software as reflected in a series of releases or upgrades. But general validity of
the laws of Lehman in the context of newer paradigms, such as open source, agile
programming, and COTS-based development, cannot be taken for granted. Hence,
we discuss the evolution of free and open source software (FOSS) systems next.

2.3.5 Evolution of FOSS Systems

FOSS is a class of software that is both free software and open source. It is liber-
ally licensed to grant users the right to use, copy, study, change, and improve its
design through availability of its source code. The FOSS movement is attributed to
Richard M. Stallman, who started the GNU project in circa 1984, and a supporting
organization, the Free Software Foundation [47]. It is often emphasized that free
software is a “matter of liberty not price” [48]. FOSS—also referred to as FLOSS
(Free/Libre/Open Sources Software)—systems have attracted much academic and
commercial interests due to the accessibility to large amounts of code and other
free artifacts. Gradually, more and more software systems were developed by Open
Source Community (OSC). Compared with CSS development methods, FOSS have
lots of new characteristics. Eric Raymond concisely documented the FOSS approach
in an article entitled “The Cathedral and the Bazaar” [49]. In this section, we briefly
describe the differences between the evolutions of FOSS-based software and CSS-
based software in terms of: (i) team structure; (ii) process; (iii) releases; and (iv)
global factors [50–52].

Team structure. In traditional CSS development, organizations often have dedi-
cated groups to carry out evolution tasks. These groups are staffed with specialist
maintenance personnel. In contrast, FOSS development is very different. Even though
several FOSS communities have core teams to manage evolution activities on a daily
basis, most works are done voluntarily.

An onion model of FOSS development has been illustrated in Figure 2.9
[53, 54]. According to this model, a core sustainable community consists of a small
group of key members, additional contributing developers, and a large number of
active users who report defects. The outer layer represents those users who are not
actively involved in the development process. The onion model has three primary

EVOLUTION OF SOFTWARE SYSTEMS 59

Contributing developers

Passive users

Active users

Core members

FIGURE 2.9 Onion model of FOSS development structure

characteristics: (i) a small core team; (ii) contributing developers add and maintain
features; and (iii) active users take ownership of system testing and defect report-
ing. In the FOSS evolution model, numerous nomadic volunteers work together as a
community. Therefore, one should consider the change of people in the evaluation of
evolution of FOSS-based software.

Process. The FOSS development process is lighter than CSS development process
followed in companies, where requirement documents and design specifications are
indispensable. There are strict rules about coding style, documentation, and defect
fixes. On the other hand, in FOSS development, requirement specification and detailed
design documentations take a back seat, at least from the user’s perspectives.

Though there are standards for coding and documenting, these are less relaxedly
adhered compared to traditional CSS development. In FOSS development, source
code comprises the main artifact for disseminating knowledge among the developers.
Therefore, FOSS activities are largely confined to coding and testing. To overcome
the ensuing difficulties due to not following a document-driven development process,
an array of supplementary information is provided: release notes, defect databases,
configuration management facilities, and email lists. For some projects, some devel-
opers act as the “gate keepers” for any revision to the code. Each project community
makes their own rules to regulate the submission of bug fixes and new functionalities.
Systematic testing is not always present compared to CSS-based projects. However, in
FOSS projects, due to the large number of developers and beta-testers, almost all the
issues can be quickly characterized and the fix is obvious to someone. As observed by
Eric S. Raymond [49], “given enough eyeballs, all bugs are shallow.” This is known as
Linus’s Law: the more widely available the source code is for public testing, scrutiny,
and experimentation, the more rapidly all forms of defects are discovered.

Remark: Linus’s law was attributed to a Finnish software engineer, Linus Benedict
Torvals by Eric S. Raymond. He was the lead of the Linux kernel project and

60 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

later became the chief architect of the Linux operating system and the project
coordinator.

Releases. A key attribute of FOSS is that code is shared with almost no constraints.
Compared to CSS development, FOSS development generally do not have schedule
for regular releases. However, larger FOSS projects do have stated goals and releases
are generally scheduled in terms of functionalities to be delivered. In general, there are
two related streams of source code: (i) a stable stream of code for distribution and (ii) a
development stream. The latter one is currently being modified and improved. At some
instant, the development stream becomes stable and is released. The development
stream is frozen for a few days prior to a milestone release to identify critical
problems. When it is determined that critical problems have been resolved and the
code is indeed stable, then the code is released [55]. However, it is a common behavior
in many FOSS projects to follow the rule: “release early, release often.” The above
rule means that the code is available to public well before it is stable.

Global factors. In the FOSS development paradigm, developers working on even
a very small project might be living in many countries around the world, due to
the pervasive use of the world-wide web (WWW). With globalization on the rise,
the collaborators hail from many countries with a variety of cultural backgrounds.
FOSS development becomes very challenging because of the need to coordinate the
geographically distributed developers. Though many companies have their develop-
ment teams spread out in many countries, most of the traditional companies develop
systems with their local teams and, occasionally, the system is tested at an overseas
location.

Empirical Studies of FOSS Evolution In circa 1988, Pirzada [56] analyzed the
dissimilarities between the systems studied by Lehman and Belady [32] and the
evolution of the Unix operating system. It was argued that the differences between
commercial development and development for academic purposes could lead to
differences in their evolutionary trajectories. In circa 2000, empirical study of FOSS
evolution was conducted by Godfrey and Tu [57]. They provided the trend of growth
between 1994 and 1999 for the Linux operating system (OS), which is a popular
FOSS system, and showed its rate of growth to be superlinear. Specifically, they
found that the size of the Linux followed a quadratic growth trend, and at that time
the OS was about 2+ million lines of code (LOCs). In circa 2002, Schach et al. [58]
studied the evolution of 365 versions of Linux and showed that module coupling,
that is interconnection of modules, has been growing exponentially. They argued
that unless efforts to alleviate this situation is undertaken, the Linux OS would
become unmaintainable. Their argument was fully consistent with Lehman’s sixth
and seventh laws. However, it appears to be at odds with the third and the fifth laws,
which are self-regulation and conservation of familiarity, respectively. Robles et al.
[59], while replicating Godfrey and Tu’s study, concluded that Lehman’s fourth law
(conservation of organizational stability) does not fit well with large-scale FOSS
systems such as Linux. This behavior of exponential growth may be considered as
an anomaly as pointed out by Lehman et al. [60]. The evolutionary behavior of other

MAINTENANCE OF COTS-BASED SYSTEMS 61

1,200,000

1,000,000

drivers

arch

include

net

fs

kernel

mm

ipc

lib

init

800,000

T
o
ta

l
u
n
c
o
m

m
e
n
te

d
 L

O
C

600,000

400,000

200,000

Jan 1933 Jun 1994 Oct 1995 Mar 1995 Jul 1998 Dec 1999 Apr 2001
0

FIGURE 2.10 Growth of the major subsystems (development releases only) of the Linux
OS. From Reference 57. © 2000 IEEE

FOSS systems such as Gcc, Linux kernel, Apache, Brocade library, and Zlib appears
to follow Lehman’s laws for software evolution [61, 62].

Godfrey and Tu observed that the growth rate was more for the device-driver
subsystem of Linux as can be seen from Figure 2.10. As a matter of fact, the device-
drivers appear to be mutually independent. Therefore, adding a new driver does not
raise the subsystem’s complexity. Another characteristic of Linux is that the system
gives a false impression that it is larger than it really is. The “larger-than-real-size”
impression is observed due to the fact that certain features, say, supporting different
CPU types, are implemented with code replication (software clones).

Moreover, participation of an unrestricted pool of (novice) developers may explain
this, that is, software clones. In order to have a better understanding of how a system
is evolving, it is necessary to analyze and understand each subsystem within and
across software releases irrespective of FOSS or CSS systems. This observation has
been reported by Gall et al. based on the study of a CSS: a large telecommunication
switching system [63].

2.4 MAINTENANCE OF COTS-BASED SYSTEMS

Component-based development has an intuitive underlying idea. Instead of devel-
oping a system by programming it entirely from scratch, develop it by using preex-
isting building blocks, components, and plug them together as required to built the

62 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

target system. Components are nearly independent and replaceable parts of a system.
Special components called Commercial-off-the-shelf (COTS) can be purchased on
a component market. Often, these types of components are delivered without their
source code. The use of COTS components is increasing in modern software devel-
opment because of the following reasons: (i) there is significant gain in productivity
due to reusing commercial components; (ii) the time to market the product decreases;
(iii) the product quality is expected to be high, assuming that the COTS compo-
nents have been well tested; and (iv) there is efficient use of human resources due
to the fact that development personnel will be freed up for other tasks. However,
many difficulties are to be overcome while using COTS compared to using in-house
components. The black-box nature of COTS components prevents system integra-
tors from modifying the components to better meet user’s requirements. Moreover,
the integrators have no visibility of the details of the components, their evolutions,
or their maintenance; rather, they are solely dependent on the developers and sup-
pliers of the components. The only source code being written and modified by the
integrators is what is needed for integrating the COTS-based systems. This includes
code for tailoring and wrapping the individual components, as well as the “glue”
code required to put the components together [64]. Wrapper code X combined with
another piece of code Y determines how code Y is executed. The wrapper acts as
an interface between its caller and the wrapped code Y. Wrapping may be done for
compatibility. A glue component is basically designed to combine the services from
many components to provide a higher level of service. Component tailoring means
enhancing the functionality of a component, and it is done by adding new elements
to a component. Note that the source code is not changed by this activity. “Scripting”
is an example of tailoring, because a program can be enhanced by having some event
trigger a script.

Irrespective of a software system being in-house developed or COTS based, main-
tenance is the most expensive phase of the system’s life cycle. There are key differ-
ences in the activities executed to maintain component-based software (CBS), even
though the motivations behind system maintenance remain the same. The differences
are due to the following major sources:

� Maintainers perceive a CBS system as an interacting group of large-scale black-
box components, instead of a compiled set of source modules. The two views
require different maintenance skill sets.

� Most of the source code implementing the wrapper, glue, and tailoring modules
are used to integrate the system, instead of delivering services and functions.

� The maintenance organization largely loses control over the precise evolution
of the system, because COTS developers focus on their own business interests.

2.4.1 Why Maintenance of CBS Is Difficult?

The cost of maintaining COTS-based software systems represent a significant fraction
of the total cost of developing software products. Studies show that CBSs incur more
maintenance cost than in-house built software [65]. As a first step, reduction of the cost
of COTS-based software requires understanding of what makes CBSs maintenance

MAINTENANCE OF COTS-BASED SYSTEMS 63

difficult. In the following, we provide a list of those difficulties [66]. Next, we explain
those difficulties one by one.

� Frozen functionality
� Incompatibility of upgrades
� Trojan horses
� Unreliable COTS components
� Defective middleware.

Frozen functionality. The functionalities of a COTS component are rendered to
be frozen when the vendor stops enhancing the product or stops providing further
product support. This occurs if the vendor or the supplier discontinues to support
the component. The host system becomes unmaintainable due to the components
becoming frozen. The host organization will have a serious problem if periodic
updates are required to be performed on those components. The term host organization
refers to an individual, group or organization that applies components as a part of some
software system, called host system. To find a solution, an integrator is faced with the
following options: (i) attempt to implement the frozen functionalities; (ii) acquire a
new but similar component from a different vendor; and (iii) acquire the source code
from the present vendor to maintain it. The first option is the most difficult choice,
unless the host organization has the necessary domain knowledge. The second one is
likely to be opted if there are competing alternative vendors. Otherwise, the third one
is the only option available. In order to exercise the third option, the integrator should
develop a good understanding of the domain to maintain the component source code.

Incompatibility of upgrades. The host organization integrates the components and
upgrades the software product to meet the needs of its customers. If a modified
component becomes inconsistent with the remaining components of the host system,
then integration of the modified component with the host system may not be pos-
sible. For example, the new version of a component may require new data formats,
which, in turn, requires modifications to be done to the contents and formats of
the current files that were generated by earlier versions of the COTS software. The
problem then becomes similar to the frozen functionality problem. Assuming that
the solutions available to handle the frozen functionality problem are not available,
then, as a fourth solution, one may build wrappers around a component to refrain it
from exhibiting the incompatibility creating behavior. If wrappers alone are insuffi-
cient to eliminate incompatibilities, one can rewrite the “glue” connecting the newly
possessed components with the existing ones. Finally, if wrappers and the modified
“glue” do not solve the upgrade problem, then the integrator may consider downgrad-
ing the functionalities of the system. Not upgrading to the next version can produce
the following consequences:

� There may not be continued vendor support for prior versions.
� The host organization may be unable to purchase more copies of the version in

operation. Additional copies of a product may be needed when the system is
being incrementally deployed.

64 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

Trojan horses. A software Trojan horse is a piece of code that has been programmed
into a component to make it behave in a malicious way. For instance, deleting all
files after switching to a privileged directory can be considered an example of Trojan
horse functionality. Determining a functionality to be a Trojan horse is a difficult
task. Making the Trojan horse dynamically context sensitive is one way to hide it.
For instance, “delete all files” can be a valid command if it refers to entities in a
temporary directory. On the other hand, it can have devastating consequences if it
is executed in a system context. Therefore, deleting system files can be classified
as Trojan horse behavior, whereas deleting temporary files is a normal function.
Detection of malicious behavior is difficult enough even with full access to program
code. Detection of suspicious actions in a running component will require capturing
the requests emanating from the component and verifying their contexts. For COTS
components, this can be done at the wrapper level. Note that this approach to detecting
malicious behavior is too expensive, because too many calls and context checks are
involved. In a running component, Trojan horses go largely undetected. It is an
issue that programmers must be aware of while substituting an old component with
a new one. Component substitution requires specialized procedures for testing and
certifying COTS components. Each time some COTS products are changed, the
components and the host system may have to be recertified.

Unreliable COTS components. The scenario of incompatible upgrades has been
discussed before in this section. Now we consider unreliable COTS components.
Though incompatibility and unreliability are related, there is a distinction between
the two. Today, no uniform standard exists to test software components to certify their
reliability [67]. By paying software certification laboratories (SCL) to grant software
certificates, independent vendors partially shift their responsibility to the SCL. How-
ever, there are several ramifications of using services from SCLs: cost, liability issues,
developer resources needed to access SCLs, and applicability to safety-critical sys-
tems [68]. It may be argued that products with better reliability can be produced with
good processes, which can be graded with Capability Maturity Model (CMM), Test
Process Improvement (TPI) model, and Test Maturity Model (TMM) [69]. However,
process quality does not guarantee product quality, and a vendor may not reveal the
maturity level of their process. Though software reliability models exist for decades
[70], generic assumptions are made in those models about execution environments,
rate of defect, severity of defects, and sizes of faults. Consequently, it is difficult to
apply those models. The assumptions may not reflect the individual peculiarities of
different environments. Therefore, the dependability of a component is not known
to its customers. Even if a score for dependability is provided by the vendor, it is
likely that the score was computed based on intricacies that do not broadly reflect the
customer’s execution environment.

Defective middleware. COTS components are primarily integrated by analyzing
the syntax and semantics of their interfaces. However, the integrators have several
means for integrating COTS components into a host system, and designing middle-
ware is a straightforward approach. Whenever concerns exist regarding the behavior
of a COTS component in the context of a whole system, it is prudent to write middle-
ware to ensure that certain constraints are satisfied. For example, wrappers are a kind

MAINTENANCE OF COTS-BASED SYSTEMS 65

of middleware which can be used to constrain the functionalities of components. The
main ideas in wrapper design is to: (i) restrict the inputs; (ii) perform preprocessing on
the inputs; (iii) restrict the outputs of a component; or (iv) perform post-processing
on the outputs. All those kinds of processing have the potential of modifying the
semantics of a component. The key problem in designing wrappers is that it is not
completely known what behavior to protect against. Querying the vendor could elicit
some bits and pieces of information, but it is prudent to thoroughly test a component
in its real environment. One can combine vendor supplied information with results of
in-house testing to design better wrappers. But, wrappers can be complex, incomplete,
and unreliable. Wrappers are discussed in Section 5.2 in great details.

2.4.2 Maintenance Activities for CBSs

It is necessary to identify the activities of the maintenance and management per-
sonnel to effectively manage COTS-based systems. Strategies can be formulated to
facilitate those activities. Vigder and Kark [71] have surveyed several organizations
maintaining systems with a significant portion of COTS elements. In their study, they
identified the following cost-drivers:

� Component reconfiguration
� Testing and debugging
� Monitoring of systems
� Enhancing functionality for users
� Configuration management.

Component reconfiguration. Component reconfiguration means adding, removing,
and replacing components of a system. The following actions lead to a system
being reconfigured: (i) add new components to increase the capability of the system;
(ii) delete components as requirements change; (iii) replace a component with a
newer version; (iv) replace an old component with a better one; and (v) replace
an in-house built component with COTS components. Often component vendors
release software updates many times in a year. Therefore, integration of the enhanced
components into the host system becomes an expensive task. The host organization
continuously evaluates new component releases from the vendors. It establishes
criteria by considering capabilities, risk, and cost to make a decision on system
upgradation. If a decision is made to upgrade the system, then: (i) the components
are analyzed within the context of the current host system and (ii) a new cycle for
system integration and testing is planned. To determine the differences between the
old version and the new version, system interfaces and behavior are tested. It is likely
that the assumptions of the enhanced COTS system are not consistent with those of
the other COTS elements. Hence, rigorous regression testing must be performed. In
summary, performing component reconfiguration is a time-consuming process that
requires an organization to move through a full release cycle: evaluate the product,
obtain a design, perform integration, and execute system regression tests [72].

66 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

Testing and debugging. Every organization follows its own methodologies, strate-
gies, processes, and techniques for performing testing and debugging on in-house
developed code. However, testing and debugging of CBSs pose new challenges due
to the absence of visibility into the internal details of third-party developed compo-
nents. For example, fixing defects in an in-house developed system typically involves:
(i) executing the system with a debugger to locate the problem and (ii) modifying
the source code to fix the defects. On the other hand, maintenance personnel cannot
modify source code of COTS components. Rather, they become dependent upon the
component vendors to understand the internal details of the product. Consequently,
maintenance personnel and COTS vendors frequently exchange detailed messages.

System monitoring. While a system is in operation, maintainers need to closely
monitor the system to be able to better understand the system performance. Contin-
uous monitoring enables the maintenance personnel to enhance the performance of
the system, measure usage of resources, keep track of the anomalies in the system
behavior, and perform root cause analysis of system failures. Monitoring for the
purpose of maintenance is a difficult task because of the low visibility of the internal
operations of COTS software.

Enhancing the functionalities for users. COTS products are designed and imple-
mented in a broad sense so that those can be adapted in various applications. Integra-
tion personnel need to customize and tailor COTS functionality to satisfy their user
community. Therefore, successful host systems exhibit the properties of efficient
modifiability and tailorability to incorporate evolving and new user requirements.
Tailoring involves a continual process of configuring and customizing of products,
combining services of multiple products, and adding new components to products. In
the absence of access to source code, tailoring is done by means of two techniques:

� write additional glue code to hold the system together and provide enhanced
functionality; and

� use vendor supplied tailoring techniques to customize the products, because
integration personnel have no access to program code.

Configuration management. Configuration management of CBS systems is done at
two levels: (i) source-code level to manage the in-house software, namely, wrapper,
glue, and tailoring developed by the personnel performing system integration and
(ii) component level to manage COTS, procured from third-party vendors [73]. The
following five activities are specifically done for CBS products:

� Track the versions of the COTS products, and retain the following details for
each component in the version archive:

– Save the name of the developer of the component if available.

– Save the contact information of the person or organization supplying the
component.

– Archive the source code of the component if available.

MAINTENANCE OF COTS-BASED SYSTEMS 67

– Archive the working versions of all tools, namely, compilers and linkers,
necessary to rebuild a component.

– Make a detailed rationale for including the component in the system, includ-
ing any previous use of the component and known facts about its quality
attributes. For instance, BSD Unix was used by Sun Microsystems to build
their proprietary OS. Therefore, the information “BSD Unix” is an instance
of “previous use.”

– Obtain the contact information of some of those using the component.
� Perform configuration management on the individually tailored COTS elements.
� Track the configuration history of a product at all its deployment sites.
� Find the compatible versions of the various COTS elements.
� Manage support and licenses for each COTS element.

Configuration management is a key activity over the life cycle of a large system.
For COTS components, configuration management needs to be performed for each
COTS software product and each platform on which the product is installed. The
lists of those COTS software products and platforms are needed while (i) distributing
software upgrades or fixes to multiple sites or (ii) restoring configurations that have
been broken.

2.4.3 Design Properties of Component-Based Systems

The architecture of a CBS has significant impact on its maintainability. Component
maintainability properties, such as minimal component coupling and visibility, cannot
be enhanced after building a CBS. Rather, one must consider these properties at
the time of the initial development of the CBS. The main areas influencing CBS
maintainability are the choice of the components and the architecture and design
used to perform system integration on the components.

Component Selection Though system integrators do not design and implement
individual components, they do have a say while components are selected to be
integrated into the host system. The CBS integrator must consider the CBS evolution
factor when designing criteria for component selection. A number of attributes of
components effect the evolution and maintenance of CBSs. These attributes are
discussed in what follows.

Openness of components. A component is considered to be open if it is designed
to be visible, extensible, adaptable, and easily integrated into a variety of differ-
ent host systems. In general, the more the openness of a component, the easier
it is for integrators and maintainers to monitor, manage, extend, replace, test, and
integrate. The factors that make a component open are adherence to standards, avail-
ability of source code, and ability to inter-operate with products from other vendors.
Source code can be made available through original equipment manufacturer (OEM)
partnership.

68 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

Tailorability of components. Tailoring the functionality of the components to meet
the evolving user requirements is a kind of maintenance effort for CBS systems. One
criterion for component selection can be whether or not the component can be tailored
to satisfy the end users’ requirements. Though components are seen as black-boxes,
vendors can apply many techniques to make components tailorable. Examples of
tailoring techniques are: scripting interfaces and extendible frameworks through the
use of plug-ins and inheritance.

Available support community. Host system builders need much support from exter-
nal organizations to build and maintain commercial products. The external support
comes from the user community and the vendors. Noting that external support is
key to system maintenance, the host system builders need to evaluate the support
available during the component evaluation process.

Design Properties of Maintainable CBS By analyzing and partly resolving the
issues of maintainability in the design phase, one can build a system that facilitates
the maintenance of CBSs. This requires the development of a set of criteria to
evaluate maintainability. The following design attributes of a maintainable CBS have
been identified by Vigder and Kark [71]:

� Encapsulated component collaborations
� Controlled component interfaces
� Controlled component dependencies
� Minimal component coupling
� Consistent failure handling
� High level of visibility
� Minimal build and deployment effort.

Encapsulated component collaborations. Collaborations are time-sequenced coor-
dinated actions. Collaborations among components can involve many data and behav-
ioral dependencies. A key design objective is to make collaborations explicit and
encapsulate each collaboration within a single object, often called a mediator. A
mediator can be implemented as part of the glue code, and it should be designed to
(i) translate and transform data formats to enable data transfer and (ii) manage event
sequencing for the components. By encapsulating collaborations the CBS will be
more maintainable by supporting the following activities [74]:

� Product reconfiguration. It is much easier to understand and manage component
dependencies by encapsulating component interactions within a separate object.

� Troubleshooting. Numerous problems in CBS are related to sequences of inter-
actions among components. Problem isolation becomes easier if most of the
interaction sequences happen within a single mediator.

MAINTENANCE OF COTS-BASED SYSTEMS 69

� Modifying and adding services. By combining services from different com-
ponents, mediators implement many business processes. Updating business
processes become easier by confining services to mediators.

� System monitoring. Mediators can include instrumentation code for monitoring
system behavior.

Controlled component interfaces. There are two main reasons to use integrator-
controlled interfaces on COTS components: (i) facilitate component reconfiguration;
and (ii) add visibility. As new components and component versions are combined
with a system, an integrator-controlled interface can reduce the impact of frequent
reconfigurations by means of isolation. In addition, management, instrumentation,
and monitoring functionality can be included in an integrator. If integration personnel
directly use interfaces supplied by vendors, they might face difficulties in: (i) reducing
the consequences of reconfigurations and (ii) determining the dependencies between
components. Integrators can use a number of approaches to turn interfaces into first-
class objects and manipulate them. A first-class object is one that can be dynamically
created, destroyed, or passed as an argument. One approach to creating a first-class
object is designing a wrapper around all the components; a wrapper can be designed
by using an adapter design pattern. The adapter design pattern translates one interface
for a class into a compatible interface. An adapter allows classes to work together that
normally could not because of incompatible interfaces, by providing its interface to
clients while using the original interface. As the underlying component is modified,
the ripple effect on the other components can be minimized. A second approach to
creating a first-class object is to use standardized interfaces for COTS products.

Controlled component dependencies. The integrator identifies mutually dependent
components and realizes strategies for controlling and managing those dependencies.
Complex dependencies among components produce a fragile system. It becomes
difficult to upgrade, add, and delete elements in a fragile system. To make maintenance
easier for CBS systems, designers must reduce dependencies between components.
Some dependencies are explicit and some are implicit. Flow of data through a visible
interface is an example of direct dependency. Conflicting assumptions made by
different software components are examples of implicit dependency. Dependencies
can also result from resource contentions; an example of resource contention is
when many components try to use the same TCP port number at the same time.
Dependencies between COTS products include the following three broad kinds of
dependencies:

� Syntactic dependencies. These occur when components make assumptions about
the interface signature of the component.

� Behavioral dependencies. These occur when components are involved in two-
way interactions or multi-way collaborations.

� Resources dependencies. These occur when multiple components compete for
the same resources.

70 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

The designer must record, update, and verify all cross-component dependencies to
perform risk analyses before a system upgrade involving those components. In addi-
tion, integrators can provide mechanisms for managing those dependencies: identifi-
cation of deployment-time versions and verification of satisfaction of dependencies.

Minimal component coupling. It becomes more difficult to substitute a component
if coupling of the component with other components is very high. Minimal component
coupling is realized by: (i) constraining and controlling component access and (ii)
isolating the resources used by separate components. A wrapper around a component
can suppress undesired functionalities that introduce additional dependencies.

Consistent failure handling. In their tasks of testing, debugging, and monitoring
system behavior, maintainers are assisted by failure handling. Therefore, integrators
need consistent, complete, and effective means to detect and handle failures. A
component can behave in an unpredictable manner if it is provided with faulty inputs.
Therefore, it is important to identify and isolate faults sooner before they propagate as
errors through other components. A consistent failure handling mechanism enables
maintainers to detect errors when they occur, identify the root cause of the failure,
and minimize the impact of the failure. For example, a consistent failure handling
mechanism for any routines includes a status output argument, which is used to return
error status codes. Status codes may be passed to another routine (viz. errormsgtext())
to extract an error message text from a message catalogue. Errors can be detected by
the wrappers and handled in the glue code holding the system together.

High level of visibility. Visibility means that maintenance engineers are able to
monitor the system, including the behavior of wrappers and glue components. Visibil-
ity can be added to the system by the integrators in several ways. Instrumentation and
monitoring capabilities should be integrated into wrappers and glue code to support
monitoring of interactions as part of the overall system design. Monitoring tools can
support additional capabilities to gain visibility into a running system, namely, mon-
itoring the input and output behavior of communication protocols with sniffer code.

Minimal build and deployment effort. CBSs are often built with many components
that require frequent tailoring and reconfigurations. Therefore, the build process to
install the software at all deployment sites is complex. On the other hand, it should
be easily achievable to replace products or add new functionalities without going
through an expensive build process. COTS elements may involve intricacies in their
deployment processes, thereby contradicting the assumptions made by other products.
As a result, the build itself can become an expensive and complex part of system
maintenance [75, 76]. A build process becomes complicated if too many modules are
new and have complex interfaces. A tool for version control is highly recommended
for automating the build process.

2.5 SUMMARY

This chapter began with definitions of software maintenance from the perspectives of
researchers, practitioners, and standardization groups. We differentiated development
from maintenance: developing new software is a requirement-driven activity, whereas

SUMMARY 71

maintaining an existing system is event driven. For example, when a request for
change is received, the maintenance organization may modify the system. Therefore,
the inputs that drive maintenance changes are random events, originating, for example,
from an user in the form of a CR. Software maintenance consists of two primary
activities: correcting errors and enhancing functionality of the software. Hence, it can
be seen as continued development.

We identified and explained the following maintenance activities:

� intention-based classification of software maintenance activities;
� activity-based classification of software maintenance activities; and
� evidence-based classification of software maintenance activities.

To explain intention-based classification of maintenance tasks, we introduced Swan-
son’s approach [5] which defined three kinds of maintenance activities: corrective,
adaptive, and corrective. On the other hand, the maintenance classification of Kitchen-
ham et al. [4] consists of two broad kinds of activities for corrections and enhance-
ments. The category for enhancement is subdivided into three types as follows: (i)
modifications that change some of the current requirements; (ii) modifications that add
new requirements to the system; and (iii) modifications that alter the implementation
but not the requirements. The evidence-based classification of Chapin [16] consists of
12 types of software maintenance tasks: training, consultive, evaluative, reformative,
updative, groomative, preventive, performance, adaptive, reductive, corrective, and
enhancive.

Next we explained various concepts that influence software maintenance pro-
cesses. Those concepts were studied under four categories: (i) maintained product;
(ii) maintenance types; (iii) organization process; and (iv) peopleware. Then, we
described the characteristics of those concepts and their impact on maintenance activi-
ties. This discussion clarifies the difference between maintenance methods/tools/skills
from those used for software development.

Next, we studied various ways in which researchers define software evolution, and
differentiated it from software maintenance. Keith H. Bennett and Jie Xu [27] use
the term maintenance to refer to all post-delivery support activities, and evolution
to perfective changes, that is, those driven by changes in requirements. In addition,
the authors further state that evolution addresses both functional and nonfunctional
requirements. On the other hand, Ned Chapin defines software evolution as the
applications of software maintenance activities and processes that generate a new
operational software version with a changed customer-experienced functionality or
properties from a prior operational version [15].

We described Lehman’s classification of properties of CSS of S-type (Specified),
P-type (Problem), and E-type (Evolving). The S-type programs implement solutions
to the problems that can be completely and unambiguously specified, for which, in
theory at least, a program implementation can be proven correct with respect to the
specification. The definition of S-type requires that the program be correct in the
full mathematical sense related to the specification. A P-type program is based on a

72 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

practical abstraction of the problem, rather than a completely defined specification.
Even though the exact solution may exist, the solution produced by a P-type program
is tampered by the environment in which it must be produced. The solution produced
by a P-type program is acceptable if the results make sense to the stakeholder(s) in
the world in which the problem is embedded. Finally, the distinctive attributes of
E-type systems are as follows:

� The complex and large problems addressed by E-type systems cannot be com-
pletely and formally specified.

� The system has an incomplete model of the execution environment that embeds
the program.

� The system makes a large number of simplifications and assumptions about the
real world.

� Program execution modifies the operation domain.
� The development and evolution processes for E-type software are feedback

driven.

Next, we discussed the following eight laws of software evolution for E-type CSS
systems, including empirical studies and their practical implications.

I. Continuing change. E-type programs must be continually adapted, else they
become progressively less satisfactory.

II. Increasing complexity. As an E-type program evolves, its complexity increases
unless work is done to maintain or reduce it.

III. Self-regulation. The evolution process of E-type programs is self-regulating,
with the time distribution of measures of processes and products being close to
normal.

IV. Conservation of organizational stability. The average effective global activity
rate in an evolving E-type program is invariant over the product’s lifetime.

V. Conservation of familiarity. The average content of successive releases is con-
stant during the life cycle of an evolving E-type program.

VI. Continuing growth. To maintain user satisfaction with the program over its life-
time, the functional content of an E-type program must be continually increased.

VII. Declining quality. An E-type program is perceived by its stakeholders to have
declining quality if it is not maintained and adapted to its environment.

VIII. Feedback system. The evolution processes in E-type programs constitute multi-
agent, multi-level, multi-loop feedback systems.

Next, we described the origin of FOSS movement and the differences between CSS
and FOSS systems with respect to: team structure, process, releases, and global
factors. In addition, we discussed the empirical research results about the Linux
FOSS system to study the laws of evolution, originally proposed for CSS systems.
We concluded this chapter with a discussion on maintenance of COTS.

LITERATURE REVIEW 73

LITERATURE REVIEW

The book by Dennis D. Smith (“Designing Maintainable Software,” Springer, New
York, 1999) is an excellent starting point for understanding the many issues related
to maintenance. With theoretical reasoning and observation, the book explains how
maintainers undergo problem solving. He provides helpful tips for maintainers regard-
ing cognitive structures, naming conventions, and the use of truncation. Though
the book does not cover evolution, it clearly explains software evolvability. Soft-
ware maintenance is usually considered in terms of corrections, improvements, and
enhancements. The article by Dewayne E. Perry (“Dimensions of Software Evolu-
tion” by D. E. Perry, International Conference on Software Maintenance, Victoria,
BC, IEEE Computer Society Press, Los Alamitos, CA, September, 1994, p. 296–303)
looks at the other three dimensions: domain, experience, and process to gain insights
into the sources of software evolution. These three dimensions are interrelated in
various ways and interact with each other in a number of ways. One will be able
to understand and manage effectively the evolution of software systems only when
there is a deep understanding of these dimensions. This idea was further extended by
Ciraci et al. (“A Taxonomy for a Constructive Approach to Software Evolution,” by
S. Ciraci, P. Broek, and M. Aksit, Journal of Software, Vol. 2, No. 2, August, 2007,
p. 84–96) to 24 feasible contexts for the software evolution. The taxonomy is based
on the fact that a change in one of these sources (e.g., domain, process, or experience)
has occurred or is expected to occur.

The typology of Swanson has been influential among researchers and practitioners
[7]. However very few researchers and practitioners have followed Swanson’s typol-
ogy. Rather, others have given new meanings to those terms. For example, the standard
proposed by IEEE [77] defines the three terms “corrective,” “adaptive,” and “perfec-
tive,” which are not completely compatible with Swanson’s. The article by Chapin
et al. [15] clearly identifies and compares the differences in a tabular form along with
the definitions of 12 maintenance types: training, consultive, evaluative, reformative,
updative, groomative, preventive, performance, adaptive, reductive, corrective, and
enhancive. The authors excluded the “perfective” type from their classification and
coined a new term called “groomative.” The reader is urged to study the article on
preventive maintenance by Kajko-Mattsson [13]. The author did a comprehensive
literature study on preventive maintenance both within software and hardware engi-
neering. In addition, Kajko-Mattsson et al. [78] have discussed a comprehensive
taxonomy of activities performed for the corrective type.

In the article by Jim Buckley et al. [79], the authors took a complementary view
toward a taxonomy of maintenance by focusing more on the how, when, what, and
where aspects of software changes. The article proposed four logical themes and 15
dimensions. The four logical themes are: (i) temporal properties (When is the change
made?); (ii) object of change (Where is a change made?); (iii) system properties
(What is being changed?); and (iv) change report (How is the change accomplished?).
The 15 dimensions are: time to change, change history, change frequency, antic-
ipation, artifacts, granularity, impact, change propagation, availability, activeness,
openness, safety, degree of freedom, degree of formality, and change type.

74 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

The revised form of the SPE taxonomy, called SPE+, was proposed by Stephen
Cook et al. [30] to address some ambiguities and weaknesses in the original taxonomy.
For example, Lehman did not choose to characterize the P-type software.

Kemerer and Slaughter [80] showed that problems in software maintenance can
be traced to an absence of understanding of: (i) the maintenance process and (ii) the
cause–effect relationships between software maintenance practices and outcomes.
Their study focused on the effort expended, modification performed, and cost incurred
to evolve the software.

Many researchers are further studying new topics related to laws of software
evolution. Readers interested in a more detailed discussion of the topic may read the
following books:

N. H. Madhavji, J. F. Ramil, and D. E. Perry, Ed. Software Evolution and Feedback – Theory
and Practice, John Wiley, West Sussex, England, 2006.

T. Mens and S. Demeyer, Ed. Software Evolution, Springer-Verlag, Berlin Heidelberg, 2008.

The first book focuses on the what and why aspects of software evolution, that
is, on the nature of software evolution phenomenon with emphasis on nontechnical
aspects, such as complexity theory, social interactions, and human psychology. This
book provides a depth of material in the field of software evolution and feedback.
Specifically, it describes the phenomenological and technological underpinnings of
software evolution, and it explains the impact of feedback on development and
maintenance of software. Part I (Chapters 1–16) is “evolution” centered, whereas
part II (Chapters 17–27) is “feedback” centered, though both the topics are often
discussed in the same chapter. Within these partitions, the chapters are organized
from one more conceptual to more concrete contents.

The second book entitled “Software Evolution” focuses on the how aspects of
software evolution: methods, activities, tools, and technology that give the means
to manage software evolution. The book has been structured into three parts. The
first part focuses on: (i) analysis of release histories and version repositories and
(ii) improvement of evolution by fixing defects and eliminating redundancies in
software. The second part explains how one can reengineer a legacy system into a
modern system that is easier to maintain. The third part discusses the relation between
evolution and other main subjects in software development.

Those interested in knowing more details about the comparative empirical study
of FOSS and CSS may refer to the article by Paulson et al. [61]. The authors studied
and compared the results of the evolution of three CSS and FOSS projects. The
three well-known FOSS projects are the Linux kernel, the GCC compiler, and the
Apache HTTP web server. The authors chose to consider only the kernel part of Linux
because, apparently, the three CSS systems were more comparable with the kernel
than the whole Linux system. The three CSS projects are from the embedded real-time
system domain described as “software protocol stacks in wireless telecommunication
device.” The five hypotheses studied in this article were: (i) FOSS grows more quickly
than proprietary, that is CSS, systems; (ii) FOSS systems foster more creativity; (iii)
FOSS systems are less complex than CSS systems; (iv) fewer bugs are there in

REFERENCES 75

FOSS systems and those can be more rapidly located and fixed; and (v) FOSS
systems are better modularized. Out of those five hypotheses, only (ii) and (iv) were
supported with measurements. The following measurements were used to test the
hypotheses:

1. For hypothesis (i), count the number of lines of code added over time. This
measurement captures the size (or growth) metric.

2. For hypothesis (ii), count the number of functions added over time. This mea-
surement reflects the creativity shown over time.

3. For hypothesis (iii), measure the average complexity of all the functions and
the average complexity of all the newly added functions.

4. For hypothesis (iv), count the number of functions changed to fix bugs and
represent the number of functions changed to fix bugs as a percentage of the
total number of functions.

5. For hypothesis (v), compute the correlation between the number of functions
added and the number of functions changed.

REFERENCES

[1] R. G. Canning. 1972. The maintenance ‘iceberg’. EDP Analyzer, 10(10), 1–14.

[2] T. M. Pigoski. 2001. Chapter 6, Software Maintenance, SWEBOK: A Project of the
Software Engineering Coordinating Committee (Trial Version 1.00). IEEE Computer
Society Press, Los Alamitos, CA.

[3] ISO/IEC 14764:2006 and IEEE Std 14764-2006. 2006. Software Engineering – Software
Life Cycle Processes – Maintenance. Geneva, Switzerland.

[4] B. A. Kitchenham, G. H. Travassos, A. N. Mayrhauser, F. Niessink, N. F. Schneidewind,
J. Singer, S. Takada, R. Vehvilainen, and H. Yang. 1999. Towards an ontologyy of
software maintenance. Journal of Software Maintenance and Evolution: Research and
Practice, 11, 365–389.

[5] E. B. Swanson. 1976. The Dimensions of Maintenance. Proceedings of the 2nd Interna-
tional Conference on Software Engineering (ICSE), October 1976, San Francisco, CA.
IEEE Computer Society Press, Los Alamitos, CA. pp. 492–497.

[6] B. P. Lientz and E. B. Swanson. 1980. Software Maintenance Management. Addison-
Wesley, Reading, MA.

[7] E. B. Swanson and N. Chapin. 1995. Interview with E. Burton Swanson. Journal of
Software Maintenance and Evolution: Research and Practice, 7(5), 303–315.

[8] S. G. Eick, T. L. Graves, A. f. Karr, J. S. Marron, and A. Mockus. 2001. Does code decay?
Assessing evidence from change management data. IEEE Transactions on Software
Engineering, January, 1–12.

[9] K. J. Lieberherr and I. M. Holland. 1989. Tools for Preventive Software Maintenance.
Proceedings of International Conference on Software Maintenance (ICSM), October
1989, Miami, FL. IEEE Computer Society Press, Los Alamitos, CA. pp. 1–12.

[10] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. 1995. Software Rejuvenation:
Analysis, Module and Applications. Proceedings of the 25th symposium on Fault Tolerant

76 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

Computing, June 1995, Pasadena, CA. IEEE Computer Society Press, Los Alamitos, CA.
pp. 381–390.

[11] S. Garg, A. Puliafito, M. Telek, and K. Trivedi. 1998. Analysis of preventive maintenance
in transactions based software systems. IEEE Transactions on Computers, January, 96–
107.

[12] M. Grottke and K. S. Trivedi. 2007. Fighting bugs: remove, retry, replicate, and rejuvenate.
IEEE Computers, February, 107–109.

[13] M. K. Mattsson. 2001. Can We Learn Anything from Hardware Preventive Maintenance?
Seventh IEEE International Conference on Engineering of Complex Computer Systems,
June 2001, Skovde, Sweden. IEEE Computer Society Press, Los Alamitos, CA. pp. 106–
111.

[14] E. Marshall. 1992. Fatal error: how patriot overlooked a scud. Science, March 13,
p. 1347.

[15] N. Chapin, J. F. Hale, K. M. Khan, J. F. Ramil, and W. G. Tan. 2001. Types of software
evolution and software maintenance. Journal of Software Maintenance and Evolution:
Research and Practice, 13, 3–30.

[16] N. Chapin. 2000. Software Maintenance Types—A Fresh View. Proceedings of the Inter-
national Conference on Software Maintenance (ICSM), October 2000, San Jose, CA.
IEEE Computer Society Press, Los Alamitos, CA. pp. 247–252.

[17] C. Jones. 2007. Geriatric issues of aging software. CrossTalk: The Journal of Defense
Software Engineering, December, 4–8.

[18] D. L. Parnas. 1994. Software Aging. Proceedings of 16th International Conference on
Software Engineering, May 1994, Sorrento, Italy. IEEE Computer Society Press, Los
Alamitos, CA. pp. 279–287.

[19] K. Maxwell, L. V. Wassenhove, and S. Dutta. 1996. Software development productivity
of European space, military and industrial applications. IEEE Transactions on Software
Engineering, October, pp. 706–718.

[20] M. I. Halpern. 1965. Machine independence: its technology and economics. Communi-
cations of the ACM, 8(12), 782–785.

[21] R. F. Couch. 1971. Evolution of a toll mis – bell Canada. Management Information Sys-
tems: Selected Papers from MIS Copenhagen 70—An IAG Conference (Eds W. Goldberg,
T. H. Nielsen, E. Johnson, and H. Josefsen), pp. 163–188. Auerbach Publisher Inc.,
Princeton, NJ.

[22] L. A. Belady and M. M. Lehman. 1976. A model of large program development. IBM
Systems Journal, 15(1), 225–252.

[23] P. Wegner. 1978. Research Direction in Software Technology. Proceedings of the 3rd
International Conference on Software Engineering (ICSE), May 1978, Atlanta, Georgia.
IEEE Computer Society Press, Los Alamitos, CA. pp. 243–259.

[24] M. M. Lehman. 1980. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, September, 1060–1076.

[25] K. H. Bennett and V. T. Rajlich. 2000. Software Maintenance and Evolution: A Roadmap.
ICSE, The Future of Software Engineering, June 2000, Limerick, Ireland. ACM, New
York. pp. 73–87.

[26] L. J. Arthur. 1988. Software Evolution: The Software Maintenance Challenge. John Wiley
& Sons.

REFERENCES 77

[27] K. H. Bennett and J. Xu. Software Services and Software Maintenance. Proceedings of
7th European Conference on Software Maintenance and Reengineering, March 2003,
Benevento, Italy. IEEE Computer Society Press, Los Alamitos, CA. pp. 3–12.

[28] M. M. Lehman and J. Ramil. 2002. Software evolution and software evolution processes.
Annals of Software Engineering, 14, 275–309.

[29] S. L. Pfleeger. 1998. The nature of system change. IEEE Software, May/June, 87–90.

[30] S. Cook, R. Harrison, M. M. Lehman, and P. Wernick. 2006. Evolution in software
systems: foundations of SPE classification scheme. Journal of Software Maintenance
and Evolution: Research and Practice, 18, 1–35.

[31] M. M. Lehman. 1996. Feedback in the software evolution process. Information and
Software Technology, 38, 681–686.

[32] M. M. Lehman and L. A. Belady. 1985. Program Evolution: Processes of Software
Change. Academic Press, London.

[33] M. M. Lehman and J. F. Ramil. 2006. Software evolution. In: Software Evolution and
Feedback (Eds N. H. Madhavvji, J. F. Ramil, and D. Perry). John Wiley & Sons, West
Sussex.

[34] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski. 1997. Metrics
and Laws of Software Evolution—The Nineties View. Proceedings of 4th International
Symposium on Software Metrics (Metrics 97), November 1997. IEEE Computer Society
Press, Los Alamitos, CA. pp. 20–32.

[35] M. M. Lehman. 2001. Rules and tools for software evolution planning and management.
Annals of Software Engineering, 11, 15–44.

[36] C. K. S. Chong Hok Yuen. 1987. A Statistical Rational for Evolution Dynamics Concepts.
Proceedings of the International Conference on Software Maintenance, September 1987,
Austin, Texas. IEEE Computer Society Press, Los Alamitos, CA. pp. 156–164.

[37] F. Brooks. 1993. The Mythical Man Month (2nd Ed.). Addison-Wesley, Reading, MA.

[38] M. M. Lehman. 1996. Laws of Software Evolution Revisited. Proceedings of the 5th Euro-
pean Workshop on Software Process Technology, Lecture Notes in Computer Science,
Vol. 1149. Springer, London, pp. 108–124.

[39] D. A. Garvin. 1984. What does product quality mean? Sloan Management Review, Fall,
25–45.

[40] N. H. Madhavji, J. F. Ramil, and D. E. Perry (Eds). 2006. Software Evolution and
Feedback: Theory and Practice. John Wiley & Sons, West Sussex.

[41] G. Visaggio. 2001. Ageing of a data-intensive legacy system: symptoms and remedies.
Journal of Software Maintenance and Evolution: Research and Practice, 13, 281–308.

[42] C. K. S. Chong Hok Yuen. 1988. On Analyzing Maintenance Process Data at the Global
and Detailed Levels: A Case Study. Proceedings of the International Conference on
Software Maintenance, October 1988. Phoenix, Arizona. IEEE Computer Society Press,
Los Alamitos, CA. pp. 248–255.

[43] M. M. Lehman, D. E. Perry, and J. F. Ramil. 1998. On Evidence Supporting the Feast
Hypothesis and the Laws of Software Evolution. Proceedings of the 5th International
Software Metrics Symposium (Metrics), November 1998. IEEE Computer Society Press,
Los Alamitos, CA. pp. 84–88.

[44] W. M. Turski. 1996. Reference model for growth of software systems. IEEE Transactions
on Software Engineering, August, 599–600.

78 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

[45] M. Lawrence. 1982. An Examination of Evolution Dynamics. Proceedings of International
Conference on Software Engineering (ICSE), September 1982. IEEE Computer Society
Press, Los Alamitos, CA. pp. 188–196.

[46] M. M. Lehman and J. F. Ramil. 2003. Software evolution—background, theory, practice.
Information Processing Letters, 88(1–2), 33–44.

[47] S. Williams. 2002. Free as in Freedom: Richard Stallman’s Crusade for Free Software.
O’Reilly & Associates, Inc., Sebastopol, CA.

[48] R. M. Stallman, L. Lessig, and G. Gay. 2002. Free Software, Free Society. Free Software
Foundation, Cambridge, MA.

[49] E. S. Raymond. 2001. The Cathedral and the Bazaar: Musings on Linux and Open Source
by an Accidental Revolutionary. O’Reilly & Associates, Inc., Sebastopol, CA.

[50] Y. Wang, D. Guo, and H. Shi. 2007. Measuring the evolution of open source software
systems with their communities. ACM SIGSOFT Software Engineering Notes, 32(6),
pp. 1–7.

[51] J. F. Ramil, A. Lozano, and M. Wermelinger. 2008. Empirical studies of open
source evolution. In: Software Evolution (Eds T. Mens and S. Demeyer). Springer,
Berlin.

[52] W. Scacchi. 2006. Understanding open source software evolution. In: Software Evolution
and Feedback (Eds N. H. Madhavvji, J. F. Ramil, and D. Perry), pp. 181–2026. John
Wiley & Sons, West Sussex.

[53] K. Crowston and J. Howison. 2005. The social structure of free and open source software
devellopment. First Monday, 10(2).

[54] M. Aberdour. 2007. Achieving quality in open source software. IEEE Software, 24(1),
58–64.

[55] A. Mockus, R. T. Fielding, and J. D. Herbsleb. 2002. Two case studies of open source
software development: Apache and mozilla. ACM Transactions on Software Engineering
and Methodology, July, 309–346.

[56] S. S. Pirzada. 1988. A statistical examination of the evolution of the Unix system. PhD
Thesis, Department of Computing, Imperical College, London, England.

[57] M. W. Godfrey and Q. Tu. 2000. Evolution in Open Source Software: A Case Study.
Proceedings of the International Conference on Software Maintenance (ICSM), October
2000. IEEE Computer Society Press, Los Alamitos, CA. pp. 131–142.

[58] S. R. Schach, B. Jin, D. R. Wright, G. Z. Heller, and A. J. Offutt. 2002. Maintainability
of the linux kernel. IEEE proceedings—Software, 149(1), pp. 18–22.

[59] G. Robles, J. J. Amor, J. M. Gonzalez-Barahona, and I. Herraiz. 2005. Evolution and
Growth in Large Libre Software Projects. Proceedings of Eighth International Workshop
on Principles of Software Evolution (IWPSE), September 2005, Lisbon, Portugal. IEEE
Computer Society Press, Los Alamitos, CA. pp. 165–174.

[60] M. M. Lehman, J. F. Ramil, and U. Sandler. 2001. An Approach to Modelling Long-
term Growth Trends in Software Systems. Proceedings of the International Conference on
Software Maintenance (ICSM), November 2001, Florence, Italy. IEEE Computer Society
Press, Los Alamitos, CA, pp. 219–228.

[61] J. W. Paulson, G. Succi, and A. Eberlein. 2004. An empirical study of open-source and
closed-source software products. IEEE Transactions on Software Engineering, April,
246–256.

REFERENCES 79

[62] C. K. Roy and J. R. Cordy. 2006. Evaluating the Evolution of Small Scale Open Source
Software Systems. 15th International Conference on Computing, Mexico City, November
2006. IEEE Computer Society Press, Los Alamitos, CA, Research in Computing Science,
Vol. 23, pp. 123–136.

[63] H. Gall, M. Jazayeri, R. Klősch, and G. Trausmuth. 1997. Software Evolution Observed
Based on the Product Release History. Proceedings of the International Conference on
Software Maintenance (ICSM), October 1997, Bari, Italy. IEEE Computer Society Press,
Los Alamitos, CA. pp. 160–166.

[64] M. R. Vigder and J. Dean. 1997. An Architectural Approach to Building Systems from
COTS Software Components. Proceedings of the 22nd Annual Software Engineering
Workshop, December 1997, Greenbelt, MA. pp. 99–113.

[65] D. Reifer, V. Basili, B. Boehm, and B. Clark. 2003. Eight lessons learned during cots-
based systems maintenance. IEEE Software, September/October, 94–96.

[66] J. Voas. 1998. Maintaining components-based systems. IEEE Software, July/August,
22–27.

[67] S. Beydeda and V. Gruhn (Eds.) 2005. Testing Commerical-off-the-Shelf Components
and Systems. Springer, Germany.

[68] J. Morris, G. Lee, K. Parker, G. Bundell, and C. Lam. 2001. Software component certi-
fication. IEEE Computer, September, pp. 30–36.

[69] K. Naik and P. Tripathy. 2008. Software Testing and Quality Assurance: Theory and
Practice. John Wiley & Sons, Inc., Hoboken.

[70] C. V. Ramamoorthy and F. B. Bastani. 1982. Software reliability—status and perspectives.
IEEE Transactions on Software Engineering, July, pp. 354–371.

[71] M. Vigder and A. Kark. 2006. Maintaining Cots-based Systems: Start with Design.
Proceedings of the 5th International Conference on Commercial-Off-The-Shelf (COTS)-
Based Software Systems, February 2006, Orlando, FL. IEEE Computer Society Press,
Los Alamitos, CA. pp. 11–18.

[72] M. Vigder and J. Dean. 2000. Maintenance of cots-based systems. National Research
Council of Canada, Institute for Information Technology, Ottawa, Ontario, Canada, NRC
Report 43626, p. 6.

[73] D. J. Carney, S. A. Hissam, and D. Plakosh. 2000. Complex cots-based software practical
steps for their maintenance. Journal of Software Maintenance and Evolution: Research
and Practice, 12, 357–376.

[74] M. Krieger, M. Vigder, J. Dean, and M. Siddiqui. 2003. Coordination in COTS-
based Development. Second International Conference on COTS-Based Software Sys-
tems (ICCBSS), February 2003, Ottawa, Canada, LNCS-2580. Springer, pp. 123–
133.

[75] D. Garlan, A. Robert, and J. Ockerbloom. 1995. Architectural mismatch: why reuse is so
hard. IEEE Software, November, 17–26.

[76] D. Garlan, A. Robert, and J. Ockerbloom. 2009. Architectural mismatch: why reuse is
still so hard. IEEE Software, July/August, 66–69.

[77] IEEE Standard 1219-1998. 1998. Standard for Software Maintenance. IEEE Computer
Society Press, Los Alamitos, CA.

[78] M. K. Mattsson, U. Westblom, S. Forssander, G. Andersson, M. Medin, S. Ebarasi,
T. Fahlgren, S. E. Johansson, S. Tornquist, and M. Holmgren. 2001. Taxonomy of

80 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

Problem Management Activities. Proceedings of the 5th European Conference on Soft-
ware Maintenance and Reengineering, March, 2001, lisbon, Portugal, IEEE Computer
Society Press, Los Alamitos, CA. pp. 1–10.

[79] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel. 2005. Towards a taxonomy
of software change. Journal of Software Maintenance and Evolution: Research and
Practice, 17(5), 309–332.

[80] C. F. Kemerer and S. Slaughter. 1999. An empirical approach to studying evolution. IEEE
Transactions on Software Engineering, July/August, 493–509.

EXERCISES

1. Explain why it is important to make distinctions among the different types of
software maintenance.

2. What are the causes of adaptive maintenance problems? What are the conse-
quences of these problems?

3. Why should you fix something that is not broken? What are some reasons for
performing perfective maintenance?

4. What are some common justifications for not doing perfective maintenance?

5. What is software aging? What are the common causes of software aging? How
can those causes be eliminated? Discuss the answers in detail. (Hint: rejuvenate,
software maintainability)

6. Explain the concept of software rejuvenation. Discuss the pros and cons of
software rejuvenation.

7. Discuss the differences between hardware and software maintenance.

8. For each of the following situations, explain whether it is a hazard or a
mishap.

(a) Water in a swimming pool becomes electrified.

(b) A room fills with carbon dioxide.

(c) A car stops abruptly.

(d) A long distance telephone company suffers an outage.

(e) A nuclear weapon is destroyed in an unplanned manner.

9. Compare the software maintenance classification based on intention, activity,
and evidence.

10. Explain the rationale behind Lehman’s laws. Under what circumstances those
laws may not hold?

11. What is software entropy? Explain its relationship with software aging.

EXERCISES 81

12. What is code decay? Discuss the symptoms of code decay. What are the causes
of code decay?

13. Explain the term software cloning and discuss its significance with respect to
software evolution.

14. Explain the inverse square model of system evolution. For the system data given
in Table 2.6, plot the graph for the actual and calculated (inverse square model)
sizes for the system.

TABLE 2.6 System Data to be Used in Question 14

RSN Size RSN Size RSN Size

1 977 8 1800 15 2151
2 1344 9 1595 16 2091
3 1390 10 1897 17 2095
4 1226 11 1832 18 2101
5 1246 12 1897 19 2312
6 1492 13 1902 20 2167
7 1581 14 2087 21 2315

Source: Data, taken from Reference 44. © 1996 IEEE.

15. Discuss the differences between FOSS and CSS software evolution system.

16. Suppose that you wish to construct a system by combining the functionality of
two COTS-based products together. Requests must be handled by sending them
first to one of the COTS products, and sending the results from that product to the
second. The results from this second product can then be returned to the original
requester. Which standard middleware component would you use in building this
system?

(a) glue

(b) wrapper

(c) mediator

(d) tailoring

17. Identify the cluster and evidence maintenance type for the following scenario.
Explain your answer.

“A maintainer was assigned to install three upgraded COTS components,
the first of which implements a hardware upgrade. Each COTS component was
received from a different vender, but all are used in one system. In attempting to
install a test version of the system, the maintainer found that one of the upgrades
was incompatible with the other two, and that those other two would not work
with the existing in-use version of the third. After considerable diagnostic test
runs, and obtaining an “its your problem” response from the vendor of the
third component, the maintainer got approval to write a wrapper for one of

82 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION

the upgraded COTS components in order to fit with the continued use of the
existing version of the third component. After successful regression testing, the
maintainer had the configuration management data updated and the new wrapper
recorded. The change, since it would be nearly transparent to the customer, was
put into production at the time of the next scheduled release of a version of the
systems, and the document was updated.”

3
EVOLUTION AND MAINTENANCE
MODELS

People seldom improve when they have no other model but themselves to copy after.
—Oliver Goldsmith

3.1 GENERAL IDEA

The software production processes comprise a set of activities starting from concep-
tion to retirement. There are many software processes, differing primarily in their
classifications of phases and activities. One traditional software development life
cycle (SDLC) is shown in Figure 3.1, which comprises two discrete phases, namely,
development and maintenance, the latter commonly approaching two-thirds of the
product life span. As this diagram shows, about one-fourth to one-third of all soft-
ware life cycle costs are attributed to software development, and the remaining cost is
due to operations and maintenance. Note that the percentages in Figure 3.1 indicate
relative costs. As listed below [1], software maintenance has unique characteristics,
although many activities related to maintaining and developing software are similar:

� Constraints of an existing system. Maintenance is performed on an operational
system. Therefore, all modifications must be compatible with the constraints of
the existing software architecture, design, and code.

� Shorter time frame. A maintenance activity may span from a few hours to a few
months, whereas software development may span 1 or more years.

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

83

84 EVOLUTION AND MAINTENANCE MODELS

Requirements
definition

3%

Preliminary
design

3%

Detailed
design

5%

Implementation

7%

Testing

15%

Operations
and

maintenance
67%

Development phase

Maintenance

phase

FIGURE 3.1 Traditional SDLC model. From Reference 1. © 1988 John Wiley & Sons

� Available test data. In software development, test cases are designed from
scratch, whereas software maintenance can select a subset of these test cases
and execute them as regression tests. Thus, the challenge is to select appropriate
test cases from the existing test suite. In addition to the regression test cases,
new test cases need to be created to adequately test the code changes.

Therefore, software maintenance should have its own software maintenance life
cycle (SMLC) model as it involves many unique activities. On the other hand, soft-
ware maintenance has got many similarities with software development, with a focus
on product enhancement and correction, in addition to transforming requirements to
software functionality. In this chapter, three maintenance models will be explained:
reuse, simple staged, and change mini-cycle, representing, respectively, the old, rela-
tively new, and still in research models. We examine in detail two standards, IEEE/EIA
1219 and ISO/IEC 14764, to manage and execute software maintenance activities.

Software maintenance is at the heart of an evolving software product. Evolution,
change, and system configuration complicate maintenance activities. The software
product which is released to a customer is in the form of executable code, whereas
the corresponding “product” within the supplier organization is source code. Source
code can be modified without affecting the executable version in use. Thus, strict
control must be kept, otherwise exact source code representation of a particular
executable version may not exist. In addition, documentation associated with the
executable code must be compatible, otherwise the customer may not be able to
understand the system. Therefore, tight documentation control is necessary. In other
words, the set of products that are released to the customer must be controlled.
Software configuration management (SCM) is the way by which the process of
software evolution is controlled. SCM provides a framework for managing changes
in an efficient way. The functionalities and best practices of SCM are discussed in
this chapter. In addition, we discuss a state transition model of a modification (or,
change) request, as it flows through the organization.

3.2 REUSE-ORIENTED MODEL

One obtains a new version of an old system by modifying one or several components
of the old system and possibly adding new components. As a consequence, the new
system is likely to reuse many components of the old system. A new version of

REUSE-ORIENTED MODEL 85

Old system New system

Requirements Requirements

Design Design

Code Code

Test Test

FIGURE 3.2 The quick fix model. From Reference 2. © 1990 IEEE

the system can be created after the maintenance activities are implemented on some
of the old system’s components. Based on this concept, three process models for
maintenance have been proposed by Basili [2]:

� Quick fix model. In this model, necessary changes are quickly made to the code
and then to the accompanying documentation (Figure 3.2).

� Iterative enhancement model. In this model, as illustrated in Figure 3.3, first
changes are made to the highest level documents. Eventually, changes are prop-
agated down to the code level.

� Full reuse model. In this model, as illustrated in Figure 3.4, a new system is
built from components of the old system and others available in the repository.

The old system is reused by all of the three aforementioned models, and, therefore,
those belong to the reuse-oriented paradigm. The models assume that the descriptions
of the existing system are complete and consistent.

Quick fix model. This model embodies a commonly used approach to software
maintenance. In this model, as illustrated in Figure 3.2, (i) source code is modified to

Old system New system

Requirements Requirements

Design Design

Code Code

Test Test

Analysis Analysis

FIGURE 3.3 The iterative enhancement model. From Reference 2. © 1990 IEEE

86 EVOLUTION AND MAINTENANCE MODELS

Old system New system

Requirements Requirements

Design Design

Code Code

Test Test

Repository

{Ri}

{Di}

{Ci}

{Ti}

FIGURE 3.4 The full reuse model. From Reference 2. © 1990 IEEE

fix the problem; (ii) necessary changes are made to the relevant documents; and (iii)
the new code is recompiled to produce a new version. Often changes to the source
code are made with no prior investigation such as analysis of impact of the changes,
ripple effects of the changes, and regression testing. Moreover, resource constraints
often entail that modifications performed to the code are not documented.

Iterative enhancement model. This model is based on the Japanese principle of
Kaizen, which means the incremental and progressive improvement of practices.
Iterative and incremental development methodologies were practiced in early 1950s,
before Winston Royce’s Waterfall model [3] was widely used. An alternative approach
to software maintenance is suggested by the iterative and incremental models. Those
two models have the following ideas in common: (i) it is difficult to fully comprehend
a large set of requirements for a system and (ii) developers may find it difficult to build
the full system in one go. Therefore, a complete system is developed in progressively
larger builds, where one build refines the requirements of the preceding build by
taking user inputs into account [4]. The iterative enhancement model, explained
in Figure 3.3, shows how changes flow from the very top-level documents to the
lowest-level documents. The model works as follows:

� It begins with the existing system’s artifacts, namely, requirements, design,
code, test, and analysis documents.

� It revises the highest-level documents affected by the changes and propagates
the changes down through the lower-level documents.

� The model allows maintainers to redesign the system, based on the analysis of
the existing system.

Remark: The terms iteration and increment are liberally used when discussing
iterative and incremental development. However, they are not synonyms in the field
of software engineering. On the one hand, iteration implies that a process is basically
cyclic, thereby meaning that the activities of the process are repeatedly executed
in a structured manner. On the other hand, increment implies some quantifiable
outcome of an iteration. Iterative development is based on scheduling strategies in
which time is set aside to improve and revise parts of the system under development.

THE STAGED MODEL FOR CLOSED SOURCE SOFTWARE 87

Incremental development is based on staging and scheduling strategies in which parts
of the system are developed at different times and/or paces and integrated as they
are completed.

The model is effectively a three-phase cycle: analysis, characterization of proposed
enhancements, and redesign and implementation. A new build is constructed by
starting with an analysis of the existing system’s requirements, followed by design,
coding, and testing. Next, documents at all levels, which are affected by the changes,
are modified. Reuse, as explained in Chapter 9, is explicitly supported by the model.
The model also accommodates the quick fix model. The iterative enhancement model
gives us the key advantage that documentation is kept up-to-date with changes made
to the code.

With replicated controlled experiments, Visaggio [5] compared the iterative model
and the quick fix model with respect to maintainability. It has been shown that main-
tainability of systems degrade faster with the quick fix model. In addition, the itera-
tive enhancement model enables organizations to perform maintenance modifications
faster than those adopting the quick fix model. In general, an organization may adopt
the quick fix model if they do not have time. Therefore, the latter observation is
counterintuitive.

Full reuse model. The model illustrated in Figure 3.4 shows maintenance as a
special case of reuse-based software development. The main assumption in this
model is the availability of a repository of artifacts describing the earlier versions of
the present and similar systems. Full reuse comprises two major steps:

� perform requirement analysis and design of the new system; and
� use the appropriate artifacts, such as requirements, design, code, and test from

any earlier versions of the old system.

In the full reuse model, reuse is explicit and the following activities are performed:

� identify the components of the old system that are candidates for reuse;
� understand the identified system components;
� modify the old system components to support the new requirements; and
� integrate the modified components to form the newly developed system.

3.3 THE STAGED MODEL FOR CLOSED SOURCE SOFTWARE

Rajlich and Bennett [6] have defined a simple staged model to represent the traditional
commercial Closed Source Software (CSS) life cycle. Their model comprises a
sequence, as illustrated in Figure 3.5, of five stages:

� Initial development. Develop the first functioning version of the software.
� Evolution. The developers improve the functionalities and capabilities of the

software to meet the needs and expectations of the customer.

88 EVOLUTION AND MAINTENANCE MODELS

Evolution

Initial development

Servicing

Phaseout

Closedown

Evolution changes

Servicing patches

First running

version

Loss of evolvability

Servicing discontinued

Switchoff

FIGURE 3.5 The simple staged model for the CSS life cycle. From Reference 6. © 2000
IEEE

� Servicing. The developers only fix minor and emergency defects, and no major
functionality is included.

� Phaseout. In this phase, no more servicing is undertaken, while the vendors
seek to generate revenue as long as possible.

� Closedown. The software is withdrawn from the market, and customers are
directed to migrate to a replacement.

Initial development. Software developers build the first version of the system from
scratch to satisfy the initial requirements. The initial development includes design,
initial coding, and testing. Generally, no releases are made public to the customers
in this stage. The first version may lack some functionality, but it lays two important
foundations for future iterations, namely, the software architecture and the team
knowledge:

� The software architecture. The components of the software, the interactions
among them, and their desired properties, such as efficiency and functionality,
continue to stay intact through the remains of the life cycle of the system.

� The team knowledge. During initial development, the software engineering team
acquires knowledge about the application domain, user requirements, business
process, data formats, algorithms, weaknesses and strengths of the software
architectures, and execution environment. For the subsequent stages of the life-
cycle of the software system, this knowledge is considered to be crucial.

Evolution. The software system moves to the evolution stage after the initial devel-
opment is successful. Software developers extend the functionalities and capabilities
of the system to meet the needs and expectations of the customers. In this stage: (i)
quick patches and new releases are dispatched to the customers and (ii) feedback
from the customers are received for additional enhancement to the software system.

THE STAGED MODEL FOR CLOSED SOURCE SOFTWARE 89

Customer demands for additional functionalities and competitive products from other
vendors cause the system to evolve. In addition, evolution of the system may occur
due to changes in the operating environment and the business practice. An example
of change in the business practice is to target enterprise markets instead of the service
provider market segment. Sometimes, the developing company releases the software
system right after the initial development. However, often a system is released in
its evolution phase after it has undergone many quality improvement cycles. For
example, reliability and stability are improved during a system’s quality improve-
ment cycle. The exact release date for the product is based on several factors such as
timeliness, quality, innovation, and business goals of the company [7].

Servicing. For software to evolve easily, it has to have an appropriate architecture
and the software team has to have the necessary expertise. When either architectural
integrity or the expertise of the architecture is missing, the software ceases to easily
evolve, and it makes a transition to its servicing stage. The system is viewed to have
aged or decayed in the servicing stage. In this stage, the software is considered to have
matured and simple modifications are made to the source code, without providing
user perceivable enhancements. Changes in this stage are expensive and difficult.
Therefore, software developers minimize the number of changes or use wrappers as a
way to effect changes. Each of these changes further weakens the system architecture,
thereby increasing the need for further servicing. Chapin et al. [8] refer to the servicing
stage as the real maintenance phase. After considering the economic profitability of
the system, a decision is made to transition the system from the evolution stage to the
servicing stage. When new revenues from a software system do not justify the cost
of performing modifications, the system is designated as a legacy system and it is no
more evolved.

Phaseout. During the phaseout stage, the supplier may decide to not perform any
more servicing. The software may still be in use, but because change requests (CRs)
are no longer honored, it is becoming increasingly outdated. The users must work
around the known deficiencies of the system more often. Going back to an earlier
servicing stage becomes very difficult because of the increasingly large number of
CRs. Eventually, the software system becomes a legacy system application.

Closedown. During the final shut down, the vendor pulls out the software product
from the market and makes recommendations to the customers for alternative solu-
tions. The supplier may have certain pending contractual responsibilities, namely
legal obligations and source code retention. In the areas of outsourced software,
source code retention is an important responsibility. As the software system moves
from the phaseout to the closedown stage and if the software is still found to be
businessworthy to its stakeholders, the system is called a legacy system. For a legacy
system, it is prudent to move to a newer system which provides similar functionalities,
without exhibiting the poor quality of the legacy system.

One version of the staged model for CSS is called versioned staged model and
it has been illustrated in Figure 3.6. The model shown in Figure 3.6 has essentially
the same stages as found in Figure 3.5, but separate evolution tracks from the initial
development are found in Figure 3.6. The evolution process is the backbone of the
model. Each evolution track includes servicing, phaseout, and closedown. At certain

90 EVOLUTION AND MAINTENANCE MODELS

Evolution, version 1

Initial development

Servicing, version 1

Phaseout, version 1

Closedown, version 1

Evolution changes

Servicing patches

First running

version

Evolution of

new version

Evolution, version 2

Evolution changes

Servicing, version 2

Phaseout, version 2

Closedown, version 2

Servicing patches

Evolution of

new version

Evolution, version ...

FIGURE 3.6 The versioned staged model for the CSS life cycle. From Reference 6.
© 2000 IEEE

time frames, a version of the software is completed and released to the customers. The
evolution of the software does not stop at that point; rather, it continues and eventually
produces the next version. The released version is no longer evolved but only serviced.
Many organizations use a scheme such as <product><version><release><build>,
where version reflects the strategic changes made to the system during evolution,
release reflects the servicing patches, and build reflects the, say, daily internal build
of the software.

3.4 THE STAGED MODEL FOR FREE, LIBRE, OPEN
SOURCE SOFTWARE

Capiluppi et al. [9] revised the staged model for its applicability to Free, Libre, Open
Source Software (FLOSS) systems, as shown in Figure 3.7. The authors provide
empirical evidence to justify the FLOSS model. The model benefits developers by
characterizing FLOSS systems in terms of stages and indicating which stage the
system is currently in and to which stage the system is more likely to transition.

Three major differences are identified between CSS systems and FLOSS systems.
The first one is related to the availability of releases. CSS systems are available to
the customers in a running condition after having been tested enough. On the other
hand, a FLOSS system is posted on the versioning system repositories much before the
official release. Therefore, binaries as well as source code can be downloaded not only
by end users but by developers as well. The revised model shown in Figure 3.7 reflects

CHANGE MINI-CYCLE MODEL 91

Evolution

Initial development

Servicing

Phaseout

Closedown

Evolution changes

Servicing patches

First running

version

Loss of

evolvability

Servicing

discontinued

Switchoff

FIGURE 3.7 The staged model for the FLOSS system. From Reference 9. © 2007 ACM

the aforementioned difference between FLOSS and CSS systems. In Figure 3.7, the
rectangle with the label “Initial development” has been visually highlighted because
it can be the only initial development stage in the evolution of FLOSS systems. In
other words, it does not have any evolution track for FLOSS systems.

The second difference concerns the transition from the evolution to the servicing
stage. Based on the empirical data from several FLOSS systems, it was observed that
a new development stage is reached following a phase without much enhancements.
With some systems that were analyzed, after a transition from evolution to servicing,
a new period of evolution was observed. This possibility is depicted in Figure 3.7 as
a broken arc from the servicing stage to the evolution stage.

The third difference is a possibility of a transition from phaseout stage to evolution
stage for FLOSS systems. A case study of a FLOSS system was illustrated by
Capiluppi et al. [9]. In the said case study, a new team of developers took over the
maintenance task that was abandoned by the previous developed team. In general,
the active developers of FLOSS systems get frequently replaced by new developers.
Therefore, the dashed line in Figure 3.7 exhibits this possibility of a transition from
phaseout stage to evolution stage.

3.5 CHANGE MINI-CYCLE MODEL

Software change is a fundamental ingredient of software evolution and maintenance.
Let us revisit the first law of software evolution which is stated as “A program
undergoes continuing changes or becomes less useful. The change process continues
until it becomes cost-effective to replace the program with a re-created version.” The
CCS staged model discussed earlier is based on the above fundamental premise. The
difficulty of software changes distinguishes the two stages: evolution and servicing.
Whereas substantial software changes are allowed in the evolution stage, in the
Servicing stage limited changes are permitted. Note that iterative modification is

92 EVOLUTION AND MAINTENANCE MODELS

Analyze and plan change

Program comprehension

Change impact analysis

Implement change

Restructuring

Change propagation

Verify

and validate

Request

rejected

Further

changes required

Documentation

change

Change request

Select a new

request change

FIGURE 3.8 The change min-cycle. From Reference 12. © 2008 Springer

the primitive building block from which both the evolution and servicing stages
are derived.

Software change is a process that may introduce new requirements to the existing
system. In addition, there may be a need to alter the software system if the require-
ments are not correctly implemented. In order to capture this, an evolutionary model,
known as change mini-cycle (Figure 3.8), was proposed by Yau et al. [10] in the late
1970s and revisited by other researchers, namely, Bennet et al. [11] and Mens [12].
The change mini-cycle model consists of five major phases: CR, analyze and plan
change, implement change, verify and validate, and documentation change. In this
process model, new significant activities were identified to reflect the fact that software
changes are rarely isolated. Examples of those new activities are change impact anal-
ysis and change propagation. These activities continue to be the subjects of research.

Change request. A CR generally originates from the management, users of the
software, or customers. A CR may take one of the following two forms: defect report
and enhancement request.

� A defect report describes the defect and software system actions that are out of
line with requirements.

� An enhancement request describes a change to the requirements, functionality,
or quality of the system.

The above two items were in the focus of practitioner’s concerns that can be
traced back to the circa 1972 article “That maintenance ‘iceberg’” by Canning [13].

CHANGE MINI-CYCLE MODEL 93

According to the said article, practitioners observe maintenance narrowly as cor-
recting errors and broadly as expanding and extending software functionality. In
this book, CR refers to both the aforementioned views. The CR document must
capture a minimal set of information about changes to software, hardware, and
documentation.

Analyze and plan change. In the second phase, program comprehension and impact
analysis are conducted. Program comprehension [14] is essential to understanding
which parts of the software will be affected by a CR. Program comprehension is
basically a process of acquiring useful information from source code. One such
information is the location of the domain-specific concept in the source code [15, 16].
The code implementing the concepts may need to be changed in order to provide a
solution to the CR. Concepts are units of human knowledge that can be processed by
the human mind in one instance. As an example, let us consider the CR “Add a debit
card payment issued by Chautauqua bank to the ATM system.” In order to change
the implementation, the maintenance engineer must locate those system components
that implement the concepts “debit card,” “payment,” and “issued” embedded in the
CR. The idea here is to identify the set of system components that are thought to
be initially affected by the CR [17]. The identified system components are called
Starting Impact Set (SIS) which is discussed in Chapter 6. A thorough discussion of
program comprehension is given in Chapter 8.

Impact analysis is conducted to identify the potential consequences of a change
and estimate the resources needed to accomplish the change [18]. By means of
impact analysis, a software system is analyzed by maintenance personnel to identify
the software components that will be affected by a CR. In this analysis, first decide
if the components, which are neighbors of the SIS, also need to be modified due
to the ripple effect [19]. A neighboring component is added to the set if it needs
to be modified. For the newly added component, identify which of its neighboring
components will be modified, and add them to the set. The process of identifying
new components to be modified is repeated until it is found that a modification will
not impact new neighboring components. The resulting set of components estimated
to be modified is known as the estimated impact set (EIS). The objectives of impact
analysis are as follows:

� to determine the set of system components to be affected, given the SIS identified
by program comprehension activity;

� to develop accurate estimates of the resources needed to accomplish the imple-
mentation task; and

� to analyze the cost and benefits of the CR and make a decision on whether or
not to implement the CR.

Software developers use the information gathered from impact analysis in planning
how to implement a CR. Moreover, the goal of impact analysis is to minimize
unexpected side effects of change. A side effect is an error or an undesirable behavior
that occurs as a result of a modification in the software [20]. Chapter 6 discusses
impact analysis in greater detail.

94 EVOLUTION AND MAINTENANCE MODELS

Implement change. The CR is implemented after the feasibility of a change is estab-
lished. However, before the implementation of the CR, restructuring or refactoring
of the software is performed in order to accommodate the requested modification.
Refactoring is essentially the object-oriented variant of restructuring [21]. Restructur-
ing is most often required in software maintenance; otherwise, systems lose structure.
Restructuring is a means of restoring order to understand and change; the restructured
product is less susceptible to error when future changes are made. Refactoring, dis-
cussed in Chapter 7, improves the software structure without changing their behavior.

Implementing a change comprises a number of steps, each focusing on one specific
software component after the completion of refactoring. If a component is changed,
it may cease to be compatible with the components with which it interacts. Therefore,
non-essential changes must be made in the interacting components, thereby creating
a ripple effect throughout the system. The aforementioned activity, generally called
a change propagation activity [22, 23], ensures that a modification performed in one
component is completely reflected throughout the entire system. Chapter 6 discusses
change propagation in greater detail.

Verify and validate. In this phase the software system is verified and validated in
order to assure that the integrity of the system has not been compromised. This activity
includes code review, regression testing, and execution of new tests if necessary.
Regression testing comprises a subset of the unit-, integration-, and system-level
tests [24]. If the results are unsatisfactory, then the actualization of the request is
rejected which in turn is investigated and further changes are implemented.

Documentation change. The final phase of the change mini-cycle deals with updat-
ing the program documentation. It is time to complete the documentation aspect which
may include updating the requirements, functional specifications, and design specifi-
cations to be consistent with the code. In addition, user manuals and installation and
troubleshooting guides are accordingly updated.

3.6 IEEE/EIA MAINTENANCE PROCESS

The IEEE/EIA 1219 standard [25] explains a process for executing and managing
activities for software maintenance. The standard basically explains maintenance
as a fundamental life cycle process and describes maintenance as the process of a
software product undergoing “modification to code and associated documentation
due to a problem or the need for improvement. The objective is to modify the existing
software product while preserving its integrity” (p. 6–1 of Reference 26). The standard
focuses on a seven-phase activity model of maintenance as illustrated in Figure 3.9.
The seven phases are listed below:

� Identification of problems
� Analysis
� Design
� Implementation

IEEE/EIA MAINTENANCE PROCESS 95

Seven
phases

Acceptance

test

Delivery

Problem

identification

Analysis

Design

Implementation

System test

Modification
request (MR)

FIGURE 3.9 Seven phases of IEEE maintenance process. From Reference 26. © 2004 IEEE

� System test
� Acceptance test
� Delivery

Each of the seven activities have five associated attributes as follows:

� Activity definition. This refers to the implementation process of the activity.
� Input. This refers to the items that are required as input to the activity.
� Output. This refers to the items that are produced by the activity.
� Control. This refers to those items that provide control over the activity.
� Metrics. This refers to the items that are measured during the execution of the

activity.

Problem identification. A request for change to the software is normally made by
the users of the software system or the customers, and it starts the maintenance
process. The request for change is submitted in the form of a modification request
(MR) for a correction or for an enhancement. It may be noted that MR and CR
are interchangeably used in maintenance literature. The maintenance (or sustaining)
organization: (i) determines the type of request; (ii) determines the appropriate main-
tenance category – corrective, adaptive, or perfective; (iii) assigns a priority level;
and (iv) assigns a unique identification number. Activities included in this phase
are as follows: (i) reject or accept the MR; (ii) identify and estimate the resources
needed to change the system; and (iii) put the MR in a batch of changes scheduled

96 EVOLUTION AND MAINTENANCE MODELS

Problem

identification

Uniquely identify MR

Enter MR into repository

Modification

 request (MR)

No. of MR submittals

No. of duplicate MRs

Time expended for problem validation

Validated MR

Process determinations

INPUT OUTPUT

METRICS

CONTROL

FIGURE 3.10 Problem identification phase

for implementation. The process of collecting and reviewing MRs, such as number
of MR submitted and number of MR rejected, begins in this phase. For the problem
identification phase, the input, output, control, and metrics have been summarized in
Figure 3.10.

Analysis. The inputs to this phase are a validated MR, an initial resource estimation,
repository information, and project documentation. Repository is the location in
which all software-related artifacts are stored. The process is viewed to have two
major components: feasibility analysis and detailed analysis. First, feasibility analysis
is performed to (i) determine the impact of the change, (ii) investigate other possible
solutions including prototyping, (iii) assess both short-term and long-term costs, and
(iv) determine the benefits of making the change. After selecting a specific approach,
the second phase of detailed analysis is undertaken. The second phase identifies (i)
firm modification requirements, (ii) the software components involved, (iii) an overall
test strategy, and (iv) an implementation plan. The standard puts emphasis on at least
three levels of tests: unit, integration, and acceptance. In addition, regression tests
are associated with each of the three levels of tests. Figure 3.11 summarizes input,
control, metrics, and output for the analysis phase.

Upon completion of the analysis phase, a number of actions are taken: (i) risk
analysis is performed; (ii) the preliminary resource estimate is updated; and (iii) by
involving the customer, it is decided whether or not to proceed on to the next phase. If
it is decided to move on to the next phase, the phase deliverables, including a detailed
analysis report, are specified. The standard suggests several metrics to be gathered,
such as the number of requirement changes, elapsed time, and the error rate generated.

Design. A modification to the system begins in this phase based on the information
gathered up to this point. The information includes system and project documenta-
tion, the output of the analysis phase, existing software, and repository information.
Activities of this phase are as follows: (i) identify the affected software components;
(ii) modify the software components; (iii) document the changes; (iv) create a test
suite for the new design; and (v) select test cases for regression testing. This phase
provides a revised design baseline, revised test plans, an up-to-date detailed analysis
report, revised risk analysis, and verified requirements. Figure 3.12 summarizes the
input, output, metrics, and control for the design phase.

IEEE/EIA MAINTENANCE PROCESS 97

Analysis

Conduct technical review

Verify that documentation is updated

Verify test strategy

Identify safety and security issues

Validated MR

Project document

Repository information

Requirement changes

Documentation error rates

Effort per function area

Elapsed time (schedule)

Error rates generated by priority and type

Feasibility report for MR

Detailed analysis report

Preliminary modification report

Test strategy

Implementation plan

INPUT OUTPUT

METRICS

CONTROL

FIGURE 3.11 Analysis phase

Implementation. The design phase produces the primary inputs to this phase. The
activities executed in this phase are: writing new code and performing unit testing,
integrating changed code, conducting integration and regression testing, performing
risk analysis, and reviewing the system for test readiness. To assess whether or not
the system is ready for system-level testing, a review is performed in this phase. In
this phase, risk analysis and reviews are periodically performed, rather than at the
end of the phase. Multiple reviews need to be performed due to the fact that a large
percentage of design, performance issues, risks, and cost are exposed while changing
the system. All documentations, including the software, design, test, user, and training

Design

Conduct software inspection

Verify that design is documented

Complete traceability of requirements

 to design

Project document

Analysis phase output

Source code database

Software complexity

Design changes

Effort per function area

Elapsed time (schedule)

Test plan and procedure changes

Error rates generated by priority and type

Number of lines of code added, deleted,

 modified, and tested

Revised modification list

Updated design baseline

Updated test plan

Revised detail analysis

Verified requirements

Revised implementation plan

Documented constraints and risks

INPUT OUTPUT

METRICS

CONTROL

FIGURE 3.12 Design phase

98 EVOLUTION AND MAINTENANCE MODELS

Implementation

Conduct software inspections

Ensure that unit and integration testing are performed

Ensure software placed under CM control

Ensure training and documentation have been updated

Verify traceability of design to code

Project document

System document

Results of design phase

Source code

Function points

Source lines of code

Error rates generated by priority and type

Updated software

Updated design documents

Updated test documents

Update user documents

Update training materials

Verified requirements

Statement of risk

Test readiness review report

INPUT OUTPUT

METRICS

CONTROL

FIGURE 3.13 Implementation phase

information are updated. For the implementation phase, the input, output, metrics,
and control are summarized in Figure 3.13.

System test. In this phase, tests are performed on the full system to ensure that the
modified system complies with the original requirements as well as the new modifica-
tions. System-level testing comprises a broad spectrum of testing activities: function-
ality testing, robustness testing, stability testing, load testing, performance testing,
security testing, and regression testing. Regression testing is conducted to validate that
no new faults have been introduced. Quite often, during the maintenance process, the
sustaining test engineers execute the system test cases [24]. Finally, the maintenance
personnel verify whether or not the system is ready to perform acceptance testing.
This phase accepts as its input a system test plan consisting of detailed test cases, test
readiness review report, and an updated system. This phase provides a test report, a
fully integrated tested system, and test readiness review report. For the system test
phase, the input, output, metrics, and control are summarized in Figure 3.14.

Acceptance test. Acceptance testing is performed on a completely integrated sys-
tem, and it involves customers, users, or their representatives. The main objective of

System test

CM control of code and listings

CM control of MRs

CM control of test documentation

Updated system

Updates software

 documentation

Test readiness review

 report

Error rates generated by priority and type

Errors corrected

Errors generated

Tested integrated system

Test report

Test readiness review report

INPUT OUTPUT

METRICS

CONTROL

FIGURE 3.14 System test phase

ISO/IEC 14764 MAINTENANCE PROCESS 99

Acceptance

test

Execute acceptance tests

Report test results

Conduct functional audit

Establish new baseline

Place acceptance test documentation under CM

Test readiness review

 report

Fully integrated system

Acceptance test plan

Acceptance test cases

Acceptance test procedures

Error rates generated by priority and type

Errors corrected

Errors generated

New system baseline

Functional configuration audit

 report

Acceptance test report

INPUT OUTPUT

METRICS

CONTROL

FIGURE 3.15 Acceptance test phase

acceptance testing is to assess the overall quality of the system, rather than actively
identify defects. As an aside, on the other hand, the objective of system testing is to
search for defects [24]. An important concept in acceptance testing is the customer’s
expectation from the system. The primary inputs to this phase are the test readiness
review report, a fully integrated system, and a test plan with detailed test cases for
acceptance testing. At the end of acceptance testing, a test report is generated. The
report explains the status of the criteria that was agreed upon for successful com-
pletion of acceptance testing. The status report is communicated to the committee
responsible for review. The customer chairs the review committee to evaluate the exit
criteria and the test report to make sure that the system is ready for a release. For
the acceptance test phase, the input, output, metrics, and control are summarized in
Figure 3.15.

Delivery. In this phase, the changed system is released to customers for installation
and operation. Included in this phase are the following activities: notify the user
community, perform installation and training, and develop an archival version of the
system for backup. For the delivery phase, the input, output, metrics, and control are
summarized in Figure 3.16.

Guidelines on maintenance practices are also recommended by the standard in its
appendices. For example, guidelines for maintenance practices include a guideline to
make a maintenance plan; Table 3.1 shows the key sections of a maintenance plan.

3.7 ISO/IEC 14764 MAINTENANCE PROCESS

The document ISO/IEC 14764 [27] is an international standard for software main-
tenance, and it describes maintenance using the same concepts as IEEE/EIA 1219
except that they are depicted slightly differently. An iterative process to execute and
manage maintenance activities is described in the document. The basic structure of
an ISO process is made up of activities, and an activity is made up of tasks. To change

100 EVOLUTION AND MAINTENANCE MODELS

Delivery

Arrange physical configuration audit

Complete version description document

Complete updates to status accounting database

Tested and accepted

system

Documentation changes

− training manuals

− operation guidelines

− version description document

Physical configuration audit report

Version description document
INPUT OUTPUT

METRICS

CONTROL

FIGURE 3.16 Delivery phase

an operational software without breaking its integrity, the necessary activities are
described in the maintenance process.

Upon an activation of the maintenance process, plans and procedures are developed
and resources are allocated to carry out maintenance. In response to a CR, code is mod-
ified in conjunction with the relevant documentation. Modification of the running soft-
ware without losing the system’s integrity is considered to be the overall objective of
maintenance. The maintenance process enables the software product to migrate from
its initial environment at its inception to new environments. The maintenance process
is terminated upon the eventual decommissioning of the product, commonly known as
being retired. The maintenance process comprises the following high-level activities:

1. Process implementation

2. Problem and modification analysis

3. Modification implementation

4. Maintenance review and acceptance

5. Migration

6. Retirement

The maintenance process activities developed by ISO/IEC are shown in Figure 3.17.
Each of these activities is made up of tasks, and each task describes a specific action
with inputs and outputs. A task specifies what to do, but not how to do [28]. Inputs refer
to the items that are used by the maintenance activity to generate outputs. Effective
controls are needed to provide useful guidance so that the maintenance activity
produces the desired outputs. Outputs are objects generated by the maintenance
activity. Support refers to the items that support the maintenance activity.

Process implementation. This activity establishes plans and procedures to be fol-
lowed. A maintenance plan is made concurrently with the plan for development.
Figure 3.18 graphically summarizes the process implementation activity with the

ISO/IEC 14764 MAINTENANCE PROCESS 101

TABLE 3.1 Template of a Maintenance Plan

1. Introduction
This section outlines the goals, purpose, and general scope of the maintenance effort.
Also, deviations from the standard are identified.

2. References
The documents that impose constraints on the maintenance effort are identified in this

section.
In addition, other documents supporting maintenance activities are identified.

3. Definitions
All terms required to understand the maintenance plan are defined in this section.
If some terms are already defined in other documents, then references are provided to those

documents.

4. Software Maintenance Overview
This section briefly describes the following aspects of the maintenance process:
4.1 Organization
4.2 Scheduling Priorities
4.3 Resource Summary
4.4 Responsibilities
4.5 Tools, Techniques, and Methods

5. Software Maintenance Process
This section describes the actions to be executed in each phase of the maintenance process.
Each action is described in the form of input, output, process, and control.
5.1 Problem Identification/Classification and Prioritization
5.2 Analysis
5.3 Design
5.4 Implementation
5.5 System Testing
5.6 Acceptance Testing
5.7 Delivery

6. Software Maintenance Reporting Requirements
This section briefly describes the process for gathering information and disseminating it to

members of the maintenance organization.

7. Software Maintenance Administrative Requirements
Describes the standard practices and rules for anomaly resolution and reporting.
7.1 Anomaly Resolution and Reporting
7.2 Deviation Policy
7.3 Control Procedures
7.4 Standards, Practices, and Conventions
7.5 Performance Tracking
7.6 Quality Control of Plan

8. Software Maintenance Documentation Requirements
Describes the procedures to be followed in recording and presenting the outputs of the

maintenance process.

Source: From Reference 25. © 1998 IEEE.

102 EVOLUTION AND MAINTENANCE MODELS

Maintenance

review/

acceptance

Modification

implementation

2

Process

implementation

Retirement Migration

Problem and

modification

analysis

1

6

3

4

5

FIGURE 3.17 ISO/IEC 14764 iterative maintenance process. From Reference 26. © 2004
IEEE

input, output, control, and support items. The process implementation activity con-
sists of three major tasks as explained in the following:

Maintenance plan: The maintenance plan describes a strategy to maintain the sys-
tem, whereas the procedures for maintenance describe in details how to actually
accomplish maintenance. The plan also describes how to: (i) organize and staff
the maintenance team; (ii) assign responsibilities among team members; and
(iii) schedule resources. The main idea is to provide cost-effective support to
the maintenance team.

Modification requests: Users submit modification (or change) requests to commu-
nicate with the maintainer. The maintainer establishes procedures to receive,
record, and track user requests for modifications and giving them feedback. The
problem resolution process is initiated whenever an MR is received. MRs are

Process

implementation

QA audit joint reviews

System baseline

System documentation

Modification request

Documentation process

Configuration management process

Quality assurance process

Joint review process

Maintenance plan

Training plan

Maintenance procedures

Problem resolution procedures

Maintenance manual

Plans for user feedback

INPUT OUTPUT

SUPPORT

CONTROL

FIGURE 3.18 Process implementation activity

ISO/IEC 14764 MAINTENANCE PROCESS 103

Problem and

modification

analysis

QA audit

Peer reviews

Management reviews

System baseline

System repository

Modification request

Functional requirements

Interface requirements

Configuration status information

Project planning data

Outputs from process implementation

 activity

Documentation process

Quality assurance process

Problem resolution process

Impact analysis

Recommended option

Approved modification

Test strategy

Software documentation

Updated requirements

Updated test plans

Updated test procedures

INPUT OUTPUT

SUPPORT

CONTROL

FIGURE 3.19 Problem and modification activity

classified by the maintainer as either problem reports (corrective) or enhance-
ment (adaptive and perfective) requests. The maintenance process prioritizes
and tracks these requests individually as different types of maintenance are
there. A thorough discussion of MR workflow is given in Section 3.9.

Configuration management (CM): The software product and any changes made
to it during its maintenance lifespan need to be controlled. Basically, change
control is performed by enforcing and implementing an approved SCM process.
The SCM process is implemented by developing and following a configuration
management plan (CMP) and the corresponding procedures. It is discussed in
detail in Section 3.8.

Problem and modification analysis. This activity is invoked after the software
system transitions from development stage to maintenance stage, and it is called
iteratively when the need for modification arises, as depicted in Figure 3.17. The
maintainer analyzes the MR to identify its impact on the organization, the existing
system, and the interfacing systems. Further, the maintainer (i) develops and docu-
ments potential solutions and (ii) obtains the approval from the upper management
to implement the solutions. Figure 3.19 graphically summarizes the problem and
modification analysis activity with the input, output, control, and support items. This
activity comprises five tasks as discussed in the following paragraphs.

MR analysis: The maintainer analyzes the MR to determine the impact on the
organization, hardware, the existing system, other interfacing systems, docu-
mentation, data structures, and humans (operators, maintainers, and users). The
overall objective of impact analysis is to determine all the entities that are going
to be modified and/or affected if the MR is going to be implemented. The steps
of impact analysis are given in Table 3.2.

Verification: The maintainer must reproduce the problem and document the test
results in the laboratory environment if the MR is corrective in order to deter-
mine the validity of the MR. For adaptive and perfective maintenance tasks,
verification is not required. The maintainer designs a test strategy to verify and
replicate the problem.

104 EVOLUTION AND MAINTENANCE MODELS

TABLE 3.2 Modification Request Task Steps

1. Decide whether or not the maintainer is adequately staffed to make the proposed
changes.

2. Decide whether or not the maintenance program has received adequate budget.
3. Decide whether or not enough resources are available and whether the proposed

change will effect some current or future projects.
4. Determine the operational issues to be considered.
5. Determine handling priority.
6. Classify the type of maintenance.
7. Determine the impact to current and future users.
8. Determine safety and security implications.
9. Identify ripple effects.

10. Determine any hardware or software constraints that may result from the proposed
changes.

11. Estimate the values of the benefits of making the changes.
12. Determine the impact on existing schedules.
13. Document the risks resulting from the impact analysis.
14. Estimate the evaluation to be performed.
15. Estimate the cost of management to execute the modification.
16. Place developed artifacts under CM.

Options: The maintainer must outline two or more alternative solutions to the
MR based on the analysis performed. The alternative solutions report must
include the cost, effort, and schedule for implementing different solutions. The
maintainer must perform the task steps shown in Table 3.3 to identify alternative
solutions to the MR.

Documentation: The maintainer documents the MRs, the analysis results, and
the implementation option report after the analysis is complete and the alter-
nate solutions are identified. The maintainer may use the task steps shown in
Table 3.4 to write this document.

Approval: The maintainer submits the analysis report to the appropriate authority
in the organization to seek their approval for the selected change option. Upon
approval, the maintainer updates the requirements if the MR is an enhancement
(improvement).

TABLE 3.3 Option Task Steps

1. The MR is assigned a work priority.
2. Explore a work-around for the problem. If a work-around exists, provide it to the user.
3. Identify concrete requirements for the planned modification.
4. Calculate the magnitude and size of the planned modification.
5. Identify a variety of options to execute the planned modification.
6. Estimate the impacts of the options on the users and system hardware.
7. Analyze the risks of each option.
8. Document the outcomes of risk analysis for each of the proposed options.
9. Develop a widely acceptable plan to implement the modification.

ISO/IEC 14764 MAINTENANCE PROCESS 105

TABLE 3.4 Documentation Task Steps

1. Ensure result analyses have been completed and documentations updated. If
documentations do not exist, develop new documentation.

2. For accuracy, review the planned strategy to perform tests and review the schedule.
3. Review resource estimates for accuracy.
4. Revise the database for storing accounting status.
5. Describe a procedure to decide whether or not to approve the MR.

Modification implementation. In this activity, maintainers (i) identify the items
to be modified and (ii) execute a development process to actually implement the
modifications. The maintainer determines the type of documentation, software units,
and version of the software that are to be changed. Though development becomes part
of the modification activity, it is tailored to eliminate the activities that do not apply
to maintenance effort, such as requirement elicitation and architectural design. To
ensure that the modified or the newly added requirements are correctly implemented,
test plans and procedures are included in the development process. In addition, it is
ensured that the requirements that have not been modified are not affected by the new
implementation. The inputs to this activity include all the analysis work performed
in previous activities, and the output is a new software baseline. Figure 3.20 shows
the modification implementation activity.

Maintenance review/acceptance. By means of this activity, it is ensured that (i)
the changes made to the software are correct and (ii) changes are made to the soft-
ware according to accepted standards and methodologies. The activity is augmented
with the following processes: (i) a process for quality management; (ii) a process
to verify the product; (iii) a process to validate the product; and (iv) a process
to review the product. The maintenance plan should have documented how these
supporting processes were tailored to address the characteristics of the specific soft-
ware product. The inputs to this activity include the modified software and the test
results. Figure 3.21 summarizes the maintenance/acceptance activity with the input,

Modification

implementation

QA audit

Peer reviews

Management reviews

System architecture definitions

Modification request record

Approved MR

Source code

Impact analysis report

Outputs from problem and modification

 analysis activity

Documentation process

Quality assurance process

Joint review process

Modified source code

Measures

Updated MR

Detailed analysis report

Updated requirements

Updated test plans

Updated test procedures

Updated test reports

Updated training materials

INPUT OUTPUT

SUPPORT

CONTROL

FIGURE 3.20 Modification implementation activity

106 EVOLUTION AND MAINTENANCE MODELS

Maintenance

review/

acceptance

QA audit

Peer reviews

Management reviews

Modified software

Modified test results

Quality assurance process

Verification process

Validation process

Joint review process

Audit process

New baseline, incorporating

 accepted modifications

Rejected modifications

Acceptance report

Review and audit report

Software qualification test

 report

INPUT OUTPUT

SUPPORT

CONTROL

FIGURE 3.21 Maintenance review/acceptance activity

output, control, and support items. The process implementation activity consists of
two major tasks: review and approval. The task steps for both review and approval
are enumerated in Table 3.5.

Migration. This refers to the process of moving a software system from one tech-
nological environment to a different one that is considered to be better. Migration is
effected in two broad phases: (i) identify the actions required to achieve migration
and (ii) design and document the concrete steps to be executed to effect migra-
tion. Figure 3.22 summarizes the migration activity with the input, output, control,

TABLE 3.5 Review and Approval Task Steps

Review Task Steps
1. Track the MRs from requirement specification to coding.
2. Ensure that the code is testable.
3. Ensure that the code conforms to coding standards.
4. Ensure that only the required software components were changed.
5. Ensure that the new code is correctly integrated with the system.
6. Ensure that documentations are accurately updated.
7. CM personnel build software items for testing.
8. Perform testing by an independent test organization.
9. Perform system test on a fully integrated system.

10. Develop test report.

Approval Task Steps
1. Obtain quality assurance approval.
2. Verify that the process has been followed.
3. CM prepares the delivery package.
4. Conduct functional and physical configuration audit.
6. Notify operators.
7. Perform installation and training at the operator’s facility.

ISO/IEC 14764 MAINTENANCE PROCESS 107

Migration

QA audit

Management reviews

Old environment

New environment

Old baseline

New baseline

Documentation process

Quality assurance process

Verification process

Validation process

Joint review process

Audit process

Migration plan

Migration tools

Notification of intent

Migrated software product

Notification of completion

Measures

Archived data

INPUT OUTPUT

SUPPORT

CONTROL

FIGURE 3.22 Migration activity

and support items. This activity comprises seven tasks discussed in the following
paragraphs.

Migration standard: During the migration of a software product from an old to a
new operational environment, the maintainer must ensure that any additional
software products or data produced or modified adhere to standard ISO/IEC
12207 [29]. As a part of the standard tasks, the maintainer (i) identifies all the
software elements or data that were changed or added and (ii) ensures that the
tasks were performed according to standard ISO/IEC 12207.

Migration plan: For successful migration, a plan must be developed, documented,
reviewed, and executed. The maintainer performs the task steps shown in
Table 3.6 to write this document. The plan is developed in collaboration with
the customers and it addresses the following:
� Requirements analysis and definition of migration
� Development of migration tools
� Conversion of software product and data
� Execution of migration
� Verification of migration
� Support backward compatibility with the old execution environment

Notification of intent: The maintainer explains to the users: (i) why support for
the old environment has been discontinued; (ii) the new environment and when
it will be supported; and (iii) the availability of other options, if there is any,
upon the removal of the old environment.

Implement operations and training: Once a software product has been improved
by modification and tested by the maintainer, it is installed in an operational
environment to run concurrently with the old system. By running the old and
the new system in parallel, users get an opportunity to become familiar with

108 EVOLUTION AND MAINTENANCE MODELS

TABLE 3.6 Migration Plan Task Steps

1. Analyze the requirements for migration.
2. Perform an impact analysis of migrating the software system.
3. Make a schedule to execute migration.
4. Determine all requirements for data collection to perform post-operation review.
5. Identify and record the migration effort.
6. Identify and reduce risks.
7. Identify the required tools to support migration.
8. Determine how the old environment is going to be supported.
9. Acquire and/or design new tools to support migration.

10. Partition software products and data for conversion in an incremental manner.
11. Prioritize the activities involving data conversion and software products.
12. Execute software products and data conversions.
13. Perform migration of software products and data to the new environment.
14. Operate the migrated system and the old system in parallel as much as possible.
15. Perform testing to ensure the success of migration.
16. Should there be a need, continue to provide support for the old environment.

TABLE 3.7 Operation and Training Task Steps

Parallel Operations Task Steps
1. Survey the site.
2. Install hardware equipment.
3. Install the software system.
4. Run basic tests to ensure that hardware and software have been correctly installed.
5. Run both the new and old systems in parallel, under the desired operational load.
6. Gather data from the old and the new systems.
7. Analyze the collected data.

Training Task Steps
1. Identify the requirements for migration training.
2. Schedule the requirements for migration training.
3. Review the migration training.
4. Update the plan to provide training.

the new system, so that transition from the old to the new system becomes
smoother. In addition, this will create an environment for the maintainer to
compare and understand the input/output relationships of the old and the new
system. During this period training should also be provided to the users. The
steps listed in Table 3.7 can be performed by the maintainer in this step.

Notification of completion: The maintainer notifies all the sites that the new
system will become operational and that the old system can be shut down and
uninstalled, after the completion of training and parallel operation of both the
new and the old system for an appropriate number of hours. Essentially, the
following task steps are performed by the maintainer:

ISO/IEC 14764 MAINTENANCE PROCESS 109

1. Announce the migration.

2. Document the site-specific issues and make a plan to resolve them.

3. Archive the old system, including data and software.

4. Remove the old equipment.

Post-operation review: Following the installation and operation of a changed
system, a review is performed to assess the impact of changing the system
in the new environment. The review reports are sent to the competent parties
for information, guidance, and further actions. The maintainer executes the
following steps, as part of the task:

1. Analyze the results of running the two systems concurrently.

2. Identify potential risk areas.

3. Summarize the lessons learned.

4. Produce a report on impact analysis.

Data archival: Data associated with the old environment are made accessible to
comply with the contractual requirements for data protection and audit. The
maintainer performs the following steps as part of the task:

1. The old data and software are archived.

2. The old data and software are put on multiple media.

3. The media are saved in secure places.

Retirement. A software product is retired when it is viewed to have reached
the end of its useful life. An economic-based analysis is performed to retire
the product and it is included in the retirement plan. Sometimes the work
performed by the product is no longer needed; therefore, the retired product is
not replaced. In other cases, a new software product has already been developed
to replace the current system. In either case, the software system must be
removed from the service in an orderly manner. In addition, considerations are
given to accessing data produced by the software to be retired. Figure 3.23

Retirement

QA audit

Management reviews

Old environment

New software product

Old software product baseline

 to be retired

Documentation process

Quality assurance process

Configuration management process

Joint review process

Audit process

Retirement plan

Notification of issues

Retirement results

Trained people

Retired software product

Notification of completion

Measures

Archived baseline and

 data

INPUT OUTPUT

SUPPORT

CONTROL

FIGURE 3.23 Retirement activity

110 EVOLUTION AND MAINTENANCE MODELS

TABLE 3.8 Retirement Plan Task Steps

1. Analyze the requirements to retire the systems.
2. Determine what impacts the retiring software will have.
3. Identify a product that will replace the software to be retired.
4. Make a schedule to retire the software.
5. Determine the need for residual support in the future.
6. Identify and describe the retirement effort.

summarizes the retirement activity with the input, output, control, and support
items. All artifacts from the retirement activity are controlled with CM. This
activity comprises five tasks discussed in the following paragraphs.

Retirement plan: In order to ensure a successful retirement, a retirement plan is
developed, documented, reviewed, and executed. The maintainer performs the
task steps shown in Table 3.8 to write this document. The plan is developed in
collaboration with the customers to address the following:
� Transition to any new software system.
� Withdrawal of partial or full support after a grace period.
� Responsibility for any future contractual support.
� Archiving the software system, including all the documentation.
� Accessibility to archived data.

Notification of intent: The maintainer conveys to the users: (i) the reason for
discontinuing support for the product; (ii) a note about the replacement or
upgrade for the phased-out system, with an availability date; and (iii) a list
of the other options available, if there is any, upon the removal of the old
environment.

Implement parallel operations and training: If there is a replacement system for
the software product to be retired, it is installed in an operational environ-
ment to run concurrently with the old system. By running the new and the
old system in parallel, users will get an opportunity to become familiar with
the new system so that transition from the old to the new system becomes
smoother. In addition, this will create an environment for the maintainer to
compare and understand the input/output relationships between the new sys-
tem and the old system. In addition, training is provided to the users during this
period.

Notification of completion: The maintainer notifies all the sites that the new
system will become operational and that the old system can be shut down. The
old system is generally shut down after the the new system is in operation for a
certain length of time. The maintainer performs the following steps as part of the
task:

1. Make an announcement about the changes.

2. Identify issues specific to individual sites and describe how those will be
resolved.

SOFTWARE CONFIGURATION MANAGEMENT 111

3. Store the old data and software in an archive.

4. Disconnect and move out the old hardware infrastructure.

Data archival: Data associated or used with the old environment will be made
accessible according to contractual requirements involving data protection and
audit. The maintainer executes the following steps as part of this task:

1. Archive the old data and software.

2. Make multiple copies of the old data and software.

3. Keep the media in safe places.

3.8 SOFTWARE CONFIGURATION MANAGEMENT

Large, complex systems undergo many more changes than relatively small systems,
and management of changes in large systems is nontrivial. Therefore, the concept of
CM was developed to manage changes in large systems.

The goal of CM is to manage and control the numerous corrections, extensions,
and adaptations that are applied to a system over its lifetime. It handles the control
of all product items and changes to those items. On the other hand, SCM is applied
to software products. In this case the product items include document, executable
software, source code, hardware, and disks. SCM has been defined by Bersoff, Hen-
deson, and Siegel [30] as the discipline of identifying the configuration of a system at
discrete points in time for the purpose of systematically controlling changes to this
configuration and maintaining the integrity and traceability of this configuration
throughout the system life cycle. SCM accrues two kinds of benefits to an organization
as follows:

� SCM ensures that development processes are traceable and systematic so that
all changes are precisely managed. Consequently, the product is always in a
well-defined state [31].

� SCM enhances the quality of the delivered system and the productivity of the
maintainers.

CM is an essential part of software development and maintenance environment. It
ensures that the released software is not contaminated by uncontrolled or unapproved
changes. The objectives of SCM are to:

� Uniquely identify every version of every software at various points in time.
� Retain past versions of documentations and software.
� Provide a trail of audit for all modifications performed.
� Throughout the software life cycle, maintain the traceability and integrity of the

system changes.

112 EVOLUTION AND MAINTENANCE MODELS

Projects benefit from effective SCM as follows [32]:

1. Confusion is reduced and order is established.

2. To maintain product integrity, the necessary activities are organized.

3. Correct product configurations are ensured.

4. Quality is ensured and better quality software consumes less maintenance
efforts.

5. Productivity is improved, because analysts and programmers know exactly
where to find any piece of the software.

6. Liability is reduced by documenting the trail of actions.

7. Life cycle cost is reduced.

8. Conformance with requirements is enabled.

9. A reliable working environment is provided.

10. Compliance with standards is enhanced.

11. Accounting of status is enhanced.

3.8.1 Brief History

A need for CM was originally felt in the aerospace industry in the 1950s with the
primary purpose of guaranteeing reproducibility of aircrafts and managing engi-
neering changes (ECs). In the 1970s, large-scale computer software began to pose
many of those same change management problems. It became apparent that software
maintenance engineers could borrow CM techniques from the aerospace industry to
manage software modifications. In the beginning, punch cards with different colors
were used to indicate changes. In the late 1960s, to indicate changes to the UNIVAC-
1100 EXEC-8 operating system, maintenance personnel used “corrective cards.” At
that time, development of operating systems benefited from SCM. In the 1970s and
the 1980s, SCM emerged as a distinct discipline. With the advancements in user-
friendly software development environments, namely, Unix, specialized computer
software tools were built. For example, the Unix-based software tool Make [33]
accepts descriptions of system configurations and can automatically construct the
system from its descriptions. The source code control system (SCCS) [34] and the
revision control system (RCS) [35] tools permit the maintainer to keep track of all
the textual alterations made to a file.

Gradually, software products became candidates for configuration control. This
resulted in a need to manage user workspaces, which was duly supported by newer
SCM systems. In other words, SCM functionalities continued to evolve. Instead of
storing the entire versions of software products, in the 1980s, delta algorithms based
on text matching were developed to enable SCM tools to store just the differences
among versions. In the 1990s, developers felt an increasing need to manage nontextual
objects. Consequently, novel algorithms were developed for efficient storage and
retrieval of nontextual objects. By the year 2000, due to disk storage becoming
inexpensive, CPUs becoming fast, and nontextual objects becoming common, the
storage of deltas became unimportant and many new tools simply used compression

SOFTWARE CONFIGURATION MANAGEMENT 113

such as zip. These days SCM systems support the management of evolution of a broad
range of software systems that are being modified by a large number of maintenance
personnel working in different countries and utilizing a variety of machines.

3.8.2 SCM Spectrum of Functionality

These days a broad range of high-level functionalities are supported by SCM systems.
Estublier et al. [31] classified the functionalities into three broad areas: product, tool,
and process. Next, each area is decomposed into a number of technical dimensions
as shown in Figure 3.24. Those technical dimensions are briefly explained in the
following.

Identification. The items whose configurations need to be managed are identi-
fied in this function. The identified items include specification, design, documents,
data, drawings, source code, executable code, test plan, test script, hardware compo-
nents, and components of the software development environment, namely, compilers,
debuggers, and emulators. Project plan and customer requirements should also be
included. To accurately identify products, including their configuration and version
levels, a schema of names and numbers is designed. Finally, for all configuration
items and systems, a baseline configuration is established. If there is a need to make
changes to the baseline, it is done so with the concurrence of the configuration control
organization.

Version control. To avoid confusion during the process of artifact evolution, a new
identifier is assigned to the artifact every time the artifact is modified. It is important
to note that assigning a new identifier for every modification of the same artifact may
hide important relations among the uniquely identified artifacts. As an example, one
may be interested in recording a fact that a given artifact fixes a subset of defects

Product

Tool

Process

SCM functionalities

Identification

Version control

System models and

selection

Workspace control

Building

Change management

Status accounting

Auditing

FIGURE 3.24 Technical dimensions of SCM systems

114 EVOLUTION AND MAINTENANCE MODELS

found in an earlier release. The aforementioned kind of relation can be recorded by
means of the version control (VC) functionality of SCM by: (i) interpreting software
artifacts as configuration items and (ii) identifying the relations, if there is any, among
the configuration items.

The basic VC idea is to have two separate files: master copies and working copies.
The former is stored in a centralized repository. Software developers check out
working copies from the repository, modify the working copies, and, finally, check
in the working copies into the repository. Checking in a file means committing to
the changes made to the working copies. The VC system creates a new version in
the repository every time a file is committed. As time passes, all versions of the file are
stored in the repository. Storing multiple copies of a file does not excessively waste
space. Therefore, storing many copies of a file does not excessively waste storage
space. Conflicts can arise if many software developers want to use the same version of
a file. However, conflicts can be resolved by means of two techniques: lock-modify-
unlock and copy-modify-merge [36]. The former model requires developers to obtain
a lock on the file they want to modify. While a developer is holding the lock on a file,
no other developer can modify the file. However, it may be noted that a locked file
can be checked out for viewing and compilation. When there is no need to further
keep a file locked, the developer commits the modifications and the lock is released.
On the other hand, developers are at liberty to change their working copies in the
copy-modify-merge model. If different developers make conflicting changes, the VC
system flags the conflicts so that the developers can resolve them.

In addition, VC must support parallel development by allowing branching of ver-
sions. For example, consider the scenario: (i) an organization is currently developing
the next version of their already released application; and (ii) a report about a major
defect is received from the end users. Now the development group has the option
to retrieve the released version and create a branch, as illustrated in Figure 3.25, to
fix the defect. The figure illustrates how a file evolves with two branches, where the
main path is called trunk. As shown in the figure, branch changes are incorporated
by merging with the trunk.

System models and selection. Files are discrete entities that contain descriptions of
well-defined items of a project, namely, requirement specification, test cases, design,
code, test results, and defect reports. However, it is neither efficient nor effective
to manage a project file-by-file. Consequently, a need to support aggregate artifacts
arises so that maintenancex personnel can enforce consistency in large projects by

1.0 1.2 1.2

1.2.1 1.2.2 1.2.3

1.3

Trunk

Branch
Merge

FIGURE 3.25 An evolution of a file with two branches

SOFTWARE CONFIGURATION MANAGEMENT 115

means of relationships among artifacts and attributes. Relationships among artifacts
and attributes are captured by developing models which support the idea of software
configurations. Intuitively, a configuration means an aggregate of versionable items.
The general idea of configuration raises a need for enabling users to have selective
access to parts and versions of such aggregated artifacts. By default, SCCS and RCS
keep in the workspace the most recent version of the principal variant. Next, all
artifacts that are exceptions to the default placement rule can be explicitly fetched
by the user.

Workspace control. Workspaces are implemented by SCM systems to give users an
isolated place. In their own workspaces, users perform the usual tasks of editing and
managing their artifacts. Such an environment that enables the maintainer to make
and test the changes in an isolated manner is called workspace. In an SCM system,
software versions are stored in a repository that cannot be directly modified. Rather,
when a need to modify some files arises, the files are copied into a workspace. One
can realize a workspace in two ways: (i) it can be as simple as the home directory of
the programmer who wants to modify the files and (ii) it can be a complex mechanism
such as an integrated development environment and a database. In general, three basic
functions are performed in a workspace:

� Sandbox: Checked out files are put in a workspace to be freely edited. In
addition, it is not necessary to lock the original files in the repository.

� Building: An SCM system generally stores the differences between successive
versions to save space. Therefore, the workspace expands the deltas into full-
fledged source files. In addition, the workspace stores the derived binaries.

� Isolation: Every developer maintains at least one workspace. Therefore, the
developer makes modifications to the source code, compiles the files, performs
tests, and debugs code without impacting the works of other developers.

The aforementioned features are generally available in modern software develop-
ment environments. SCM systems provide a centralized facility to manage these
features.

Building. Efficiency is a key requirement of SCM systems so that developers can
quickly build an executable file from the versioned source files. A second requirement
of SCM systems is that it must enable the building of old versions of the system for
recovery, testing, maintenance, or additional release purpose. Third, most SCM sys-
tems support building of software. The build process and their products are assessed
for quality assurance. Outputs of the build process become quality assurance records,
and the records may be needed for future reference. The make [33] application on the
Unix operating system, originally developed by researchers at Bell Laboratories, is a
classical example of a build process. The tool continues to remain popular for system
building. For instance, commercial SCM systems such as ClearCase [37] continue
to rely on variants of make.

Change management. SCM systems must: (i) enable users to understand the
impact of modifications; (ii) enable users to identify the products to which a specific

116 EVOLUTION AND MAINTENANCE MODELS

modification applies; and (iii) provide maintenance personnel with tools for change
management so that all activities from specifying requirements to coding can be
traced. In the beginning, CRs were managed in paper form. However, these days
CRs are saved in the SCM repository and are linked with the actual modifications, in
addition to being automated. This topic is further discussed in Section 3.9.

Status accounting. To be able to quantify the properties of the software being
developed and the process being used, it is necessary to gather statistics—and it can
be done at the SCM level. The primary purpose of status accounting is to: (i) keep
formal records of already existing configurations and (ii) produce periodic reports
about the status of the configurations. These records: (i) describe the product correctly;
(ii) are used to verify the configuration of the system for testing and delivery; and (iii)
maintain a history of CRs, including both the approved ones and the rejected ones.
A history of CR includes the answers to the following questions:

� Why are changes made?
� When are the changes made?
� Who makes the changes?
� What changes are made?

Status accounting is useful in communicating important details of the project and
configuration items to the stakeholders of the project. For example, maintenance
personnel can view what files or fixes were part of what baseline systems. Another
example is that project managers can trace completion of problem reports. Status
accounting reduces the need to produce extensive reports, which include item delta
report, transaction log, and modification log. Other common reports include resource
usage, change in process, change in deviations, and status of all configuration items
[38]. Examples of status accounting include the number of CR per software configu-
ration item and the average time needed to implement a CR.

Auditing. SCM systems need to provide the following features: (i) roll back to
earlier stable points and (ii) identify which modifications were performed, why those
modifications were performed, and who performed those modifications. In other
words, ideally, an SCM system behaves as a searchable archive of all things that
happened in the past. By means of auditing, the organization maintains the integrity
of the baselines and release configurations for all products. Two kinds of audits
are performed before a software is released: audit for functional configuration and
audit for physical configuration. The former determines whether or not the software
satisfies the user requirement specification and the system requirement specification.
On the other hand, the latter verifies if the reference and design documents accurately
represent the software. Overall, a configuration audit tries to find answers to the
following:

� To what extent are the requirements satisfied by the modified system?
� Does the software release under consideration reflect the MRs?

SOFTWARE CONFIGURATION MANAGEMENT 117

The activities to perform a configuration audit are as follows:

� Procedures and an audit schedule are defined.
� The personnel to perform the audits are identified.
� Established baselines are audited.
� Audit reports are generated.

3.8.3 SCM Process

There is a large gap between mere understanding of the capabilities of SCM and
successfully applying SCM in practice. As it is the case with large software projects,
planning is critical to the successful application of SCM. By means of a plan, a
configuration baseline is established. Baselining is the process by which a given set
of configurable items formally become publicly available at a standard location, such
as in a repository, to the people who are authorized to use it. Following the identi-
fication of the initial configuration, a configuration control process, as illustrated in
Figure 3.26 [32], is invoked. Figure 3.26 shows the three major SCM implementation
activities: planning, baseline development, and configuration control.

Planning. Planning is begun with two activities: (i) defining the SCM process
and (ii) establishing procedures to control and document changes. A key step during
planning is the identification of the stakeholders. All those who influence a system’s
behavior and all those who are impacted by the system are stakeholders of the
system [39]. The stakeholders in a CM are the maintainers, development engineers,
sustaining test engineers, quality assurance auditors, users, and the management. The

Define SCM
process

Identify
stakeholders

Develop or procure
SCM tools

Plan SCM program

Identify items to
control

Identify baselines Develop schema
of identifiers

Establish baselines

Evaluate proposed
changes and approve/

disapprove

Track approved
changes to

closure

Update baselines
and history—

publish reports

Audit—compare
with documented

configuration

Control, document and audit configuration

FIGURE 3.26 A process for implementing SCM

118 EVOLUTION AND MAINTENANCE MODELS

stakeholders are also known as configuration control board (CCB) members. Not
all changes are reviewed by the board. Rather, small groups review and approve
most of the changes. Therefore, those groups need to be identified in the planning
phase. Various SCM tools are used to maintain configuration history and facilitate
the SCM process flow. Examples of such tools are concurrent version system (CVS)
and Clearcase [37].

Establishing baselines. Once an SCM program plan is in place, the next step in
implementing effective SCM is to identify the items that are the subject of configura-
tion control. Some examples of those items are code, data, and documents. With the
configuration items identified, a software baseline library is established to make the
set of configurable items publicly available. The library, called repository, is the heart
of the SCM system. The repository is the central place that contains all configurations
that have been made public. In other words, the repository has information about all
the baselined items. The process of baseline (or re-baseline for a change) involves
the following activities:

1. Create a snapshot of the current version of the product and its configuration
items and allocate a configuration identifier to the entire configuration.

2. Allocate version numbers to the configuration items and check in the configu-
ration.

3. Store the approved authority information as part of meta data in the repository.

4. Broadcast all the above information to the stakeholders.

5. To accurately identify the configuration version, design a schema of words,
numbers, or letters for common types of configuration items. In addition, project
requirements may dictate specific nomenclature.

Controlling, documenting, and auditing. After establishing a baseline, it is important
to: (i) keep the actual and the documented configuration identical and (ii) ensure that
the baseline complies with a project’s configuration described in the requirements
document. The aforementioned requirements of a baseline are realized by means of a
four-step iterative process illustrated in Figure 3.26. The stakeholders specified in the
SCM plan review and evaluate all changes to the configuration. After their evaluations,
both approvals and disapprovals are documented. Approved changes are tracked until
they are verified—and this is discussed in Section 3.9. Next, the appropriate baseline
is revised in conjunction with all relevant documents, and reports are generated. At
regular intervals, records and products are audited to verify that:

� there is acceptable matching between the documented configuration and the
actual configuration;

� the configuration conforms with the requirements of the project; and
� documentations of all change activities are complete and up-to-date.

The three steps in the cycle, namely, controlling, documenting, and auditing, are
repeatedly executed throughout the lifetime of the project.

CR WORKFLOW 119

3.9 CR WORKFLOW

A CR, also called an MR, is a vehicle for recording information about a system defect,
requested enhancement, or quality improvement. In other words, defect reports or
enhancement requests are documented as a CR. CRs are placed under the control of
a change management system. Change management systems control changes by an
automated system in the form of workflow. The basic objective of change management
is to uniquely identify, describe, and track the status of each requested change. It is a
methodology for controlling changes to evolving systems. The objectives of change
management are as follows [1]:

� Provide a common method for communication among stakeholders.
� Uniquely identify and track the status of each CR. This feature simplifies

progress reporting and provides better control over changes.
� Maintain a database about all changes to the system. This information can be

used for monitoring and measuring metrics.

A CR describes the desires and needs of users which the system is expected to
implement. While describing a CR, two factors need to be taken into account:

� Correctness of CRs: CRs need to be unambiguously described so that it is
easy to review them for their correctness. The “form” of a CR is key to effec-
tive interactions between the software development organization and the users.
The “form” should document essential information about changes to software,
hardware, and documentation.

� Clear communication of CRs to the stakeholders: CRs need to be clearly com-
municated to the stakeholders, including the maintainers, so that those CRs are
not interpreted in a different way. The people who might be collecting CRs may
not be part of the maintenance group. For example, the marketing people may
be collecting CRs. Therefore, there may not be direct communication between
the teams actually carrying out the changes to the system and the end users.

It becomes counterproductive for different teams to interpret CRs differently. The
results of interpreting a CR in different ways are as follows:

� The team carrying out actual changes to the system and the team performing
tests may develop contradicting views about the new system’s quality.

� The changed system may not meet the needs and desires of the end users.

CRs need to be represented in an unambiguous manner and made available in a
centralized repository. Wide availability of CRs to all the stakeholders is likely to
reveal differences in interpretations by different groups.

Next, a formal model is described to represent CRs for analysis and review.
The life cycle of a CR has been illustrated in Figure 3.27, by means of a state-
transition diagram. Each state represents a distinct stage in the life-cycle of a CR.

120 EVOLUTION AND MAINTENANCE MODELS

Submit

Review Analysis

Commit

ImplementVerification

Closed

Decline

FIGURE 3.27 State transition diagram of a CR

The model shows the evolution of a CR via the following major states: Submit,
Review, Analysis, Commit, Implement, Verification, and Closed. Specific actions are
associated with each state, and the state of a CR is updated upon the completion of
those actions. For several reasons, the status of a CR is changed to the Decline state
from Review, Analysis, Implement, and Verification. For instance, the marketing team
may conclude that realization of a CR may not fetch more business. The motivation
for describing CRs by means of state diagrams is to enable their easy tracking. For
ease of implementation and management of CRs, a general schema, as shown in
Table 3.9, can be used. Once such a schema is implemented with a back-end database
and a front-end graphical user interface, CRs can be stored in a database. Later, for
the purposes of tracking and reporting the status of the CRs, queries are generated.

Submit state. This is the initial state of a newly submitted CR. Usually, end users,
customers, and marketing managers are the prime sources of CRs. When a new CR
is filed, the following fields, described in Table 3.9, are instantiated:

change_request_id

priority

description

maintenance_type

component

note

product

customer

Based on the priority level of a CR, it is moved from Submit to Review. Usually, a
marketing manager assumes the responsibility of this initial handling of a CR, and
he becomes the ”owner” of the CR.

CR WORKFLOW 121

TABLE 3.9 Change Request Schema Field Summary

Field Name Description

change_request_id A unique identifier of the CR
title A concise summary of the CR
description A short description of the CR
maintenance_type Classification of the maintenance type in terms of a member

of {Corrective, Adaptive, Perfective, Preventive}
product Product name
component Component where the change is needed, or where the

problem occurred
state Present state of the CR in terms of a member of {Submit,

Review, Analysis, Commit, Implementation, Verification,
Closed, Declined}

customer Name of the customer making the CR
problem_origin The origin of the problem
impacts Components that are affected by a change and its ripple effect
resolution Documentation of what was changed, how, and why
note Additional information provided by the submitter for

subsequent decision making
software_release The version number of the product release in which the CR is

likely to be effective
committed_release The version number of the product release in which the CR

will be effective
priority Priority of CR, which is an element of a set, namely,

{normal, high}
severity Severity of CR, which is an element of a set, namely,

{normal, critical}
marketing_justification The business justification for the CR to exist
time_to_implement The time, in person-week, required to effect the change
eng_assigned The engineering personnel assigned to analyze the CR
functional_spec_title Title of the specification for functional requirements
functional_spec_name Name of the file describing the functional requirements
functional_spec_version This is the most recent version number of the specification of

functional requirements
decline_note The reason for declining the CR
ec_number The identifier of the EC document
attachment Attachment to further describe the CR (if any)
tc_id Identifiers of test cases used in effecting the CR
tc_results The result of testing: {Untested, Passed, Failed Blocked,

Invalid}
verification_method Record the methods of verification of the CR: analysis,

testing, inspection, and/or demonstration
verification_status The verification state of the CR: passed, failed, or incomplete
compliance The level of compliance:{Non-compliance, Partial

Compliance, or Compliance}
(continued)

122 EVOLUTION AND MAINTENANCE MODELS

TABLE 3.9 (Continued)

Field Name Description

testing_note Reports from the test personnel, possibly describing the
demonstration given to the customers, analysis performed
on the change, or inspection of the code performed by test
personnel

defect_id Defect identifier
If “Failed” is assigned to the tc_results field, the defect

identifier is associated with the failed test to indicate the
defect causing the failure.

The defect identifier is obtained from test database.

Review state. Generally, a manager for marketing handles the CR in the Review
state by coordinating the following activities:

� It is possible that the newly generated CR is a duplicate of an existing CR. If it
is found to be a duplicate of an existing CR, the request is moved to the Decline
state with a short explanation and a link to the original CR. Should there be any
ambiguity in the description of the CR, the submitter is asked to provide more
details, which are recorded in the note and the description fields.

� Accept the assigned priority level of the CR or modify it.
� Re-evaluate the maintenance_type of the CR initially estimated by the submitter,

and accept or modify it.
� Determine the level of severity of the CR: normal and critical. If it is critical,

then the upper management may want to complete the review immediately. Note
that a severity level and a priority level are independently assigned.

� To reflect the CR, determine a software release.
� Give a marketing rationale for the CR.
� For further actions, the CR is moved to the Analysis state.

In summary, the following fields are updated in the Review state:

priority

severity

maintenance_type

decline_note

software_release

marketing_justification

description and

note

CR WORKFLOW 123

Analysis state. In this stage, impact analysis is conducted to understand the CR
and to estimate the time required to implement it. In addition, a high-level functional
specification for the CR is prepared. If it is decided that it is not possible or desirable
to implement the CR, then Decline becomes the next state of the CR. Otherwise,
the CR is moved to the Commit state. In the Commit state, the program manager
controls the CR by becoming its owner. While in the Analysis state, the owner, who
is typically the director of software engineering, updates the following fields:

component

problem_origin

impacts

time_to_implement

attachment

functional_spec_title

functional_spec_name

functional_spec_version

eng_assigned

Commit state. The CR continues to stay in the Commit state before it is committed to
a specific release of the product. In this state, the program manager is the owner of
the CR. All the CRs that are desired to be in a specific software release are reviewed.
Some CRs may be re-assigned to a later release after consultations with customers,
the marketing division, and the director of software engineering. After committing
a CR to a particular release, the CR is moved to the Implement state and all the
functional specifications are frozen for development and test design purposes. In the
Commit state: (i) the engineering team begins modifying the software component
documentation, namely, data and control flow diagrams and schematics; (ii) test
personnel review the CR and the associated functional specification to ensure that
the CR is testable; (iii) test personnel write new test cases for the CR; and (iv) test
personnel select regression tests. Committed_release is the only field updated in the
Commit state.

Implement state. The Implement stage is controlled by the director of software
engineering. A number of different scenarios can occur in this stage as follows:

� The CR can be declined if its implementation is infeasible.
� If the CR is infeasible in its current form, the director of software engineering

may assign an EC number and provide an explanation, and the EC document
is linked with the CR definition. Table 3.10 shows how to organize an EC
document.

� If the CR or its modified version is doable, the software engineering group writes
code and performs unit tests. The CR is moved from Implement to Verification
after the product is available for system-level testing.

124 EVOLUTION AND MAINTENANCE MODELS

TABLE 3.10 Engineering Change Document Information

EC number A unique number.
Requirement(s) affected Identifiers of CRs and their titles.
Description of problem/issue Brief description of the issue.
Description of change required Description of changes needed to the original CR

description.
Secondary technical impact Description of the impact the EC will have on the system.
Customer impacts Description of the impact the EC will have on the end

customer.
Change recommended by Name of the engineer(s).
Change approved by Name of the approver(s).

Source: From Reference 24. © 2008 John Wiley & Sons.

In the Implement state the following fields are updated:

decline_note

ec_number

attachment

resolution

Verification state. In the Verification state, activities are largely controlled by the
sustaining test manager. To assign a test verdict, verification can be performed by
one or more methods: demonstration, analysis, inspection, and testing. If verification
is performed by testing, then the software is executed with a set of tests. Inspection
means reviewing the code to detect defects. Analysis is performed by means of
statistical and/or mathematical tools. Demonstration implies showing the system
in a live operation. A status of verification is provided in terms of the degree of
compliance of the modified system to the CR: noncompliance, partial compliance, or
full compliance. If the testing method is not used, then a note explains the details of
the demonstration, the inspection, and/or the analysis performed.

Shortfalls in the realization of the CR, in the form of incomplete and even partly
accurate implementation, are specified in an EC document. It is very difficult to correct
any deviations or errors discovered at this stage. Therefore, a pragmatic approach
to dealing with the deficiency is to produce an EC document, after negotiating
with the customer, to revise the CR, and possibly generate a new CR for future
considerations. As an extreme decision, the sustaining test manager may decline
to accept the modifications made to the code an EC number and an explanation,
followed by a state change to Decline. On the other hand, after ensuring that the
implementation passed the required tests, the sustaining test manager moves the CR
to the Closed phase. In the Verification state, the following fields are instantiated:

decline_note

ec_number

attachment

SUMMARY 125

verification_method

verification_status

compliance

tc_id

tc_results

defect_id

testing_note

Closed state. After successfully verifying that the CR has been incorporated into
the software, the CR is moved from Verification to the Closed state. This is done by
the owner of the CR in the Verification state who is, in general, the sustaining test
manager.

Decline state. The Decline state is controlled by the marketing department. Due
to one or more of the following causes, a CR happens to be in this state:

� Because of insufficient business impact of the CR, the marketing department
decides to reject the CR.

� It is technically infeasible to implement the CR.
� The sustaining test manager concludes that changes made to the software to

effect the CR could not be satisfactorily verified. An explanation is provided in
the form of an EC number.

The CR may be moved to Submit by the marketing group after negotiating with the
customer. Negotiations with the customer may lead to a reduction in the scope of the
CR. The EC information is used as a basis for negotiation with the customer.

3.10 SUMMARY

This chapter began with three well-known reuse-oriented paradigms: quick fix, iter-
ative enhancement, and full reuse. All the three models assume that a set of docu-
ments completely and accurately describe the existing system. The first model makes
the necessary changes to the code first, followed by changes to the relevant doc-
umentations. The second model modifies the top-level documents impacted by the
modifications and then propagates those changes down to the code level. The third
model builds a new system from components of the old system and other components
available in the repository.

Next, we studied a simple staged model for CSS development, which comprises
five major stages: Initial development, Evolution, Servicing, Phaseout, and Close-
down. In this view software life cycle, maintenance is actually a series of distinct
stages, each with different activities. The software evolution process is the backbone
of the model. It continues in an iterative fashion and eventually produces the next
version of the software. We discussed its applicability to FLOSS systems model. The

126 EVOLUTION AND MAINTENANCE MODELS

model benefits developers to characterize FLOSS systems in terms of stages, and
identify the current stage of a system and the new stage to which it is more likely
to move. Three major differences between CSS and FLOSS systems were identified
and discussed.

Next, we described an evolutionary model known as change mini-cycle, which
consists of five major phases: CR, analyze and plan change, implement change, verify
and validate, and document change. In this model, several interesting activities were
identified, such as program comprehension, impact analysis, refactoring, and change
propagation, which continue to be the subjects of intense research.

With the three evolution models in place, we examined two standards: IEEE/EIA
1219 and ISO/IEC 14764. Both the standards describe the process for managing and
executing software maintenance activities. Next, we discussed the management of
system evolution by focusing on SCM. Next, a state-transition model was given to
monitor individual CRs as those move through the software organization. Certain
actions are completed in each state of the model. Finally, a sample schema to manage
CRs was presented in detail.

LITERATURE REVIEW

In the classical Waterfall model for software development proposed by Royce in
circa 1970 [40], the final phase is Operation and Maintenance. This model considers
software maintenance as another task of software development. On the other hand,
J. R. McKee, in his article “Maintenance as a function of design,” AFIP National
Conference Proceeding, 53, 1984, pp. 187–193, suggests software maintenance to be
2nd, 3rd,… , nth round of development. In this regard it is worth quoting Norman
Schneidewind from his article “The state of software maintenance,” IEEE Transac-
tions on Software Engineering, 13(3), 1987, pp. 303–309: “The traditional view of
the software life cycle has done a disservice to maintenance by depicting it solely as
a single step at the end of the cycle” (p. 304). Victor Basili [2] argues that software
maintenance is continued development, using the same knowledge, methods, and
tools used for software development. Based on this view he developed the reuse-
oriented software development process. A more complicated idea of using SDLC is
proposed by Barry Boehm (“Software engineering,” IEEE Transaction on Comput-
ers, December 1976, pp. 1226–1241) based on his spiral model [41]. Ned Chapin, in
his article “Software maintenance life cycle,” Proceedings of Conference on Software
Maintenance, Phoenix, Arizona, IEEE Computer Society Press, Los Alamitos, CA.
1988, pp. 6-13, argued that the SDLC model is not compatible with a software main-
tenance model. The use of SDLC will generate an inappropriate expectation set of
metric requirements, such as effort needed, selection of tools, management support,
and complexity of relevant task. Therefore, he prefers software maintenance to have
its own SMLC model.

A number of proposals based on the SMLC model have been published with some
variations among them. Three common features of SMLC models found in literature

LITERATURE REVIEW 127

are: (i) understanding the code; (ii) modifying the code; and (iii) revalidating the
software. In the following we list up those advocating the SMLC model:

G. Parikh. 1982. ‘The world of software maintenance. In: Techniques of Program and System
Maintenance (Ed. G. Parikh), pp. 9–13. Little, Brown and Company, Boston, MA.

J. Martin and C. L. McClure. 1983. Software Maintenance: The Problem and Its Solution.
Prentice-Hall, Englewood Cliffs, NJ.

S. Chen, K. G. Heisler, W. T. Tsai, X. Chen, and E. Leung. 1990. A model for assembly
program maintenance. Journal of Software Maintenance: Research and Practice, March,
3–32.

D. R. Harjani and J. P. Queille. 1992. A Process Model for the Maintenance of Large Space
Systems Software. Proceedings of Conference on Software Maintenance, November 1992,
Orlando, FL. IEEE Computer Society Press, Los Alamitos, CA. pp. 127–136.

W. K. Sharpley. 1977. Software Maintenance Planning for Embedded Computer Systems.
Proceedings of the IEEE COMPSAC, November 1977, IEEE Computer Society Press, Los
Alamitos, CA, pp. 520–526.

S. S. Yau, R. A. Nicholi, J. Tsai, and S. Liu. 1988. An integrated life-cycle model for software
maintenance. IEEE Transaction on Software Engineering, August, 1128–1144.

S. S. Yau and I. S. Collofello. 1980. Some stability measures for software maintenance. IEEE
Transaction on Software Engineering, November, 545–552.

L. J. Arthur. 1988. Software Evolution: The Software Maintenance Challenge. John Wiley &
Sons, New York, NY, 1988.

The model proposed by Sharpley focused on corrective maintenance activities through
problem verification, problem diagnosis, reprogramming, and baseline revalidation.
On the other hand, Arthur’s model is for corrective, adaptive, and perfective mainte-
nance activities and consisted of several phases: (i) change management; (ii) impact
analysis; (iii) system release planning; (iv) design change; (v) coding; (vi) testing;
and (vii) system release.

Neal Febbraro and V. Rajlich presented an agile model of incremental change
and development process that consists of repeated incremental change (The Role of
Incremental Change in Agile Software Processes. Proceedings Agile, August 2007,
Washington, D.C. IEEE Computer Science Press, Los Alamitos. pp. 92–103. At
Iona Technologies, XP has been used successfully for maintenance of a Corba-
based middleware product called Orbix, as reported in the article (“Using extreme
programming in a maintenance environment,” IEEE Software, November/December,
2001, pp. 42–50) by C. Poole and J. W. Huisman. According to Kent Beck, one of the
proponents of XP, “Maintenance is really the normal state of an XP project” (Extreme
Programming Explained. Addison-Wesley, Reading, MA, 1999).

By following a development process an organization develops new software prod-
ucts, whereas a maintenance process is seen as providing subsequent services. The
line between services and products is not a crisp one. On the one hand, adaptive
maintenance is viewed as a hybrid of services and product. On the other hand, cor-
rective maintenance is a product-intensive service, and software operation can be

128 EVOLUTION AND MAINTENANCE MODELS

considered a pure service. Basically, an intangible set of activities and/or benefits
are bundled and sold as a service by an organization to its customers. Therefore,
to deliver high-quality results from maintenance tasks, two quality dimensions must
be considered: functional quality and technical quality. Maintenance services are
improved by organizations by improving the: (i) technical quality of their work and
(ii) functional quality of software maintenance. In this context it is valuable to read
and practice the process proposed by Niessink and van Vliet in their article “Soft-
ware maintenance from a service perspective,” published in the Journal of Software
Maintenance: Research and Practice, March/April 2000, pp. 103–120. Their process
can be summarized in the form of four items:

1. Customer expectations are translated into maintenance service agreements.

2. Maintenance activities are planned and implemented by using the service agree-
ments as a basis.

3. Planning and procedures guide the maintenance activities.

4. Manage the communication concerning the delivered services.

In addition, it is highly recommended for information technology (IT) professionals
to study the following two standards:

1. The IT Service Capability Maturity Model, Version 1.0RC1, January 28, 2005,
http://www.itservicecmm.org

2. The IT Infrastructure Library (ITIL)—An Introduction, Central Computer
and Telecommunication Agency (CCTA), HMSO books, Norwich, England,
1993.

The British government developed ITIL through CCTA and it was maintained by
the Netherlands IT Examinations Institute (EXIN). ITIL aims at establishing best
standards and practices for IT service delivery. To explain the “best practices” in
the delivery of IT service, nine sets of infrastructure library booklets have been
developed. The nine sets of booklets cover two broad topics: (i) provision of IT
services and management of IT infrastructure and (ii) environment. The former has
been addressed in the first six sets of booklets, whereas the latter in the remaining
three. Cabling, building, and service facilities are part of the environment. The IT
service capability maturity model has much similarities with the Software CMM. IT
services are delivered by installing, maintaining, managing, or operating the IT needs
of a customer. In other words, software maintenance is one element of a whole gamut
of the deliverable IT services.

The software maintenance maturity model SMmm was designed by Alain April
and Alain Abran (Software Maintenance Management: Evaluation and Continu-
ous Improvement. Wiley-IEEE Computer Society Press, April 2008) as a customer-
focused reference model for either (i) auditing the software maintenance capability
of a software maintenance service supplier or outsourcer or (ii) improving internal
software maintenance organizations. It includes 4 process domains, 18 key processes

http://www.itservicecmm.org
http://www.itservicecmm.org

REFERENCES 129

areas (KPAs), 74 roadmaps, and 443 practices. In addition, the reader is recommended
to study the corrective maintenance maturity model article by Mira Kajko-Mattsson,
“Motivating the Corrective Maintenance Maturity Model (CM3). Seventh IEEE Inter-
national Conference on Engineering of Complex Computer Systems, 2001, Skovde,
Sweden. IEEE Computer Society Press, Piscataway, NJ. pp. 112–117.”

Those who are interested in a much detailed treatment of SCM peruse the article
by Estublier, Leblang, Hoek, Conradi, Clemm, Tichy, and Wiborg-Weber (“Impact of
software engineering research on the practice of software configuration management,”
ACM Transactions on Software Engineering and Methodology, 14(4), October 2005,
pp. 383–430). They discussed the evolution of SCM technology, with emphasis on
the impact of industrial and university research.

REFERENCES

[1] L. J. Arthur. 1988. Software Evolution: The Software Maintenance Challenge. John Wiley
& Sons, New York, NY.

[2] V. R. Basili. 1990. Viewing maintenance as reuse-oriented software development. IEEE
Software, January, 19–25.

[3] C. Larman and V. R. Basili. 2003. Iterative and incremental development: a brief history.
IEEE Computer, June, 47–55.

[4] T. Gilb. 1988. Principles of Software Engineering Management. Addison-Wesley, Read-
ing, MA.

[5] G. Visaggio. 1999. Assessing the maintenance process through replicated controlled
experiments. The Journal of Systems and Software, January, 187–197.

[6] V. T. Rajlich and K. H. Bennett. 2000. A staged model for the software life cycle. IEEE
Computer, July, 2–8.

[7] E. Yourdon. 1995. When good enough software is best. IEEE Software, May, 79–81.

[8] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W. G. Tan. 2001. Types of software
evolution and software maintenance. Journal of Software Maintenance and Evolution:
Research and Practice, January/February, 3–30.

[9] A. Capiluppi, J. M. G. Barahona, I. Herraiz, and G. Robles. 2007. Adapting the Staged
Model for Software Evolution to Free/Libre/Open Source Software. IWPSE, September
2007, Dubrovnik, Croatia. ACM, New York. pp. 79–82.

[10] S. S. Yau, J. S. Collofello, and T. MacGregor. 1978. Ripple Effect Analysis of Software
Maintenance. COMPSAC, November 1978, Chicago, Illinois. IEEE Computer Society
Press, Piscataway, NJ. pp. 60–65.

[11] K. H. Bennett and V. T. Rajlich. Software Maintenance and Evolution: A Roadmap.
ICSE, The Future of Software Engineering, June 2000, Limerick, Ireland. ACM, New
York. pp. 73–87.

[12] T. Mens. 2008. Introduction and roadmap: history and challenges of software evolution.
In: Software Evolution (Eds T. Mens and S. Demeyer). Springer-Verlag, Berlin.

[13] R. G. Canning. 1972. That maintenance ‘iceberg’. EDP Analyzer, October, 1–14.

[14] A. V. Mayrhauser and A. M. Vans. 1995. Program comprehension during software
maintenance and evolution. IEEE Computer, August, 44–55.

130 EVOLUTION AND MAINTENANCE MODELS

[15] V. T. Rajlich and N. Wilde. 2002. The Role of Concepts in Program Comprehension.
IWPC, June 2002, Paris, France. IEEE Computer Society Press, Piscataway, NJ. pp.
271–278.

[16] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster. 1994. Program understanding and
the concept assignment problem. Communications of the ACM, May, 72–82.

[17] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. 2000. Identifying the Start-
ing Impact Set of a Maintenance Request: A Case Study. CSMR, February 2000,
Zurich, Switzerland. IEEE Computer Society Press, Los Alamitos, CA. pp. 227–
230.

[18] S. A. Bohner and R. S. Arnold. 1996. Software Change Impact Analysis (Eds S. A.
Bohner and R. S. Arnold). IEEE Computer Society Press, Los Alamitos, CA.

[19] W. P. Stevens, G. J. Myers, and L. Constantine. 1974. Structured design. IBM Systems
Journal, 13(2), 115–139.

[20] D. P. Freedman and G. M. Weinberg. 1981. A checklist for potential side effects
of a maintenance change. In: Techniques of Program and System Maintenance (Ed.
G. Parikh), pp. 93–100. QED Information Sciences Inc., Wellesley, MA, USA.

[21] T. Mens. 2004. A survey of software refactoring. IEEE Transactions on Software Engi-
neering, February, pp. 126–139.

[22] V. T. Rajlich. 1997. A Model for Change Propagation Based on Graph Rewriting. ICSM,
October 1997, Bari, Italy. IEEE Computer Society Press, Los Alamitos, CA. pp. 84–91.

[23] A. E. Hassan and R. C. Holt. 2004. Predicting Change Propagation in Software System.
ICSM, September 2004, Chicago, Illinois. IEEE Computer Society Press, Los Alamitos,
CA. pp. 284–293.

[24] S. Naik and P. Tripathy. 2008. Software Testing and Quality Assurance: Theory and
Practice. John Wiley & Sons, Hoboken, NJ. pp. 93–100.

[25] IEEE Standard 1219-1998. 1998. Standard for Software Maintenance. IEEE Computer
Society Press, Los Alamitos, CA.

[26] SWEBOK. 2004. Guide to the Software Engineering Body of Knowledge. IEEE Computer
Scociety Press, Los Alamitos, CA.

[27] ISO/IEC 14764:2006 and IEEE Std 14764-2006. 2006. Software Engineering - Software
Life Cycle Processes - Maintenance. Geneva, Switzerland.

[28] T. M. Pigoski. 1996. Practical Software Maintenance. John Wiley & Sons, New York,
NY.

[29] ISO/IEC 12207:2006 and IEEE Std 12207-2006. 2008. System and Software Engineering
- Software Life Cycle Processes. Geneva, Switzerland.

[30] E. Bersoff, V. Henderson, and S. Siegel. 1980. Software Configuration Management—An
Investment in Product Integrity. Prentice Hall, Englewood Cliffs, NJ.

[31] J. Estublier, D. Leblang, A. V. Hock, R. Conradi, G. Clemm, W. Tichy, and D. Wiborg-
Weber. 2005. Impact of software engineering research on the practice of software con-
figuration management. ACM Transactions on Software Engineering and Methodology,
October, 383–430.

[32] Software Technology Support Center. 2005. Configuration management fundamentals.
CrossTalk A Journal of Defense Software Engineering, July, 10–15.

[33] S. Feldman. 1979. Make—a program for maintaining computer programs. Software-
Practice and Experience, 9, 255–265.

EXERCISES 131

[34] M. Rochkind. 1975. The source code control system. IEEE Transactions on Software
Engineering, December, 364–370.

[35] W. Tichy. 1985. Rcs—a system for version control. Software-Practice and Experience,
15, 637–654.

[36] P. Louridas. 2006. Version control. IEEE Software, January–February, 104–107.

[37] ClearCase. 2009. IBM Rational, October. Available at http://www.ibm.com/software/
awdtools/clearcase/.

[38] M. Ben-Menachem. 1994. Software Configuration Management Guidebook. McGraw-
Hill, New York, NY.

[39] M. Glinz and R. J. Wieringa. 2007. Stakeholders in requirements engineering. IEEE
Software, March–April, pp. 18–20.

[40] W. W. Royce. 1970. Managing the Development of Large Software System: Concepts
and Techniques. Proceedings of IEEE WESCON, August 1970. pp. 1–9; Republished in
1987 by ICSE, Monterey, CA. 1987, pp. 328–338.

[41] B. W. Boehm. 1988. A spiral model of software development and maintenance. IEEE
Computer, May, 61–72.

EXERCISES

1. Define the terms process, life-cycle, and model.

2. Discuss different ways of changing the following characteristics from one stage
to another stage during the CSS life cycle model.

(a) Staff expertise

(b) Software architecture

(c) Software decay

(d) Economics

3. Discuss the similarities and differences between the staged models of CSS sys-
tems and FLOSS systems.

4. What is the difference between change propagation and change impact analysis?

5. Discuss the role of concept in program comprehension.

6. What is ripple effect? In what way is it different from side effect?

7. Explain why it is important to conduct program comprehension before impact
analysis.

8. What are the advantages of the quick fix model and why is it still used?

9. Explain the differences between the incremental and the iterative development
models?

10. What are the drawbacks of the iterative enhancement model?

http://www.ibm.com/software/awdtools/clearcase/
http://www.ibm.com/software/awdtools/clearcase/

132 EVOLUTION AND MAINTENANCE MODELS

11. Discuss the differences between the iterative enhancement and the full reuse
models.

12. Discuss the major differences between the IEEE 1219 and the ISO/IEC 14764
standards for software maintenance procedure.

13. How would each of the following groups use the information contained in a CR?

(a) Maintainers

(b) Management

(c) Quality assurance auditors

(d) Sustaining test engineers

(e) Customers

14. What are some of the factors that you would think about when reviewing a CR?

15. Why should a maintainer categorize CRs into different groups? What are some
of the factors that should be considered when categorizing those CRs?

4
REENGINEERING

Neither situation nor people can be altered by the interference of an outsider. If they are
to be altered, that alteration must come from within.

—Phyllis Bottome

4.1 GENERAL IDEA

Reengineering is the examination, analysis, and restructuring of an existing software
system to reconstitute it in a new form and the subsequent implementation of the new
form. The goal of reengineering is to:

� understand the existing software system artifacts, namely, specification, design,
implementation, and documentation; and

� improve the functionality and quality attributes of the system. Some examples
of quality attributes are evolvability, performance, and reusability.

Fundamentally, a new system is generated from an operational system, such that
the target system possesses better quality factors. The desired software quality fac-
tors include reliability, correctness, integrity, efficiency, maintainability, usability,
flexibility, testability, interoperability, reusability, and portability [1]. In other words,
reengineering is done to convert an existing “bad” system into a “good” system [2]. Of
course there are risks involved in this transformation, and the primary risks are: (i) the

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

133

134 REENGINEERING

target system may not have the same functionality as the existing system; (ii) the tar-
get system may be of lower quality than the original system; and (iii) the benefits
are not realized in the required time frame [3]. Software systems are reengineered by
keeping one or more of the following four general objectives in mind [4]:

� Improving maintainability
� Migrating to a new technology
� Improving quality
� Preparing for functional enhancement.

Improving maintainability. Let us revisit Lehman’s second law, namely, increasing
complexity: “As an E-type program evolves, its complexity increases unless work is
done to maintain or reduce it.” As systems grow and evolve, the cost of maintenance
increases because changes become difficult and time consuming. Consequently, it is
unrealistic to avoid reengineering in the long run. The system is redesigned with more
explicit interfaces and more relevant functional modules. In addition, both external
and internal documentations are made up-to-date. All those activities lead to better
maintainability of the system.

Migrating to a new technology. Lehman’s first law, namely, continuing change,
states that “E-type programs must be continually adapted, else they become progres-
sively less satisfactory.” A program is continually adapted to make it compatible with
its operating environment. In the fast-paced information technology industry, new—
and sometimes cheaper—execution platforms include new features, which quickly
make the current system outdated, and maybe more expensive. Compatibility of the
newer system with the old one is likely to be an issue, because vendors have less
motivation to provide support for older parts—both software and hardware—that
become incompatible and more expensive. Moreover, as systems evolve, expertise
of employees migrates to newer technologies, with fewer staff to maintain the old
system. Consequently, organizations with perfectly working software that continues
to meet their business needs are forced to migrate to a modern execution platform
that includes newer hardware, operating system, and/or language.

Improving quality. Lehman’s seventh law, namely declining quality, states that
“Stakeholders will perceive an E-type program to have declining quality unless it is
rigorously maintained and adapted to its environment.” As time passes, users make
increasingly more change requests to modify the system. Each change causes “ripple
effects,” implying that one change causes more problems to be fixed. As the system
is continually modified as a result of maintenance activities, the reliability of the
software gradually decreases to an unacceptable level. Therefore, the system must be
reengineered to achieve greater reliability.

Preparation for functional enhancement. Lehman’s sixth law, namely, continuing
growth, states that “The functionality of an E-type program must be continually
increased to maintain user satisfaction with the program over its lifetime.” This
law reflects the fact that all programs, being finite, limit the functionalities to a
finite selection from a potentially unbounded set. Properties excluded by the bounds

REENGINEERING CONCEPTS 135

eventually become a source of performance limitations, dissatisfaction, and error.
These properties in terms of functionalities must be implemented in the application
to satisfy the stakeholders. In general, reengineering is not performed to support more
functionalities of a system; rather, as a preparatory step to enhance functionalities,
a system is reengineered. For example, if the objective is to transform programs
from a procedural to an object-oriented form to distribute them in a client-server
architecture, then, at the same time, plan to reduce the maintenance costs by using a
language such that the system will be more amenable to changes.

4.2 REENGINEERING CONCEPTS

A good comprehension of the software development processes is useful in making
a plan for reengineering. Several concepts applied during software development are
key to reengineering of software. For example, abstraction and refinement are key
concepts used in software development, and both the concepts are equally useful
in reengineering. It may be recalled that abstraction enables software maintenance
personnel to reduce the complexity of understanding a system by: (i) focusing on the
more significant information about the system and (ii) hiding the irrelevant details at
the moment. On the other hand, refinement is the reverse of abstraction. The principles
of abstraction and refinement are explained as follows [5]:

Principle of abstraction. The level of abstraction of the representation of a system
can be gradually increased by successively replacing the details with abstract
information. By means of abstraction one can produce a view that focuses
on selected system characteristics by hiding information about other character-
istics.

Principle of refinement. The level of abstraction of the representation of the system
is gradually decreased by successively replacing some aspects of the system
with more details.

A new software is created by going downward from the top, highest level of
abstraction to the bottom, lowest level. This downward movement is known as for-
ward engineering. Forward engineering follows a sequence of activities: formulating
concepts about the system to identifying requirements to designing the system to
implementing the design. On the other hand, the upward movement through the lay-
ers of abstractions is called reverse engineering. Reverse engineering of software
systems is a process comprising the following steps: (i) analyze the software to deter-
mine its components and the relationships among the components and (ii) represent
the system at a higher level of abstraction or in another form [6]. Some examples
of reverse engineering are: (i) decompilation, in which object code is translated into
a high-level program; (ii) architecture extraction, in which the design of a program
is derived; (iii) document generation, in which information is produced from, say,
source code, for better understanding of the program; and (iv) software visualization,
in which some aspect of a program is depicted in an abstract way.

136 REENGINEERING

Implementation

Design

Conceptual

Requirements
Abs

tra
ct
io
n R

efinem
ent

FIGURE 4.1 Levels of abstraction and refinement. From Reference 5. © 1992 IEEE

The concepts of abstraction and refinement are used to create models of software
development as sequences of phases, where the phases map to specific levels of
abstraction or refinement, as shown in Figure 4.1. The four levels, namely, conceptual,
requirements, design, and implementation, are described one by one below:

� Conceptual level. At the highest level of abstraction, the software is described
in terms of very high-level concepts and its reason for existence (why?). In other
words, this level addresses the “why” aspects of the system, by answering the
question: “Why does the system exist?”

� Requirements level. At this level, functional characteristics (what?) of the system
are described at a high level, while leaving the details out. In other words, this
level addresses the “what” aspects of the system by answering the question:
“What does the system do?”

� Design level. At the design-refinement level, system characteristics (what and
how?), namely, major components, the architectural style putting the compo-
nents together, the interfaces among the components, algorithms, major internal
data structures, and databases are described in detail. In other words, this level
addresses more of “what” and “how” aspects of the system by answering the
questions: (i) “What are the characteristics of the system?” and (ii) “How is the
system going to possess the characteristics to deliver the functionalities?”

� Implementation level. This is the lowest level of abstraction in the hierarchy. At
this level, the system is described at a very low level in terms of implementation
details in a high-level language. In other words, this level addresses “how”
exactly the system is implemented.

In summary, the refinement process can be represented as why? → what? →
what and how? → how? and the abstraction process can be represented as how? →
what and how? → what? → why?

A concept, a requirement, a design, and an implementation of a program usually
denote different levels of abstraction. Moving from one level to another involves
a process of crossing levels of abstraction. Usually a specification is more abstract
than its implementation; therefore, the cycle of abstraction and refinement can be
represented as follows: concrete → more abstract → abstract → highly abstract →

A GENERAL MODEL FOR SOFTWARE REENGINEERING 137

Alteration

A
b
st

ra
ct

io
n

R
e
fin

e
m

e
n
t

Existing system Target system

FIGURE 4.2 Conceptual basis for the reengineering process. From Reference 5. © 1992
IEEE

abstract → less abstract → concrete. Abstraction and refinement are important con-
cepts, and these are useful in reengineering as well as in forward engineering.

In addition to the two principles of abstraction and refinement, an optional principle
called alteration underlies many reengineering methods. The principle of alteration
is defined as follows:

Principle of alteration. The making of some changes to a system representation
is known as alteration. Alteration does not involve any change to the degree
of abstraction, and it does not involve modification, deletion, and addition of
information.

Figure 4.2 shows the use of the three fundamental principles to explain reengi-
neering characteristics. An important conceptual basis for the reengineering process
is the sequence {abstraction, alteration, and refinement}. Reengineering principles
are represented by means of arrows. Specifically, abstraction is represented by an
up arrow, alteration is represented by a horizontal arrow, and refinement by a down
arrow. The arrows depicting refinement and abstraction are slanted, thereby indicat-
ing the increase and decrease, respectively, of system information. It may be noted
that alteration is nonessential for reengineering. Generally, the path from abstraction
to refinement is via alteration. Alteration is guided by reengineering strategies as
discussed in Section 4.3.2.

Another term closely related to “alteration” is restructuring, which was introduced
in Chapter 3 and discussed in Chapter 7. In reengineering context, the term “restruc-
turing” is defined as the transformation from one representation form to another at the
same relative abstract level while preserving the subject system’s external behavior
[6]. Restructuring is often used as a form of preventive maintenance.

4.3 A GENERAL MODEL FOR SOFTWARE REENGINEERING

The reengineering process accepts as input the existing code of a system and produces
the code of the renovated system. On the one hand, the reengineering process may be

138 REENGINEERING

as straightforward as translating with a tool the source code from the given language
to source code in another language. For example, a program written in BASIC can be
translated into a new program in C. On the contrary, the reengineering process may
be very complex as explained below:

� recreate a design from the existing source code;
� find the requirements of the system being reengineered;
� compare the existing requirements with the new ones;
� remove those requirements that are not needed in the renovated system;
� make a new design of the desired system; and
� code the new system.

Founded on the different levels of abstractions used in the development of soft-
ware, Figure 4.3, originally proposed by Eric J. Byrne [5], depicts the processes
for all abstraction levels of reengineering. This model suggests that reengineer-
ing is a sequence of three activities—reverse engineering, re-design, and forward
engineering—strongly founded in three principles, namely, abstraction, alteration,
and refinement, respectively.

A visual metaphor called horseshoe, as depicted in Figure 4.4, was developed
by Kazman et al. [7] to describe a three-step architectural reengineering process.
Three distinct segments of the horseshoe are the left side, the top part, and the right
side. Those three parts denote the three steps of the reengineering process. The first
step, represented on the left side, aims at extracting the architecture from the source
code by using the abstraction principle. The second step, represented on the top,
involves architecture transformation toward the target architecture by using the alter-
ation principle. Finally, the third step, represented on the right side, involves the
generation of the new architecture by means of refinement. One can look at the
horseshoe bottom-up to notice how reengineering progresses at different levels of
abstraction: source code, functional model, and architectural design.

Conceptual

Requirements

Design

Implementation

Conceptual

Requirements

Design

Implementation

(Alteration)

Rethink

Respecify

Redesign

Recode

R
ev

er
se

 e
ng

in
ee

rin
g

(a
bs

tra
ct
io
n)

Forw
ard engineering (refinem

ent)

Existing system Target system

FIGURE 4.3 General model of software reengineering. From Reference 5. © 1992 IEEE

A GENERAL MODEL FOR SOFTWARE REENGINEERING 139

Design

pattern and

styles

Base

architecture

Desired

architecture

Architectural

representation

Functional Level

representation

Code structure

representation

Source text

representation

Concepts Concepts

Architectural

representation

Legacy

source

New system

source

Code structure

representation

Functional level

representationProgram plans

Code

styles

A
rc

h
ite

c
tu

re
 b

a
s
e
d
 d

e
v
e
lo

p
m

e
n
t

A
rc

h
it
e
c
tu

re
 r

e
c
o
v
e
ry

/c
o
n
fo

rm
a
n
c
e

Architecture transformation

FIGURE 4.4 Horseshoe model of reengineering. From Reference 7. © 1998 IEEE

Now, we are in a position to revisit three definitions of reengineering.

� The definition by Chikofsky and Cross II [6]: Software reengineering is the
analysis and alteration of an operational system to represent it in a new form
and to obtain a new implementation from the new form. Here, a new form means
a representation at a higher level of abstraction.

� The definition by Byrne [5]: Reengineering of a software system is a process
for creating a new software from an existing software so that the new system is
better than the original system in some ways.

� The definition by Arnold [3]: Reengineering of a software system is an activity
that: (i) improves the comprehension of the software system or (ii) raises the
quality levels of the software, namely, performance, reusability, and maintain-
ability.

In summary, it is evident that reengineering entails: (i) the creation of a more
abstract view of the system by means of some reverse engineering activities; (ii) the
restructuring of the abstract view; and (iii) implementation of the system in a new
form by means of forward engineering activities. This process is formally captured
by Jacobson and Lindstörm [8] with the following expression:

Reengineering = Reverse engineering + Δ + Forward engineering.

Referring to the right-hand side of the above equation, the first element, namely,
“reverse engineering,” is an activity to create an easier to understand and more
abstract form of the system. The third element, namely, “forward engineering,”
is the traditional process of moving from a high-level abstraction and logical,
implementation-independent design to the physical implementation of the system.

140 REENGINEERING

The second element “Δ” captures alterations made to the original system. Two major
dimensions of alteration are change in functionality and change in implementation
technique. A change in functionality comes from a change in the business rules [9].
Thus, a modification of the business rules results in modifications of the system.
Moreover, change of functionality does not affect how the system is implemented,
that is, how forward engineering is carried out. Next, concerning a change of
implementation technique, an end-user of a system never knows if the system
is implemented in an object-oriented language or a procedural language. Often,
reengineering is associated with the introduction of a new development technology,
for example, model-driven engineering [10]. A variant of reengineering in which
the transformation is driven by a major technology change is called migration.
Migration of legacy information systems (LIS) is discussed in Chapter 5.

Another common term used by practitioners of reengineering is rehosting. Rehost-
ing means reengineering of source code without addition or reduction of features in
the transformed targeted source code [11]. Rehosting is most effective when the user
is satisfied with the system’s functionality, but looks for better qualities of the sys-
tem. Examples of better qualities are improved efficiency of execution and reduced
maintenance costs. To modify a system’s characteristics, alteration is performed at
an abstraction level with much details about the characteristics. For example, if there
is a need to translate the source code of a system to a new programming language,
there is no need to perform reverse engineering. Rather, alteration, that is recod-
ing, is done at the source code level. However, at a higher level of abstraction, say,
architecture design, reverse engineering is involved and the amount of alterations to
be done is increased. Similarly, to respecify requirements by identifying the func-
tional characteristics of the system, reverse engineering techniques are applied to the
source code.

4.3.1 Types of Changes

The model in Figure 4.3 suggests that an existing system can be reengineered by
following one of four paths. The selection of a specific path for reengineering depends
partly on the characteristics of the system to be modified. For a given characteristic to
be altered, the abstraction level of the information about that characteristics plays a key
role in path selection. Based on the type of changes required, system characteristics
are divided into groups: rethink, respecify, redesign, and recode. It is worth noting
that, on the one hand, modifications performed to characteristics within one group do
not cause any changes at a higher level of abstraction. On the other hand, modifications
within a particular group do result in modifications to lower levels of abstraction. For
instance, one requirement is reflected in many design components, and one design
component is realized by a block of source code. Hence, a small change in a design
component may require several modifications to the code. However, the change to the
design component should not influence the requirements. Next, the characteristics of
each group are discussed in what follows.

Recode. Implementation characteristics of the source program are changed by
recoding it. Source code level changes are performed by means of rephrasing and

A GENERAL MODEL FOR SOFTWARE REENGINEERING 141

program translation. In the latter approach, a program is transformed into a program
in a different language. On the other hand, rephrasing keeps the program in the same
language [12].

Examples of translation scenarios are compilation, decompilation, and migration.
By means of compilation, one transforms a program written in a high-level language
into assembly or machine code. Decompilation is a form of transformation in which
high-level source code is discovered from an executable program. In migration,
a program is transformed into a program in another language while retaining the
program’s abstraction level. The language of the new program need not be completely
different than the original program’s language; rather, it can be a variation of the
first language.

Examples of rephrasing scenarios are normalization, optimization, refactoring,
and renovation. Normalization reduces a program to a program in a sublanguage, that
is to a subset of the language, with the purpose of decreasing its syntactic complexity.
Elimination of GOTO and module flattening in a program are examples of program
normalization. Optimization is a transformation that improves the execution time or
space performance of a program. Refactoring is a transformation that improves the
design of a program by means of restructuring to better understand the new program.

Redesign. The design characteristics of the software are altered by redesigning the
system. Common changes to the software design include: (i) restructuring the archi-
tecture; (ii) modifying the data model of the system; and (iii) replacing a procedure
or an algorithm with a more efficient one.

Respecify. This means changing the requirement characteristics of the system in
two ways: (i) change the form of the requirements and (ii) change the scope of the
requirements. The former refers to changing only the form of existing requirements,
that is, taking the informal requirements expressed in a natural language and generat-
ing a formal specification in a formal description language, such as the Specification
and Description Language (SDL) or Unified Modeling Language (UML). The latter
type of changes includes such changes as adding new requirements, deleting some
existing requirements, and altering some existing requirements.

Rethink. Rethinking a system means manipulating the concepts embodied in an
existing system to create a system that operates in a different problem domain. It
involves changing the conceptual characteristics of the system, and it can lead to
the system being changed in a fundamental way. Moving from the development of
an ordinary cellular phone to the development of smartphone system is an example
of Rethink.

4.3.2 Software Reengineering Strategies

Three strategies that specify the basic steps of reengineering are rewrite, rework, and
replace. The three strategies are founded on three fundamental principles in software
engineering, namely, abstraction, alteration, and refinement. The rewrite strategy is
based on the principle of alteration. The rework strategy is based on the principles
of abstraction, alteration, and refinement. Finally, the replace strategy is based on the
principles of abstraction and refinement.

142 REENGINEERING

Alteration

A
b
st

ra
ct

io
n

A
b
st

ra
ct

io
n

R
efinem

ent

R
efinem

ent

(b) Rework(a) Rewrite

Alteration

(c) Replace

FIGURE 4.5 Conceptual basis for reengineering strategies. From Reference 5. © 1992 IEEE

Rewrite strategy. This strategy reflects the principle of alteration. By means of
alteration, an operational system is transformed into a new system while preserving
the abstraction level of the original system. For example, the Fortran code of a system
can be rewritten in the C language. The rewrite strategy has been further explained
in Figure 4.5a.

Rework strategy. The rework strategy applies all the three principles. First, by
means of the principle of abstraction, obtain a system representation with less details
than what is available at a given level. For example, one can create an abstraction of
source code in the form of a high-level design. Next, the reconstructed system model
is transformed into the target system representation, by means of alteration, without
changing the abstraction level. Finally, by means of refinement, an appropriate new
system representation is created at a lower level of abstraction. The main ideas in
rework are illustrated in Figure 4.5b. Now, let us consider an example originally given
by Byrne [5]. Let the goal of a reengineering project be to restructure the control
flow of a program. Specifically, we want to replace the unstructured control flow
constructs, namely GOTOs, with more commonly used structured constructs, say, a
“for” loop. A classical, rework strategy-based approach to doing that is as follows:

� Application of abstraction: By parsing the code, generate a control flow graph
(CFG) for the given system.

� Application of alteration: Apply a restructuring algorithm to the CFG to produce
a structured CFG.

� Application of refinement: Translate the new, structured CFG back into the
original programming language.

Replace strategy. The replace strategy applies two principles, namely, abstraction
and refinement. To change a certain characteristic of a system: (i) the system is
reconstructed at a higher level of abstraction by hiding the details of the characteristic
and (ii) a suitable representation for the target system is generated at a lower level
of abstraction by applying refinement. Figure 4.5c succinctly represents the replace
strategy. Let us reconsider the GOTO example given by Byrne [5]. By means of
abstraction, a program is represented at a higher level without using control flow
concepts. For instance, a module’s behavior can be described by its net effect, with
no mention of control flow. Next, by means of refinement, the system is represented
at a lower level of abstraction with a new structured control flow. In summary, the
original unstructured control flow is replaced with a structured control flow.

A GENERAL MODEL FOR SOFTWARE REENGINEERING 143

4.3.3 Reengineering Variations

Three reengineering strategies and four broad types of changes were discussed in the
preceding sections: (i) rewrite, rework, and replace are the three reengineering strate-
gies and (ii) rethink, respecify, redesign, and recode are the four types of changes.
The reengineering strategies and the change types can be combined to create dif-
ferent process variations. Three process factors cause variability in reengineering
processes:

� the level of abstraction of the system representation under consideration;
� the kind of change to be made: rethink, respecify, redesign, and recode; and
� the reengineering strategy to be applied: rewrite, rework, and replace.

Possible variations in reengineering processes have been identified in Table 4.1.
The table is interpreted by asking questions of the following type: If A is the abstrac-
tion level of the representation of the system to be reengineered and the plan is to
make a B type of change, can I use strategy C? The table shows 30 reengineering

TABLE 4.1 Reengineering Process Variations

Reengineering Strategy

Starting Abstraction Level Type Change Rewrite Rework Replace

Implementation Recode Yes Yes Yes
level Redesign Bad Yes Yes

Respecify Bad Yes Yes
Rethink Bad Yes* Yes*

Design Recode No No No
level Redesign Yes Yes Yes

Respecify Bad Yes Yes
Rethink Bad Yes* Yes*

Requirement Recode No No No
level Redesign No No No

Respecify Yes Yes Yes
Rethink Bad Yes* Yes*

Conceptual Recode No No No
level Redesign No No No

Respecify No No No
Rethink Yes Yes* Yes*

Source: From Reference 5. © 1992 IEEE.
Yes—One can produce a target system.
Yes*—Same as Yes, but the starting degree of abstraction is lower than the uppermost degree of abstraction
within the conceptual abstraction level.
No—One cannot start at abstraction level A, make B type of changes by using strategy C, because the
starting abstraction level is higher than the abstraction level required by the particular type of change.
Bad—A target system can be created, but the likelihood of achieving a good result is low.

144 REENGINEERING

process variations. Out of the 30 variations, 24 variations are likely to produce accept-
able solutions.

4.4 REENGINEERING PROCESS

An ordered set of activities designed to perform a specific task is called a process.
For ease of understanding and communication, processes are described by means
of process models. For example, in the software development domain, the Waterfall
process model is widely used in developing well-understood software systems. Pro-
cess models are used to comprehend, evaluate, reason about, and improve processes.
Intuitively, process models are described by means of important relationships among
data objects, human roles, activities, and tools. In this section, we discuss two process
models for software reengineering.

Similarly, by understanding and following a process model for software reengi-
neering, one can achieve improvements in how software is reengineered. The process
of reengineering a large software system is a complex endeavor. For ease of perform-
ing reengineering, the process can be specialized in many ways by developing several
variations. In a reengineering process, the concept of approach impacts the overall
process structure. If a particular process model requires fine-tuning for certain project
goals, those approaches need to be clearly understood. Five major approaches will
be explained in the following subsections.

4.4.1 Reengineering Approaches

There are five basic approaches to reengineering software systems. Each approach
advocates a different path to perform reengineering [13, 14]. Several considerations
are made while selecting a particular reengineering approach:

� objectives of the project;
� availability of resources;
� the present state of the system being reengineered; and
� the risks in the reengineering project.

The five approaches are different in two aspects: (i) the extent of reengineering
performed and (ii) the rate of substitution of the operational system with the new one.
The five approaches have their own risks and benefits. In the following, we introduce
the five basic approaches to software reengineering one by one.

Big Bang approach. The “Big Bang” approach replaces the whole system at once.
Once a reengineering effort is initiated, it is continued until all the objectives of the
project are achieved and the target system is constructed. This approach is generally
used if reengineering cannot be done in parts. For example, if there is a need to move
to a different system architecture, then all components affected by such a move must

REENGINEERING PROCESS 145

be changed at once. The consequent advantage is that the system is brought into its
new environment all at once. On the other hand, the disadvantage of Big Bang is that
the reengineering project becomes a monolithic task, which may not be desirable
in all situations. In addition, the Big Bang approach consumes too much resources
at once for large systems and takes a long stretch of time before the new system
is visible.

Incremental approach. As the name indicates, by means of this approach a system
is reengineered gradually, one step closer to the target system at a time. Thus, for
a large system, several new interim versions are produced and released. Successive
interim versions satisfy increasingly more project goals than their preceding versions.
The desired system is said to be generated after all the project goals are achieved.
The advantages of this approach are as follows: (i) locating errors becomes easier,
because one can clearly identify the newly added components and (ii) it becomes
easy for the customer to notice progress, because interim versions are released. The
incremental approach incurs a lower risk than the “Big Bang” approach due to the
fact that as a component is reengineered, the risks associated with the corresponding
code can be identified and monitored. The disadvantages of the incremental approach
are as follows: (i) with multiple interim versions and their careful version controls,
the incremental approach takes much longer to complete; and (ii) even if there is a
need, the entire architecture of the system cannot be changed.

Partial approach. In this approach, only a part of the system is reengineered and
then it is integrated with the nonengineered portion of the system. One must decide
whether to use a “Big Bang” approach or an “Incremental” approach for the portion
to be reengineered. The following three steps are followed in the partial approach:

� In the first step, the existing system is partitioned into two parts: one part is
identified to be reengineered and the remaining part to be not reengineered.

� In the second step, reengineering work is performed using either the “Big Bang”
or the “Incremental” approach.

� In the third step, the two parts, namely, the not-to-be-reengineered part and the
reengineered part of the system, are integrated to make up the new system.

The afore-described partial approach has the advantage of reducing the scope of
reengineering to a level that best matches an organization’s current need and desire
to spend a certain amount of resources. A reduced scope implies that the selected
portions of a system to be modified are those that are urgently in need of reengineering.
A reduced scope of reengineering takes less time and costs less. A disadvantage of
the partial approach is that modifications are not performed to the interface between
the portion modified and the portion not modified.

Iterative approach. The reengineering process is applied on the source code of
a few procedures at a time, with each reengineering operation lasting for a short
time. This process is repeatedly executed on different components in different stages.
During the execution of the process, ensure that the four types of components can

146 REENGINEERING

coexist: old components not reengineered, components currently being reengineered,
components already reengineered, and new components added to the system. Their
coexistence is necessary for the operational continuity of the system. There are two
advantages of the iterative reengineering process: (i) it guarantees the continued
operation of the system during the execution of the reengineering process and (ii)
the maintainers’ and the users’ familiarities with the system are preserved. The
disadvantage of this approach is the need to keep track of the four types of components
during the reengineering process. In addition, both the old and the newly reengineered
components need to be maintained.

Evolutionary approach. Similar to the ”Incremental” approach, in the ”Evolution-
ary” approach components of the original system are substituted with reengineered
components. However, in this approach, the existing components are grouped by
functions and reengineered into new components. Software engineers focus their
reengineering efforts on identifying functional objects irrespective of the locations
of those components within the current system. As a result, the new system is built
with functionally cohesive components as needed. There are two advantages of the
“Evolutionary” approach: (i) the resulting design is more cohesive and (ii) the scope
of individual components is reduced. As a result, the “Evolutionary” approach works
well to convert an operational system into an object-oriented system. A major disad-
vantage of the approach is as follows: all the functions with much similarities must
be first identified throughout the operational system; next, those functions are refined
as one unit in the new system.

4.4.2 Source Code Reengineering Reference Model

The Source Code Reengineering Reference Model (SCORE/RM) is useful in under-
standing the process of reengineering of software. The model was proposed by
Colbrook, Smythe, and Darlison [15]. The framework, depicted in Figure 4.6, con-
sists of four kinds of elements: function, documentation, repository database, and
metrication. The function element is divided into eight layers, namely, encapsulation,
transformation, normalization, interpretation, abstraction, causation, regeneration,
and certification. The eight layers provide a detailed approach to (i) rationalizing the
system to be reengineered by removing redundant data and altering the control flow;
(ii) comprehending the software’s requirements; and (iii) reconstructing the software
according to established practices. The top six of the eight layers shown in Figure 4.6
constitute a process for reverse engineering, and the bottom three layers constitute
a process for forward engineering. Both the processes include causation, because it
represents the derivation of requirements specification for the software.

Improvements in the software as a result of reengineering are quantified by means
of the metrication element. The metrication element is described in terms of the
relevant software metrics before executing a layer and after executing the same layer.
The specification, constraints, and implementation details of both the old and the new
versions of the software are described in the documentation element. The repository
database is the information store for the entire reengineering process, containing the
following kinds of information: metrication, documentation, and both the old and the

REENGINEERING PROCESS 147

Certification

Encapsulation

Transformation

Normalizatiom

Interpretation

Abstraction

Causation

Regeneration

M
e

tr
ic

a
ti
o

n

D
o

c
u

m
e

n
ta

ti
o

n

R
e

p
o

s
it
o

ry
 d

a
ta

b
a

s
e

Transformed

source code

Original

source code

FIGURE 4.6 Source code reengineering reference model. From Reference 15. © 1990 IEEE

new source codes. The interfaces among the elements are shown in Figure 4.7. For
simplicity, any layer is referred to as (N)-layer, while its next lower and next higher
layers are referred to as (N − 1)-layer and the (N + 1)-layer, respectively. The three
types of interfaces are explained as follows:

� Metrication/function: (N)-MF—the structures describing the metrics and their
values.

(N−1)-layer

(N)-FF

(N)-function (N)-documentation

(N−1)-function

(N+1)-function

(N)-layer

(N+1)-layer

(N)-metrication

(N−1)-FF(N)-MF (N)-DF (N)-layer

FIGURE 4.7 The interface nomenclature. From Reference 15. © 1990 IEEE. “(N)-” repre-
sents the Nth layer

148 REENGINEERING

� Documentation/function: (N)-DF—the structures describing the documentation.
� Function/function: (N)-FF—the representation structures for source code passed

between the layers.

The functions of the individual layers are discussed in the following.

Encapsulation: This is the first layer of reverse engineering. In this layer, a reference
baseline is created from the original source code. The goal of the reference baseline
is to uniquely identify a version of a software and to facilitate its reengineering. The
following functions are expected of this layer:

� Configuration management. The changes to the software undergoing mainte-
nance are recorded by following a well-documented and defined procedure for
later use in the new source code. This step requires strong support from upper
management by allocating resources.

� Analysis. The portions of the software requiring reengineering are evaluated. In
addition, cost models for the tangible benefits are put in place.

� Parsing. The source code of the system to be reengineered is translated into
an intermediate language (IL). The IL can have several dialects, depending
upon the relationship between the languages for the new code and the original
code. All the reengineering algorithms act upon the IL representation of the
source code.

� Test generation. This refers to the design of certification tests and their results
for the original source code. Certification tests are basically acceptance tests to
be used as baseline tests. The “correctness” of the newly derived software will
be evaluated by means of the baseline tests.

Transformation: To make the code structured, its control flow is changed. This
layer performs the following functions:

� Rationalization of control flow. The control flow is altered to make code struc-
tured.

� Isolation. All the external interfaces and referenced software are identified.
� Procedural granularity. This refers to the sizing of the procedures, by using the

ideas of high cohesion and low coupling.

Normalization: In this stage data and their structures are scrutinized by means of
the following functions:

� Data reduction. Duplicate data are eliminated. To be consistent with the require-
ments of the program, databases are modified.

� Data representation. The life histories of the data entities are now generated. The
life histories describe how data are changed and reveal which control structures
act on the data.

REENGINEERING PROCESS 149

Interpretation: The process of deriving the meaning of a piece of software is started
in this layer. The interpretation layer performs the following functions:

� Functionalization. This is additional rationalization of the data and control
structure of the code, which (i) eliminates global variables and/or (ii) introduces
recursion and polymorphic functions.

� Program reading. This means annotating the source code with logical com-
ments.

Abstraction: The annotated and rationalized source code is examined by means
of abstractions to identify the underlying object hierarchies. The abstraction layer
performs the following functions:

� Object identification. The main idea in object identification is (i) separate the
data operators and (ii) group those data operators with the data they manipulate.

� Object interpretation. Application domain meanings are mapped to the objects
identified above. It is the different implementations of those objects that produce
differences between the renovated code and the original code.

Causation: This layer performs the following functions:

� Specification of actions. This refers to the services provided to the user.
� Specification of constraints. This refers to the limitations within which the

software correctly operates.
� Modification of specification. The specification is extended and/or reduced to

accurately reflect the user’s requirements.

Regeneration: Regeneration means reimplementing the source code using the
requirements and the functional specifications. The layer performs the following
functions:

� Generation of design. This refers to the production and documentation of the
detailed design.

� Generation of code. This means generating new code by reusing portions of the
original code and using standard libraries.

� Test generation. New tests are generated to perform unit and integration tests
on the source code developed and reused.

Certification: The newly generated software is analyzed to establish that it is (i)
operating correctly; (ii) performing the specified requirements; and (iii) consistent
with the original code. The layer performs the following functions:

� Validation and Verification. The new system is tested to show its correctness.

150 REENGINEERING

� Conformance. Tests are performed to show that the renovated source code
performs at the minimum all those functionalities that were performed by the
original source code. It is not known what form the equivalence relationship
must take, particularly when modification of the specification is likely to have
occurred during reengineering.

4.4.3 Phase Reengineering Model

The phase model of software reengineering was originally proposed by Byrne and
Gustafson [14] in circa 1992. The model comprises five phases: analysis and planning,
renovation, target system testing, redocumentation, and acceptance testing and system
transition, as depicted in Figure 4.8. The labels on the arcs denote the possible
information that flows from the tail entities of the arcs to the head entities. A major
process activity is represented by each phase. Tasks represent a phase’s activities, and
tasks can be further decomposed to reveal the detailed methodologies.

Analysis and planning. The first phase of the model is analysis and planning.
Analysis addresses three technical and one economic issue. The first technical issue
concerns the present state of the system to be reengineered and understanding its
properties. The second technical issue concerns the identification of the need for
the system to be reengineered. The third technical issue concerns the specification
of the characteristics of the new system to be produced. Specifically, one identifies
(i) the characteristics of the system that are needed to modified and (ii) the func-
tionalities of the system that are needed to be modified. The identified modifications
are analyzed and eventually integrated into the system. In addition, understand the
expected characteristics of the new system to plan the required work.

Analysis

and

planning

Dedocumentation

Renovation

Target system

testing

Acceptance and

system transition

Documentation standards

Existing system documentation

Existing test plans

Existing system source code

Historical project database

Existing standards and

procedures

Target

system
documentation

Target system

source code

Target system

source code

Target system test plan

Target system

source code

C
ha

ng
e

re
co

rd

Target system

source code

Acceptance test plan

Initial transition plan

Initial test plan

Project plan
Source code

Existingsystem

Project information
Documentation plan

FIGURE 4.8 Software reengineering process phases. From Reference 14. © 1992 IEEE

REENGINEERING PROCESS 151

TABLE 4.2 Tasks—Analysis and Planning Phase

Task Description

Implementation motivations
and objectives

List the motivations for reengineering the system. List
the objectives to be achieved.

Analyze environment Identify the differences between the existing and the
target environments. Differences can influence
system changes.

Collect inventory Form a baseline for knowledge about the operational
system by locating all program files, documents, test
plans, and history of maintenance.

Analyze implementation Analyze the source code and record the details of the code.
Define approach Choose an approach to reengineer the system.
Define project procedures

and standards
Procedures outline how to perform reviews and report

problems. Standards describe the acceptable formats of
the outputs of processes.

Identify resources Determine what resources are going to be used; ensure
that resources are ready to be used.

Identify tools Determine and obtain tools to be used in the reengineering
project.

Data conversion planning Make a plan to effect changes to databases and files.
Test planning Identify test objectives and test procedures, and evaluate

the existing test plan. Design new tests if there is a need.
Define acceptance criteria By means of negotiations with the customers, identify

acceptance criteria for the target system.
Documentation planning Evaluate the existing documentation. Develop a plan to

redocument the target system.
Plan system transition Develop an end-of-project plan to put the new system into

operation and phase out the old one.
Estimation Estimate the resource requirements of the project: effort,

cost, duration, and staffing.
Define organizational

structure
Identify personnel for the project, and develop a project

organization.
Scheduling Develop a schedule, including dependencies, for project

phases and tasks.

Source: From Reference 14. © 1992 IEEE.

The economic issue concerns a cost and benefit analysis of the reengineering
project. The economics of reengineering must compare with the costs, benefits, and
risks of developing a new system as well as the costs and risks of maintaining an old
system [16]. Planning includes (i) understanding the scope of the work; (ii) identifying
the required resources; (iii) identifying the tasks and milestones; (iv) estimating the
required effort; and (v) preparing a schedule. The tasks to be performed in this phase
are listed in Table 4.2.

Renovation. An operational system is modified into the target system in the ren-
ovation phase. Two main aspects of a system are considered in this phase: (i) repre-
sentation of the system and (ii) representation of external data. In general, the former

152 REENGINEERING

Design

Source code

Existing

implementation
Traget

implementation

Object code

Forward engineeringReverse engineerin
g

Decompila
tio

n

(R
everse engineerin

g)Compilation

Recode

Design

Source code

Object code
Less

abstract

More

abstract

1

2 2

3 3

FIGURE 4.9 Replacement strategies for recoding

refers to source code, but it may include the design model and the requirement spec-
ification of the existing system. On the other hand, the latter refers to the database
and/or data files used by the system. Often the external data are reengineered, and it is
known as data reengineering. Data reengineering has been discussed in Section 4.8.

An operational system can be renovated in many ways, depending upon the objec-
tives of the project, the approach followed, and the starting representation of the
system. It may be noted that the starting representation can be source code, design, or
requirements. Table 4.1 in Section 4.3.3 recommends several alternatives to renovate
a system. Selection of a specific renovation approach is a management decision.

Let us consider an example of a project in which the objective is to recode the
system from Fortran to C. Figure 4.9 shows the three possible replacement strategies.
First, to perform source-to-source translation, program migration is used. Program
migration accepts the source code for the system to be reengineered as input and pro-
duces new source code as output for the target system. Second, a high-level design is
constructed from the operational source code, say, in Fortran, and the resulting design
is reimplemented in the target language, C in this case. Finally, a mix of compilation
and decompilation is used to obtain the system implementation in C: (i) compile the
Fortran code to obtain object code and (ii) decompile the object code to obtain a C
version of the program. For all the three approaches, the end effects are the same,
but the tasks to be executed are different for each of the three replacement strategies.

Target system testing. In this phase for system testing, faults are detected in the
target system. Those faults might have been introduced during reengineering. Fault
detection is performed by applying the target system test plan on the target system. The
same testing strategies, techniques, methods, and tools that are used in software devel-
opment are used during reengineering. For example, apply the existing system-level
test cases to both the existing and the new systems. Assuming that the two systems
have identical requirements, the test results from both the scenarios must be the same.

Redocumentation. In the redocumentation phase, documentations are rewritten,
updated, and/or replaced to reflect the target system. Documents are revised according

CODE REVERSE ENGINEERING 153

to the redocumentation plan. The two major tasks within this phase are (i) analyze new
source code and (ii) create documentation. Documents requiring revision are require-
ment specification, design documentation, a report justifying the design decisions,
assumptions made in the implementation, configuration, user and reference manuals,
on-line help, and the document describing the differences between the existing and
the target systems. Different documents require different redocumentation tasks. A
task for redocumentation comprises detailed subtasks to make a plan, actually update
the document, and review the document.

Acceptance and system transition. In this final phase, the reengineered system is
evaluated by performing acceptance testing. Acceptance criteria should already have
been established in the beginning of the project. Should the reengineered system pass
those tests, preparation begins to transition to the new system. On the other hand,
if the reengineered system fails some tests, the faults must be fixed; in some cases,
those faults are fixed after the target system is deployed. Upon completion of the
acceptance tests, the reengineered system is made operational, and the old system is
put out of service. System transition is guided by the prior developed transition plan.

4.5 CODE REVERSE ENGINEERING

Reverse engineering was first applied in electrical engineering to produce schematics
from an electrical circuit. It was defined as the process of developing a set of spec-
ifications for a complex hardware system by an orderly examination of specimens
of that system [17]. In the context of software engineering, Chikofsky and Cross II
[6] defined reverse engineering as a process to (i) identify the components of an
operational software; (ii) identify the relationships among those components; and
(iii) represent the system at a higher level of abstraction or in another form. In other
words, by means of reverse engineering one derives information from the existing
software artifacts and transforms it into abstract models to be easily understood by
maintenance personnel. The factors necessitating the need for reverse engineering
are as follows [18]:

� The original programmers have left the organization.
� The language of implementation has become obsolete, and the system needs to

be migrated to a newer one.
� There is insufficient documentation of the system.
� The business relies on software, which many cannot understand.
� The company acquired the system as part of a larger acquisition and lacks access

to all the source code.
� The system requires adaptations and/or enhancements.
� The software does not operate as expected.

The above factors imply that a combination of both high-level and low-level reverse
engineering steps need to be applied. High-level reverse engineering means creating

154 REENGINEERING

Requirements Design Implementation
Forward

engineering
Forward

engineering

Reverse

engineering

Reverse

engineering

Design

recoveryDesign

recovery

Reengineering Reengineering

Restructuring Restructuring Restructuring

FIGURE 4.10 Relationship between reengineering and reverse engineering. From Refer-
ence 6. © 1990 IEEE

abstractions of source code in the form of design, architecture, and/or documentation.
Low-level reverse engineering, discussed in Section 4.7, means creating source code
from object code or assembly code.

Reverse engineering is performed to achieve two key objectives: redocumentation
of artifacts and design recovery. The former aims at revising the current description of
components or generating alternative views at the same abstraction level. Examples of
redocumentation are pretty printing and drawing CFGs. On the other hand, the latter
creates design abstractions from code, expert knowledge, and existing documentation
[19]. In design recovery the domain knowledge, external information, and deduction
or fuzzy reasoning are added to the observations of the subject system to identify
meaningful higher-level abstractions beyond those obtained directly by examining
the system itself. The relationship between forward engineering, reengineering, and
reverse engineering is shown in Figure 4.10.

Although difficulties faced by software maintenance personnel gave rise to the
idea of software reverse engineering, it can be used to solve problems in related areas
as well. Six objectives of reverse engineering, as identified by Chikofsky and Cross II
[6], are generating alternative views, recovering lost information, synthesizing higher
levels of abstractions, detecting side effects, facilitating reuse, and coping with com-
plexity. If source code is the only reliable representation of a system, following the
IEEE Standard for Software Maintenance [20], one can perform reverse engineering
on the system to understand it. Reverse engineering has been effectively applied in
the following problem areas:

� redocumenting programs [21];
� identifying reusable assets [22–25];
� discovering design architectures [7, 26–30];

CODE REVERSE ENGINEERING 155

� recovering design patterns [31, 32];
� building traceability between code and documentation [33–35];
� finding objects in procedural programs [36];
� deriving conceptual data models [37–40];
� detecting duplications and clones [41–44];
� cleaning up code smells [45];
� aspect-oriented software development [46];
� computing change impact [47];
� transforming binary code into source code [48];
� redesigning user interfaces [49–51];
� parallelizing largely sequential programs [52];
� translating a program to another language [53, 54];
� migrating data [55];
� extracting business rules [9, 56, 57];
� wrapping legacy code [58];
� auditing security and vulnerability [59, 60]; and
� extracting protocols of network applications [61].

Six key steps in reverse engineering, as documented in the IEEE Standard for
Software Maintenance [20], are:

� partition source code into units;
� describe the meanings of those units and identify the functional units;
� create the input and output schematics of the units identified before;
� describe the connected units;
� describe the system application; and
� create an internal structure of the system.

The first three of the six steps involve local analysis, because those are performed
at the unit level. On the other hand, the remaining three steps involve global analysis,
because those steps are performed at the system level. A high-level organizational
paradigm is found to be useful while setting up a reverse engineering process, as
advocated by Benedusi et al. [21, 62]. The high-level paradigm plays two roles:
(i) define a framework to use the available methods and tools and (ii) allow the
process to be repetitive. They propose a paradigm, namely, Goals/Models/Tools,
which partitions a process for reverse engineering into three ordered stages: Goals,
Models, and Tools.

Next, the three phases are explained one by one.
Goals. In this phase, the reasons for setting up a process for reverse engineering

are identified and analyzed. Analyses are performed to identify the information needs
of the process and the abstractions to be created by the process. The team setting up

156 REENGINEERING

the process first acquires a good understanding of the forward engineering activities
and the environment where the products of the reverse engineering process will be
used. Results of the aforementioned comprehension are used to accurately identify
(i) the information to be generated and (ii) the formalisms to be used to represent the
information. For example, the design documents to be generated from source code
are as follows:

� Low-level documents give both an overview and detailed descriptions of indi-
vidual modules; detailed descriptions include the structures of the modules in
terms of control flow and data structures.

� High-level documents give (i) a general description of the software product
and (ii) a detailed description of its structuring in terms of modules, their
interconnections, and the flow of information between modules.

Models. In this phase, the abstractions identified in the Goals stage are analyzed
to create representation models. Representation models include information required
for the generation of abstractions. Activities in this phase are:

� identify the kinds of documents to be generated;
� to produce those documents, identify the information and their relations to be

derived from source code;
� define the models to be used to represent the information and their relationships

extracted from source code; and
� to produce the desired documents from those models, define the abstraction

algorithm for reverse engineering.

The important properties of a reverse engineering model are expressive power,
language independence, compactness, richness of information content, granularity,
and support for information-preserving transformation.

Tools. In this phase, tools needed for reverse engineering are identified, acquired,
and/or developed in-house. Those tools are grouped into two categories: (i) tools to
extract information and generate program representations according to the identified
models and (ii) tools to extract information and produce the required documents.
Extraction tools generally work on source code to reconstruct design documents.
Therefore, those tools are ineffective in producing inputs for an abstraction process
aiming to produce high-level design documents.

4.6 TECHNIQUES USED FOR REVERSE ENGINEERING

Fact-finding and information gathering from the source code are the keys to the
Goal/Models/Tools paradigm. In order to extract information which is not explicitly
available in source code, automated analysis techniques are used. The well-known
analysis techniques that facilitate reverse engineering are lexical analysis, syntactic

TECHNIQUES USED FOR REVERSE ENGINEERING 157

analysis, control flow analysis, data flow analysis, program slicing, visualization, and
program metrics. In the following sections, we explain these techniques one by one.

4.6.1 Lexical Analysis

Lexical analysis is the process of decomposing the sequence of characters in the source
code into its constituent lexical units. Various useful representations of program
information are enabled by lexical analysis. Perhaps the most widely used program
information is the cross reference listing. A program performing lexical analysis is
called a lexical analyzer, and it is a part of a programming language’s compiler.
Typically it uses rules describing lexical program structures that are expressed in
a mathematical notation called regular expressions. Modern lexical analyzers are
automatically built using tools called lexical analyzer generators, namely, lex and
flex (fast lexical analyzer) [63].

4.6.2 Syntactic Analysis

The next most complex form of automated program analysis is syntactic in nature.
Compilers and other tools such as interpreters determine the expressions, statements,
and modules of a program. Syntactic analysis is performed by a parser. Here, too,
the requisite language properties are expressed in a mathematical formalism called
context-free grammars. Usually, these grammars are described in a notation called
Backus–Naur Form (BNF). In the BNF notation, the various program parts are defined
by rules in terms of their constituents. Similar to syntactic analyzers, parsers can be
automatically constructed from a description of the programmatical properties of a
programming language. YACC is one of the most commonly used parsing tools [63].

Two types of representations are used to hold the results of syntactic analysis:
parse tree and abstract syntax tree. The former is the more primitive one of the two.
It is similar to the parsing diagrams used to show how a natural language sentence
is broken up into its constituents. However, a parse tree contains details unrelated to
actual program meaning, such as the punctuation, whose role is to direct the parsing
process. For instance, grouping parentheses are implicit in the tree structure, which
can be pruned from the parse tree. Removal of those extraneous details produces a
structure called an Abstract Syntax Tree (AST). An AST contains just those details
that relate to the actual meaning of a program. Because an AST is a tree, nodes of the
tree can be visited in a pre-set manner, such as depth-first order, and the information
contained in the node is delivered to the analyzer. Many tools have been based on the
AST concept; to understand a program, an analyst makes a query in terms of the node
types. The query is interpreted by a tree walker to deliver the requested information.

4.6.3 Control Flow Analysis

After determining the structure of a program, control flow analysis (CFA) can
be performed on it [64]. The two kinds of CFA are intraprocedural analysis and

158 REENGINEERING

interprocedural analysis. The former shows the order in which statements are exe-
cuted within a subprogram, whereas the latter shows the calling relationship among
program units. Intraprocedural analysis is performed by generating CFGs of subpro-
grams. The idea of basic blocks is central to constructing a CFG. A basic block is
a maximal sequence of program statements such that execution enters at the top of
the block and leaves only at the bottom via a conditional or an unconditional branch
statement. A basic block is represented with one node in the CFG, and an arc indicates
possible flow of control from one node to another. A CFG can directly be constructed
from an AST by walking the tree to determine basic blocks and then connecting the
blocks with control flow arcs. A CFG shows an abstract view of the ways in which a
subprogram can execute.

Interprocedural analysis is performed by constructing a call graph [65, 66]. Calling
relationships between subroutines in a program are represented as a call graph which is
basically a directed graph. Specifically, a procedure in the source code is represented
by a node in the graph, and the edge from node f to g indicates that procedure f
calls procedure g. Call graphs can be static or dynamic. A dynamic call graph is
an execution trace of the program. Thus a dynamic call graph is exact, but it only
describes one run of the program. On the other hand, a static call graph represents
every possible run of the program.

4.6.4 Data Flow Analysis

Although CFA is useful, many questions cannot be answered by means of CFA. For
example, CFA cannot answer the question: Which program statements are likely to
be impacted by the execution of a given assignment statement? To answer this kind
of questions, an understanding of definitions (def) of variables and references (uses)
of variables is required. Normally, if a variable appears on the left-hand side of an
assignment statement, then the variable is said to be defined. On the contrary, if a
variable appears on the right-hand side of an assignment statement, then it is said to
be referenced in that statement.

Data flow analysis (DFA) concerns how values of defined variables flow through
and are used in a program [67]. CFA can detect the possibility of loops, whereas DFA
can determine data flow anomalies [68]. One example of data flow anomaly is that
an undefined variable is referenced. Another example of data flow anomaly is that a
variable is successively defined without being referenced in between. DFA enables
the identification of code that can never execute, variables that might not be defined
before they are used, and statements that might have to be altered when a bug is fixed.

4.6.5 Program Slicing

Originally introduced by Mark Weiser, program slicing has served as the basis of
numerous tools [69]. The slice of a program for a given variable at a given line
of code is the portion of the program that gives a value to the variable at that point.
Therefore, if one determines during debugging that the value of a variable at a specific

TECHNIQUES USED FOR REVERSE ENGINEERING 159

[1] int i;
[2] int sum = 0;
[3] int product = 1;
[4] for(i = 0; ((i < N) && (i % 2 = 0)); i++) {
[5] sum = sum + i;
[6] product = product * i;

}
[7] printf("Sum = ", sum);
[8] printf("Product = ", product);

FIGURE 4.11 A block of code to compute the sum and product of all the even integers in
the range [0, N) for N ≥ 3

line is incorrect, one may look at the corresponding program slice to find the faulty
code. In Weiser’s definition, a slicing criterion of a program P is S < p; v > where p
is a program point and v is a subset of variables in P. A program slice is a portion of
a program with an execution behavior identical to the initial program with respect to
a given criterion but may have a reduced size.

Weiser introduced the concept of backward slice [69]. A backward slice with
respect to a variable v and a given point p comprises all instructions and predicates
which affect the value of v at point p. Backward slices answer the question “What
program components might effect a selected computation?” The dual of backward
slicing is forward slicing, and it was proposed by Binkley et al. [70]. With respect to
a variable v and a point p in a program, a forward slide comprises all the instructions
and predicates which may depend on the value of v at p. Note that the statements in
a forward program slice execute after the slicing criterion. Forward slicing answers
the question “What program components might be effected by a selected computa-
tion?” [71].

As an example, let us consider the program shown in Figure 4.11 which is a block
of code in C. The backward slice, given the slicing criterion S < [7]; sum > is shown
in Figure 4.12. For the slicing criterion S < [3]; product >, the forward program slice
has been shown in Figure 4.13.

Besides detecting defects, program slicing is also used to extract business rules
[57] and in refactoring which is discussed in Chapter 7. Tip’s article [72] provides a
comprehensive survey of program slicing techniques and their applications.

[1] int i;
[2] int sum = 0;
[4] for(i = 0; ((i < N) && (i % 2 = 0)); i++) {
[5] sum = sum + i;

}
[7] printf("Sum = ", sum);

FIGURE 4.12 The backward slice of code obtained from Figure 4.11 by using the criterion
S < [7]; sum >

160 REENGINEERING

[3] int product = 1;
[4] for(i = 0; ((i < N) && (i % 2 = 0)); i++) {
[6] product = product * i;

}
[8] printf("Product = ", product);

FIGURE 4.13 The forward slice of code obtained from Figure 4.11 by using the criterion
S < [3]; product >

4.6.6 Visualization

Software visualization is a useful strategy to enable a user to better understand
software systems. In this strategy, a software system is represented by means of a
visual object to gain some insight into how the system has been structured. The visual
representation of a software system impacts the effectiveness of the code analysis or
design recovery techniques.

Two important notions of designing software visualization using 3D graphics and
virtual reality technology are visualizations and representations. These two notions
are introduced by Young and Munro [73] in order to evaluate the effectiveness of 3D
software visualizations. The authors described a collection of desirable properties of
both the concepts when building visualization software, which are summarized in
this section.

� Representation. This is the depiction of a single component by means of graph-
ical and other media.

� Visualization. It is a configuration of an interrelated set of individual
representations-related information making up a higher-level component.

Essentially, graphical symbols are used to represent components. In a call graph,
for example, the nodes and arcs are the representations, whereas the graph itself is the
visualization. For effective software visualization, one needs to consider the properties
and structure of the symbols used in software representation and visualization.

When creating a representation or evaluating its effectiveness, following key
attributes are considered:

� Individuality. The individuality property means that different types of compo-
nents should have different looking representations.

� Distinctive appearance. Even in a large visualization compacted into a small
space, two representations should be quickly identifiable as being either dis-
similar or identical. It may be necessary to increase the visual complexity of a
representation in order to have an easily distinguishable appearance among a
large number of representations.

� High information content. A representation should display some information
about the corresponding component type. However, increased information con-
tent increases the visual complexity of the representation.

� Low visual complexity. Low visual complexity enhances the user’s understand-
ing of the representation, and it leads to better performance of the visualization

TECHNIQUES USED FOR REVERSE ENGINEERING 161

system. A representation should be easy to understand in addition to appearing
distinctive. The possibility of a trade-off exists between viewing a system with
a large number of simple representations and viewing the same system with
fewer but complex representations.

� Scalability of visual complexity. It should be relatively easy to increase or reduce
the amount of information presented to the user, depending upon the use context.
Scalability enables the display of:

– a small number of components by giving their maximum information; and

– an overview of a collection of a large number of components, by revealing
less about the components.

� Flexibility for integration into visualizations. Representations contain both
extrinsic and intrinsic dimensions which can be used to encode information
about components for quick visual understanding. On the one hand, position
and motion are examples of extrinsic dimensions. On the other hand, shape,
color, size, and angular velocity are examples of intrinsic dimensions. A repre-
sentation with many intrinsic dimensions is rendered less flexible for adoption
in a visualization.

� Suitability for automation. The ability to automate processes for generating
representations and visualizations is key to the widespread adoption of visual-
ization models in reengineering. Therefore, representations need to be designed
with the objective of being usable in an automation process.

The following requirements are taken into account while designing a visualization:

� Simple navigation. Visualizations are designed with their users in mind. Visu-
alizations are structured with added features to enable users to easily navigate
through the visualization. Navigations are made simple so that users quickly
become familiar with the details of the system.

� High information content. While not overwhelming the viewer, a visualization
should show as much details as possible. A balance between high information
content and low visual complexity needs to be retained.

� Low visual complexity. The complexity of the information presented in a visu-
alization impacts the structural complexity of the visualization. By means of
abstraction, the visual complexity can be reduced. For example, too much details
about components need not be presented.

� Varying levels of detail. Users should have the option to view a variety of
details, in the form of hierarchy, information content, and type of information.
For example, initially, users expect to see the visualized system in its entirety.
Gradually the user will begin exploring specific areas of interest. Visualization
should support the user to view increasing levels of details as the user learns
more about the components.

� Resilience to change. Visualizations need to be robust against small changes
to the information content of the visualization. For example, small changes
in information content should not lead to major changes in the structure of

162 REENGINEERING

visualization. Large changes to visualizations as a result of minor changes to
the information content will simply require the user to spend more time on
learning the structure once again.

� Effective visual metaphors. Metaphors enable users to easily understand soft-
ware systems in terms of concepts already seen in everyday life. For example,
in the city metaphor: (i) an object-oriented software system is represented as a
collection of elements of a city and (ii) the city is traversed to enable the user to
gain an understanding of the sense of locality. The user interacts with the city
model to understand the program.

� Friendly user interface. Interactions with the visualizations should be intuitive
without introducing undue overheads.

� Integration with other information sources. The elements of a software system
and the elements of a visualization are different in look and details. Visualiza-
tions depict systems in a form which is very different than the elements that
they represent. For example, a hexagon may represent a certain module. There-
fore, being able to correlate the elements of a visualization with the original
information is very important. For example, a red hexagon on a visualization,
representing a module, can be linked to the module’s actual source code.

� Good use of interactions. A highly interactive visualization is key to sustaining
user interests in the system being comprehended. Those interactions should
give the user several ways to understand the system: top view of the system,
component view, interactions among components, and details of individual
components.

� Suitability for automation. A visualization framework must be amenable to
automation. Without automation, it is of no practical use.

4.6.7 Program Metrics

To understand and control the overall software engineering process, program metrics
are applied. Table 4.3 summarizes the commonly used program metrics. The early
program metric research focused on complexity metrics, and one of the most widely
used complexity metrics is cyclomatic complexity [74]. The concept of function point
(FP) was introduced in late 1970s by Albrecht [75] as an alternative metrics based
on simple source line count. The aim of FP is to measure the amount of functionality
delivered by a program. Intuitively, the more functionality a program has, the larger is
the FP count. Based on a module’s fan-in and fan-out information flow characteristics,
Henry and Kafura [76] define a complexity metric, Cp = (fan-in × fan-out)2. Fan-in
and fan-out have been explained in Table 4.3. A large fan-in and a large fan-out may
be symptoms of a poor design.

In the 1990s, large-scale adoption of object-oriented (OO) programming tech-
niques gave rise to some OO design metrics known as Chidamber and Kemerer (CK)
metric suite [77]. Six performance metrics are found in the CK metric suite as follows:

� Weighted methods per class (WMC)—This is the number of methods imple-
mented within a given class.

TECHNIQUES USED FOR REVERSE ENGINEERING 163

TABLE 4.3 Commonly Used Software Metrics

Metric Description

Lines of code (LOC) The number of lines of executable code
Global variable (GV) The number of global variables
Cyclomatic complexity (CC) The number of linearly independent paths in a program

unit is given by the cyclomatic complexity metric [74].
Read coupling The number of global variables read by a program unit
Write coupling The number of global variables updated by a program unit
Address coupling The number of global variables whose addresses are

extracted by a program unit but do not involve
read/write coupling

Fan-in The number of other functions calling a given function in
a module

Fan-out The number of other functions being called from a given
function in a module

Halstead complexity (HC) It is defined as effort: E = D ∗ V , where:

Difficulty: D =
n1

2
×

N2

n2

; Volume: V = N × log2 n

Program length: N = N1 + N2; Program vocabulary:
n = n1 + n2

n1 = the number of distinct operators
n2 = the number of distinct operands
N1 = the total number of operators
N2 = the total number of operands

Function points It is a unit of measurement to express the amount of
business functionality an information system provides
to a user [75]. Function points are a measure of the size
of computer applications and the projects that build
them

� Response for a class (RFC)—This is the number of methods that can potentially
be executed in response to a message being received by an object of a given
class. It is the number of methods implemented within a class plus the number
of methods accessible to an object class due to inheritance.

� Lack of cohesion in methods (LCOM)—For each attribute in a given class,
calculate the percentage of the methods in the class using that attributes. Next,
compute the average of all those percentages, and subtract the average from
100%.

� Coupling between object class (CBO)—This is the number of distinct
noninheritance-related classes on which a given class is coupled. A class is
said to be coupled to another class if it uses methods or attributes of the other
class.

� Depth of inheritance tree (DIT)—This is the length of the longest path from a
given class to the root in the inheritance hierarchy.

� Number of children (NOC)—This is the number of classes that directly inherit
from a given class.

164 REENGINEERING

The Chidamber–Kemerer metrics has been investigated in the context of fault
proneness. Basili et al. [78] studied the fault proneness in software programs using
eight student projects. They observed that the WMC, CBO, DIT, NOC, and RFC
metrics were correlated with defects, while the LCOM metric was not correlated with
defects. Kontogiannis et al. [42] developed techniques to detect clones in programs
using five kinds of metrics:

� fan-out;
� the ratio of the total count of input and output variables to the fan-out;
� cyclomatic complexity;
� function points metric; and
� Henry and Kafura information-flow metric.

In their framework, the basic assumption is that if code fragments c1 and c2 are
similar under a set of features measured by metric M, then metric values M(c1) and
M(c2) will also be close. Similarity is gauged by Euclidean distance defined in the
five-dimensional space of the above measures. Metric-based approach has been also
applied to finding duplicated web pages or finding clones in web documents [79, 80].

4.7 DECOMPILATION VERSUS REVERSE ENGINEERING

A decompiler takes an executable binary file and attempts to produce readable high-
level language source code from it. The output will, in general, not be the same as the
original source code, and may not even be in the same language. Actual recovery of
the original source code is not really possible. The decompiler does not provide the
original programmers’ annotations that provide vital instructions as to the functioning
of the software. There are significant elements in most high-level languages that are
just omitted during the compilation process, and it is impossible to recover those
elements. Usually, there will be few, if any, comments or meaningful variable names,
except for library function names. During compilation, one may enable some assertion
code in the debug builds and disable it in the retail builds. Decompilation techniques
were originally developed during the 1960s and the 1970s by Maurice Halstead, which
form the basis for today’s decompilers [81]. Disassemblers are programs that take a
program’s executable binary as input and generate text files that contain the assembly
language code for the entire program or parts of it. Disassembly is a processor-
specific process, but some disassemblers support multiple CPU architectures. The
user requires a good knowledge of the specific machine’s assembly language, and the
output is voluminous for nontrivial programs.

Decompilation, or disassembly, is a reverse engineering process, since it creates
representations of the system at a higher level of abstraction [6]. However, traditional
reverse engineering from source code entails the recognition of “goals,” or “plans,”
which must be known in advance [82]. For example, the “goal” can be to increase
the overall comprehension of the program for maintenance.

DATA REVERSE ENGINEERING 165

Conceptual

Requirements

Design

Source code w/o comments

Assembly language

Machine code

Traditional reverse
engineering

Traditional forward
engineering

More abstract

Less abstract

Compiler

Assembler

Post decompilation
editing

Assisted decompiler

Assembly decompiler

Automatic decompiler

Disassembler

Source code with comments

FIGURE 4.14 Relationship between decompilation and traditional reengineering. From
Reference 83. © 2007

Decompilation provides the basis for comprehension, maintenance, and new devel-
opment, with source code, but any high-level comprehension is provided by the reader
[83]. Decompilation provides a limited kind of program comprehension. The rela-
tionship between decompilation and the traditional reengineering model of Byrne
(see Figure 4.3) is depicted in Figure 4.14. As one can see, decompilation stops
where architecture abstraction starts. Decompilation is certainly reverse engineering,
since it is increasing the level of abstraction. However, compilation is not considered
part of the forward engineering, since it is an automatic step.

Initially, decompilers aided program migration from one machine to another.
As decompilation capabilities have increased, a wide range of potential applications
emerged. Examples of new applications are recovery of lost source code, error correc-
tion, security testing, learning algorithms, interoperability with other programs, and
recovery of someone else’s source code (to determine an algorithm for example) [59].
However, not all uses of decompilers are legal uses. Most of the applications must be
examined from the patent and/or copyright infringement point of view. It should be
noted that it is never going to be possible to accurately predict beforehand whether or
not a particular decompilation is going to be considered legal [84, 85]. License agree-
ments may also bind the user to operate the program in a certain way and to avoid
using decompilation or disassembly techniques on that program. It is recommended
to seek legal counsel before starting any low-level reverse engineering project.

4.8 DATA REVERSE ENGINEERING

There has been considerable effort to develop concepts and methods to reengineer
data-oriented applications [86, 87]. A data-oriented application is centered around a

166 REENGINEERING

set of permanent files or a database. As a persistent data structure is the central part of
the data-oriented applications, most approaches focus on database schema analysis
[37, 39, 40, 88] (data reverse engineering (DRE)) and/or schema translation and
redesign (data forward engineering) [39, 89, 90]. In addition, the procedural portions
of data-oriented applications have to be adapted to the newly redesigned schema in
order to complete the reengineering task.

Remark: A persistent data structure always preserves the previous version of itself
when it is modified. A simple example of persistent data structure is the singly linked
list. A data structure is partially persistent if all versions can be accessed but only the
newest version can be modified.

DRE is defined as “the use of structured techniques to reconstitute the data assets
of an existing system” [91, 92]. By means of structured techniques, existing situations
are analyzed and models are constructed prior to developing the new system. The
discipline in structured techniques makes the process of DRE economically viable.
No doubt, data are valuable assets in all organizations. Student information, patient
history, and billing addresses of customers are examples of data assets. The two
vital aspects of a DRE process are (i) recover data assets that are valuable and (ii)
reconstitute the recovered data assets to make them more useful. In other words,
DRE increases the value of the existing data assets, making it more attractive for
organizations to conduct business efficiently and effectively. In practice, the purpose
of DRE is as follows [38, 93]:

� Knowledge acquisition. Knowledge acquisition is a method of learning. It
includes elicitation, collection, analysis, modeling, and validation of informa-
tion for software projects. The need for knowledge acquisition is pivotal to
reverse engineering of data-oriented applications. The data portion—be it flat
files or a relational database—must be clearly understood in a reverse engineer-
ing process.

� Tentative requirements. DRE of an operational system can identify the tentative
requirements of the replacement system. DRE ensures that the functionality of
the current system is not forgotten or overlooked.

� Documentation. DRE improves the documentation of existing systems, espe-
cially when the original developers are no longer available for advice. Mainte-
nance of legacy software is assisted by the new documentation.

� Integration. DRE facilitates integration of applications, because (i) a logical
model of encompassed software is a prerequisite for integration and (ii) a
logical model of encompassed software presents a plausible model of how the
program will function in certain environmental conditions.

� Data administration. As data are increasingly used as information, the data
owner must be able to perform data administration easily and pragmatically.

DATA REVERSE ENGINEERING 167

DRE allows companies to manage data correctly and efficiently. Data adminis-
tration, also known as data resource management, is an organizational function
working in the areas of information systems that plans, organizes, describes,
and controls data resources.

� Data conversion. One needs to understand the logical connection between the
old database and the new one before converting the old data. Data conversion
is the migration of the data instance from the old database to the new one.

� Software assessment. DRE represents one of the evaluation criteria for a soft-
ware product, because DRE can be used to assess the database management
system (DBMS) schema of the software [94]. A relational database contains a
catalog that describes the various elements in the system. The catalog divides
the database into sub-databases known as schemas. Within each schema are
database objects—tables, views, and privileges. The catalog itself is a set of
tables with its own schema name. Tables in the catalog cannot be modified
directly; rather, those are modified indirectly with schema statements. The
quality of the database design is an indicator of the quality of the software as a
whole. Reverse engineering provides an unusual source of insight.

� Quality assessment. The overall quality of a software system can be assessed
with DRE techniques, because a flawed design of a persistent data structure
is likely to lead to faults in the software system. From data structure anal-
ysis, companies can decide whether or not to purchase and maintain COTS
components.

� Component reuse. The concept of reuse has increasingly become popular
amongst software engineers. DRE tools and techniques offer the opportunity to
access and extract software components. Quite often these components need to
be modified one way or another before they can be reused.

The complexity of reverse engineering data-oriented applications can be reduced
because one can reverse engineer databases almost independent of the code. DRE
deals only with data components of the data-oriented applications. Reverse engi-
neering of a data-oriented application, including its user interface, begins with DRE.
Recovering the specifications, that is the conceptual schema in database realm, of
such applications is known as database reverse engineering (DBRE) [40]. A DBRE
process facilitates understanding and redocumenting an application’s database and
files. The baselines for a generic DBRE methodology was proposed by Hainaut et al.
[87], as discussed in the following.

By means of a DBRE process, one can recreate the complete logical and concep-
tual schemas of a database physical schema. The conceptual schema is an abstract,
implementation-independent description of the stored data. Entity-relationship (ER)
diagrams are commonly used as a schema notation. A conceptual schema, described
with an ER diagram, comprises entities, relationships among entities, attributes of
entities, and various constraints to capture an application’s concepts and structures.
On the one hand, a logical schema describes the data structures in concrete forms

168 REENGINEERING

as those are implemented by the data manager. For example, the logical schema of a
relational database precisely describes its tables, keys, and the data constraints. On
the other hand, the physical schema of a database implements the logical schema
by describing the physical constructs, namely, indices, and parameters, namely, page
size and buffer management policy. Undoubtedly, deep understanding of the forward
design process is needed to reverse engineer a database. The forward design process
of a database comprises three basic phases as follows:

� Conceptual phase. In this phase, user requirements are gathered, studied, and
formalized into a conceptual schema. The phase of conceptual schema has no
impact on reverse engineering.

� Logical phase. In this phase, the conceptual schema is expressed as a simple
model, which is suitable for optimization reasoning. Independent of the target
DBMS, the model can be optimized. Next, it is translated according to the target
model. The model can be further optimized according to data management
system (DMS)-dependent rules.

� Physical phase. Now the logical schema is described in the data description
language (DDL) of the DMS and the host programming language. The views
needed by the application programs are expressed partly in DDL and partly in
the host language.

A DBRE process is based on backward execution of the logical phase and the
physical phase, beginning with the results of the physical phase. The process is
divided into two main phases, namely, data structure extraction and data structure
conceptualization. The two phases relate to the recovery of two different schemas:
(i) the first one retrieves the present structure of data from their DDL/host language
representation and (ii) the second one retrieves a conceptual schema that describes
the semantics underlying the existing data structures. Figure 4.15 shows the general
architecture of a reference DBRE methodology.

4.8.1 Data Structure Extraction

The complete DMS schema, including the structures and constraints, are recovered
in this phase. In general, database systems provide a description of this schema
in some machine processable form. Schemas are a rich starting point to begin a
DBRE process. Schemas can be refined through further analysis of other components
of the application such as subschema, screen and report layouts, procedures, and
documentation. The problem is much more complex for standard files, for which
no computerized description of their structure exists in most cases. For example,
three standard files provided by Unix are Standard In, Standard Out, and Standard
Error. Every running program under Unix starts with three standard opened files.
By default, all inputs will come from the keyboard and all outputs (both normal
and error output) will go to the screen. Each source program must be analyzed in
order to detect partial structure of the files. For most real-world applications, data
structure elicitation techniques are used to discover the constraints and structures

DATA REVERSE ENGINEERING 169

Programs

Data

DMS-DDL

schema

Physical

schema

DMS-DDL text

analysis

Program

analysis

Data analysis

Schema

integration

DMS-compliant

optimized schema

D
at

a
st

ru
ct

u
re

 e
xt

ra
ct

io
n

DMS-compliant

optimized schema

Schema

preparation

Conceptual-logical-

physical schema

Raw-conceptual

schema

Schema

untranslation

Schema

de-optimization

Conceptual

normalization

Normalized

conceptual schema

B
as

ic
 c

o
n

ce
p

tu
al

iz
at

io
n

D
at

a
st

ru
ct

u
re

 c
o

n
ce

p
tu

al
iz

at
io

n

FIGURE 4.15 General architecture of the DBRE methodology. From Reference 95. © 1997
IEEE

that were implicitly incorporated into the implementation [40]. In this methodology,
data structures are extracted by means of the following main processes:

DMS–DDL text analysis. Data structure declaration statements in a given DDL,
found in the schema scripts and application programs, are analyzed to produce
an approximate logical schema.

Program analysis. This means analyzing the source code in order to detect integrity
constraints and evidences of additional data structures.

Data analysis. This means analyzing the files and databases to (i) identify data
structures and their properties, namely, unique fields and functional dependen-
cies in files and (ii) test hypothesis such as “could this field be a foreign key to
this file?”

Schema integration. The analyst is generally presented with several schemas while
processing more than one information source. Each of those multiple schemas
offers a partial view of the data objects. All those partial views are reflected on
the final logical schema via a process for schema integration.

4.8.2 Data Structure Conceptualization

In this phase, one detects and transforms or discards redundancies, DMS-dependent
constructs, technical optimization, and nonconceptual structures. The phase

170 REENGINEERING

comprises two sub-phases: basic conceptualization and conceptual normalization,
as explained in the following.

Basic conceptualization. In this sub-phase, relevant semantic concepts are
extracted from an underlying logical schema, by solving two different prob-
lems requiring very different methods and reasoning: schema untranslation and
schema de-optimization. It is important to note that first the schema is made
ready by cleaning it before tackling those two problems.
� Making the schema ready. First, the original schema might be using some

concrete constructs, such as files and access keys, which might have been
useful in the data structure extraction phase, but now can be eliminated.
Second, some names can be translated to more meaningful names. Third,
some parts of the schema might be restructured before trying to interpret
them.

� Schema untranslation. The existing logical schema is a technical transla-
tion of the initial conceptual constructs. Untranslation means identifying the
traces of those translations, and replacing them by their original conceptual
constructs.

� Schema de-optimization. An optimized schema is generally more difficult to
understand. Therefore, in a logical schema, it is useful to identify constructs
included to perform optimization and replace those constructs.

Conceptual normalization. The basic conceptual schema is restructured for it to
have the desired qualities, namely, simplicity, readability, minimality, extensi-
bility, and expressiveness. Examples of conceptual normalization are (i) replace
some entity types by relationship types; (ii) replace some entity types by
attributes; (iii) make the is–a relation explicit; and (iv) standardize the names.

4.9 REVERSE ENGINEERING TOOLS

In this section, we analyze a number of commercial and academic reverse engineering
tools. Each of these tools has one or more distinct features compared to others. We
put emphasis on the purpose of each tool and the functionality that it supports. It is
important to note that software reverse engineering is a complex process that tools
can only support, not completely automate. There is a need for a good deal of human
intervention with any reverse engineering project. The tools can provide a new view
of the product, as shown in Figure 4.16. The basic structure of reverse engineering
tools, as outlined by Chikofsky and Cross II, is as follows:

� The software system to be reverse engineered is analyzed.
� The results of the analysis are stored in an information base.
� View composers use the information base to produce alternative views of the

system.

REVERSE ENGINEERING TOOLS 171

Parser,

semantic

analyzer

View

composer(s)

Information

base

New view(s)

of product

-- Format

-- Graphics

-- Documentation

-- Metrics

-- Logic

-- Reports

Software work

product

FIGURE 4.16 Basic structure of reverse engineering tools. From Reference 6. © 1990 IEEE

Ada SDA (System Dependency Analyzer) [96] is a tool that supports analysis and
migration of Ada programs. It parses Ada code into an Object-Oriented Abstract
Structural Type (OO-AST) and performs simple analysis. The analysis is focused
on two areas, namely, portability check and architectural analysis. Portability check
is carried out by searching for non-Ada routines, such as X/Motif in the program
which are treated as cliché. The idea of cliché is explained after this paragraph.
Architectural analysis involves determining what subunits and packages are used and
the compilation dependency order.

Remark: A cliché is a frequently occurring pattern in a program, for example, data
structures, algorithms, or domain-specific patterns. A plan is a representation of a
cliché. Plan recognition involves recognizing cliché using plan. The recognition of
plan is a symbolic pattern matching process [97]. To locate such patterns, what is
needed is a search mechanism that is closer to the mental model of the software
engineer. Program plans are abstract representations of source code fragments. Com-
parison methods are used to help recognize instances of program plans in a subject
system. This process involves pattern matching at the programming language seman-
tic level.

CodeCrawler [98] is a language-independent reverse engineering tool which com-
bines metrics and software visualization [99]. CodeCrawler is written in Visualworks
Smalltalk and it runs on every major platform. It uses two-dimensional displays to
visualize software. Nodes represent software entities or abstraction of them, while the
edges represent relationships between those entities. This tool combines the capability
of showing software entities and their relationships with the capability of visualizing
software metrics using polymetric views. CodeCrawler has been successfully used to
reverse engineer several large industrial software systems.

DMS (Design Maintenance System) toolkit developed by Semantic Design, Inc.
[100], is composed of a set of tools for carrying out reengineering of medium- or
large-scale software systems. The capacities include analysis, porting, translation,
interface changes, or other massive regular change and/or domain-specific program
generation. This toolkit is the first implementation of the DMS, a software engineering

172 REENGINEERING

environment that supports the incremental construction and maintenance of large
application systems, driven by semantics and captured designs [101].

FermaT is the generic name for a set of tools designed by Software Migration
Ltd. [102], specifically to support assembler code comprehension, maintenance, and
migration. Based upon a unique IL called Wide Spectrum Language (WSL) and pro-
gram transformation technique, FermaT is able to capture and manipulate the entire
functionality of an assembler program, thereby significantly improving maintenance
productivity and reducing cost [103]. These tools can be used to transform assembly
language to C or COBOL.

GXL (Graph eXchange Language) [104] is an XML-based format for sharing data
between tools. GXL represents typed, attributed, directed, ordered graphs which are
extended to represent hyper-graphs and hierarchical graphs. An advantage of GXL
is that one can exchange instance graphs together with their corresponding schema
information in a uniform format. The language allows software reengineers to com-
bine single-purpose tools especially for parsing, source code extraction, architecture
recovery, data flow analysis, pointer analysis, program slicing, query techniques,
source code visualization, object recovery, restructuring, refactoring, and remodular-
ization into a single powerful reengineering workbench [105].

IDA Pro Disassembler and Debugger by Hex-Rays [106] is a powerful disassem-
bler that supports more than 50 different processor architectures, including IA-32,
IA-64 (Itanium), and AMD64. IDA also supports a variety of executable file formats
such as PE (Portable Executable used in Windows), ELF (Executable and Linking
Format, used in Linux), and even XBE, which is used on Microsoft’s Xbox. IDA is
a remarkably flexible product, providing highly detailed disassembly, along with a
plethora of side features that assist with the reversing task. IDA is capable of pro-
ducing a useful flowchart for a given function. In addition, it can produce call graphs
that visually illustrate the flow of code of a loaded program. The graph can show
internal subroutines and the links between every one of those subroutines. IDA also
has several little features that make it very convenient to use, such as highlighting
all instances of the currently selected operand. This makes it much easier to read
disassembled listings and gain an understanding of how data flow within the code.

Hex-Rays Decompiler is a commercial decompiler plug-in for IDA Pro [107].
This plug-in adds a decompiler view to the other views available with the interactive
disassembler. It converts executable programs into a human readable C-like pseudo
code text. The output is not designed for recompilation; rather, it is used only for
more rapid comprehension of what the function is doing. The output includes com-
pound conditional operators (|| and &&), loops (for, while, and break), and function
parameters and returns.

Imagix 4D [108] is useful in understanding legacy C, C++, and Java software.
It enables users to quickly check software at multiple levels: high-level architec-
ture, classes, and function dependencies. Users can explore their software’s control
structures, data usage, and inheritance. The tool is also useful in creating design
documentation automatically.

IRAP (Input–Output Reengineering and Program Crafting) is a data reengineering
tool developed by Spectra Research [109] that provides a semi-automated approach to

REVERSE ENGINEERING TOOLS 173

recraft legacy software into an Intranet/Internet-enabled application without compro-
mising program computational integrity. In particular, the input–output mechanism in
a legacy software is migrated to the Intranet/Internet platform, and business rules are
extracted from legacy software and reimplemented into an Intranet/Internet-enabled
application. Currently, Spectra Research supports reengineering of file-base FOR-
TRAN 77 and ANSI standard C programs.

JAD (JAva Decompiler) is a Java decompiler written in C++ [110]. JAD can be
used for (i) recovering lost source code; (ii) exploring the sources of Java runtime
libraries; and (iii) disassembling bytecode. Since Java files are compiled to bytecode,
which is interpreted by a Virtual Machine, and not compiled to machine code like
C programs, Java decompilers can decompile Java programs into compilable source
code with near-perfect accuracy. JAD fails to decompile some nested loops and has
difficulty in decompiling inline commands and inner functions.

ManSART [111] is a tool to recover the architecture of a given software system.
Working primarily on source code, the tool semi-automatically constructs software
structure by abstracting functionalities of the system.

McCabe IQ [112] is capable of predicting some key issues in maintaining large
and complex business software applications: (i) locate error-prone sections of code
and (ii) identify the risk of system failure. It also provides a rich graphical envi-
ronment for analyzing the architectures of systems. In addition, it provides robust
enterprise reporting, advanced reengineering capabilities, change analysis, and secure
web-enabled test data collection. McCabe IQ is platform independent and sup-
ports a variety of languages such as C, C#, C++, Perl, PL1, COBOL, JAVA, and
VB.NET.

PBS (Portable Bookshelf) is an implementation of the web-based concept called
Software Bookshelf [113] for the presentation navigation of information representing
large software systems. The PBS Toolkit [114] is a set of tools for the generation of
a PBS Bookshelf, which captures, organizes, manages, and delivers comprehensive
information about software systems. It provides an integrated suite of code analysis
and visualization capabilities intended for software maintenance, reengineering, and
migration. One accesses the Bookshelf via a set of web pages. A separate page is
assigned to each subsystem of the target software, and the page hierarchy reflects the
system decomposition. Because of the open nature of the structure of the Bookshelf,
developers can directly access the source code and documentation by navigating the
file system.

RE-Analyzer [115] is an automated, reverse engineering system providing a high
level of integration with a computer-aided software engineering (CASE) tool devel-
oped at IBM. The RE-analyzer automatically reverse engineers source code into
graphic and textual representations within a CASE tool supporting structured anal-
ysis methodology [116]. That is, it transforms source code into a set of data flow
diagrams, state transition diagrams, and entity-relationship data models within the
design database of a CASE tool. Since the resulting representations can be browsed
and modified within the CASE tool environment, a broad range of software engi-
neering activities is supported, including program understanding, reengineering, and
redocumentation.

174 REENGINEERING

Reengineering Assistant (RA) aims to provide an interactive environment where
software maintainers can reverse engineer source code into a higher abstraction level
of representation. The earliest version of RA is called Maintenance Assistant (MA),
which was first developed for program analysis purpose at the Centre for Software
Maintenance, Durham University in 1989. By means of a unified reengineering
framework, a rigorous approach to reverse engineering has been proposed by using
a WSL [103]. Sound rules for creating abstractions have been developed within the
framework, and a tool has been built for automation.

Rigi [117, 118] is a software tool for comprehending large software systems.
Software comprehension is achieved by performing reverse engineering on the given
system. The tool (i) extracts artifacts from the information space of the given sys-
tem; (ii) organizes the artifacts to construct a model at a higher abstraction level;
(iii) graphically presents the model; (iv) supports both automatic and user-defined
clustering of source artifacts; and (v) supports hierarchically embedded views of
different relations among the source artifacts. To understand Java code, a reverse
engineering environment called Shimba [119] has been coupled with Rigi. Shimba
can analyze the static and dynamic aspects of the system. A directed graph is used to
show dependencies among static software artifacts extracted from Java byte code.

SEELA is a reverse engineering tool developed by Tuval Software Industries [120]
to support the documentation and maintenance of structured source code. The tool
performs top-down display of source code to enhance the readability of programs.
Additional features available in the tool are a structure editor, a browser, and a source
code documentation generator. It works with a variety of programming languages,
including C, FORTRAN, Ada, and Cobol. The main motivation for designing SEELA
was to bridge the gap between a system’s design description and the source code.

4.10 SUMMARY

In this chapter, we introduced the concepts, processes, and techniques of software
reengineering including the risks associated with it. In addition, four general software
reengineering benefits were discussed: (i) improving maintainability; (ii) migrating
to a newer technology; (iii) improving quality; and (iv) preparing for functional
enhancement.

Next, we introduced the concept of software reengineering based on three basic
principles: abstraction, refinement, and alteration. Then, we discussed a general model
for software engineering proposed by Eric J. Byrne [5]. The model suggests that
reengineering is a sequence of three major activities: reverse engineering, re-design,
and forward engineering. The aforementioned sequence is founded in abstraction,
alteration, and refinement. In addition, we discussed three reengineering strategies:
rewrite, rework, and replace. These reengineering strategies specify the basic steps
for reengineering methods. The rewrite strategy is founded on the principle of alter-
ation; the rework strategy on the principles of abstraction, alteration, and refinement;
and the replace strategy on the principles of abstraction and refinement. Different
variations of the reengineering process based on three strategies—rewrite, rework,

SUMMARY 175

and replace—and four types of changes—re-think, re-design, re-specify, and re-
code—were enumerated in a tabular form and critically analyzed.

We explained five basic reengineering approaches: big bang, incremental, partial,
iterative, and evolutionary. Each approach advocates a path for reaching the same goal
of producing the target system. A specific reengineering approach is chosen for a given
project after careful considerations of the following key factors: (i) objectives of the
project; (ii) resources available for the project; (iii) the current state of the system to be
reengineered; and (iv) risks in executing the project. We described two reengineering
models: (i) source code reengineering reference model (SCORE/RM) and (ii) phase
reengineering model. On the one hand, the reference model is divided into eight
layers providing a detailed approach to rationalizing the software, understanding
its requirements and functions, and reconstructing the software system following
established practices. On the other hand, the phase reengineering model comprises
five stages: planning and analysis, renovation, target system testing, redocumentation,
and acceptance testing and system transition. Tasks within the phases are further
decomposed to express detailed methodologies.

With the reengineering approaches and models in place, we introduced the con-
cepts and objectives of reverse engineering. Then we introduced the Goals/Models/
Tools paradigm that divides a reverse engineering process into three ordered stages:
Goals, Models, and Tools:

Goals. In the Goals stage, the motivations for setting up of a process for reverse
engineering are analyzed. The goals of the analysis activity are to identify (i)
the information that the process will need and (ii) the abstractions to be created
by the process.

Models. In this stage, the abstractions identified in the first stage are analyzed
to create representation models. Representation models include information
needed for the generation of abstractions.

Tools. In this phase, one defines, acquires, and/or develops the software tools
required to produce documents by means of reverse engineering. The tools are
used in (i) executing the Models stage and (ii) transforming the program models
into the abstraction models identified in the Goals stage.

Fact-finding and information gathering from source code are the keys to the
Goal/Models/Tools paradigm. In order to extract information that is not explicitly
available from source code, automated analysis techniques, such as lexical analysis,
syntactic analysis, control flow analysis, data flow analysis, program slicing, visual-
ization, and metrics are used to facilitate reverse engineering. We examined low-level
reverse engineering such as decompilers and disassemblers. The relationship between
decompilation and the traditional reengineering model was also discussed.

Next, we discussed DRE for data-oriented applications. In data-oriented appli-
cations, the complexity can be broken down by considering that the files or database
can be reverse engineered almost independently of the procedural parts. DRE deals
only with data components of the data-oriented applications. DRE is a process for
understanding and redocumenting the files and/or database of an application. We

176 REENGINEERING

discussed a generic methodology based on the work of Jean-Luc Hainaut and his
colleagues.

Finally, we concluded this chapter with a description of several commercial and
academic reverse engineering tools. During our discussion, we emphasized on the
purpose of each tool and the functionality it supports.

LITERATURE REVIEW

The edited book by Robert S. Arnold entitled Software Reengineering, IEEE Com-
puter Society Press, Los Alamitos, CA, 1993 is a collection of 52 selected articles.
These articles will further enhance the reader’s understanding of software reengi-
neering technology. A wide variety of software engineering concepts, tools and tech-
niques, case studies, risks, and benefits are presented in the book. The book includes
an excellent annotated bibliography of software reengineering that were published
before circa 1993.

Reverse engineering is an active area of research in computer science. Researchers
and practitioners, who are interested in knowing more about this subject, are recom-
mended to study the following two articles:

H. Müller, J. Jahnke, D. Smith, M. Storey, S. Tilly and K. Wong. 2000. Reverse Engineer-
ing: A Roadmap, International Conference on Software Engineering – Future of Software
Engineering. IEEE Computer Society Press, Los Alamitos, CA. pp. 47–60.

G. Canfora and M. Di Penta. 2007. New Frontiers of Reverse Engineering, International
Conference on Software Engineering – Future of Software Engineering. IEEE Computer
Society Press, Los Alamitos, CA. pp. 326–341.

The first article above summarizes the reverse engineering research during the 1980s
and the 1990s. The authors describe the research activities in data and code reverse
engineering. In addition, they discuss research results for developing and evaluating
tools for reverse engineering. The second article presents the main achievements in
the area of reverse engineering, such as program analysis, architecture and design
recovery, and visualization. In addition, the authors discuss future research directions
in reverse engineering.

Program transformation has applications in many areas of software engineering
including compilation, optimization, refactoring, software renovation, and reverse
engineering. Program transformation is the act of changing one program into an
equivalent program. The aim of program transformation is to increase program-
mer productivity by automating programming tasks, thus enabling programming at a
higher level of abstraction, and increasing maintainability and re-usability. The article
by Eelco Visser [12] gives a taxonomy of the application areas of program transfor-
mations, discusses considerations to be made in the implementation of program
transformation systems, especially focusing on the specification of transformation
strategies. A slightly different approach to program translation was proposed by
Richard Waters, known as program translation via abstraction and reimplementation
[53]. It is a two-step method: (i) the source program is analyzed in order to produce a

LITERATURE REVIEW 177

high-level, language-independent description and (ii) the reimplementation process
transforms the abstract description obtained in the first step into a program in the
target language.

We discussed the Goals/Models/Tools paradigm proposed by Benedusi et al. [21]
when setting up a reverse engineering process. In circa 2004, Spencer Rugaber and
Kurt Stirewalt (Model-driven reverse engineering, IEEE Software, July/August, 2004,
45–52) proposed a model-driven reverse engineering (MDRE) process. MDRE uses
a formal specification language called SLANG and automatic code generation to
reverse the reverse engineering process. To illustrate the process, the authors use a
numerical analysis application of finding the roots of nonlinear equations.

Clone detection in software systems is an active area of research within program
analysis. Several interesting techniques have been developed besides metric-based
techniques [42], such as AST-based and token-based techniques. The reader is recom-
mended to study the survey article on this subject by Chanchal Kumar Roy and James
R. Cordy (A Survey on Software Clone Detection Research, Technical Report No.
2007-541, School of Computing, Queen’s University at Kingston, Ontario, Canada).
Moreover, contrary to the common wisdom, C. Kasper and M. W. Godfrey (‘Cloning
Considered Harmful’ Considered harmful, Proceedings of the 2006 Working Con-
ference on Reverse Engineering. IEEE Computer Society Press, Los Alamitos, CA,
2006. pp. 9–18) argue that clones are not necessarily harmful, especially so if main-
tainers are aware of clones.

Those interested in knowing more about low-level reverse engineering may refer
to the excellent book by Eldad Eilam entitled Reversing: Secrets of Reverse Engi-
neering [59]. The author discussed several interesting topics related to reverse engi-
neering such as (i) reverse engineering on the .NET platform, (ii) how to reverse
engineer an operating system, (iii) how to decipher an undocumented file for-
mat, (iv) copy protect and digital rights management technologies, and (iv) theory
and principle behind decompilers. Regarding the history of decompilers, the read-
ers are recommended to visit the decompilation wiki page (http://www.program-
transformation.org/Transform/DeCompilation).

Due to the use of persistent data structures in a large number of software systems,
concepts and techniques in DRE have gained much attention. DRE evolves through
two communities: database community and software engineering community [93].
DRE comprises two major activities, namely, data analysis and conceptual abstrac-
tion. The former tries to recover a structurally complete and semantically annotated
logical data model, whereas the latter aims to map the logical data model to an equiv-
alent conceptual design. The interested readers are recommended to study the articles
by Jean-Luc Hainaut and his colleagues [40, 87, 88, 95]. In addition, the book by
Jörg P. Wadsack entitled Data-oriented Reengineering, Sudwestdeutcher Verlag fur
Hochschulschriften(SVH) AG, 2009 will further enhance the reader’s understanding
of data reengineering technology. The book presents a wide variety of reengineer-
ing approaches, concepts, tools and techniques, risks, and benefits. It discusses the
processes that combine tools for reengineering the data as well as the applications.

The question of the extent to which low-level reverse engineering (decompilation
or disassembly) can legitimately be carried out without the consent of the owner of
copyright of the computer program has been the subject of debate and uncertainty

http://www.program-transformation.org/Transform/DeCompilation
http://www.program-transformation.org/Transform/DeCompilation
http://www.program-transformation.org/Transform/DeCompilation
http://www.program-transformation.org/Transform/DeCompilation

178 REENGINEERING

for many years. The issue arises because any form of reverse engineering involves
intermediate copying of the software being analyzed. Copyright protects the form
of expression of ideas or information (but not the ideas or information in itself),
conferring certain exclusive rights on the author or creator. A more contentious issue
is whether exceptions to the copyright owner’s exclusive rights should be recognized
in order to permit copying which occurs in the course of reverse engineering of
computer software. The article by Cristina Cifuentes and Anne Fitzgerald (The legal
status of reverse engineering of computer software, Annals of Software Engineering,
Vol. 9, 2000, pp. 337–351) summarize the state of the law in the United States, the
European Union, and Australia in relation to exceptions to copyright infringement
which permit reverse engineering. The authors also discussed the landmark cases of
Sega Enterprises Ltd versus Accolade, Inc. (Sega) and Atari Games Corp. versus
Nintendo of America, Inc. (Atari).

REFERENCES

[1] J. A. McCall, P. K. Richards, and G. F. Walters. 1977. Factors in Software Quality.
Vol. 1, ADA 049014, National Technical Information Service, Springfield, VA.

[2] D. Yu. 1991. A view on three r’s (3rs): reuse, re-engineering, and reverse-engineering.
ACM SIGSOFT Software Engineering Notes, 16(3), 69.

[3] R. S. Arnold. 1993. A road map guide to software reengineering technology In: Software
Reengineering (Ed R. S. Arnold). IEEE Computer Society Press, Los Alamitos, CA.

[4] H. M. Sneed. 1995. Planning the reengineering of legacy systems. IEEE Software,
January, 24–34.

[5] E. J. Byrne. 1992. A Conceptual Foundation for Software Reengineering. Proceedings
of the International Conference on Software Maintenance, November 1992, Orlando,
Florida. IEEE Computer Society Press, Los Alamitos, CA. pp. 226–235.

[6] E. J. Chikofsky and J. H. Cross II. 1990. Reverse engineering and design recovery. IEEE
Software, January, 13–17.

[7] R. Kazman, S. Woods, and J. Carrière. 1998. Requirements for Integrating Software
Architecture and Reengineering Models: Corum ii. Proceedings of Working Conference
on Reverse Engineering (WCRE), Washington, DC. IEEE Computer Society Press, Los
Alamitos, CA. pp. 154–163.

[8] I. Jacobson and F. Lindstrȯm. 1991. Re-engineering of Old Systems to an Object-oriented
Architecture. Proceedings of the ACM Conference on Object Oriented Programming
Systems Languages and Applications, October 1991. ACM Press, New York, NY. pp.
340–350.

[9] J. Shao and C. Pound. 1999. Extracting business rules from information systems. BT
Technology Journal, 17(4), 179–186.

[10] D. C. Schmidt. 2006. Model-driven engineering. IEEE Computer, February, 25–31.

[11] J. Manzella and B. Mutafelija. 1992. Concept of the Re-engineering Life-cycle. Proceed-
ings of the International Conference on System Integration, June 1992, Morristown, NJ.
IEEE Computer Society Press, Los Alamitos, CA. pp. 566–570.

[12] E. Visser. 2005. A survey of strategies in rule-based program transformation. Journal
of Symbolic Computation, 40(1), 831–873.

REFERENCES 179

[13] L. H. Rosenberg and L. E. Hyatt. 1996. Software re-engineering. SAYC-TR-95-
1001. Available at http://satc.gsfc.nasa.gov/support/reengrpt.PDF (accessed October
1996).

[14] E. J. Byrne and D. A. Gustafson. 1992. A Software Re-engineering Process Model.
Proceedings of the Sixteenth Annual International Conference on Computer Software
and Applications (COMPSAC), September 1992. IEEE Computer Society Press, Los
Alamitos, CA. pp. 25–30.

[15] A. Colbrook, C. Smythe, and A. Darlison. 1990. Data Abstraction in a Software Re-
engineering Reference Model. Proceedings of the International Conference on Software
Maintenance, November 1990, San Diego, CA. IEEE Computer Society Press, Los
Alamitos, CA. pp. 2–11.

[16] H. M. Sneed. 1991. Economics of software re-engineering. Journal of Software Main-
tenance: Research and Practice, September, 163–182.

[17] M. G. Rekoff Jr. 1985. On reverse engineering. IEEE Transactions on Systems, Man,
and Cybernetics, March–April, 244–252.

[18] C. Cifuentes. 2001. Reverse engineering and the computing profession. IEEE Computer,
December, 166–168.

[19] T. J. Biggerstaff. 1989. Design recovery for maintenance and reuse. Computer, July,
36–49.

[20] IEEE Standard 1219-1998. 1998. Standard for Software Maintenance. IEEE Computer
Society Press, Los Alamitos, CA.

[21] P. Benedusi, A. Cimitile, and U. De Carlini. 1992. Reverse engineering processes,
design document production, and structure charts. Journal of Systems Software, 19,
225–245.

[22] G. Canfora, A. Cimitile, and M. Munro. 1994. Reverse engineering and reuse engi-
neering. Journal of Software Maintenance and Evolution: Research and Practice, 6(2),
53–72.

[23] B. Cheng and J. Jeng. 1997. Reusing analogous components. IEEE Transactions on
Knowledge and Data Engineering, 9(2), 341–349.

[24] E. Burd and M. Munro. 1998. A method for the identification of reusable units through
reengineering. The Journal of Systems and Software, 44(2), 121–134.

[25] G. Canfora, A. De Lucia, and M. Munro. An integrated environment for reuse reengi-
neering C code. The Journal of Systems and Software, 42(2), 153–164.

[26] P. T. Breuer and K. Lano. 1991. Creating specification from code: reverse engineering
techniques. Software Maintenance: Research and Practice, 3, 145–162.

[27] A. Lakhotia. 1997. A unified framework for expressing software subsystem classifica-
tion technique. The Journal od Systems and Software, 36(3), 211–231.

[28] L. J. Holtzblatt, R. L. Piazza, H. B. Reubenstein, S. N. Roberts, and D. R. Harris. 1997.
Design recovery for distributed systems. IEEE Transactions on Software Engineering,
23(7), 461–472.

[29] D. Jerding and S. Rugaber. 1997. Using Visualization for Architectural Localization and
Extraction. 4th Working Conference on Reverse Engineering. IEEE Computer Society
Press, Los Alamitos, CA. pp. 56–65.

[30] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan. 2006. Discovering archi-
tectures from running systems. IEEE Transactions on Software Engineering, 32(7),
454–466.

http://satc.gsfc.nasa.gov/support/reengrpt.PDF
http://satc.gsfc.nasa.gov/support/reengrpt.PDF

180 REENGINEERING

[31] G. Antoniol, G. Casazza, M. Di Penta, and R Fiutem. 2001. Object-oriented design
patterns recovery. Journal of Systems and Software, 59(2), 181–196.

[32] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis. 2006. Design
pattern detection using similarity scoring. IEEE Transactions on Software Engineering,
32(11), 896–909.

[33] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. 2002. Recovering traceability
links between code and documentation. IEEE Transactions on Software Engineering,
28(10), 970–983.

[34] G. Ebner and H. Kaindl. 2002. Tracing all around in reengineering. IEEE Software,
May/June, pp. 70–77.

[35] A. Marcus and J. I. Maletic. 2003. Recovering documentation-to-source-code traceabil-
ity links using latent semantic indexing. Proceedings of the 25th International Confer-
ence on Software Engineering, Portland, Oregon. IEEE Computer Society Press, Los
Alamitos, CA. pp. 125–135.

[36] G. Canfora, A. Cimitile, and M. Munro. 1996. An improved algorithm for identifying
objects in code. Software – Practice and Experience, 26(1), 25–48.

[37] W. J. Premerlani and M. R. Blaha. 1994. An approach for reverse engineering of
relational databases. Communications of the ACM, 37(5), 42–49.

[38] M. R. Blaha. 1997. Dimension of Database Reverse Engineering. 4th Working Confer-
ence on Reverse Engineering. IEEE Computer Society Press, Los Alamitos, CA. pp.
176–183.

[39] J. H. Jahnke and J. Wadsack. 1999. Integration of Analysis and Redesign Activities
in Information System Reengineering. Proceedings of the 3rd European Conference
on Software Maintenance and Reengineering, October 1999. IEEE Computer Society
Press, Los Alamitos, CA. pp. 160–168.

[40] J. Hainaut, J. Henrard, D. Roland, V. Englebert, and J. Hick. 1996. Structure Elicitation
in Database Reverse Engineering. 3th Working Conference on Reverse Engineering.
IEEE Computer Society Press, Los Alamitos, CA. pp. 131–139.

[41] B. S. Baker. 1995. On Finding Duplication and Near-duplication in Large Software Sys-
tems. Proceedings of the Working Conference on Reverse Engineering. IEEE Computer
Society Press, Los Alamitos, CA. pp. 86–95.

[42] K. Kontogiannis, R. De Mori, E. Merlo, M. Galler, and M. Bernstein. 1996. Pattern
matching for clone and concept detection. Journal of Automated Software Engineering,
3, 77–108.

[43] T. Kamiya, S. Kusumoto, and K. Inoue. 2002. Ccfinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Transactions on Software
Engineering, 28(7), 654–670.

[44] R. Koschke. 2008. Identifying and removing software clones. In: Software Evolution
(Eds T. Mens and S. Demeyer), pp. 15–36. Springer-Verlag, Berlin.

[45] E. van Emden and L. Moonen. 2002. Java Quality Assurance by Detecting code Smells.
9th Working Conference on Reverse Engineering, Richmond, VA. IEEE Computer
Society Press, Los Alamitos, CA. pp. 97–107.

[46] M. Marin, A. van Deursen, and L. Moonen. 2004. Identifying Aspects Using Fan-in
Analysis. Proceedings of the 11th Working Conference on Reverse Engineering. IEEE
Computer Society Press, Los Alamitos, CA. pp. 132–141.

REFERENCES 181

[47] R. S. Arnold and S. A. Bohner. 1993. Impact analysis—towards a framework for
comparison. In: Software Chnage Impact Analysis (Eds S. A. Bohner and R. S. Arnold),
pp. 34–43. IEEE Computer Society Press, Los Alamitos, CA.

[48] C. Cifuentes and K. J. Gough. 1995. Decompilation of binary programs. Software –
Practice and Experience, 25(7), 811–829.

[49] E. Merlo, Y. Gagné P, J. F. Girard, K. Kontogiannis, L. J. Hendren, P. Panangaden, and
R. de Mori. 1995. Reengineering user interfaces. IEEE Software, January, 64–73.

[50] C. Plaisant, A. Rose, B. Shneiderman, and A. Vanniamparampil. 1997. Low-effort,
high-payoff user interface reengineering. IEEE Software, July–August, 66–72.

[51] H. M. Sneed and S. H. Sneed. 2006. Reverse engineering of system interfaces: a report
from the field. 13th Working Conference on Reverse Engineering. IEEE Computer
Society Press, Los Alamitos, CA. pp. 125–133.

[52] S. Bhansali, J. R. Hegemeister, C. S. Raghavendra, and H. Sivaraman. 1994. Par-
allelizing sequential programs by algorithm-level transformation. Proceedings of the
3rd Workshop on Program Comprehension, Washington, DC. IEEE Computer Society
Press, Los Alamitos, CA. pp. 100–107.

[53] R. C. Waters. 1988. Program translation via abstraction and reimplementation. IEEE
Transactions on Software Engineering, 14(8), 1207–1228.

[54] E. J. Byrne. 1991. Software reverse engineering: a case study. Software – Practice and
Experience, 21(2), 1349–1364.

[55] G. Canfora, A. Cimitile, A. De Lucia, and G. A. Di Lucca. 2000. Decomposing legacy
programs: a first step towards migrating to client-server platforms. Journal of Systems
and Software, 54(2), 99–110.

[56] I. Jacobson, M. Ericsson, and A. Jacobson. 1995. The Object Advantage – Business
Process Re-engineering with Object Technology. Addison-Wesley, Reading, MA.

[57] H. Huang, W. T. Tsai, S. Bhattacharya, X. Chen, Y. Wang, and J. Sun. 1998. Business rule
extraction techniques for cobol programs. Journal of Software Maintenance Research
and Practice, 10(1), 3–35.

[58] H. M. Sneed. 2000. Encapsulation of legal software: a technique for reusing legacy
software components. Annals Software Engineering, 9, 293–313.

[59] E. Eilam. 2005. Reversing: Secrets of Reverse Engineering. Wiley, Indianapolis, IN.

[60] D. DaCosta, C. Dahn, S. Mancoridis, and V. Prevelakis. 2003. Characterizing the
‘Security Vulnerability Likelihood’ of Software Function. Proceedings, Conference on
Software Maintenance. IEEE Computer Society Press, Los Alamitos, CA. pp. 266–
275.

[61] M. Shevertalov and S. Mancoridis. 2007. A Reverse Engineering Tool for Extract-
ing Protocols of Networked Applications. 14th Working Conference on Reverse Engi-
neering, Vancouver, BC. IEEE Computer Society Press, Los Alamitos, CA. pp. 229–
238.

[62] P. Benedusi, A. Cimitile, and U. De Carlini. 1989. A Reverse Engineering Methodology
to Reconstruct Hierarchical Data Flow Diagrams. Proceedings of the International
Conference on Software Maintenance, October 1989, Miami, FL. IEEE Computer
Society Press, Los Alamitos, CA. pp. 180–189.

[63] D. Brown, J. Levine, and T. Mason. 1995. lex & yacc, 2nd Edition. O’Reilly Media Inc.,
Sebastopol, CA.

182 REENGINEERING

[64] M. S. Hecht. 1977. Flow Analysis of Computer Programs. Elsevier Science Inc., New
York, NY.

[65] B. G. Ryder. 1979. Constructing the call graph of program. IEEE Transactions on
Software Engineering, 5(3), 216–226.

[66] D. Callahan, A. Carle, M. W. Hall, and K. Kennedy. 1990. Constructing the pro-
cedure call multigraph. IEEE Transactions on Software Engineering, 16(4), 483–
487.

[67] L. J. Osterweil and L. D. Fosdick. 1976. Dave – a validation, error detection, and docu-
mentation system for fortran programs. Software – Practice and Experience, October/
December, 473–486.

[68] L. D. Fosdick and L. J. Osterweil. 1976. Data flow analysis in software reliability.
Computing Surveys, September, 305–330.

[69] M. Weiser. 1984. Program slicing. IEEE Transactions on Software Engineering, 10(4),
352–357.

[70] D. Binkley, S. Horwitz, and T. Reps. 1995. Program integration for language with
procedure calls. ACM Transactions on Software Engineering and Methodology, 4(1),
3–35.

[71] K. Gallagher and D. Binkley. 2008. Program Slicing. Proceedings of the 2008 Frontiers
of Software Maintenance (FoSM), September 2008, Beijing, China. IEEE Computer
Society Press, Los Alamitos, CA. pp. 58–67.

[72] F. Tip. 1995. A survey of program slicing techniques. Journal of Programming Lan-
guages, 3, 121–189.

[73] P. Young and M. Munro. 1998. Visualising Software in Virtual Reality. Proceedings
of International Workshop on Working Conference on Program Comprehensive. IEEE
Computer Society Press, Los Alamitos, CA. pp. 19–26.

[74] T. J. McCabe. 1976. A complexity measure. IEEE Transactions on Software Engineer-
ing, December, 308–320.

[75] A. J. Albrecht. 1979. Measuring Application Development Productivity. Process Joint
SHARE/GUIDE/IBM Application Development Symposium, October 1979. Reprinted
in 1981 in Programming Productivity: Issues for the Eighties (Ed. Capers Jones), No.
EHO 186-7, pp. 34–43. Computer Society Press.

[76] S. M. Henry and D. G. Kafura. 1981. Software structure metrics based on information
flow. IEEE Transactions on Software Engineering, 7(5), 510–518.

[77] S. R. Chidamber and C. F. Kemerer. 1994. A metric suite for object-oriented design.
IEEE Transactions on Software Engineering, 20(6), 476–493.

[78] V. R. Basili, L. C. Briand, and W. L. Melo. 1996. A validation of object-oriented design
metrics as quality indicators. IEEE Transactions on Software Engineering, 22(10),
751–761.

[79] G. A. Di Lucca, M. Di Penta, A. R. Fasolino, and P. Granato. 2001. Clone Analysis
in the Web Era: An Approach to Identify Cloned Web Pages. Proceedings of 7th IEEE
Workshop on Empirical Studies of Software Maintenance, November 2001, Florence,
Italy. IEEE Computer Society Press, Los Alamitos, CA. pp. 107–113.

[80] G. A. Di Lucca, M. Di Penta, and A. R. Fasolino. 2002. An Approach to Identify Dupli-
cated Web Pages. Proceedings of 26th International Computer Software and Applica-
tions Conference, August 2002, Oxford, England. IEEE Computer Society Press, Los
Alamitos, CA. pp. 481–486.

REFERENCES 183

[81] M. Halstead. 1962. Machine Independent Computer Programming. Spartan Books,
Washington, DC.

[82] I. D. Baxter and M. Mehlich. 1997. Reverse Engineering Is Reverse Forward Engineer-
ing. 4th Working Conference on Reverse Engineering. IEEE Computer Society Press,
Los Alamitos, CA. pp. 104–113.

[83] M. J. Van Emmerik. 2007. Static single assignment for decompilation. Ph.D. Thesis,
School of Information Technology and Electrical Engineering, The University Queens-
land, Australia. Available at http://www.program-transformation.org/Transform/
DecompilationAndReverseEngineering (accessed June 17, 2014).

[84] P. Samuelson and S. Scotchmer. 2002. The law and economics of reverse engineering.
The Yale Law Journal, 111, 1575–1663.

[85] D. N. Pruitt. 2006. Beyond fair use: the right to contract around copyright protection of
reverse engineering in the software industry. Journal of Intellectual Property, Chicago-
Kent College of Law, 6(1), 66–86.

[86] J. A. Ricketts, J. C. DelMonaco, and M. W. Weeks. 1989. Data Reengineering for
Application Systems. Proceedings of the International Conference on Software Main-
tenance, November 1989. IEEE Computer Society Press, Los Alamitos, CA. pp. 174–
179.

[87] J. Hainaut, M. Chandelon, C. Tonneau, and M. Joris. 1993. Contribution to a Theory
of Database Reverse Engineering. Proceedings of Working Conference on Reverse
Engineering. IEEE Computer Society Press, Los Alamitos, CA. pp. 161–170.

[88] J. Hainaut, V. Englebert, J. Henrard, J. Hick, and D. Roland. 1995. Requirements for
Information System Reverse Engineering Support. 2nd Working Conference on Reverse
EngineeringToronto, ON. IEEE Computer Society Press, Los Alamitos, CA. pp. 136–
145.

[89] J. Fong. 1997. Converting relational to object-oriented databases. ACM SIGMOD
Record, 26(1), 53–58.

[90] S. Ramanathan and J. Hodges. 1997. Extraction of object-oriented structures from
existing relational databases. ACM SIGMOD Record, 26(1), 59–64.

[91] P. Aiken. 1996. Data Reverse Engineering: Staying the Legacy Dragon. McGraw-Hill,
Boston, New York.

[92] P. Aiken. 1998. Structured design. IBM Systems Journal, 37(2), 246–269.

[93] K. H. Davis and P. H. Aiken. 2000. Data Reverse Engineering: A Historical Survey.
7th Working Conference on Reverse Engineering. IEEE Computer Society Press, Los
Alamitos, CA, pp. 70–78.

[94] M. Blaha. 1998. On Reverse Engineering of Vendor Database. 5th Working Conference
on Reverse Engineering. IEEE Computer Society Press, Los Alamitos, CA, pp. 183–
190.

[95] J. Hainaut, J. Hick, J. Henrard, D. Roland, and V. Englebert. 1997. Knowledge Transfer
in Database Reverse Engineering: A Supporting Case Study. 4th Working Conference
on Reverse Engineering. IEEE Computer Society Press, Los Alamitos, CA. pp. 194–
203.

[96] G. Baratta-Perez, R. L. Conn, C. A. Finnell, and T. J. Walsh. 1994. Ada system depen-
dency analyzer tool. IEEE Computer, February, 49–55.

[97] L. Wills and C. Rich. 1990. Recognizing a program’s design: a graph-parsing approach.
IEEE Software, January, 82–89.

http://www.program-transformation.org/Transform/DecompilationAndReverseEngineering
http://www.program-transformation.org/Transform/DecompilationAndReverseEngineering

184 REENGINEERING

[98] M. Lanza. 2007. Available at http://smallwiki.unibe.ch/codecrawler/. CodeCrawler
(accessed August 2007).

[99] M. Lanza and S. Ducasse. 2003. Polymetric views – a lightweight visual approach to
reverse engineering. IEEE Transactions on Software Engineering, Septemebr, 782–995.

[100] Semantic Design Inc. 1995–2008. The DMS Software Reengineering Toolkit. Available
at http://www.semdesigns.com/products/dms/dmstoolkit.htm (accessed October 1995–
2008).

[101] I. Baxter, P. Pidgeon, and M. Mehlich. 2004. Dms: Program Transformations for Prac-
tical Scalable Software Evolution. Proceedings of the 26th International Conference
on Software Engineering, Scotland, UK. IEEE Computer Society Press, Los Alamitos,
CA. pp. 625–634.

[102] Software Migration Ltd. 2007. The FermaT Workbench. Available at http://www.
smltd.com/solutions.htm (accessed May 2007).

[103] H. Yang and M. Ward. 2003. Successful Evolution of Software Systems. Artech House,
Boston, MA.

[104] R. C. Holt, A. Schu̇rr, S. E. Sim, and A. Winter. 2006. Gxl: a graph-based standard
exchange format for reengineering. Science of Computer Programming, 60(2), 149–
170.

[105] R. Holt, A. Schu̇rr, S. E. Sim, and A. Winter. 2002. Graph Exchange Language Tools
Version 1.0. Available at http:/www.gupro.de/gxl/tools/tools.html (accessed July 2002).

[106] Hex-rays. 2007. The IDA Pro Disassembler and Debugger. Available at http://www.hex-
rays.com/idapro (accessed February 2007).

[107] Hex-rays. 2008. Hex-Rays Decompiler. Available at http://www.hex-rays.com/decom
piler.shtml. (accessed February 2008).

[108] Imagix corporation. 2007. Reverse Engineering Quality Metrics, and Documentation
Tool. Available at http://www.imagix.com/products/products.html. (accessed October
2007).

[109] Spectra Research. 2008. Software I/O Reengineering. Available at http://www.spectra-
research.com/inner/reeng.htm (accessed October 2008).

[110] P. Kouznetsov. 1997–2001. Jad – The Fast JAva Decompiler. Available at http://
www.kpdus.com/jad.html (accessed June 17, 2014).

[111] M. P. Chase, S. M. Christey, D. R. Harris, and A. S. Yeh. 1998. Managing Recovered
Functions and Structure of Legacy Software Components. 5th Working Conference on
Reverse Engineering. IEEE Computer Society Press, Los Alamitos, CA, pp. 79–88.

[112] McCabe Software. 2008. McCabe IQ Enterprise Edition. Available at http://www.
mccabe.com/iq_enterprise.htm (accessed October 2008).

[113] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis, H. A. Mu̇ller, J. Mylopoulos,
S. G. Perelgut, M. Stanley, and K. Wong. 1997. The software bookself. IBM Systems
Journal, 36(4), 564–593.

[114] R. Holt. 1997. Software Bookself: Overview and Construction. Pbs Bookself. Available
at http://www.swag.uwaterloo.ca/pbs (accessed March, 1997).

[115] A. B. O’Hare and E. W. Troan. 1994. Re-analyzer: from source code to structured
analysis. IBM Systems Journal, 33(1), 110–130.

[116] E. Yourdon. 1989. Modern Structured Analysis. Prentice Hall, Englewood Cliffs, NJ,
pp. 417–423.

http://www.semdesigns.com/products/dms/dmstoolkit.htm
http://www.semdesigns.com/products/dms/dmstoolkit.htm
http://www.smltd.com/solutions.htm
http://www.smltd.com/solutions.htm
http://www.hex-rays.com/idapro
http://www.hex-rays.com/idapro
http://www.hex-rays.com/idapro
http://www.hex-rays.com/idapro
http://www.hex-rays.com/decompiler.shtml
http://www.hex-rays.com/decompiler.shtml
http://www.imagix.com/products/products.html
http://www.imagix.com/products/products.html
http://www.spectra-research.com/inner/reeng.htm
http://www.spectra-research.com/inner/reeng.htm
http://www.spectra-research.com/inner/reeng.htm
http://www.spectra-research.com/inner/reeng.htm
http://www.kpdus.com/jad.html
http://www.kpdus.com/jad.html
http://www.mccabe.com/iq_enterprise.htm
http://www.mccabe.com/iq_enterprise.htm
http://www.swag.uwaterloo.ca/pbs
http://www.swag.uwaterloo.ca/pbs
http://smallwiki.unibe.ch/codecrawler/
http://www.gupro.de/gxl/tools/tools.html

EXERCISES 185

[117] H. A. Mu̇ller. 1998. Rigi User’s Manual Version 5.4.4. Available at http://www.
rigi.csc.uvic.ca/pages/download.html.

[118] K. Wong, S. Tilley, H. A. Mu̇ller, and M. D. Storey. 1995. Structural redocumentation:
a case study. IEEE Software, January, pp. 46–54.

[119] T. Systȧ, K. Koskimies, and H. Mu̇ller. 2001. Shimba—an environment for reverse
engineering java software system. Software Practice and Experience, 31(4), 371–
394.

[120] Tuval Software Industries. 2008. SEELA: A Code Documentation Tool. Available at
http://www.speechover.com/index_files/about.htm (accessed October 2008).

EXERCISES

1. The potential reengineering risk areas are identified as follows: (i) process; (ii)
reverse engineering; (iii) forward engineering; (iv) personal; (v) tools; and (vi)
strategy. Explain these risk areas in detail.

2. Explain the principles of abstraction, refinement, and alteration in the context of
software reengineering.

3. What are the differences among reengineering, reverse engineering, forward
engineering, and rehosting?

4. Explain the differences between program translation and rephrasing. Discuss
different types of program translation and rephrasing.

5. Discuss the differences between refactoring and renovation.

6. Explain the rework and replace reengineering strategies by giving concrete
examples.

7. Discuss the pros and cons of different reengineering approaches.

8. Discuss the purpose of reverse engineering.

9. Explain the Goals/Models/Tools paradigm of software reverse engineering.

10. Explain the concepts of representation and visualization. Can a graphical object
be both a representation within one context and a visualization within another?
Explain it with an example.

11. Draw a CFG for the following sample code. Determine the cyclomatic complexity
of the graph.

(a) sum_of_all_positive_numbers(a, num_of_entries, sum)

(b) sum = 0

(c) init = 1

(d) while(init <= num_of_entries)

(e) if a[init] > 0

http://www.rigi.csc.uvic.ca/pages/download.html
http://www.rigi.csc.uvic.ca/pages/download.html
http://www.speechover.com/index_files/about.htm
http://www.speechover.com/index_files/about.htm

186 REENGINEERING

(f) sum = sum + a[init]
endif

(g) init = init + 1
endwhile

(h) end sum_of_all_positive_numbers

12. Obtain slices separately on nw, nc, nl, inword, and c of the following word count
program.

[1] #define YES 1
[2] #define NO 0
[3] main()
[4] {
[5] int c, nl, nw, nc, inword;
[6] inword = NO;
[7] nl = 0;
[8] nw = 0;
[9] nc = 0;
[10] c = getchar();
[11] while (c! = EOF) {
[12] nc = nc + 1;
[13] if (c == ′∖n′)
[14] nl = nl + 1;
[15] if (c == ′ ′||c == ′∖n′)||c == ′∖t′)
[16] inword = NO;
[17] else if (inword == NO) {
[18] inword = YES;
[19] nw = nw + 1;
[20] }
[21] c = getchar();
[22] }
[23] print f (“%d∖n”, nl);
[24] print f (“%d∖n”, nw);
[25] print f (“%d∖n”, nc);
[26] }

13. Explain plan recognition.

14. Explain why decompilation is a reverse engineering process, whereas compila-
tion is not a forward engineering process. Discuss the applications of decompil-
ers. What technique can be used to avoid decompilation?

15. Discuss the purpose of DRE.

5
LEGACY INFORMATION SYSTEMS

When you have told anyone you have left him a legacy the only decent thing to do is to
die at once.

—Samuel Butler

5.1 GENERAL IDEA

In Oxford English Dictionary (OED) the word “legacy” is defined as “A sum of
money, or a specified article, given to another by will; anything handed down by an
ancestor or predecessor.” In software engineering, no standard definition of legacy
exists; Bennett [1] used the following definition to define legacy systems: Legacy
software systems are “large software systems that we don’t know how to cope with
but that are vital to our organization.” This is the Phaseout stage of the staged
model for CSS proposed by Rajlich and Bennett and discussed in Section 3.3 of
Chapter 3. Similarly, Brodie and Stonebraker [2] define a legacy system as “any
information system that significantly resists modification and evolution to meet new
and constantly changing business requirements.” Supporting both the definitions are
a set of acceptable features of a legacy system:

� large with millions of lines of code;
� geriatric, often more than 10 years old;
� written in obsolete programming languages;

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

187

188 LEGACY INFORMATION SYSTEMS

� lack of consistent documentation;
� poor management of data, often based on flat-file structures;
� degraded structure following years of modifications;
� very difficult, if not impossible, to expand;
� runs on old processors which are generally much slower; and
� the support team is totally reliant on the expertise and knowledge of expert

individuals.

In addition, these information systems are mission-critical—that is, essential to
the organization’s business—and must be operational at all times. In summary, due to
the lack of available skills and flexibility of the system, there is a strong urge to get rid
of the legacy software system as soon as possible and start with something modern.

There are several categories of solutions for legacy information system (LIS)
or simply legacy system. These solutions generally fall into six categories as
follows [3, 4]:

� Freeze. The organization decides to not carry out further work on an LIS.
� Outsource. An organization may decide that supporting legacy (or any) soft-

ware is not its core business. The organization may outsource it to a specialist
organization offering this service.

� Carry on maintenance. Despite all the problems associated with supporting a
software system, the organization decides to carry on maintenance for another
period.

� Discard and redevelop. The organization throws all the software away and
redevelops the application once again from scratch, using a new hardware
platform and modern architecture tools and database. This approach removes
the legacy problem in one stroke, but also removes a useful source of information
for defining the requirements of the new system. The existing system is discarded
in spite of it being stable, thoroughly debugged, and being a useful asset. One
real issue in this approach is that the business requirements and technology
are undergoing frequent changes. Therefore, at the end of a long development
process, there is this danger that an organization gets a new system based on
obsolete technology that no longer satisfies its business requirements. If the LIS
cannot keep pace with changing business needs and if migration is not cost
effective, then it is more appropriate to redevelop the system [5].

� Wrap. It is a black-box-based modernization technique: surround the LIS with
a new layer of software to hide the complexity of the existing interfaces, appli-
cations, and data, with the new interfaces. Wrapping gives existing components
a modern and improved appearance.

� Migrate. By means of migration a legacy system is ported to a modern platform,
while retaining most of the system’s functionality and introducing minimal dis-
turbance in the business environment. Migration avoids the expensive and long
process that generally characterize new development. Rather, reuse of portions

WRAPPING 189

of the LIS, namely, implementation, design, specification, and requirements, is
maximized. In addition, the target system runs in a different computing envi-
ronment. In Section 5.3 migration is discussed in detail.

5.2 WRAPPING

In 1988, Dietrich et al. [6] first introduced the concept of a “wrapper” at IBM.
Wrapping is a straightforward way to modify and enhance a legacy component. A
wrapper does not directly modify the source code, but, instead, it indirectly mod-
ifies and changes the software functionality of the legacy component. Wrapping
means encapsulating the legacy component with a new software layer that provides
a new interface and hides the complexity of the old component. The encapsulation
layer can communicate with the legacy component through sockets, remote proce-
dure calls (RPCs), or predefined application program interfaces (API). Wrapping is
a “black-box” reengineering activity because the interface of the legacy system is
analyzed but not its internal details [7]. The wrapped component is viewed similar
to a remote server; it provides some service required by a client that does not know
the implementation details of the server. By means of a message passing mechanism,
a wrapper connects to the clients. On the input front, the wrapper accepts requests,
restructures them, and invokes the target object with the restructured arguments. On
the output front, the wrapper captures outputs from the wrapped entity, restructures
the outputs, and pushes them to the requesting entity. Well-tested components are
reused by organizations via wrappers so as to reduce the maintenance cost. Conse-
quently, legacy components can be invoked from the new state-of-the-art applications,
thereby extending and enhancing the life of the legacy components [8]. However, this
technique does not solve the problems with legacy systems.

5.2.1 Types of Wrapping

Orfali et al. [9] classified wrappers into four categories depending upon what is being
wrapped. The four categories of wrappers are explained in the following.

� Database wrappers. Database wrappers serve as entry points to existing
databases. Those wrappers enable clients implemented in today’s object-
oriented languages to access legacy databases. Database wrappers can be further
classified into forward wrappers (f-wrappers in Figure 5.1) and backward wrap-
pers (b-wrappers in Figure 5.2) [10]. The forward wrappers’ approach, depicted
in Figure 5.1, shows the process of adding a new component to a legacy system.
The new component is developed with modern practices, whereas the legacy
database and the legacy code are not modified. Therefore, by means of trans-
lation service involving both legacy data and queries, the wrapper integrates
the new component with the legacy system. Those are called forward wrappers
because they emulate new technology. The backward wrappers’ approach has
been depicted in Figure 5.2. In this approach, data are migrated first following
the Database first approach discussed in Section 5.5.2. Next, new components

190 LEGACY INFORMATION SYSTEMS

f-wrapper

Legacy

application

New

application

Legacy data

Legacy database management

system

Database query/data

Wrapper query/data

FIGURE 5.1 Forward wrapper. From Reference 10. © 2006 ACM

b-wrapper

Legacy

application

New

application

New data

New database management system

Database query/data

Wrapper query/data

FIGURE 5.2 Backward wrapper. From Reference 10. © 2006 ACM

WRAPPING 191

are developed that use the new database; the legacy components access the new
data via wrappers. Those are called backward wrappers because they emulate
the legacy technology on top of the new one.

� System service wrappers. This kind of wrappers support customized access to
commonly used system services, namely, routing, sorting, and printing. A client
program may access those services without knowing their interfaces.

� Application wrappers. This kind of wrappers encapsulate online transactions or
batch processes. These wrappers enable new clients to include legacy compo-
nents as objects and invoke those objects to produce reports or update files.

� Function wrappers. This kind of wrappers provide an interface to call functions
in a wrapped entity. In this mechanism, only certain parts of a program—and not
the full program—are invoked from the client applications. Therefore, limited
access is provided by function wrappers.

5.2.2 Levels of Encapsulation

Legacy software has many levels of granularity: procedures are at the lowest level
and processes are at the highest level. It may be noted that an entire application is not
included in the granularity hierarchy, because an application is just a logical collection
of processes executed at different times. Therefore, processes are considered to be at
the highest level of granularity. Sneed [11] classified five levels (see Figure 5.3) of
granularity at which one can access legacy software applications, as explained in the
following:

Process level. A job is started on the server which accepts input data, accesses
databases, and produces output data. The input data and output data are con-
tained in files. The input files are created by the client program and are

Procedure

Module

Progress

Transaction

Process
Requests

Responses

FIGURE 5.3 Levels of encapsulation. From Reference 11. © 1996 IEEE

192 LEGACY INFORMATION SYSTEMS

transferred to the server by the wrapper by means of a standard file trans-
fer utility. Upon the completion of the job, the wrapper takes over the output
files to be forwarded to the client.

Transaction level. On the server, a virtual terminal is created that sends the terminal
input map and receives the terminal output map. The wrapper is a program
which simulates the user terminal. This type transaction level wrapping has
become simple because modern transaction processors (i) take care of host-
to-client communication and (ii) perform restart and recovery task, exception
handling, rollback, and commit.

Program level. Via APIs, batch programs are called in a wrapper. The wrapper
substitutes program inputs with data inputs coming in from the client applica-
tion. In addition, outputs from the wrapped program are captured, reformatted,
and sent to the client.

Module level. Legacy modules are executed using their standard interfaces. A
significant deviation from the usual calls is that parameters are passed by
value—and not by references. Therefore, first, the wrapper buffers the received
values in its own address space. Next, the buffered values are passed on to the
invoked module. Finally, the output values received from the invoked module
are passed on to the client.

Procedure level. A procedure internal to the system is invoked as if the procedure
was compiled separately. As a result, this special treatment of an internal
procedure requires (i) constructing a parameter interface and (ii) if needed,
initializing global variables before calling the procedure.

5.2.3 Constructing a Wrapper

A legacy system is wrapped in three steps as follows [12]:

� A wrapper is constructed.
� The target program is adapted.
� The interactions between the target program and the wrapper are verified.

A wrapper, constructed in the first step, is a program which receives input messages
from the client program, transforms the inputs into an internal representation, and
invokes the target system with the newly formatted messages. The wrapper intercepts
the outputs produced by the target system, transforms them into a format understood
by the client, and transfers them to the client. Conceptually, a wrapper comprises two
interfaces and three event-driven modules as shown in Figure 5.4. The two interfaces
are an internal interface and an external interface, and the three modules are message
handler, interface converter, and I/O-emulator.

External interface. The interface of the wrapper that is accessed by the clients is
called the external interface. The wrapper and its client generally communicate by
passing messages. Messages normally comprise a header and a body. The header
of a message contains control information: (i) identity of the sender; (ii) a time
stamp; (iii) the transaction code; (iv) target program type; and (v) the identity of

WRAPPING 193

Legacy system

Internal interface

External interface

Message

handler

Interface

converter
I/O

emulator

Client

application

Wrapper

FIGURE 5.4 Modules of a wrapping framework

the transaction, program, procedure, or module to be invoked. The message body
contains the input arguments. Similarly, the message body contains the output values
in an output message. The values contained in a message are normally ASCII strings
separated by a delimiter, say, a back slash (“∖”).

Internal interface. A wrapper’s internal interface is the interface visible to the
server. The internal interface is dependent upon the language and type of the wrapped
entity. For example, if the wrapped entity is a job, the internal interface of the
wrapper is a job control procedure, and the job control procedure is interpreted to
execute the job. On the other hand, if the encapsulated entity is a program, procedure,
transaction, or a module, the internal interface is a list of parameters in the language
of the encapsulated software. Therefore, the internal interface is extracted from the
source code of the encapsulated software. The parameters of the internal interface
are specified in terms of the target language, thereby necessitating a translation from
the input ASCII strings to the target types.

Message handler. The message handler buffers input and output messages, because
requests from the client may occasionally arrive at a faster rate than they can be
consumed. Similarly, outputs from the wrapped program may be produced at a faster
rate than they can be sent to the client.

Interface converter. This entity converts the internal interface into the external
interface and vice versa. In general, between the parameters of the two interfaces,

194 LEGACY INFORMATION SYSTEMS

there is a one-to-one mapping. In some cases, the mapping is one-to-many so the
converter duplicates some parameters.

I/O-emulator. As the name suggests, the I/O-emulator intercepts the inputs to and
outputs from the wrapped entity. Upon intercepting an input, the emulator fills the
input buffer with the values of the parameters of the external interface. On the other
hand, when it intercepts an output value, the emulator copies the contents of the output
buffer into the parameter space of the external interface. Input/output functions of the
original environment are emulated without affecting the encapsulated software.

5.2.4 Adapting a Program for Wrapper

A wrapped program is modified to some extent, and it is expected that the modified
programs continue to operate in the normal mode. Therefore, programs are adapted
with tools, rather than manually. Manual adaptations are prone to errors. Sneed [12]
recommended four types of tools as discussed below.

Transaction wrapper. A transaction wrapper wraps a transaction processing pro-
gram. If the transaction processing program supports panel input and output oper-
ations, then the wrapper converts the said input and output operations into calls to
the wrapper. A panel is a particular arrangement of information grouped together for
presentation to user.

Program wrapper. A batch processing program works on batches of file records.
A batch processing program is handled by a wrapper by translating file input/output
operations into wrapper calls. To access records on files, write and read statements
in the batch processing programs are mapped to call statements in the wrapper. The
program, instead of receiving a record from the file, receives the record from the
wrapper. Similarly, output records are redirected to the wrapper.

Module wrapper. A module wrapper adapts the parameter interfaces of a subpro-
gram that are called by reference. In the “called-by-reference” case, a parameter is an
address in the address space of the calling program. If the inputs come from a program
on another computer, a problem can arise in accessing the referenced location in the
calling program. To solve the problem: (i) the interface of the wrapped module is
modified so that values of the input parameters are put together in a single structure
in a message buffer in the wrapper and (ii) a reference pointing to the message buffer
in the wrapper is passed to the wrapped module.

Procedure wrapper. A procedure wrapper makes significant changes to the target
program. New interfaces, not existing before, are created. A block of code that has
been identified to be encapsulated as a method will get its separate invocation point
with a parameter list and its separate exit point as well.

5.2.5 Screen Scraping

Screen scraping [13] is a common form of wrapping in which modern, say, graphical,
interfaces replace text-based interfaces. The new interface can be a GUI (graphical
user interface) or even a web-based HTML (hypertext markup language) client. Tools,
such as Verastream from Attachmate [14], automatically generate the new screens.

MIGRATION 195

Screen scraping is a short-term solution to a larger problem. Many serious issues
are not addressed by simply mounting a GUI on a legacy system. For example, screen
scraping (i) does not evolve to support new functions; (ii) incurs high maintenance
cost; and (iii) ignores the problem of overloading. Overloading is simply defined as
the ability of one function to perform different tasks. Screen scraping simply provides
a straightforward way to continue to use a legacy system via a graphical user interface.
At best it reduces the cost to train new employees. No new functionality is provided
because not much code of the legacy system is overhauled.

5.3 MIGRATION

Migration of LIS is the best alternative, when wrapping is unsuitable and redevelop-
ment is not acceptable due to substantial risk. However, it is a very complex process
typically lasting 5–10 years [2]. If migration is successful, it gives long-term ben-
efits. It offers better system understanding, easier maintenance, reduced cost, and
more flexibility to meet future business requirements. Migration involves changes,
often including restructuring the system, enhancing the functionality, or modifying
the attributes. But, it retains the basic functionality of the existing system. In this
section we discuss general guidelines for migrating a legacy system to a new target
system. A brief overview of the migration steps is explained next.

Migration steps: LIS migration involves creation of a modern database from the
legacy database and adaptation of the application program components accordingly
[2, 15, 16]. A database has two main components: schema of the database and data
stored in the database. Therefore, in general, migration comprises three main steps:
(i) conversion of the existing schema to a target schema; (ii) conversion of data; and
(iii) conversion of program.

Schema conversion. Schema conversion means translating the legacy database
schema into an equivalent database structure expressed in the new technology. Both
the schemas must convey the same semantics—that is, all the source data should
be losslessly stored into the target database. The transformation of source schema
to a target schema is made up of two processes. The first one is called DBRE and
it aims to recover the conceptual schema that express the semantics of the source
data structure, which is discussed in Section 4.8 of Chapter 4. The second process
is straightforward and it derives the target physical schema from this conceptual
schema: (i) an equivalent logical schema is obtained from the conceptual schema
by means of transformations and (ii) a physical schema is obtained from the logical
schema by means of transformations [15].

Data conversion. Data conversion means movement of the data instances from the
legacy database to the target database. Data conversion requires three steps: extract,
transform, and load (ETL) [17]. First, extract data from the legacy store. Second,
transform the extracted data so that their structures match the format. In addition,
perform data cleaning (a.k.a. scrubbing or cleansing) to fix or discard data that do not
fit the target database [18]. Finally, load the transformed data in the target database.

196 LEGACY INFORMATION SYSTEMS

Program conversion. In the context of LIS migration, program conversion means
modifying a program to access the migrated database instead of the legacy data. The
conversion process leaves the functionalities of the program unchanged. Program
conversion depends upon the rules that are used in transforming the legacy schema
into the target schema.

Testing and functionality: Migration engineers spent close to 80% of their time on
testing the target system [19]. It is important to ensure that the outputs of the target
system are consistent with those of the LIS. Therefore, new functionality is not to be
introduced into the target system in a migration project. If both the LIS and the target
system have the same functionality, it is easier to verify their outputs for compliance.
However, to justify the project expense and the risk, in practice, migration projects
often add new functionalities.

Cut over, also referred to as roll over: The last step of a migration project is the cut
over from the LIS to the target system. The event of cutting over to the new system
from the old one is required to cause minimal disruption to the business process.
There are three kinds of transition strategies, as proposed by Simon [20]:

1. Cut-and-run. The simplest transition strategy is to switch off the legacy system
and turn on the new system. Rolling over to the new system instantaneously in
a single step is too risky because it would entail the entire information flow to
be managed by a completely new system.

2. Phased interoperability. To reduce risks, cut over is gradually performed in
incremental steps. In each step, replace a small number of legacy components—
data or application—by their counterparts in the target system. For components
to be independently migrated, this approach requires (i) the LIS to be partitioned
into modules that perform different functions or (ii) the data into independent
fragments.

3. Parallel operation. The target system and the LIS operate at the same time.
During the period of simultaneous operation, tests are continuously performed
on the target system; once the new system is considered to be reliable, the LIS
is taken off service.

In practice, for a particular migration project, a transition strategy may be designed
by combining all the three approaches, applied to different LIS components.

5.4 MIGRATION PLANNING

The success of any large project depends, to a large extent, upon good planning—
and a migration project is not an exception. It is not easy to cut over and migrate
several hundred databases and programs without interrupting the business of the
organization. It is necessary to justify such a mission-critical project to the executive

MIGRATION PLANNING 197

management. Management must be convinced that the organization will achieve
significant benefits without excessively using resources. In addition, with poor or no
planning, a lower-quality, much delayed product may be delivered at a higher cost.

The activity of planning for migration comprises several tasks. Seacord et al.
[21] suggested that the following 13 steps be considered when planning a migration
project:

Step 1: Perform portfolio analysis.

Step 2: Identify the stakeholders.

Step 3: Understand the requirements.

Step 4: Create a business case.

Step 5: Make a go or no-go decision.

Step 6: Understand the LIS.

Step 7: Understand the target technology.

Step 8: Evaluate the available technologies.

Step 9: Define the target architecture.

Step 10: Define a strategy.

Step 11: Reconcile the strategy with the needs of the stakeholder.

Step 12: Determine the resources required.

Step 13: Evaluate the feasibility of the strategy.

The objective of this plan is to minimize the risk of modernization effort leading
to the development of a migration plan for the LIS. The remainder of the section
expands on the these 13 steps.

Step 1: Perform portfolio analysis. In the first step, measures are established to
evaluate the business value and technical quality of software systems; this is per-
formed by means of portfolio analysis. Portfolio analysis establishes measures of
technical quality and business value for a set of software systems. It is represented
on a chi-square chart like the one shown in Figure 5.5. The vertical and horizontal
axes of the chi-square chart are technical quality and business value, respectively.

Technical quality is computed as a weighted mean of various product and process
metrics chosen by the user. Some example criteria for technical quality are ease of
making changes, frequency of release notes, accuracy, performance of the system,
error rate, cyclomatic complexity, and availability of training. The coefficients are
ratios represented on a scale of 0–1. To obtain the coefficient values, first we need to
define upper and a lower bounds for each quality metric. The upper and lower bounds
are the maximum and minimum acceptable measures, respectively. Then the ratio is
defined as [5]:

r = 1 −
(

actual measure − lower bound
upper bound − lower bound

)
.

198 LEGACY INFORMATION SYSTEMS

Business value

T
e
c
h
n
ic

a
l
q
u
a
lit

y

Low quality,

low value

High quality,

low value

High quality,

high value

Low quality,

high value

FIGURE 5.5 Portfolio analysis chi-square chart

The real challenge is to set the upper and lower bounds. It must be defined in
terms of current industry standard or in terms of what other practitioners are doing.
For example, cyclomatic complexity of value 12 can be considered as the upper
bound [22].

The importance of an application or a system to an organization is measured in
terms of business value. Some examples of the criteria to establish business value
are level of usage, number of business goal satisfied, contribution to profit, user
satisfaction, and annual revenue. Business value can be represented as a coefficient
in the range [0, 1]. For example, if 100 is the maximum value of a certain criteria,
and an application scores 30, then the coefficient of the said criteria is 0.30, which is
obtained by dividing 30 by 100.

� Quadrant 1. A system with low technical quality and low business value is a
prime candidate for substitution with a commercial product if one is available.
These systems might be in use in the noncore sector of the organization.

� Quadrant 2. A system with high technical quality but low business value need
not be replaced, migrated, or restructured.

� Quadrant 3. A system with high technical quality and high business value
should be actively evolved. The system is in the Evolution stage of the staged
model for CSS proposed by Rajlich and Bennett and discussed in Section 3.3
of Chapter 3.

� Quadrant 4. A system with low technical quality but high business value is a
good candidate for redevelopment or migration to a new system.

Step 2: Identify the stakeholders. Stakeholders are the people or organizations
that influence a system’s behavior, or those who are impacted by the system. They
typically include architects, developers, maintainers, managers, customers, and end

MIGRATION PLANNING 199

users. The stakeholders ultimately judge the outcome and impact of the migration
project. Each of the stakeholders bring their own perspectives to the table. Therefore,
it is necessary to obtain their agreement and support.

Step 3: Understand the requirements. Requirements are a description of the needs
and desires of stakeholders that a system is expected to implement. There are two
challenges in defining requirements. First, ensure that the right requirements are
captured. Second, express the requirements in such a way that the stakeholders can
easily review and confirm their correctness. Therefore, it is essential to have an
unambiguous representation of the requirements and have it made available in a
centralized database so that all the stakeholders can review and validate the require-
ments [23]. Requirements can come from the LIS, business process reengineering,
and stakeholders.

� LIS. Most requirements in a migration project are derived from the legacy system
itself. The risk of deriving requirements from the subject system is that it may
result in reimplementation of obsolete business practice.

� Business process reengineering. New requirements may come from business
process reengineering (BPR). The objective of BPR is to improve the efficiency
of business process. Business processes are embedded in existing information
system, therefore it is logical to perform BPR before starting a legacy system
migration project. Business processes need to be reevaluated, revalidated, and
revisited before any migration works can begin.

� Stakeholders. Stakeholders generate new requirements, based on years of inter-
actions with the LIS. These requirements are often recorded in outstanding
change requests. Stakeholders often want to include technical advances as
requirements.

Step 4: Create a business case. Based on a business case, executive management can
decide whether or not the migration project will increase quality, reduce maintenance
costs, and be financially viable. In general, a good business case provides the following
information about the migration project:

� Problem statement. The problem statement describes the current LIS and high-
lights the inadequacies, inefficiencies, and weaknesses of the current situation.

� Solution. The business case must describe the solution at a high level. For
example, the solution can be migrating the LIS to a new software/hardware
architecture in an iterative manner. The solution should include an estimate
of the cost, the effort needed, and a schedule. When calculating the effort in
person-days, one can derive the minimum project duration using a variant of
the COCOMO model [24], adjusted for the increased parallelism of the legacy
migration project [5].

� Risks. Legacy migration projects benefit from identifying risk at an early stage.
This allows to gain insight into and control of the project by enumerating things

200 LEGACY INFORMATION SYSTEMS

TABLE 5.1 Common Quantifiable Benefit Metrics

Objective Sample Quantifiable Benefit Metrics

Lower maintenance cost Average cycle time to close problem reports
Average labor hours to close problem reports
Total staff census
Average problem-report backlog
Post-release fix rework hours

Add new functionality Count of new functions added to the product
Value added or revenue generated by new functions

Increase performance Number of delivered operations, such as transactions,
per unit time

Replace old equipment Net annualized cost of purchase and maintenance
Recode in different languages Number of modules in each programming language
Reuse of existing artifacts Number of artifacts used in other products
Data rationalization Number of redundant database objects removed
Integrate disjoint applications Number of unified applications accessible to users

Measures of usability and training time required for
application suite

that can affect the effort and limit the resulting system. This will facilitate the
management of the expectations of the stakeholders early, which is a crucial part
of any successful migration effort. In addition, the business should also identify
the assumptions in the migration project. Assumptions must be documented
in case they later turn out to be incorrect or invalid. In either case, it may be
necessary to reevaluate the business case.

� Benefits. This element of the business case identifies and, ideally, quantifies
the benefits of the proposed solution, with an allowance for risks. Two ways to
present benefits in a migration project are cost reductions and cost avoidance.
Cost reduction refers to the actions taken immediately to reduce the costs. Cost
avoidance relates to actions taken to reduce the cost in future. The initial cost of a
migration project is high because of up-front investment in training, equipment,
or redesign of the system. Therefore, it is helpful to include cost avoidance
benefits by a cost-benefit analysis. In this analysis, the cost of migration effort
is compared to the benefits of redeveloping and with the benefits of doing
nothing at all. Moreover, one should find quantifiable benefits that can be mea-
sured. This requires the existence of a software metrics program to collect data.
Table 5.1 lists sample quantifiable benefit metrics proposed by Tilley and Smith
[25] that can serve as objective measures of migration project success.

Step 5: Make a go or no-go decision. Once a business case has been defined,
it is reviewed by the stakeholders to reach an agreement. If the business case is
unsatisfactory then the legacy migration project is terminated at this step.

Step 6: Understand the LIS. Understanding the LIS is essential to the success of
any migration project. Techniques available to meet this challenge include program

MIGRATION PLANNING 201

comprehension and reverse engineering. Reverse engineering and program compre-
hension are discussed in detail in Chapters 4 and 8, respectively.

Step 7: Understand the target technology. This activity can proceed in parallel with
the activity of Step 6. It is important to understand the technologies that can be used
in the migration effort and the technologies that have been used in the legacy system.
In general, four types of technologies are of interest in the migration effort:

1. Languages and DBMS available, including COBOL, Java, eXtensible Markup
Language (XML), and modern DBMS.

2. Distributed transaction models, including distributed communication and
transaction technologies such as RPC or message queues. Key attributes
of distributed communication protocol include support for direct or indi-
rect, connectionless or connection-oriented, and asynchronous or synchronous
communication.

3. Middleware technologies and standards that may be used to develop an infor-
mation system, including message-oriented middleware (MOM), XML Mes-
saging, Java 2 Enterprise Edition (J2EE), and Enterprise JavaBeans (EJB).

4. Tools that are available to assist in migration of the LIS to the new information
system.

Step 8: Evaluate the available technologies. One must compare and contrast all the
available technologies to evaluate their capabilities. If the capabilities overlap, then
we must appraise these technologies to understand the quality of service they will
provide in the migration process. To formulate the eventual architecture and design
of the system, those evaluations are performed.

Step 9: Define the target architecture. The target architecture is the desired archi-
tecture of the new system. It models the stakeholders’ vision of the new system. This
usually requires descriptions using different views with different levels of granularity.
The target architecture is likely to evolve during the migration process. Therefore,
the target architecture is continually reevaluated and updated during the migration
process.

Step 10: Define a strategy. A strategy defines the overall process of transforming
the LIS to the new system. This includes migration methodology, that is schema
conversion, data conversion, and program conversion, testing, and cut over. For a
mission-critical legacy system, deploying the new system all at once is a risky proce-
dure, therefore a legacy system is evolved incrementally to the new system. During
the migration effort, many things can change: user requirements may change, addi-
tional knowledge about the system may be acquired, and the technology may change.
Those changes must be accommodated by the migration effort. While accommodating
those changes, a migration strategy needs to minimize risk, minimize development
and deployment costs, support an aggressive but reliable schedule, and meet system
quality expectations.

202 LEGACY INFORMATION SYSTEMS

Step 11: Reconcile the strategy with the needs of the stakeholder. A consen-
sus needs to be developed among stakeholders before implementing the migration
plan. The migration strategy developed in the previous step must be reconciled with
stakeholder needs. Therefore, this step includes briefing the stakeholders about the
approach, reviewing the target architecture, and the strategy. The entire group evalu-
ates the strategy and provides input for the final consensus profile.

Step 12: Determine the resources required. We estimate the resource need includ-
ing cost of implementing the project. One can use the widely used cost estimation
model called Constructive Cost Model II (COCOMO II). COCOMO II addresses
nonsequential process models, reengineering work, and reuse-driven approach [26].
The COCOMO II model provides estimates of effort, schedule by phases, and staffing
by phases and activities.

Step 13: Evaluate the feasibility of the strategy. After executing the first 12 steps,
the management should have an understanding of the system under migration, the
available technology options, a target architecture, migration strategy, cost of migra-
tion, and a schedule to effect migration. Based on available information, management
determines whether or not the migration strategy is feasible. If the strategy is found
to be viable, the migration plan is finalized. On the other hand, if it is unacceptable,
a detailed report is produced. Based on the reasons stated in the report, one may
revise the migration strategy until (i) a feasible approach can be identified or (ii) the
migration strategy is determined to be infeasible and the project is terminated.

5.5 MIGRATION METHODS

In this section, seven approaches to migration have been explained [27–29]. No single
approach can be applied to all kinds of legacy systems, because they vary in their
scale, complexity, and risks of failure while migrating. The seven approaches are as
follows:

� Cold turkey
� Database first
� Database last
� Composite database
� Chicken little
� Butterfly
� Iterative

5.5.1 Cold Turkey

The Cold turkey strategy [2] is also referred to as the Big Bang approach. It involves
redesigning and recoding the LIS from the very beginning using a new execution

MIGRATION METHODS 203

platform, modern software architecture, and new tools and databases. For a reasonable
sized system, this approach takes much time. The risk of failure is high for this
approach to be seriously considered. For this approach to be adopted, one must
guarantee that the renovated system will include many new features in addition to the
functionality provided by the original legacy system. The risk of failure is increased
due to the complexity of migration. While the legacy system is under a spell of long
redevelopment, new technologies emerge and an organization’s business focus could
shift. Thus, organizations may perceive the redeveloped system to be not meeting
their business goals. In addition, the technology used might have been outdated.
However, this approach can be adopted, if a legacy system has stable, well-defined
functionality and is small in size.

5.5.2 Database First

The Database first approach [30] is also known as forward migration method [31].
This method first migrates the database, including the data, to a modern DBMS,
and then gradually migrates the legacy application programs and interfaces. The LIS
simultaneously operates with the new system via a forward gateway while interfaces
and legacy applications are being reengineered. Implemented as a software module,
a gateway mediates among operational software components. This enables the LIS
applications to access the database on the target side as shown in Figure 5.6. The
forward gateway translates legacy application (old technology) calls to target (new
database service) calls. Similarly, outputs of the reengineered database are translated
for use by the legacy system.

A key benefit of the database first approach is that upon the completion of migration
of the legacy data, one can start receiving productivity benefits by accessing the data.

Target database service

M1

SI1 UI1 SIj

SIk UIk

UIj

Mj

Mk Mq

SIq UIq

Forward gateway

Target

dataLegacy component

Target component

SI System interface

UI User interface

M Application module

FIGURE 5.6 Database first approach. From Reference 19. © 1999 IEEE

204 LEGACY INFORMATION SYSTEMS

The legacy system can operate concurrently with those applications and interfaces that
have been migrated to the new system. Upon the completion of migration, the gateway
will no longer be required. However, this approach has two major drawbacks. First,
the approach is only applicable to a completely decomposable legacy system, where
a clean interface to the legacy database exists. Second, the new database structure
must be defined before migration can begin. The structure of the new database may
be negatively impacted by the legacy database. Consequently, it becomes difficult
to construct the forward gateway because of the dissimilarities between the legacy
system and the target system in terms of database structure and technology.

Remark: An information system is said to be fully decomposable if the user and
system interfaces, applications, and databases are considered to be distinct compo-
nents connected by clearly defined interfaces. In a semidecomposable information
system, only the user and the system interfaces are separate components; the database
service and applications are inseparable. A nondecomposable information system is
one where no functional components can be separated [2].

5.5.3 Database Last

The Database last approach [30] is also known as the reverse migration method [31].
It is suitable only for a fully decomposable LIS. In this approach, legacy applications
are incrementally migrated to the target platform, but the legacy database stays on the
original platform. Migration of the database is done last. Similar to the database first
approach, interoperability of both the information systems is supported by means
of a gateway. Target applications access the LIS database via a reverse gateway. As
illustrated in Figure 5.7, the reverse gateway translates calls from the new applications
and redirects them to the legacy database.

Legacy database service

M1

SI1 UI1 SIj

SIk UIk

UIj

Mj

Mk Mq

SIq UIq

Reverse gateway

Legacy

dataLegacy component

Target component

SI System interface

UI User interface

M Application module

FIGURE 5.7 Database last approach. From Reference 19. © 1999 IEEE

MIGRATION METHODS 205

There are two main issues with the database last approach. First, mapping from the
schema of the target database to the legacy database can be slow, thereby impacting
new applications. Second, several useful features of relational databases, namely,
triggers, integrity, and constraints may not be exploited by the new applications,
because those features might not be present in the legacy database.

5.5.4 Composite Database

The composite database approach [31] is applicable to fully decomposable, semide-
composable, and nondecomposable LISs. However, in practice, a system may not
strictly fit in one of those three categories. Most LISs have some decomposable
components and some semidecomposable components, whereas the remaining com-
ponents are nondecomposable.

In the composite database approach, the target information system is run in parallel
with the legacy system during the migration process. In the beginning, the target
system is a small one, but it grows in size as migration continues. Upon completion
of the migration process, all the functionality of the old system are performed by the
new system. While migration is continuing, as shown in Figure 5.8, the two systems
form a composite information system, employing a combination of forward and
reverse gateways. In this approach, data may be duplicated across both the databases:
legacy and target. A transaction co-ordinators is employed to maintain data integrity.
The co-ordinators intercepts update requests from both target and legacy applications
and processes the requests to determine whether or not the requests refer to data
replicated in both the databases. If replicated data are referred to, the update is
propagated to both the databases using a two-phase commit protocol [32].

Co-ordinator

M1

SI1 UI1 SIj

SIk UkI

UIj

Mj

Mh Mn

SIn UIn

Forward gateway

Target

dataLegacy component

Target component

SI System interface
UI User interface
M Application module

Reverse gatewayMapping
table

Target DBMS

SIm SIm SIh UIhSI UI

Legacy
database
service/

data

FIGURE 5.8 Composite database approach. From Reference 19. © 1999 IEEE

206 LEGACY INFORMATION SYSTEMS

The task of analyzing a nondecomposable legacy component is difficult. A good
way to analyze such a component is to identify its functionality. Next, the component
can be newly developed from a specification of the functionality. As done in the
database first and database last approaches, the composite database approach does
not require a one-shot large migration of legacy data.

5.5.5 Chicken Little

The Chicken little strategy [2] refines the composite database strategy, by proposing
migration solutions for fully decomposable, semidecomposable, and nondecompos-
able legacy systems with different kinds of gateways. The differences between those
gateways are based upon (i) the locations of the gateways in the system and (ii) the
degree of functionality of the gateways. All the gateways have the common goal of
mediating between operational software components. Placement of the gateways is a
critical factor that affects the complexity of the migration architecture, gateway, and
the migration method.

For a fully decomposed LIS, a database gateway is located between the database
service and the application modules, as explained in Sections 5.5.2 and 5.5.3. The
said database gateway can be either a forward gateway or a reverse gateway. Both
the forward gateway and the reverse gateway are also known as database gate-
ways, since those encapsulate the entire database service and the database from the
perspective of application modules. An application gateway is used for a semidecom-
posable LIS. This gateway has been illustrated in Figure 5.9, and it is located between
user and system interfaces and the legacy application. It is called application gateway
because it encapsulates from the applications down, from the perspective of interfaces.
For nondecomposable systems an information systems gateway is located between
user and other information systems and LIS. This gateway has been illustrated in

Application gateway

SI1 UI1 SIj SIk UIkUIj

Mh Mn

SIn UIn

Target
data

Legacy component

Target component

SI System interface
UI User interface
M Application module

Target DBMS

SIm SIm SIh UIhSI UI

Legacy

application/

database

service/data

FIGURE 5.9 Application gateway. From Reference 19. © 1999 IEEE

MIGRATION METHODS 207

Information system gateway

SI1 UI1 SIj

SIk UIk

UIj

Mk Mn

SIn UIn

Legacy component

Target component

SI System interface

UI User interface

M Application module

Target DBMSLegacy information system

External information systems End users

FIGURE 5.10 Information system gateway. From Reference 19. © 1999 IEEE

Figure 5.10. The entire functionality of the legacy system is encapsulated in an infor-
mation system gateway, whereas an application gateway encapsulates part of the
legacy system, namely, only from application module down. An information system
gateway is the primary means for dealing with the migration of user interface. It is
recommended to use information gateway in all migration, due to the importance of
user interface in migration of LIS. It may be noted that the strategy does not include
a testing step. Executing a testing step, to ensure that the new system is equivalent to
the legacy system, is useful before rolling over to the new system.

The Chicken little methodology proposes an 11-step generic strategy, as listed on
Table 5.2, for migration projects. Each step handles a specific aspect of migration,

TABLE 5.2 Chicken Little Migration Approach

Step 1: Incrementally analyze the LIS
Step 2: Incrementally decompose the structure of the LIS
Step 3: Design the interfaces of the target system in an incremental manner
Step 4: Build the target applications in an incremental manner
Step 5: Design the database in an incremental manner
Step 6: Install the target environment in an incremental manner
Step 7: Create and install the necessary gateways in an incremental manner
Step 8: Migrate the databases in an incremental manner
Step 9: Migrate the legacy applications in an incremental manner
Step 10: Migrate the legacy interfaces in an incremental manner
Step 11: Cut over to the target system in an incremental manner

208 LEGACY INFORMATION SYSTEMS

and the methodology is designed to be incremental. For example, one step may
handle database migration. The methodology can be fine tuned for individual legacy
systems. The flow of steps is for each increment to be migrated, so the entire flow is
repeated for each increment. Those 11 steps do not need to be performed in the given
sequence, and some steps can be executed in parallel. In this methodology, using
gateways, the legacy system and the target information system run concurrently
during the entire process of migration. Initially, the size of the target system is small.
However, with progress in migration, the target system becomes larger in size, and,
finally, it is functionally indistinguishable from the old system. In the Chicken little
methodology, data is stored in both the migrating legacy system and the evolving
target system. Data consistency between the two systems is maintained by means of
gateway co-ordinators.

5.5.6 Butterfly

The Butterfly methodology [33, 34] does not require simultaneous accesses of both
the legacy database system and the target database system. Therefore, there is no
need to make the two systems consistent. The target system is not operated in the
production mode, at the time of reengineering the legacy system. In other words, the
old system being reengineered remains operational during the migration stage. From
the perspective of developing the target system, the semantics of data captured in
schema are more important than the constantly changing data. Therefore, during the
migration process, live data are not simultaneously stored in both the new system
and the legacy system. For data migration, the Butterfly methodology introduces the
following concepts [35]:

� Sample DataStore, Legacy SampleData, and Target SampleData
� TempStore
� Data-Access-Allocator
� Data-Transformer
� Termination-Condition and Threshold Value.

A representative subset of the legacy database is held in Legacy SampleData; the
Target SampleData is derived from the Legacy SampleData. Based on the data model
of the target system, Sample DataStore stores the Target SampleData. The Sample
DataStore supports the initial development and testing of all components.

In order to migrate legacy data, the methodology uses a sequence of temporary
datastores called TempStores (TS). During the migration process, the TempStores
hold the results of manipulations on the legacy data. When migration of legacy data
begins, the Data-Access-Allocator (DAA) directs those manipulations, and the results
are stored by the DAA in the most recent TempStore. Similarly, the DAA retrieves
the required data from the most recent TempStore.

To migrate the legacy data and the TempStores data to the target system, the
methodology uses a Data-Transformer called Chrysaliser. Transformation of data

MIGRATION METHODS 209

TABLE 5.3 Phases of Butterfly Methodology

Phase 1: Readiness for migration
Phase 2: Comprehend the semantics of the system to be migrated and develop

schema(s) for the target database
Phase 3: Based upon the Target SampleData, construct a Sample DataStore
Phase 4: Except the data, migrate the components of the legacy system
Phase 5: Gradually migrate the legacy data
Phase 6: Roll over to the new system

from the legacy system and the TempStores is performed with a set of rules. Based on
the earlier process of determining a target schema, the rules are designed. The schema
of the target database is conceptually equivalent to the schema of the old database.
To determine whether or not the new system is ready to be used, the concepts of
Termination-Condition and Threshold Value are introduced. The Threshold Value
is represented by a pre-determined value 𝜖. Basically, 𝜖 represents the acceptable
quantity of data remaining in the current TS. The condition size (TS) ≤ 𝜖 implies
that the time required to migrate the data is negligibly small to shutdown the legacy
system without inflicting much disturbance on the core business. The condition to
end migration, denoted by Termination-Condition, is satisfied when TSn has been
completely transformed and size (TSn+1)≤ 𝜖 (n≥ 0), where TSn is the nth TempStore.

The following are the key attributes of the methodology. During migration, live
data are stored at the LIS. The target system is not rolled over to live operation before
fully migrating the system. The legacy data store is “frozen” to be read-only when
data migration begins.

The DAA redirects manipulations of legacy data, and the results are saved in
a series of temporary data stores called TempStore(s) (TS). If a legacy application
needs to access legacy data, the DAA extracts data from the correct entity: the current
TempStore or the legacy database. As shown in Table 5.3, migration of a legacy
system is organized into six major steps, also called phases [34].

Phase 1: Readiness for migration. Considered to be important issues in the Butterfly
methodology are user’s requirements and determination of the target system. Table 5.4
[34] lists the main activities in the preparation phase. Success of these activities
depends upon much co-operation among users, migration engineers, and LIS experts.

Phase 2: Comprehend the semantics of the system to be migrated and develop
new schema(s) for the target database. Table 5.5 shows the activities performed

TABLE 5.4 Migration Activities in Phase 1

1.1 Identify the basic requirements of migration
1.1.1 Identify the user requirements
1.1.2 Identify the criteria to measure the success

of the migration process
1.2 Design the architecture of the target system
1.3 Set up the target hardware platform

210 LEGACY INFORMATION SYSTEMS

TABLE 5.5 Migration Activities in Phase 2

2.1 Comprehend the existing interfaces, determine redundancies in the existing interface,
and determine the new interfaces

2.2 Comprehend the legacy applications, determine redundancies in the legacy applications,
and identify the functional requirements of the new applications

2.3 Comprehend the existing legacy data, determine redundancies in the legacy data, and
determine what legacy data to migrate

2.4 Identify and comprehend the interactions of the legacy system with its environment
2.5 Identify the requirements of migration
2.6 Design and develop the data redirector tool called DAA
2.7 Design the schema for the new data and identify the rules for mapping of data

TABLE 5.6 Migration Activities in Phase 3

3.1 Construct the Legacy SampleData.
3.2 Develop the Chrysaliser.
3.3 Construct the Sample DataStore by using the Target SampleData derived from

the Legacy SampleData.

in this phase. The migration requirements are finalized in activity 2.5. However, not
all requirements can be identified until the legacy system is fully understood. In this
phase, the DAA tool is developed to redirect all manipulations of legacy data and
data stored in TempStores.

Phase 3: Based upon the Target SampleData, construct a Sample DataStore.
The activities of Phase 3 are listed on Table 5.6. Developing the Chrysaliser and
determining the legacy SampleData are the main tasks in Phase 3. The Chrysaliser
derives the Sample DataStore from the SampleData, and the Sample DataStore is
used to test and develop the target system.

Phase 4: Except the data, migrate the components of the legacy system. The
activities in Phase 4 are listed on Table 5.7. In this phase, forward software engineering
principles and methods are used in the migration process. Constructed in Phase 2, the

TABLE 5.7 Migration Activities in Phase 4

4.1 Migrate legacy interface
4.1.1 Migrate/develop a portion of the interface of the target system
4.1.2 For correctness, test the target interface against Sample DataStore
4.1.3 Validate the target interface against user’s requirements

4.2 Migrate legacy applications
4.2.1 Migrate/develop a target application
4.2.2 Test the target application against Sample DataStore for corrections
4.2.3 Validate the target application against the requirements

4.3 Migrate the reusable components of the legacy system
4.4 Integrate target components/system
4.5 Test target components/system
4.6 Validate target components/system against the user’s requirements
4.7 Train the users on the new system

MIGRATION METHODS 211

TABLE 5.8 Migration Activities in Phase 5

5.1 Integrate the Data-Access-Allocator into the legacy system.
5.2 Create TempStore TS1 and set the access mode of the legacy datastore (TS0) to read-only.
5.3 The contents of TS0 are migrated into the new data store by means of the Chrysaliser.

Accesses to the legacy data store are redirected by the DAA while migration is
continuing, and results of the manipulations are stored in TS1.

5.4 Create TempStore TS2; then set TS1 to read-only.
5.5 Through the Chrysaliser, migrate TS1 into the target datastore(s).

The DAA redirects all accesses to the legacy data, and all manipulation results are stored
in TS2.

5.6 Repeat Steps 5.4 and 5.5 for TSn+1 and TSn until the Termination-Condition is satisfied.
5.7 Do not make changes to the legacy system. Transform TS0 into the new, target

datastore(s) by means of the Chrysaliser.
5.8 Train the users about the target system.

Sample DataStore is used in supporting the “design-develop-test” cycle for new target
components. The interactions among the target system’s components are verified in
activity 4.4.

Phase 5: Gradually migrate the legacy data. Table 5.8 [35] lists the activities of
Phase 5. Migration of legacy data is performed in Phase 5, and it is central to the
Butterfly methodology. Legacy data are incrementally migrated by using TempStores,
the Chrysaliser, and the DAA. It may be noted that the Chrysaliser element serves as
a data transformer.

Once migration of legacy data is started, no changes are allowed to be performed
on the legacy data store. As indicated in Figure 5.11, the DAA redirects manipulation

Legacy system Target system

Legacy interface

+

Legacy application

+

Database services

Data access allocator

Legacy

datastore TS1 TS2 TSn TSn+1

GUI1
GUI2 GUIn

Target

App1

Target

App2

Target

Appn

Frozen

Frozen

Operative legacy data

Target databases

Middleware database services

Chrysaliser

Turned on for development and testing

FIGURE 5.11 Migrating TempStore in Butterfly methodology. From Reference 19. © 1999
IEEE

212 LEGACY INFORMATION SYSTEMS

operations of legacy data, and the results are saved in a series of TempStore(s) (TS).
When a legacy application needs to access data, the DAA correctly decides which
source—the correct TempStore or the legacy data—to retrieve the data from.

By means of a Data-Transformer, called Chrysaliser, data are migrated to the new
system from the legacy store and the series of TempStores. A series of temporary
stores (TS’s) are used by the Chrysaliser in the data migration process. For example,
all manipulations are stored in TS1 when migrating the legacy data TS0. Similarly,
all manipulations are stored in TS2 when migrating TS1, and so on.

To determine when one can roll over to the new system, the Butterfly methodology
introduces two concepts: a Termination-Condition and a Threshold Value (represented
by 𝜖). The allowable amount of data in the final TempStore TSN is denoted by the
pre-determined value 𝜖. If size (TSN) ≤ 𝜖, where TSN denotes the final TempStore,
the time required to migrate the remaining data in TSN is sufficiently small to allow
the legacy system to be shutdown without creating any problem to the environment.
Thus, during the migration process in this methodology, the legacy system is not
inaccessible for a significant amount of time. Figure 5.11 depicts a data migration
scenario, where it is shown that the Chrysaliser and DAA working together serve as
a data migration engine.

Phase 6: Roll over to the new system. Roll over to the new system is the final phase
of the Butterfly methodology. After the new system is built and the legacy data are
migrated, the new system is ready for operation.

The main drawback of the Butterfly methodology is that the legacy database is
used for reading only, whereas modifications are placed in a separate, temporary
database. Consequently, when there is a need to access some data, the system reads
both the databases—the old database and the target database—plus the temporary
database. As a result, there is an increase in the time to access the required data.
For data-oriented systems, an increase in access time is likely to degrade system
performance. In addition, the legacy functions do not simultaneously operate with
the newly added functions and the reengineered system.

5.5.7 Iterative

The iterative method implies that one component at a time is reengineered. Thus, the
legacy system gradually evolves over a period of time. A component represents a
physical piece of implementation of a system, including software [29]. The methodol-
ogy enables simultaneous operations of the reengineered system and the components
of the legacy system. The legacy database is gradually moved into a new database,
rather than being frozen or duplicated. The components of the reengineered system
access either the legacy database or the new database, based upon the location of the
actual data to be accessed. This enables a gradual reengineering of the legacy system
and the coexistence of the reengineered components with the legacy components. An
iterative methodology partitions legacy data into two categories:

1. Primary data. Primary data are those data that are essential to an application’s
business functions.

MIGRATION METHODS 213

2. Residual data. These data are not required to carry out the application’s business
functions, but are used by the legacy system. The legacy database holds the
residual data until the code that needs to access them is reengineered.

Next, the primary and residual categories of data are explained in detail. Primary
data comprise two kinds of data: conceptual and structural as follows:

� Conceptual data. These data describe concepts specific to the application’s
domain.

� Structural data. These data are needed to organize and support data structures
that are used to correctly access the conceptual data.

Data in the residual category comprise those data in the legacy store which will
eventually be discarded. The residual data are grouped into four categories: control
data, redundant structural data, semantically redundant data, and computationally
redundant data. By means of control data one procedure communicates to another
procedure that a certain event has occurred. Some data are used to support the
organization of the legacy system, but those data are not necessarily needed; those
nonessential data are called redundant structural data, and those can be removed with
an improved database design. The definition domain of some data is the same as the
definition domain of other data, and two identical values in the two domains have
the same meanings. Therefore, one of those two definition domains is semantically
redundant. Some data is called computationally redundant if it can be derived from
another data set in the same database.

Each component may be in one of the following states during the reengineering
process:

� Legacy. This state means that the component has not been reengineered, which
implies that it continues to be a legacy component.

� Restored. The structure of the component remains the same and it performs the
same functions, but the component accesses data through the new Data Banker.

� Reengineered. The component has already been modified, and a desired level
of quality has been achieved.

� New. The component was not part of the legacy system and has been newly
added in order to introduce new functions.

System architecture. While reengineering is in progress, Figure 5.12 shows the sys-
tem architecture of gradual evolution of a legacy system. It is illustrated that legacy,
restored (temporary), and reengineered components are enclosed within a unique
architecture. The original legacy components have been represented without shad-
ing, and those will gradually disappear as reengineering continues. The temporary
components are shown with dotted shading, and in this case reengineering of proce-
dures follow data reengineering. The components with dark shade will continue to

214 LEGACY INFORMATION SYSTEMS

Reengineered

components

<<functions>>

<<functions>>

User interface

Data banker

<<support>> <<DBMS>>

New DB
manager

<<data>>

New DB

<<functions>>

<<functions>> <<data>>

<<data>>

<<data>>

<<DBMS>>

<<DBMS>>

<<support>>

Metadata
Restored

components

Legacy

components

Legacy DB
Legacy DB

manager

Data locator manager
Residual DB

Residual DB

Legacy component

Temporary (or restored) component

New (or reengineered) component

FIGURE 5.12 The iterative system architecture methodology during reengineering. From
Reference 29. © 2003 IEEE

exist to make up the reengineered system. The architecture lets the system to be nor-
mally used, while its components undergo modifications. In other words, the entity
“User Interface” intercepts the external inputs and invokes the desired components
which may be in various states: reengineered, restored, or legacy.

In Figure 5.12, the “Legacy DB manager” manages all accesses of the “Legacy
DB” by the legacy components. The database with the new structure is represented
by “New DB.” “New DB” includes (i) all primary data for those functions which have
been added to the new system in the process of reengineering and (ii) all primary data
which have been migrated from the legacy DB. “Residual DB” stores the residual
data from the legacy database, and “Residual DB Manager” is the corresponding data
manager. The “Residual DB Manager” may be the DBMS of the legacy software
system or the new database. The “Reengineered Components” and the “Restored
Components” get data from “Data Banker.” By means of “Metadata,” “Data Banker”
knows whether or not the required data is available in “New DB,” “Residual DB,”
or “Legacy DB.” If the “Data Banker” needs to access the “New DB,” metadata are
used to retrieve their physical locations. Next, “Data Banker” uses the knowledge
of the physical data locations to obtain data from the “New DB Manager.” In the
aforementioned two cases, “Data Banker” routes the requests for data to the “Data
Locator.” The “Data Locator” interprets the information that the “Data Banker” has
extracted from metadata and gets the required data from the “Residual DB Manager”
or the “Legacy DB Manager.”

Both the “Data Banker” and “Metadata” will continue to exist beyond the reengi-
neering effort. The structure of “New DB” is known to “Metadata” and the services of

MIGRATION METHODS 215

Analyze

legacy system

Classify data

Redesign

database

Restore legacy

components
Migrate data

Equivalence test

Reengineer

procedures

Equivalence test
Empty

residual DB

Clean

metadata

Reconstruct

documentation

FIGURE 5.13 The iterative migration process. From Reference 29. © 2003 IEEE

the “New DB Manager” are known to “Data Banker.” Therefore, if there are changes
to the physical structure of the “New DB”, only the contents of “Metadata” need to
be modified. On the other hand, changes to the “New DB Manager” require changes
to the “Data Banker” alone.

Migration process. The migration process diagram is shown in Figure 5.13 [29].
In the following, all the phases are discussed one by one.

Analyze legacy system: All the change requests having an influence on a component
to be reengineered are put aside until the component is reengineered. Therefore,
the system is partitioned into components so as to minimize their client–supplier
relationships for two reasons: (i) to minimize the number of change requests (CRs)
to be frozen and (ii) to minimize the time durations for which CRs are frozen. Hence,
in the partitioning process, identify the legacy system’s components which minimize
the impact of reengineering the system.

For the ith component, ni denotes the total number of change requests made
so far, and Δtj,i = tj,i − tj−1,i denotes the time gap between two consecutive change
requests. The j index captures successive change requests. MTMRi denotes the mean
time to maintenance request for the ith component, and it is expressed as MTMRi =∑ni

j=1

Δtj,i
ni

. For all i, MTMRi values are used to partition the set of components that

need to be reengineered. The historical archive of the system can be used to generate
the values of ni andΔtj,i. When the expected time for reengineering the ith component,

216 LEGACY INFORMATION SYSTEMS

RTi is less than MTMRi, then it is reasonable to assume that there are unlikely to
be requests for change of ith component during the time it is being reengineered.
Conversely, if RTi is larger than MTMRi, divide the ith component into smaller
subcomponents, to prevent the requests for change that are likely to be made at this
time during the process.

Classify data: Legacy data are classified as primary or residual data. All the data in
the Legacy DB, which are nonduplicated, are recorded in a table produced by means
of data classification.

Redesign database: The data classified before are restructured in this phase: (i) to
reorganize them in the new database for more effective and efficient access; (ii) to
eliminate all the defects in the legacy database; and (iii) to eliminate redundant data.
While describing the mode of access for the new database, define the characteristics
of the data to be stored in the database for Metadata.

Restore legacy components: After having reengineered the database, in this phase,
the legacy system program is made compatible with the new database. To make the
program compatible, the codes involved in accessing the data are identified. The
identified code are replaced with new ones that call the Data Banker, rather than
access data directly. Depending upon the client’s request, after the adaptation, the
system acts as follows:

1. If reengineered data are not involved in the request, invoke the procedures of
the legacy system that access the legacy data.

2. Otherwise, invoke the procedures of the restored components that access the
reengineered data.

The aforementioned behavior is not visible to users, who will continue to use the
system as they did before with the legacy system due to the Data Banker component.
On the other hand, if users access the reengineered data, the New DB or the Residual
DB, will be physically accessed, instead of the Legacy DB. The appropriate choice
is executed by the User Interface in Figure 5.12.

Migrate data: The legacy database is incrementally migrated to the new database,
and nonessential data are put in the residual database. A data migration tool can be
developed for this purpose. For each data file to be reengineered, the tool must read
all the data it contains, copies them into the Residual DB or New DB based on the
information contained in the Metadata.

Reengineer procedures: Functions are reengineered in this phase, thereby evolving
them from the restored state to the reengineered state. Quality deficiencies of the
procedures are analyzed and suitable remedies are introduced. Specifically, to conduct
analysis, one performs the following tasks on individual components:

� Restructure the components to improve their maintainability. For example,
application of the principle of information hiding improves maintainability.

SUMMARY 217

� Identify the procedures that are clones of reengineered procedures, and replace
those procedures with the reengineered procedures.

� Improve the algorithm used, for better maintainability and performance.
� Update the user interface.
� Update the module interfaces.
� Recall that some maintenance operations had been put on hold during reengi-

neering. Execute those operations.
� Use a modern programming language in the project.

While executing the above tasks, original components of the legacy system are
reused as much as possible for two reasons: (i) reduce the cost of reengineering and
(ii) preserve the skills that the maintainers have developed. In addition, documentation
of the system design is performed in this phase.

Equivalence tests: Equivalence testing ensures that, after migration, the system
continues to execute the same way as it did before. Therefore, tests are conducted
after procedure restoration and data migration. In addition, this phase allows the test
plan documentation to be updated.

Empty residual DB: In iterative reengineering, some parts of the legacy database
are migrated into the New DB, whereas the remaining parts move into the Residual
DB. While performing reengineering in an iterative manner, data to be no longer
used are removed from the Residual DB. Therefore, by the end of the reengineering
process, the Residual DB will be completely empty. Consequently, the Residual Data
Manager and the Data Locator components can be withdrawn from the system.

Iteration: The components of the legacy system are reengineered one at a time. After
reengineering a selected component, the process is repeated for another component
and so on, until the entire system has been reengineered.

Clean metadata: Upon completion of reengineering, Metadata only reflects the
contents of the New DB. Therefore, metadata concerning Residual DB are no more
needed; hence, those are eliminated from Metadata. In addition, all procedures in the
Data Banker, which communicate with the Data Locator are removed.

Reconstruct documentation: Documentation reengineering proceeds concurrently
with the actual migration. Up-to-date documentation can be performed throughout
the reengineering process.

5.6 SUMMARY

This chapter began by identifying the problem an organization faces in dealing with
LISs. Next, six viable solutions to the problem were discussed: freeze, outsourcing,
carry on maintenance, discard and redevelop, wrap, and migrate.

218 LEGACY INFORMATION SYSTEMS

Next, we studied wrapping techniques in detail. We explained four types of wrap-
pers that practitioners use: database wrapper, system service wrapper, application
wrapper, and function wrapper. In addition, we discussed five different levels of
encapsulations: process level, transaction level, program level, module level, and
procedural level. We introduced a three-step detailed procedure to construct wrappers:

� first, the wrapper is constructed;
� second, the target program is adapted; and
� finally, the interactions between the target programs and the wrapper are tested.

We concluded the wrapper discussion with an introduction to a specific wrapper
known as screen scrapper. We then focused our attention on migration of LIS,
starting with migration issues and a 13-step migration plan. Next, we discussed
seven available migration approaches in detail.

LITERATURE REVIEW

Narsim Ganti and William Brayman (The Transition of Legacy Systems to a Dis-
tributed Architecture, John Wiley & Son Inc., Somerset, NJ, 1995) propose guide-
lines for migrating legacy systems to a distributed environment. LISs are analyzed
to identify the systems having data and business logic of value in a distributed
environment.

Harry Sneed [5] suggested to consider five steps when planning reengineering
of legacy projects: (i) project justification, which analyzes the existing products,
the maintenance process, and the business value of the applications; (ii) portfo-
lio analysis, which prioritizes the applications to be reengineered based on their
business value and technical quality; (iii) cost estimation, which calculates the cost
of executing the project; (iv) cost-benefit analysis, which compares the costs and
expected returns; and (v) contracting, which identifies the tasks and the distribution
of efforts.

For researchers, we recommend part II of the edited book by Tom Mens and Serge
Demeyer (Software Evolution, Springer, Berlin, Heidelberg, 2008). Part II of the
book has three chapters focusing on migration or reengineering of a legacy software
system that is no longer outdated and more easy to maintain and adapt. Ideally, data
migration is the process of moving an organizations data from one device to another,
without disabling or disrupting the running applications. An organization goes for
data migration for a variety of reasons:

� upgradation or replacement of server or storage technology;
� consolidation of servers or storage devices;
� relocation of the data center; and
� optimization of server or storage, including load balancing.

REFERENCES 219

Data upgrade, consolidation, migration, and integration differ in two ways:

Connectivity between data sources and targets. The movement of data from their
sources to their targets can take three forms: (i) many-to-one; (ii) one-to-one;
and (iii) many-to-many. The many-to-one scenario is called consolidation, the
one-to-one scenario is called migration or upgrade, and the many-to-many
scenario is called integration.

Diversity of source and target data models. Data movement is achieved by devel-
oping transforms and mappings between source data models and target data
models. Therefore, data movements with more diversity will need more number
of data models, and, hence, more development time.

REFERENCES

[1] K. H. Bennett. 1995. Legacy systems: coping with success. IEEE Software, January,
pp. 19–23.

[2] M. Brodie and M. Stonebraker. 1995. Migrating Legacy Systems. Morgan Kaufmann,
San Mateo, CA.

[3] A. Cimitile, H. Mu̇ller, and R. Klosch (Eds.). 1997. Pulling Together. Proceedings of the
International Conference on Software Engineering, Workshop on Migration Strategies
for Legacy Systems. Available as Technical Report TUV-1841-97-06 from Technical
University University of Vienna, A-1040 Vienna, Austria.

[4] K. Bennett, M. Ramage, and M. Munro. 1999. Decision model for legacy systems. IEE
Proceedings on Software, June, 153–159.

[5] H. M. Sneed. 1995. Planning the reengineering of legacy systems. IEEE Software,
January, 24–34.

[6] W. C. Dietrich Jr., L. R. Nackman, and F. Gracer. 1989. Saving a Legacy with Objects.
Proceedings of the 1989 ACM OOPSLA Conference on Object-Oriented Programming.
ACM SIGPLAN Notices, ACM, New York, NY, Vol. 24, No. 10, pp. 77–83.

[7] S. Comella-Dorda, K. Wallnau, R. C. Seacord, and J. Robert. 2000. A Survey of Black-box
Modernization Approaches for Information Systems. Proceedings of the International
Conference on Software Maintenance, October 2000, San Jose, CA. IEEE Computer
Society Press, Los Alamitos, CA. pp. 173–183.

[8] F. P. Coyle. 2000. Legacy integration—changing perpectives. IEEE Software,
March/April, 37–41.

[9] R. Orfali, D. Harkey, and J. Edwards. 1995. The Essential Distributed Objects Survival
Guide. John-Wiley & Sons, Hoboken, NJ.

[10] P. Thiran, J. Hainaut, G. Houben, and D. Benslimane. 2006. Wrapper-based evolution of
legacy information systems. ACM Transactions on Software Engineering and Methodol-
ogy, 15(4), 329–359.

[11] H. M. Sneed. 1996. Encapsulating Legacy Software for Use in Client/Server Systems. 3rd
Working Conference on Reverse Engineering, Washington, DC. IEEE Computer Society
Press, Los Alamitos, CA. pp. 104–119.

220 LEGACY INFORMATION SYSTEMS

[12] H. M. Sneed. 2000. Encapsulation of legacy software: a technique for reusing legacy
software components. Annals of Software Engineering, 9, 293–313.

[13] D. F. Carr. 1998. Web-enabling legacy data when resources are tight. Internet World,
August.

[14] Attachmate. 2009. Application Integration. Available at http://www.attachmate.com/
products/products.html. (accessed February, 2009).

[15] J. Hainaut, A. Cleve, J. Henrard, and J. Hick. 2008. Migration of legacy information
systems. In: Software Evolution (Eds T. Mens and S. Demeyer), pp. 105–138. Springer-
Verlag, Berlin.

[16] J. Henrard, J. Hick, P. Thiran, and J. Hainaut. 2002. Strategies for Data Engineering. 9th
Working Conference on Reverse Engineering, Washington, DC. IEEE Computer Society
Press, Los Alamitos, CA. pp. 211–220.

[17] R. Kimball and J. Caserta. 2004. The Data Warehouse ETL Toolkit. John Wiley & Sons,
Hoboken, NJ.

[18] E. Rahm and H. Do. 2000. Data cleaning: problems and current approaches. Data Engi-
neering Bulletin, 23(4), 3–13.

[19] J. Bisbal, D. Lawless, B. Wu, and J. Grimson. 1999. Legacy information systems: issue
and directions. IEEE Software, September/October, 103–111.

[20] A. R. Simon. 1992. System Migration—A Complete Reference. Van Nonstrand Reinhold,
New York, NY.

[21] R. C. Seacord, D. Plakosh, and G. Lewis. 2003. Modernizing Legacy Systems. Addison
Wesley, Boston, MA.

[22] T. J. McCabe. 1976. A complexity measure. IEEE Transactions on Software Engineering,
December, 308–320.

[23] K. Naik and P. Tripathy. 2008. Software Testing and Quality Assurance: Theory and
Practice. John Wiley & Sons, Hoboken, NJ.

[24] B. Boehm. 1983. Software Engineering Economics. Prentice Hall, Englewood Cliffs, NJ.

[25] S. Tilley and D. Smith. 1996. Perspective on Legacy System Reengineering. Software
Engineering Institute, Pittsburg, PA. p. 146.

[26] B. Boehm, C. Abts, A. Brown, S. Chulani, B. Clark, E. Horowitz, R. Madachy,
D. Reifer, and B. Steece. 2000. Software Cost Estimation with COCOMO II. Prentice
Hall, Englewood Cliffs, NJ.

[27] J. Bisbal, D. Lawless, B. Wu, J. Grimson, V. Wade, R. Richardson, and D. O’Sullivan.
1997. A survey of research into legacy system migration. Technical Report TCD-CS-
1997-01, Computer Science Department, Trinity College, Dublin, January, 39.

[28] M. Battaglia, G. Savoia, and J. Favaro. 1998. Renaissance: A Method to Migrate from
Legacy to Immortal Software Systems. Proceedings of Second Euromicro Conference
on Software Maintenance and Reengineering, Florence, Italy. IEEE Computer Society
Press, Los Alamitos, CA. pp. 197–200.

[29] A. Bianchi, D. Caivano, V. Marengo, and G. Visaggio. 2003. Iterative reengineer-
ing of legacy systems. IEEE Transactions on Software Engineering, March, 225–
241.

[30] A. Bateman and J. Murphy. 1994. Migration of legacy system. Working Paper CA-
2894, School of Computer Applications, Dublin City University, http://www.compapp
.dcu.ie/CA_Working_Papers.

http://www.attachmate.com/products/products.html
http://www.attachmate.com/products/products.html
http://www.compapp.dcu.ie/CA_Working_Papers
http://www.compapp.dcu.ie/CA_Working_Papers

EXERCISES 221

[31] M. Brodie and M. Stonebraker. 1993. Darwin: On the incremental migration of legacy
information systems. TR-022-10-92-165, GTE Labs Inc. Available at http://info.gte
.com/ftp/doc/tech-reports/tech-reports.html (accessed March 1993).

[32] D. Bell and J. Grimson. 1992. Distributed Database Systems. Addison-Wesely Longman
Publishing Co., Boston, MA.

[33] B. Wu, D. Lawless, J. Bisbal, R. Richardson, J. Grimson, V. Wade, and D. O’Sullivan.
1997. The Butterfly Methodology: A Gateway-free Approach for Migrating Legacy Infor-
mation Systems. Proceedings of the International Conference on Engineering of Complex
Computer Systems, September 1997, Como, Italy. IEEE Computer Society Press, Los
Alamitos, CA. pp. 200–205.

[34] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, D. O’Sullivan, and R. Richardson.
1997. Legacy Systems Migration: A Method and its Tool-kit Framework. Joint 1997 Asia
Pacific Software Engineering Conference and International Computer Science Confer-
ence, December 1997, Hong Kong, China. IEEE Computer Society Press, Los Alamitos,
CA. pp. 312–320.

[35] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade, R. Richardson, and D. O’Sullivan.
1997. Legacy Systems Migration: A Legacy Data Migrating Engine. Proceedings of the
17th International Database Conference, October 1997, Brno, Czech Republic. IEEE
Computer Society Press, Los Alamitos, CA. pp. 129–138.

EXERCISES

1. What is a legacy system? Discuss different types of solutions to the legacy
problem.

2. Which of the following characteristics are part of the definition of a legacy
system? Give reasons.

(a) The system is very difficult to maintain.

(b) The system has a great many users.

(c) The system is performing a useful function for its organization.

(d) The system has not been modified since it was installed.

(e) The system has an old-fashioned terminal-style interface.

3. Explain the difference between migration and reengineering.

4. Explain the concept of wrapping. Why do you think it is not useful to modernize
the LIS in long term?

5. What is a database wrapper? Discuss the difference between b-wrapper and
f-wrapper with examples. How these two concepts can be used in migration?

6. Why is a screen scrapping technique not the solution to the real issue?

7. Calculate coefficient ratio for the following technical quality criteria:

(a) Actual error rate is 3 per 1000 lines of code and the maximum and minimum
error rates are 7 and 0 per 1000 lines of code, respectively.

http://info.gte.com/ftp/doc/tech-reports/tech-reports.html
http://info.gte.com/ftp/doc/tech-reports/tech-reports.html

222 LEGACY INFORMATION SYSTEMS

(b) Actual Cyclomatic complexity is 22 per procedure and the maximum and
minimum cyclomatic complexities are 50 and 10 per procedure, respectively.

8. Discuss the similarity and difference between Database first and Database last
approach.

9. Why is the risk of failure for Cold turkey migration strategy high?

10. Which of the following is not one of the expected benefits of the Chicken little
migration approach?

(a) Some improvement or new functionality can be delivered to the client in a
relatively short timescale.

(b) If the current increment fails, then only a limited amount of rework needs to
be done.

(c) The needs of all users can be satisfied in a short timescale.

(d) Cut over of each individual step is less risky.

11. Modify the Chicken little steps (see Table 5.2) for (i) forward migration method
and (ii) reverse migration method.

12. What are the drawbacks of the Butterfly approach?

13. Describe the features of Iterative reengineering method that are similar to both
Chicken little methodology and Butterfly methodology. What are the advantages
of Iterative reengineering method?

6
IMPACT ANALYSIS

An error does not become truth by reason of multiplied propagation, nor does truth
become error because nobody sees it.

—Mohandas Karamchand Gandhi

6.1 GENERAL IDEA

A change request (CR) activates an organization’s process to modify a software
system to carry out maintenance. The maintenance process is started by performing
impact analysis. Impact analysis basically means identifying the components that are
impacted by the CR [1]. Impact analysis enables understanding and implementing
changes in the system. Potential effects of the proposed changes are made visible by
performing impact analysis. In addition, it is used in estimating cost and planning a
schedule. Before executing a change request, impact of the changes are analyzed for
the following reasons [2].

� To estimate the cost of executing the change request. It incurs some cost to
execute a change request so estimate the cost before effecting the change. If
a change request can potentially impact large disjoint portions of the system,
then reexamine the request. A large change is likely to incur higher cost and it
may make the system inconsistent. Therefore, if the size of the change is large,
reject the request in favor of a safer change.

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

223

224 IMPACT ANALYSIS

� To determine whether some critical portions of the system are going to be
impacted due to the requested change. If so, more resources are to be allocated
to execute the change request.

� To record the history of change-related information for future evaluation of
changes. By taking feedback from end-users, the overall quality of changes can
be evaluated at a later stage.

� To understand how items of change are related to the structure of the software.
This will enable maintenance engineers to better understand the current change
request.

� To determine the portions of the software that need to be subjected to regression
testing after a change is effected.

There are several ways of looking at impact analysis as follows.

� Richard Turver and Malcolm Munro [3] define impact analysis as the assessment
of the impact of a change to the source code of a module on the other modules
of the system. It determines the scope of a change and provides a measure of its
complexity.

� Queille et al. [4] define impact analysis as the task of assessing the effects of
making a set of changes to a software system.

� Bohner and Arnold [5] define impact analysis as identifying potential conse-
quences of a modification or discovering the entities to be modified to accom-
plish a change.

All the three definitions emphasize the estimation of the potential impacts which
is crucial in maintenance tasks, because what is actually changed will not be fully
known until after the software change is complete.

Implementation of change requests impact all kinds of artifacts, including the
source code, requirements, design documentation, and test scenarios. Therefore,
impact analysis traceability information can be used in performing impact analysis
[6]. Gotel and Finkkelstein [7] define traceability as the ability to describe and follow
the life of an artifact in both the forward and backward directions. Bohner and Arnold
[5] define traceability as the ability to trace between software artifacts generated and
modified during the software product life cycle. Thus, traceability helps software
developers understand the relationships among all the software artifacts in a project.
After identifying the high level documents about the feature to be modified, by using
the concept of traceability, the maintainer locates the entities that need to be changed.
Examples of such entities are design and source code.

There are two broad kinds of traceability: (i) horizontal (external) traceability; and
(ii) vertical (internal) traceability. Traceability of artifacts between different models
is known as external traceability, whereas internal traceability refers to tracing depen-
dent artifacts within the same model. Internal traceability primarily focuses on source
code artifacts. In this context, the three classical impact analysis techniques, based
on program dependency, are: call-graph-based analysis, static program slicing, and

IMPACT ANALYSIS PROCESS 225

dynamic program slicing. For example, inserting changes in the code and performing
forward slicing from the changed points yield a set of statements that may be affected
by the changes.

A topic related to impact analysis is ripple effect analysis. Ripple effect means that
a modification to a single variable may require several parts of the software system to
be modified. The concept of ripple effect has relevance in software evolution because
it concerns changes and their effects [8]. Analysis of ripple effect reveals what and
where changes are occurring. Measurement of ripple effects can provide the following
information about an evolving software system: (i) between successive versions of the
same system, measurement of ripple effect will tell us how the software’s complexity
has changed; and (ii) when a new module is added to the system, measurement of
ripple effect on the system will tell us how the software’s complexity has changed
because of the addition of the new module.

An implementation of a change request may consist of several steps; in each step,
a specific module, identified during impact analysis, is visited and refactored. If a
visited component is changed, it may no longer properly interact with other compo-
nents. Therefore, additional changes are to be made in the neighboring components,
which may trigger further changes throughout the software system. This process is
called change propagation activity [9, 10]. The change propagation activity ensures
that a change made in one component is propagated properly throughout the entire
system. Maintenance engineers fail to correctly and completely propagate changes
in a software system for a number of reasons: lack of experience, unexpected depen-
dencies among code blocks, and misunderstanding of the design details. As a result,
projects run the risk of generating new interface defects, if changes are incorrectly
propagated [11].

6.2 IMPACT ANALYSIS PROCESS

Figure 6.1 depicts a process of impact analysis [5, 12]. The process begins by analyz-
ing the CR, the source code, and the associated documentation to identify an initial
set, called starting impact set (SIS), of software objects that are likely to be affected
by the required change. To discover additional elements to be affected by the CR,
the SIS is analyzed. The union of SIS and the new set generated by analyzing SIS
is the candidate impact set (CIS) (a.k.a. estimated impacted set). An actual impact
set (AIS) is obtained after the change is actually implemented. Given that one can
implement a CR in many ways, the AIS set is not unique [13].

Impact analysis, which is an iterative process, has been illustrated in Figure 6.1.
Newly impacted elements, not present in the CIS, may be identified while implement-
ing a CR. A discovered impact set (DIS) represents the collection of all those newly
discovered elements, and it indicates an underestimation of impacts of the change.
Simultaneously, some members of CIS may not be actually impacted by the CR, and
the group of those entities is known as false positive impact set (FPIS). FPIS indi-
cates an overestimation of impacts. Ideally, AIS should be equal to SIS ∪ DIS ⧵ FPIS,
where ∪ denotes set union and ⧵ denotes set difference. The error in impact

226 IMPACT ANALYSIS

Starting

impact set

(SIS)

Analyze the change

request and the

documentation

Trace potential

impacts

Implement

requested changes

Candidate

impact set

(CIS)

Actual

impact set

(AIS)

Discovered

impact set

(DIS)

False positive

impact set

(FPIS)

FIGURE 6.1 Impact analysis process. From Reference 6. © 2008 IEEE

estimation can be computed as (|DIS| + |FPIS|)/|CIS|. The various sets of com-
ponents are formally defined as follows.

� Starting Impact Set (SIS): The initial set of objects (or components) presumed
to be impacted by a software CR is called SIS.

� Candidate Impact Set (CIS): The set of objects (or components) estimated to
be impacted according to a certain impact analysis approach is called CIS.

� Discovered Impact Set (DIS): DIS is defined as the set of new objects (or com-
ponents), not contained in CIS, discovered to be impacted while implementing
a CR.

� Actual Impact Set (AIS): The set of objects (or components) actually changed
as a result of performing a CR is denoted by AIS.

� False Positive Impact Set (FPIS): FPIS is defined as the set of objects (or
components) estimated to be impacted by an implementation of a CR but not
actually impacted by the CR. Precisely, FPIS = (CIS ∪ DIS) ⧵ AIS.

In the process of impact analysis it is important to minimize the differences
between AIS and CIS, by eliminating false positives and identifying true impacts.
Several metrics are defined in the literature to evaluate the impact analysis process
[6, 13, 14]. Here, we discuss two traditional information retrieval metrics: recall and
precision.

� Recall: It represents the fraction of actual impacts contained in CIS, and it is
computed as the ratio of ∣CIS ∩ AIS∣ to ∣AIS∣. The value of recall is 1 when
DIS is empty.

IMPACT ANALYSIS PROCESS 227

� Precision: It represents the fraction of candidate impacts that are actually
impacted, and it is computed as the ratio of ∣CIS ∩ AIS∣ to ∣CIS∣. For an
empty FPIS set, the value of precision is 1.

Note that if AIS is equal to CIS, both recall and precision are computed to be equal to
1. However, this does not happen too often. Therefore, recall might be traded off in
favor of precision and vice versa. For a larger CIS, the probability of identifying all
actual impacts is higher; the down side is that many false positives are encountered.
Adequacy and effectiveness are two key aspects of any impact analysis approach [14].

� Adequacy: Adequacy of an impact analysis approach is the ability of the
approach to identify all the affected elements to be modified. Ideally, AIS⊆CIS.
Adequacy is repressed in terms of a performance metric called inclusiveness,
as follows.

Inclusiveness =
{

1 if AIS ⊆ CIS
0 otherwise

.

The concept of adequacy is essential to assessing the quality of an impact anal-
ysis approach. An inadequate approach is in fact useless, as it provides the
maintenance engineer with incorrect information. For example, if inconclusive
is 0, the approach cannot be used because it does not provide the maintenance
engineer with all the components to be analyzed. In this case, the actual modi-
fication will be certainly affected by errors.

� Effectiveness: The ability of an impact analysis technique to generate results,
that actually benefit the maintenance tasks, is known as its effectiveness. Effec-
tiveness is expressed in terms of three fine-grained characteristics as follows.

– Ripple-sensitivity

– Sharpness

– Adherence

Ripple-sensitivity implies producing results that are influenced by ripple effect,
which is discussed in Section 6.4. The set of objects that are directly affected
by the change is denoted by DISO (directly impacted set of objects), and it
is also known as primary impacted set. Similarly, the set of objects that are
indirectly impacted by the change is denoted by IISO (indirectly impacted set
of objects), and it is also known as the secondary impacted set. The cardinality
of IISO is an indicator of ripple effect. The software maintenance personnel
expect that the cardinality of IISO is not far from the cardinality of DISO.
Therefore, the concept of Amplification, as defined below, is used as a measure
of Ripple-sensitivity.

Amplification = ∣ IISO ∣
∣ DISO ∣

⟶ 1,

where ∣ . ∣ denotes the cardinality operator.

228 IMPACT ANALYSIS

Sharpness is the ability of an impact analysis approach to avoid having to
include objects in the CIS that need not be changed. Sharpness is expressed by
means of Change Rate as defined below.

ChangeRate = ∣ CIS ∣
∣ System ∣

.

It may be noted that CIS is included in “System”, and Change Rate falls in the
range from 0 to 1. For Sharpness to be high, we must have Change Rate ≪ 1.

Adherence is the ability of the approach to produce a CIS which is as close
to AIS as possible. A small difference between CIS and AIS means that a small
number of candidate objects fail to be included in the actual modification set.
Adherence is expressed by S-Ratio as follows:

S-Ratio = ∣ AIS ∣
∣ CIS ∣

.

If the impact analysis approach is adequate, AIS is included in CIS, and S-Ratio
takes on values in the range from 0 to 1. Ideally, the S-Ratio is equal to 1.

6.2.1 Identifying the SIS

Impact analysis begins with identifying the SIS. The CR specification, documentation,
and source code are analyzed to find the SIS. Larger software systems require more
effort to identify the SIS. It takes more effort to map a new CR’s “concepts” onto
source code components (or objects) as discussed in Section 3.5. In the “concept
assignment problem,” one discovers human-oriented concepts and assigns them to
their realization [15]. It is difficult to fully automate the concept assignment problem
because programs and concepts do not occur at identical levels of abstractions, thereby
necessitating human interactions.

There are several methods to identify concepts, or features, in source code [16].
The “grep” pattern matching utility available on most Unix systems and similar search
tools are commonly used by programmers [17]. One can search for variable names
and comments in the code by using the “grep” tool. Each block of source code found
in the search process needs to be studied to generate more search queries to find
more variables, functions, and comments. However, the tool has some deficiencies:
it is based on the correspondence between the name for the concept assigned by the
programmer and an identifier in the code. The technique often fails when the concepts
are hidden in the source code, or when the programmer fails to guess the program
identifiers.

The software reconnaissance methodology proposed by Wilde and Scully [18]
is based on the idea that some programming concepts are selectable, because their
execution depends on a specific input sequence [19]. Selectable program concepts
are known as features. By executing a program twice, one can often find the source
code implementing the features: (i) execute the program once with a feature and once

IMPACT ANALYSIS PROCESS 229

without the feature; (ii) mark portions of the source code that were executed the first
time but not the second time; and (iii) the marked code are likely to be in or close to
the code implementing the feature.

Chen and Rajlich [20] proposed a dependency-graph-based feature location
method for C programs. The component dependency graph is searched, generally
beginning at the main(). Functions are chosen one at a time for a visit. The main-
tenance personnel reads the documentation, code, and dependency graph to compre-
hend the component before deciding if the component is related to the feature under
consideration. The C functions are successively explored to find and understand all
the components related to the given feature.

6.2.2 Analysis of Traceability Graph

Software maintenance personnel may choose to execute the CR differently, or they
may not execute it at all, if the complexity and/or size of the traceability graph
increases as a result of making the proposed change. Moreover, the complexity and
size of the work products are expected to increase. Therefore, whenever change is
proposed, it is necessary to analyze the traceability graphs in terms of its complexity
and size to assess the maintainability of the system [21].

By means of an example, we explain the traceability links and graphical relation-
ships among related work products (see Figure 6.2). The graph is constructed by
examining each requirement, and then linking the requirements to the design compo-
nent that implements it. Next, design components are linked with the corresponding
modules of source code. In the final step, source code modules are linked with sets
of test cases. The graph that is so constructed reveals the relationships among work
products. Specifically, the graph shows the horizontal traceability of the system. The

r1

r2

r3

.

.

.

r2.2

d2

d1

.

.

d1

d2

d3

d1

d2
.
.

Code m.1

Code m.2

Code m.3

Code m.4

Code m.5

Code m.6

Test 1.1

Test 1.2

Test 1.3

Test 1.4

Test 1.5

Test 1.6

Test 1.7

Test 1.8

Test 1.9

Test 1.10

Test 1.11

Test 1.12

Acceptance n.1

…
…
…
…
…
…
…
…
…
…
…

…
…
…
…
…
…
…
…
…
…
…
…
...

Requirements

document 1

Design 1

Design 2

Design 3

FIGURE 6.2 Traceability in software work products. From Reference 22. © 1991 IEEE

230 IMPACT ANALYSIS

R1

R2

R3

R4

R5

R6

R7

R8

Rn

D1

D2

D3

D4

D5

D6

D7

D8

Dn

C1

C2

C3

C4

C5

C6

C7

C8

Cn

T1

T2

T3

T4

T5

T6

T7

T8

Tn

Requirements Design Code Test

FIGURE 6.3 Underlying graph for maintenance. From Reference 22. © 1991 IEEE

graph has four categories of nodes: requirements, design, code, and test. Figure 6.3
is an example of the general appearance of such a graph. Each category of nodes
is represented by a silo, and additional edges can be found within a silo. The edges
within a silo represent vertical traceability for the kind of work product represented
by the silo. Vertical traceability has been represented by solid lines, whereas hori-
zontal traceability by dashed lines. For a node i in a graph, its in-degree in(i) counts
the number of edges for which i is the destination node, and in(i) denotes the number
of nodes having a direct impact on i. Similarly, the out-degree of node i, denoted by
out(i), is the number of edges for which i is the source. Node i being changed, out(i)
is a measure of the number of nodes which are likely to be modified.

If some changes are made to requirement object “R4,” the results of horizontal
traceability and vertical traceability from Figure 6.3 are shown in Figure 6.4. The
horizontally traced objects have been shown as lightly shaded circles, whereas the
vertically traced objects have darkly shaded circles.

As work products change, both the vertical traceability and horizontal traceability
are likely to change. The change to vertical traceability is assessed by considering the
complexity and size of the vertical traceability graph within each silo. A common mea-
sure of complexity of a graph is the well-known Cyclomatic complexity. Also, node
count is a measure of size. It may be noted that vertical traceability metrics are product
metrics—and those metrics reflect the effect of change on each product. To minimize
the impact of a change, out-degrees of nodes need to be made small. For nodes with
large out-degrees, one may partition the nodes to uniformly allocate dependencies
across multiple nodes. Low in-degrees of nodes are an indication of a good design.

On the other hand, process metrics are useful in examining horizontal traceabil-
ity. To understand changes in horizontal traceability, it is necessary to understand:

IMPACT ANALYSIS PROCESS 231

R1

R2

R3

R4

R5

R6

R7

R8

Rn

D1

D2

D3

D4

D5

D6

D7

D8

Dn

C1

C2

C3

C4

C5

C6

C7

C8

Cn

T1

T2

T3

T4

T5

T6

T7

T8

Tn

Requirements Design Code Test

FIGURE 6.4 Determine work product impact. From Reference 22. © 1991 IEEE

(i) the relationships among the work products; and (ii) how work products relate to
the process as a whole. In traceability graphs, the relationships among work products
are denoted by dashed lines. For a pair of adjacent work products, one can exam-
ine the subgraph formed by the nodes of the work products and the dashed lines.
Therefore, there exist three graphs: (i) the first one relating requirements to software
design; (ii) the second one relating software design to source code; (iii) and the third
one relating source code to tests. Next, size and complexity metrics are obtained for
those three graphs to know about the work products and the effects of changes. One
might conclude that if a proposed change results in increased size or complexity of
the relationship between a pair of work products, the resulting system will be more
difficult to maintain.

6.2.3 Identifying the Candidate Impact Set

A CIS is identified in the next step of the impact analysis process. The SIS is
augmented with software lifecycle objects (SLOs) that are likely to change because
of changes in the elements of the SIS. Changes in one part of the software system
may have direct impacts or indirect impacts on other parts [12]. Both direct impact
and indirect impact are explained in the following.

� Direct impact: A direct impact relation exists between two entities, if the two
entities are related by a fan-in and/or fan-out relation.

� Indirect impact: If an entity A directly impacts another entity B and B directly
impacts a third entity C, then we can say that A indirectly impacts C.

232 IMPACT ANALYSIS

SLO0

SLO1

SLO2

SLO3

SLO4

SLO5

SLO6

SLO7

SLO8

SLO9

FIGURE 6.5 Simple directed graph of SLOs. From Reference 12. © 2002 IEEE

To understand those concepts, let us consider the directed graph in Figure 6.5
with ten SLOs, SLO0–SLO9. Each SLO represents a software artifact connected to
other artifacts. The artifacts can be arbitrary entities, ranging from a requirement
of the entire system to the definition of a variable. Dependencies among SLOs are
represented by arrows. In the figure, SLO1 has an indirect impact from SLO8 and a
direct impact from SLO9. The in-degree of a node i reflects the number of known
nodes that depend on i. Figure 6.6 shows the four nodes—SLO0, SLO5, SLO7, and
SLO9—that are dependent on SLO1, and the in-degree of SLO1 is four. In addition,
the out-degree of SLO1 is three.

The connectivity matrix of Table 6.1 is constructed by considering the SLOs and
the relationships shown in Figure 6.5. A reachability graph can be easily obtained
from a connectivity matrix. A reachability graph shows the entities that can be

SLO0

SLO1

SLO2

SLO4

SLO5

SLO6

SLO7

SLO9

FIGURE 6.6 In-degree and out-degree of SLO1. From Reference 12. © 2002 IEEE

IMPACT ANALYSIS PROCESS 233

TABLE 6.1 Relationships Represented by a Connectivity Matrix

SLO0 SLO1 SLO2 SLO3 SLO4 SLO5 SLO6 SLO7 SLO8 SLO9
SLO0 x x x
SLO1 x x x
SLO2 x x x
SLO3 x x x
SLO4 x x x
SLO5 x x x
SLO6 x x x
SLO7 x x x
SLO8 x x x
SLO9 x x x

Source: From Reference 12. © 2002 IEEE.

impacted by a modification to an SLO, and there is a likelihood of overestimation.
The dense reachability matrix of Table 6.2 has the risk of over-estimating the CIS.
To minimize the occurrences of false positives, one might consider the following two
approaches.

� Distance-based approach: In this approach, SLOs which are farther than a
threshold distance from SLO i are considered not to be impacted by changes
in SLOW i. In Table 6.3, the concept of distance has been introduced in the
analysis. One can estimate the scope of the ripple by augmenting Warshall’s
algorithm [23] with data about the nodes traversed so far.

� Incremental approach: In this approach, the CIS is incrementally constructed
[24]. For every SLO in the SIS, one considers all the SLOs interacting with it,
and only SLOs that are actually impacted by the change request are put in the
CIS. The identification process is recursively executed until all the impacted
SLOs are identified.

TABLE 6.2 Relationships Represented by a Reachability Matrix

SLO0 SLO1 SLO2 SLO3 SLO4 SLO5 SLO6 SLO7 SLO8 SLO9
SLO0 x x x x x x x x x
SLO1 x x x x x x x x x
SLO2 x x x x x x x x x
SLO3 x x x x x x x x x
SLO4 x x x x x x x x x
SLO5 x x x x x x x x x
SLO6 x x x x x x x x x
SLO7 x x x x x x x x x
SLO8 x x x x x x x x x
SLO9 x x x x x x x x x

Source: From Reference 12. © 2002 IEEE.

234 IMPACT ANALYSIS

TABLE 6.3 Relationship with Distance Indicators

SLO0 SLO1 SLO2 SLO3 SLO4 SLO5 SLO6 SLO7 SLO8 SLO9
SLO0 1 2 3 2 1 2 2 3 1
SLO1 2 1 2 1 2 1 2 3 2
SLO2 2 2 1 1 3 2 1 2 2
SLO3 3 2 2 2 2 1 2 1 1
SLO4 1 2 3 1 2 2 1 2 2
SLO5 2 1 2 2 1 2 2 3 1
SLO6 3 2 1 2 2 1 2 3 1
SLO7 3 1 2 1 2 3 2 1 2
SLO8 3 2 1 2 1 3 3 2 1
SLO9 2 1 2 2 1 3 2 1 2

Source: From Reference 12. © 2002 IEEE.

6.3 DEPENDENCY-BASED IMPACT ANALYSIS

In general, source code objects are analyzed to obtain vertical traceability information.
Dependency-based impact analysis techniques identify the impact of changes by
analyzing syntactic dependencies, because syntactic dependencies are likely to cause
semantic dependencies. Two traditional impact analysis techniques [25] are explained
in this section. The first technique is based on call graph, whereas the second one is
based on dependency graph [25].

6.3.1 Call Graph

A call graph is a directed graph in which a node represents a function, a component,
or a method, and an edge between two nodes A and B means that A may invoke
B. Programmers use call graphs to understand the potential impacts that a software
change may have [5]. An example call graph has been shown in Figure 6.7. Let P
be a program, G be the call graph obtained from P, and p be some procedure in
P. A key assumption in the call-graph-based technique is that some change in p
has the potential to impact changes in all nodes reachable from p in G. Under this
assumption, all the potential impact relationships in P can be calculated by applying
the transitive closure relation. However, a procedure can have a variety of calling
behavior, as follows: (i) a procedure p1 calls a second procedure p2, but p2 does not

M

A

C

B

D

E

F

G

FIGURE 6.7 Example of a call graph. From Reference 26. © 2003 IEEE

DEPENDENCY-BASED IMPACT ANALYSIS 235

M B r A C D r E r r r r x.
FIGURE 6.8 Execution trace

make any further calls; (ii) a procedure p1 calls a second procedure p2, and p2 calls a
third procedure p3; or (iii) a procedure p1 calls a second procedure p2, and p2 makes
calls to many other procedures.

Therefore, the call-graph-based approach to impact analysis suffers from many
disadvantages as follows:

� A call graph represents the potential calls by a single procedure, while ignoring
the dynamic aspects. Consequently, impact analysis based on call graphs can
produce an imprecise impact set. For example, in Figure 6.7, one cannot deter-
mine the conditions that cause impacts of changes to propagate from M to other
procedures.

� Generally, a call graph captures no information flowing via returns. Therefore,
impact propagations due to procedure returns are not captured in the call-graph-
based technique. Suppose that in Figure 6.7, E is modified and control returns
to C. Now, following the return to C, it cannot be inferred whether impacts of
changing E propagates into none, both, A, or B.

To address the aforementioned issues, researchers have considered more precise
ways to assess the impact of changes, using information collected during execution of
calls. Law and Rothermel [26] defined a technique called path-based dynamic impact
analysis that uses whole path profiling [27] to estimate the effects of changes. In this
approach, if a procedure p is changed, then one considers the impact that is likely to
propagate along those executable paths that are seen to be passing through p. As a
result, any procedure, that is invoked after p but still appears on the call stack after p ter-
minates, is assumed to be potentially impacted. For the approach to work, the software
system needs to be instrumented to collect information. However, it is not necessary
to have access to the source code, because program binaries can be instrumented.

Let us consider an execution trace as shown in Figure 6.8. The trace corresponds
to a program whose call graph is shown in Figure 6.7. In the figure, r and x represent
function returns and program exits, respectively. Let procedure E be modified. The
impact of the modification with respect to the given trace is computed by forward
searching in the trace to find: (i) procedures that are indirectly or directly invoked
by E; and (ii) procedures that are invoked after E terminates. One can identify the
procedures into which E returns by performing backward search in the given trace.
For example, in the given trace, E does not invoke other entities, but it returns into
M, A, and C. Due to a modification in E, the set of potentially impacted procedures
is {M, A, C, E}.

6.3.2 Program Dependency Graph

In the program dependency graph (PDG) of a program [28–30]: (i) each simple state-
ment is represented by a node, also called a vertex; and (ii) each predicate expression is
represented by a node. There are two types of edges in a PDG: data dependency edges

236 IMPACT ANALYSIS

begin
S1: read(X)
S2: if (X < 0)

then
S3: Y = f1 (X);
S4: Z = g1 (X);

else
S5: if (X = 0)

then
S6: Y = f2 (X);
S7: Z = g2 (X);

else
S8: Y = f3 (X);
S9: Z = g3 (X);

end if;
end if;

S10: write(Y);
S11: write(Z);

end.

FIGURE 6.9 Example program. From Reference 31. © 1990 ACM

and control dependency edges. Let vi and vj be two nodes in a PDG. If there is a data
dependency edge from node vi to node vj, then the computations performed at node vi
are directly dependent upon the results of computations performed at node vj. A con-
trol dependency edge from node vi to node vj indicates that node vi may execute based
on the result of evaluation of a condition at vj. Let us consider the program shown in
Figure 6.9 [31]. Functions fi and gi, where i = 1–3, are assumed to have no side effects.
Figure 6.10 shows the PDG of the program shown in Figure 6.9. Data dependencies
are shown as solid edges, whereas control dependencies are shown as dashed edges.

A static program slice is identified from a PDG as follows: (i) for a variable var
at node n, identify all reaching definitions of var; and (ii) find all nodes in the PDG

S6: Y = f2 (X) S7: Z = g2 (X) S10: write(Y)S5: if (X = 0)

S3: Y = f
1

(X) S4: Z = g
1
(X)S2: if (X < 0)

S1: read(X)

S8: Y = f3 (X) S9: Z = g
3

(X) S11: write(Z)

FIGURE 6.10 Program dependency graph of the program in Figure 6.9

DEPENDENCY-BASED IMPACT ANALYSIS 237

which are reachable from those nodes. The visited nodes in the traversal process
constitute the desired slice. Now we give an example of finding a static program
slice. Consider the program in Figure 6.9 and variable Y at S10. First, find all the
reaching definitions of Y at node S10—and the answer is the set of nodes {S3, S6, and
S8}. Next, find the set of all nodes which are reachable from {S3, S6, and S8}—and
the answer is the set {S1, S2, S3, S5, S6, S8}. In Figure 6.10, the nodes belonging in
the slice have been identified in bold.

Referring to the static slice example discussed above, only one of the three assign-
ment statements, S3, S6, or S8, may be executed for any input value of X. Consider
the input value −1 for the variable X. For −1 as the value of X, only S3 is executed.
Therefore, with respect to variable Y at S10, the dynamic slice will contain only {S1,
S2, and S3}. For −1 as the value of X, if the value of Y is incorrect at S10, one can
infer that either fi is erroneous at S3 or the “if” condition at S2 is incorrect. Thus, a
dynamic slice is more useful in localizing the defect than the static slice.

Agrawal and Horgan [31] proposed some approaches to computing dynamic slices
of programs. A simple approach to obtaining dynamic program slices is explained
here. Given a test and a PDG, let us represent the execution history of the program
as a sequence of vertices < v1, v2,… , vn >. The execution history hist of a program
P for a test case test, and a variable var is the set of all statements in hist whose
execution had some effect on the value of var as observed at the end of the execution.
Note that unlike slicing where a slice is defined with respect to a given location in the
program, dynamic slicing is defined with respect to the end of an execution history.

Now, in our example discussed before, the static program slice with respect to
variable Y at S10 for the code shown in Figure 6.9 contains all the three statements—
S3, S6, and S8. However, for a given test, one statement from the set {S3, S6, and S8} is
executed. A simple way to finding dynamic slices is as follows: (i) for the current test,
mark the executed nodes in the PDG; and (ii) traverse the marked nodes in the graph.

Figure 6.11 illustrates how a dynamic slice is obtained from the program in
Figure 6.9 with respect to variable Y at the end of execution. For the case X = −1,

S6: Y = f2 (X) S7: Z = g
2

(X) S10: write(Y)

S3: Y = f1 (X) S4: Z = g
1
(X)

S1: read(X)

S8: Y = f3 (X) S9: Z = g3 (X) S11: write(Z)

S5: if (X = 0)

S2: if (X < 0)

FIGURE 6.11 Dynamic program slice for the code in Figure 6.9, text case X = −1, with
respect to variable Y

238 IMPACT ANALYSIS

the executed nodes are: <S1, S2, S3, S4, S10, S11>. Initially, all nodes are drawn with
dotted lines. If a statement is executed, the corresponding node is made solid. Next,
beginning at node S3, the graph is traversed only for solid nodes. Node S3 is selected
because the variable Y is defined at node S3. All nodes encountered while traversing
the graph are represented in bold. The desired dynamic program slice is represented
by the set of bold nodes {S1, S2, S3}.

6.4 RIPPLE EFFECT

Haney [32] introduced the concept of ripple effect in the early 1970s, and the concept
of module connection analysis was described by means of matrix algebra. Matrix
algebra was applied in the estimation of the total number of modifications required
to stabilize a changing system. The probability that a change in one module would
require a change in any other modules is recorded in a matrix. From the functional and
performance perspectives, Yau, Collofello, and McGregor [33] defined the concept of
ripple effect in 1978. They viewed ripple effect as a complexity measure to compare
changes to source code. In the scheme of Yau et al., ripple effect is computed by means
of error flow analysis. In error flow analysis, definitions of program variables involved
in a change are considered to be potential sources of errors, and inconsistency can
propagate from those sources to other variables in the program. The other sources
of errors are successively identified until error propagation is no more possible. This
work was later extended to include stability measure. Stability reflects the resistance
to the potential ripple effect which a program would have when it is changed [34].
Stability analysis and impact analysis differ as follows. Stability analysis considers
the total potential ripple effects rather than a specific ripple effect caused by a change.
Design stability was studied by Yau and Collofello [35] by means of an algorithm,
which computes stability based on design documentation. Specifically, one counts
the number of assumptions made about shared global data structures and module
interfaces. The key difference between design level stability and code level stability
is as follows: design level stability does not consider change propagations within
modules. In the next subsection we explain how to compute ripple effect, based on
the works of Sue Black [36] and Yau et al. [33]. The basic idea is to identify the
impact of a change to one variable on the program.

6.4.1 Computing Ripple Effect

Contained in module m1 of Figure 6.12, consider the three lines of code referring
to variables a, b, and d. A change in the value of b will impact a in line (1), and it
will propagate to a in line (2). Variable a affects variable d in line (2) and this will
propagate to variable d in line (3). Based on the above example, intramodule change
propagation is defined as the propagation of changes from one source code line in a
module to another source code line within the same module.

RIPPLE EFFECT 239

a

d

b

a

d

1. =

2. =

3. return

x = m1 ();

;

;

;

m2

m1

Intramodule change propagation

Intermodule change propagation

Key

FIGURE 6.12 Intramodule and intermodule change propagation. From Reference 36.
© 2001 John Wiley & Sons

A matrix Vm is used to represent the initial starting points for intramodule change
propagation. The matrix records the following five conditions of the module’s variable
x for all x:

1. x is defined in an assignment statement;

2. x is assigned a value in a read input statement;

3. x is an input to an invoked module;

4. x is an output from an invoked module;

5. x is a global variable.

In Vm, variable definitions are uniquely identified. In case a variable is defined
twice, then separate entries for each definition are included in Vm. Variable occur-
rences satisfying any of the five conditions—defined, assigned, input, output, and
global— are denoted by “1”; otherwise, an occurrence is denoted by “0.” In addition,
the notation xd

i means that the variable x has been defined at line (i). Similarly, the
notation xu

i means that the variable x has been used at line (i). In module m1, variable
a is global and it is considered to be defined. Matrix Vm1 for the lines of code in m1
is expressed as

Vm1 =
ad

1 du
1 dd

2 au
2 du

3

(1 0 1 1 0)
.

A zero–one (0–1) matrix Zm indicates values of what variables propagate to other
variables in the same module. Individual occurrences of variables are denoted by
rows and columns of Zm. It is to be noted that the value of a variable propagates from
an occurrence in row i to an occurrence in column j. As an example, the propagation
of the value of a occurring in line (2) to variable d occurring in the same line is

240 IMPACT ANALYSIS

recorded in the cell at row 4 and column 3—and not in the cell at row 3 column 4.
The source code of module m1 results in the following matrix:

ad
1 du

1 dd
2 au

2 du
3

Zm1 =

ad
1

du
1

dd
2

au
2

du
3

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1

1 1 1 1 1

0 0 1 0 1

0 0 1 1 1

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
.

It is easy to observe that Zm1 is both reflexive and transitive. The reflexive property
implies that every variable propagates to itself, whereas transitivity means that if v1
propagates to v2 and v2 propagates to v3 then v1 also propagates to v3.

Propagation of values of variables in one module to variables in a different module
is referred to as intermodule change propagation. Intermodule change propagation
of values of a variable w occurs in the following ways:

1. If w is a global variable, then a change made to w by one module is seen by
another module accessing w.

2. If w is an input parameter in a call to a second module, then values of w are
propagated from the caller to the callee.

3. If w is an output parameter, then its value propagates from the module that
makes an output to the module that accepts the output.

Now we examine the code segment in Figure 6.12. Variable d propagates to any
module that calls m1, because d appears in the return statement. If variable a is global,
its appearance on the left-hand side of an assignment statement causes its value to be
propagated to any module that uses variable a. Suppose that module m1 is called by
m2, a is a global variable, and m2 and m3 use a. If values of the variable corresponding
to row i propagate to the module corresponding to column j, then the (i, j)th entry
of the zero–one matrix is set to 1. For all the variables of a module m1, propaga-
tion of their values to other modules is captured by an X matrix, denoted by Xm1
as follows:

m1 m2 m3

Xm1 =

ad
1

du
1

dd
2

au
2

du
3

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 1

0 0 0

0 0 0

0 0 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠
.

RIPPLE EFFECT 241

The intermodule change propagation for variables occurring in m1 is obtained by
means of the Boolean product of the two matrices Zm1 and Xm1, as follows:

Zm1Xm1 =

⎛⎜⎜⎜⎜⎝

1 0 1 1 1
1 1 1 1 1
0 0 1 0 1
0 0 1 1 1
0 0 0 0 1

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝

0 1 1
0 0 0
0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

0 1 1
0 1 1
0 0 1
0 0 1
0 0 1

⎞⎟⎟⎟⎟⎠
.

In the Boolean product Zm1Xm1, the “1” in row 2, column 3 indicates change in
propagation from bu

1 to m3; similarly, the “0” in row 3, column 2 indicates no change
in propagation from dd

2 to m2.
The Boolean product of Vm1 and Zm1Xm1 indicates the variable definitions that

propagate from m1 to other modules:

Vm1Zm1Xm1 =
(

1 0 1 1 0
) ⎛⎜⎜⎜⎜⎝

0 1 1
0 0 0
0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟⎠
=
(

0 1 3
)
.

Now, Vm1Zm1Xm1 indicates that there are no change propagations to m1, one
change propagation to m2, and three change propagations to m3.

Concerning the complexity of making changes, the more complex a module is,
the more the resources are needed to change the module. Therefore, a measure of
complexity can be factored into the calculation of change propagation to obtain
a measure of the complexity of modifying the definitions of variables. The well-
known McCabe’s cyclomatic complexity [37] can be integrated with the ongoing
computation of change propagation. A C matrix of dimension 1 × n is chosen to
represent McCabe’s cyclomatic complexity, where n is the number of modules:

C =
m1
m2
m3

⎛⎜⎜⎝
1
1
1

⎞⎟⎟⎠ .
Because the complete codes for m1, m2, and m3 have not been given, we assume

their arbitrary complexity values for example purpose. The product of Vm1Zm1Xm1
and C is

Vm1Zm1Xm1C =
(

0 1 3
) ⎛⎜⎜⎝

1
1
1

⎞⎟⎟⎠ = (4) .

The complexity-weighted total propagation of variable definitions for m1 is repre-
sented by Vm1Zm1Xm1C. The quantity Vm1Zm1Xm1C/∣ Vm1 ∣, where ∣ Vm1 ∣ represents

242 IMPACT ANALYSIS

TABLE 6.4 Laws of Software Evolution

Laws of Lehman Relevance to Ripple Effect

I. Continuing change Compare versions of program
Highlight complex modules
Measure stability over time
Highlight areas ripe for restructuring/refactoring

II. Increasing complexity Determine which module needs maintenance
Measure growing complexity

III. Self-regulation Helps measure rate of change of system
Helps look at patterns/trends of behavior
Determine the state of the system

IV. Conservation of organizational
stability

Not relevant

V. Conservation of familiarity Provide system change data
VI. Continuing growth Measure impact of new modules on a system

Help determine which modules to use in a new version
VII. Declining quality Highlight areas of increasing complexity

Determine which modules need maintenance
Measure stability over time

VIII. Feedback system Provide feedback on stability/complexity of system

Source: Adapted from Reference 8. © 2006 John Wiley & Sons

the total number of variable definitions in m1, represents the mean complexity-
weighted propagation of variable definition in m1. In the aforementioned example,
∣ Vm1 ∣ = 3, and it means that ripple in module m1 is caused by three sources. For
module m1, the mean complexity-weighted propagation of variable is 4∕3 = 1.33.
The general expression for calculating the ripple effect for a program (REP) is as
follows [36]:

REP = 1
n

n∑
m=1

Vm ⋅ Zm ⋅ Xm ⋅ C

∣ Vm ∣
,

where m = module and n = number of modules.
A tool called Ripple Effect and Stability Tool (REST) by Sue Black [38] automates

the calculation of ripple effect by: (i) approximating intramodule change propagation;
and (ii) excluding control flow within source code.

Sue Black examined some links between ripple effect measurement, as sum-
marized in Table 6.4 [8], and Lehman’s laws of software evolution, explained in
Chapter 2.

6.5 CHANGE PROPAGATION MODEL

Change propagation means that if an entity, say, a function, is changed, then all
related entities in the system are changed accordingly. Based on the work of Hassan

CHANGE PROPAGATION MODEL 243

Determine

initial entity

to change

Determine

other entities

to change
Change entity

Consult Guru

for advice

Change

request

No

entities

No more

changes

Suggested entity

For each entity

FIGURE 6.13 Change propagation model. From Reference 10. © 2004 IEEE

and Holt [10], a change propagation model has been illustrated in Figure 6.13. After
receiving a change request, one identifies the initial entity in the system that needs
to be changed. After changing the function, the maintainer must analyze the code to
find out other, related entities to change. Then, those entities are actually modified
to propagate the change. Similarly, the propagation process is repeated for each
changed entity. A Guru is consulted when the maintenance engineer cannot identify
more entities to modify. A Guru can be a senior developer or even a comprehensive
test suite. If the Guru suggests that an entity be considered, then the entity is taken
up for modification and the process for change propagation is applied to that entity.
This iterative process is continued until all the desired entities have been changed.
Eventually, the change set is determined for the change request and all entities in the
change set are changed.

6.5.1 Recall and Precision of Change Propagation Heuristics

Gurus rarely exist and comprehensive test suites are generally incomplete in large
maintenance projects. Therefore, software maintenance engineers need good change
propagation heuristics, that is, good software tools that can guide them in identifying
entities to propagate a change. The heuristic should possess a high precision attribute
to be accurate and a high recall attribute to be complete. A heuristic with low precision
will waste software maintainers’ time, and maintainers will stop using them. On the
other hand, if a heuristic has low recall, then software maintainers will miss to change
some entities , thereby introducing defects.

We explained the concepts of recall and precision in Section 6.2. In this section,
we explain the use of those two metrics to measure the change propagation heuristic
by means of an example. Let us assume that Rohan wants to enhance an existing
feature of a legacy information system. He first identifies that entity A needs to be
changed. After changing A, a heuristic tool is queried for suggestions, and entities B
and X are suggested by the tool. Next, B is changed and he determines that X should
not be changed. Now the tool is given the information that B was changed, and the
tool suggests that Y and W need to be changed. However, neither Y nor W need to
be changed so no changes are performed on Y and W. After having used the tool,
now Rohan consults a Guru, Krushna. Krushna indicates that C should be changed.
Now, Rohan modifies C and queries the heuristic for additional entities to change.

244 IMPACT ANALYSIS

A

X

C

B

Y

D

W

Change set

FIGURE 6.14 Change propagation flow for a simple example. From Reference 10. © 2004
IEEE

In response, D is suggested by the tool. Next, D is changed and Krushna is further
queried. However, this time Krushna does not suggest any more entities for change.
Now, Rohan stops changing the legacy system.

All the changed entities in the example represent the change set for this enhance-
ment. The entities and their interrelationships have been shown in Figure 6.14.
According to the heuristic, one edge is added from A to B and another edge from A
to X. Since the change set contains A, the set contains both B and X. Similarly, edges
are added from C to D, from B to Y, and from B to W. Now let us calculate the recall
and precision for this example. The set of entities that are changed will be called
change set; change = {A, B, C, D}. The set of entities suggested by the tool is called
a predicted set. In the Rohan example, predicted = {B, X, Y, W, D}. The entities that
were required to be predicted, but were found from Guru, are put in a set called the
occurred set. In the Rohan example, occurred = {B, C, D}. The occurred set does
not include A, which was initially selected by Rohan, because there is no need to
predict it. That is, occurred = change − {initial entity}. Now, recall and precision
for this example are computed as follows.

recall =
∣ predicted ∩ occurred ∣

∣ occurred ∣
= 2

3
= 66%

precision =
∣ predicted ∩ occurred ∣

∣ predicted ∣
= 2

5
= 40%

In the analysis of the above example to measure recall and precision, the authors,
Hassan and Holt [10], made three assumptions.

� Symmetric suggestions: This assumption means that if the tool suggests entity
F to be modified when it is told that entity E was changed, the tool will suggest
entity E to be modified when it is told that entity F was changed. This assumption
has been depicted in Figure 6.14 by means of undirected edges.

CHANGE PROPAGATION MODEL 245

� Single entity suggestions: This assumption means that each prediction by a
heuristic tool is performed by considering a single entity known to be in the
change set, rather than multiple entities in the change set.

� Query the tool first: This assumption means that the maintainer (e.g., Rohan)
will query the heuristic before doing so with the Guru (e.g., Krushna).

All the three assumptions together indicate that different orderings of selection
and queries to a heuristic do not affect precision and recall.

6.5.2 Heuristics for Change Propagation

The “Determine Other Entities to Change” step in Figure 6.13 is executed by means
of several heuristics. The set of entities that need to be changed as a result of a
changed entity is computed in the aforementioned step. Modification records are
central to the design of the heuristics. In general, source control repositories are used
to keep track of all the changes made to files in the system. For each modification,
a modification record stores the date and time of change, the name of the person
making the change, the reason for the change, the code blocks that were changed, and
names of the modified files. The changes can be recorded at the level of source code
entities, namely, data type definitions, variables, and functions, to be able to track the
following details.

� Modification, deletion, and addition of a source code entity.
� Alterations to dependencies between the changed entities and other entities in

source code. For instance, it may be determined that a variable is no longer
needed by a function.

� For each modification to the code, the corresponding modifications made to
other files.

Each heuristic discussed in this section is characterized by: (i) data source; and
(ii) pruning technique.

Heuristic Information Sources A heuristic can use one of many information
sources to predict the entities that need to be modified. The objectives of the heuris-
tics are to: (i) ensure that the entities that need to be modified are predicted; and (ii)
minimize the number of predicted entities that are not going to be modified. Some
potential information sources are as follows.

Entity information: In a heuristic based on entity information, a change propagates
to other entities as follows.
� If two entities changed together, then the two are called a historical co-change

(HIS).
� Static dependencies between two entities may occur via what is called CUD

relations: call, use and define. A call relation means one function calls another

246 IMPACT ANALYSIS

function; a use relation means a variable is used by a function; and a define
relation means a variable is defined in a function or it appears as a parameter
in the function.

� The locations of entities with respect to subsystems, files, and classes in
the source code are represented by means of a code layout (FIL) relation.
Subsystems, files, and classes indicate relations between entities— generally,
related entities simultaneously.

Developer information (DEV): In a heuristic based on developer information, a
change propagates to other entities changed by the same developer. In general,
programmers develop skills in specific subject matters of the system and it is
more likely that they modify entities within their field of expertise.

Process information: In a heuristic based on process information, change propaga-
tion depends on the development process followed. A modification to a specific
entity generally causes modifications to other recently or frequently changed
entities. For example, a recently changed entity may be the reason for some
system-wide modifications.

Textual information: In a heuristic based on name similarity, changes are propa-
gated to entities with similar names. Naming similarities indicate that there are
similarities in the role of the entities [39].

Pruning Techniques A heuristic may suggest a large number of entities to be
changed. Several techniques can be applied to reduce the size of the suggested set,
and those are called pruning techniques, as explained in the following.

� Frequency techniques identify the frequently changing, related components. The
number of entities returned by these techniques are constrained by a threshold.
In a Zipf distribution, a small number of entities tend to change frequently and
the remaining entities change infrequently.

� Recency techniques identify entities that were recently changed, thereby sup-
porting the intuition that modifications generally focus on related code and
functionality in a particular time frame.

� Random techniques randomly choose a set of entities, up to a threshold. In the
absence of no frequency or recency data, one may use this technique.

6.5.3 Empirical Studies

Hassan and Holt [40] studied the performance of four heuristics—DEV, HIS, CUD,
and FIL—using the development replay (DR) framework. To evaluate heuristics
for change propagation, real change sets from the project’s history are used in the
DR framework. To evaluate a heuristic: (i) historical changes are played; and (ii)
the recall and precision attributes are measured for every change set. They used
five open software systems—NetBSD, FreeBSD, OpenBSD, Postgres and GCC—
and the performance results are given in Table 6.5. The results show that historical
co-change information is a practical indicator of change propagation. The authors

SUMMARY 247

TABLE 6.5 Performance of Change Propagation Heuristics for the Five Software
Systems

DEV HIS CUD FILApplication Application
Name Type Recall Precision Recall Precision Recall Precision Recall Precision

NetBSD OS 0.74 0.01 0.87 0.06 0.37 0.02 0.79 0.16
FreeBSD OS 0.68 0.02 0.87 0.06 0.40 0.02 0.82 0.11
OpenBSD OS 0.71 0.02 0.82 0.08 0.38 0.01 0.80 0.14
Postgres DBMS 0.78 0.01 0.86 0.05 0.47 0.02 0.77 0.12
GCC C/C++ 0.79 0.01 0.94 0.03 0.46 0.02 0.96 0.06

Compiler

Average 0.74 0.01 0.87 0.06 0.42 0.02 0.83 0.12

Source: From Reference 10. © 2004 IEEE.

applied the pruning techniques discussed in Section 6.5.2 to improve precision, while
maintaining high recall.

6.6 SUMMARY

We introduced three related concepts in this chapter: analysis of impacts of changes
to the system, ripple effect, and change propagation. Impact analysis is defined as the
task of discovering the effects of making a change to a software system. It reveals
likely effects of the proposed change before the changes are actually implemented.
The main motivation for performing impact analysis is to minimize unexpected side
effects from an intended change to the system. On the other hand, ripple effect
analysis emphasizes on the tracing of repercussions in source code when code is
changed. The ripple effect measure can provide insights into the system through its
evolution: (i) know the change in the system’s complexity compared to the previous
version; (ii) know the complexity of individual modules; (iii) know the change in
complexity of a system after a new module is added. The change propagation activity
ensures that a change made in one component is propagated properly throughout the
entire system.

Next, we described the process of impact analysis process. In this framework, we
explained four different types of software object (or, components) sets, namely, SIS,
CIS, AIS, and FPIS. The AIS set is not unique because a modification can be effected
in many ways.

In general, tools for impact analysis estimate SIS, CIS, and AIS, and we discussed
guidelines to estimate those sets. In addition, we introduced several metrics to evaluate
the impact analysis process. The two commonly used information retrieval metrics
are recall and precision.

Precision is a measure of the performance of a retrieval technique to not return
non-relevant items. The precision of a technique is equal to 1 if every entity returned
by the technique is relevant to the query. However, a technique with precision equal
to 1 runs the risk of missing relevant entities. Therefore, precision and recall should
be considered.

248 IMPACT ANALYSIS

The performance metric recall is the proportion of relevant entities, that is data
or documents, retrieved by a technique from all available entities. The recall of a
technique is equal to 1 if every relevant entity is retrieved. Theoretically, it is possible
to achieve a recall value of 1 by returning every entity in the collection. In that sense,
recall by itself is not a good measure. Therefore, recall needs to be considered with
precision.

Next, we discussed traceability graph techniques to support impact analysis.
Dependencies and relationships among software artifacts are understood by means of
traceability links. After identifying the high level documents concerning the feature
to be modified, traceability is used to locate the portions of software design, source
code, and tests that are needed to be updated. Traceability is classified into two types:
horizontal (external) and vertical (internal). In general, source code objects are used
to provide vertical traceability, and dependency-based analysis techniques are used
to identify dependencies among the source code objects. Dependency-based impact
analysis techniques asses the effects of change by identifying syntactic dependencies
that may indicate semantic dependencies, and we examined two such techniques
which operate on call graphs and PDGs.

We provided a brief introduction to ripple effect and differentiated it from stability
analysis. Then we described the ripple effect algorithm with a simple example. Next,
we examined the link between Lehman’s laws of software evolution and measurement
of ripple effect.

Finally, we introduced the concept of change propagation and provided a model
for it, and we discussed several heuristics. The heuristics were characterized by data
sources and pruning techniques. Empirical results of these heuristics were presented.

LITERATURE REVIEW

The techniques for performing impact analysis are partitioned into two major cate-
gories: one group is based on dependency analysis and the other group is based on
traceability analysis [5]. Dependency-based techniques attempt to assess the effects
of a change on semantic dependencies between program entities. Semantic depen-
dencies are identified by means of syntactic dependencies. The techniques used to
identify syntactic dependencies include slicing techniques and transitive closure on
call graphs. One can follow requirement traceability links between source code and
documentation to locate features described in the requirements document. To identify
an impact set for a change request, Turver and Munro [3] have proposed the idea
of a ripple propagation graph for modeling documentation entities and their links to
source code. Ibrahim et al. [41] developed a traceability tool, called Catia, to trace
ripple effects. Bianchi et al. [42] experimented with many examples of traceability
link using the ANALYST tool; their aim was to assess: (i) the effectiveness of these
traceability links to support impact analysis in object-oriented environment; and (ii)
the accuracy of the maintenance process.

Impact analysis based on transitive closure of call graphs has been discussed in
an article by Law and Rothermel [26]. A change process was modeled as a sequence

REFERENCES 249

of snapshots by Rajlich [9]. One snapshot represents one moment in the change
process. In this technique a program is represented by a directed graph, where nodes
represent entities (e.g., classes). There are two kinds of directed edges in a graph:
one kind of edges represents dependencies and the second kind of edges represents
inconsistencies. For example, classes a and b are represented by two nodes with the
same name. Inconsistency between nodes a and b is represented by a directed edge
I < a, b >, where b is to be updated for any change to a. For each edge I < a, b >,
either a depends upon b or b depends upon a.

Intuitively, a program graph is said to be consistent if there are no I-type of
edges. Based on the above graph model, four kinds of change propagation strategies
were applied: top-down, random change-and-fix, strict change-and-fix, and bottom-
up. Luqi [43] uses graphs and sets to represent changes. Ajila [2] explicitly defines
elements and relations between elements to be traced with intra-level and inter-level
dependencies. Impact analysis based on transitive closure of call graphs is discussed
by Law [26]. Similarly, Lindvall et al. [44] show tracing across phases again with
intra-level and inter-level dependencies. The authors also discuss an impact analysis
technique based on traceability data of an object-oriented system. Impact analysis for
software architectures has been studied by Zhao et al. [45]. Based on an architectural
slicing and chopping technique, they propose an approach to performing change
impact analysis at the architectural level of software systems. Berg et al. [46] proposed
a framework for the impact analysis of software artifacts across several phases of
software development.

Computing ripple effects for object-oriented systems is a research topic of con-
siderable interest. To compute ripple effect at design level for object-oriented sys-
tems, Elish and Rine have given an algorithm in Reference 47. To compute ripple
effect at the code level in C++, Chaumun et al. [48] studied the impact of changes
in a system. To perform regression testing of modules implemented as objected-
oriented code, Li and Offut [49] performed impact analysis to identify those modules.
By means of experiments on two software systems, Kabaili et al. [50] studied the
relationship between coupling metrics and changeability. They concluded that cou-
pling is a predictor of changeability.

REFERENCES

[1] L. J. Arthur. 1988. Software Evolution: The Software Maintenance Challenge. John Wiley
& Sons, New York, NY.

[2] S. Ajila. 1995. Software maintenance: An approach to impact analysis of object change.
Software Practice and Experience, 25(10), 1155–1181.

[3] R. J. Turver and M. Munro. 1994. An early impact analysis technique for software
maintenance. Journal of Software Maintenance and Evolution: Research and Practice,
6(1), 35–52.

[4] J. P. Queille, J. F. Voidrot, N. Wilde, and M. Munro. 1994. The Impact Analysis Task in
Software Maintenance: A Model and a Case of Study. Proceedings of the International

250 IMPACT ANALYSIS

Conference on Software Maintenance (ICSM), October, 1994, Phoenix, Arizona, IEEE
Computer Society Press, Los Alamitos, CA, pp. 234–242.

[5] S. A. Bohner and R. S. Arnold. 1996. An introduction to software change impact anal-
ysis. In: Software Change Impact Analysis (Eds S. A. Bohner and R. S. Arnold). IEEE
Computer Society Press, Los Alamitos, CA.

[6] A De Lucia, F. Fasano, and R. Oliveto. 2008. Traceability Management for Impact
Analysis. Proceedings of the 2008 Frontiers of Software Maintenance (FoSM), October,
2008, Beijing, China, IEEE Computer Society Press, Los Alamitos, CA, pp. 21–30.

[7] O. C. Z. Gotel and A. C. W. Finkelstein. 1994. An Analysis of the Requirements Traceabil-
ity Problem. Proceedings of First International Conference on Requirements Engineering,
1994, pp. 94–101.

[8] S. Black. 2006. The role of ripple effect in software evolution. In: Software Evolution and
Feedback: Theory and Practice (Eds N. H. Madhavji and J. F. Ramil and D. E. Perry).
John Wiley, West Sussex, England.

[9] V. Rajlich. 1997. A Model for Change Propagation Based on Graph Rewriting. Proceed-
ings of the International Conference on Software Maintenance (ICSM), October, 1997,
Bari, Italy, IEEE Computer Society Press, Los Alamitos, CA, pp. 84–91.

[10] A. E. Hassan and R. C. Holt. 2004. Predicting Change Propagation in Software Systems.
Proceedings of the International Conference on Software Maintenance (ICSM), October,
2004, Chicago, USA, IEEE Computer Society Press, Los Alamitos, CA, pp. 284–293.

[11] D. E. Perry and W. M. Evangelist. 1987. An Empirical Study of Software Interface Faults –
An Update. Proceedings of the Twentieth Annual Hawaii International Conference on
Systems Sciences, January, 1987, Volume II, pp. 113–126.

[12] S. A. Bohner. 2002. Software Change Impacts: An Evolving Perspective. Proceedings of
the International Conference on Software Maintenance (ICSM), October, 2002, Phoenix,
Arizona, IEEE Computer Society Press, Los Alamitos, CA, pp. 263–271.

[13] R. S. Arnold and S. A. Bohner. 1993. Impact Analysis – Towards a Framework for
Comparison. Proceedings of the International Conference on Software Maintenance
(ICSM), October, 1993, IEEE Computer Society Press, Los Alamitos, CA, pp. 292–301.

[14] A. R. Fasolino and G. Visaggio. 1999. Improving Software Comprehension Through an
Automated Dependency Tracer. Proceedings of 7th International Workshop on Program
Comprehension, 1999, IEEE Computer Society Press, Los Alamitos, CA, pp. 58–65.

[15] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster. 1994. Program understanding and
the concept assignment problem. Communications of the ACM, May, 72–82.

[16] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L. Pounds. 2003. A comparison of
methods for locating features in legacy software. The Journal of Systems and Software,
65, 105–114.

[17] S. E. Sim, C. L. A. Clarke, and R. C. Holt. 1998. Archetypal Source Code Searches: A
Survey of Software Developers and Maintainers. Proceedings of International Workshop
on Program Comprehension, 1998, IEEE Computer Society Press, Los Alamitos, CA,
pp. 180–187.

[18] N. Wilde and M. Scully. 1995. Software reconnaissance: Mapping program features to
code. Journal of Software Maintenance and Evolution: Research and Practice, 7, 49–62.

[19] V. T. Rajlich and N. Wilde. 2002. The role of concepts in program comprehension.
IWPC, June, 2002, Paris, France, IEEE Computer Society Press, Piscataway, NJ, pp. 271–
278.

REFERENCES 251

[20] K. Chen and V. Rajlich. 2000. Case Study of Feature Location Using Dependence Graph.
Proceedings of International Workshop on Program Comprehension, 2000, IEEE Com-
puter Society Press, Los Alamitos, CA, pp. 241–249.

[21] S. L. Pfleeger and S. A. Bohner. 1990. A Framework for Software Maintenance Met-
rics. Proceedings of International Conference on Software Maintenance, 1990, IEEE
Computer Society Press, Los Alamitos, CA, pp. 320–327.

[22] S. A. Bohner. 1991. Software Change Impact Analysis for Design Evolution. Proceedings
of International Conference on Software Maintenance and Reengineering, 1991, IEEE
Computer Society Press, Los Alamitos, CA, pp. 292–301.

[23] S. Warshall. 1962. A theorem on boolean matrices. Journal of the ACM, 9(1), 11–12.

[24] V. Rajlich and P. Gosavi. 2004. Incremental change in object-oriented programming.
IEEE Software, 21(4), 62–69.

[25] M. J. Harrold and B. Malloy. 1993. A unified interprocedural program representation
for maintenance environment. IEEE Transactions of Software Engineering, 19(6), 584–
593.

[26] J. Law and G. Rothermel. 2003. Whole Program Path-based Dynamic Impact Analysis.
Proceedings of the International Conference on Software Engineering (ICSE), May, 2003,
IEEE Computer Society Press, Los Alamitos, CA, pp. 308–318.

[27] J. Larus. 1999. Whole Program Paths. Proceedings of the ACM Conference on Pro-
gramming Language Design and Implementation, May, 1999, ACM Press, New York,
pp. 1–11.

[28] J. Ferrante, K. J. Ottenstein, and J. D. Warren. 1987. The program dependence graph and
its uses in optimization. ACM Transactions on Programming Languages and Systems,
9(3), 319–349.

[29] K. J. Ottenstein and L. M. Ottenstein. 1984. The Program Dependence Graph in a
Software Development Environment. Proceedings of the ACM SIGSOFT/SIGPLAN
Symposium on Practical Software Development Environments, May, 1984, Pittaburgh,
Pennsylvania, April, 1984, SIGPLAN Notices, ACM Press, New York, Vol. 19, No. 5,
pp. 177–184.

[30] S. Horwitz, T. Reps, and D. Binkley. 1990. Interprocedural slicing using dependence
graphs. ACM Transactions on Programming Languages and Systems, 12(1), 26–60.

[31] H. Agrawal and J. R. Horgan. 1990. Dynamic Program Slicing. Proceedings of the
ACM Conference on Programming Language Design and Implementation, June, 1990,
SIGPLAN Notices, ACM Press, New York, Vol. 25, No. 6, pp. 246–256.

[32] F. M. Haney. 1972. Module Connection Analysis – a Tool for Scheduling of Software
Debugging Activities. Proceedings of the AFIPS Fall Joint Computer Conference, 1972,
AFIPS Press, Reston, VA, pp. 173–179.

[33] S. S. Yau, J. S. Collofello, and T. MacGregor. 1978. Ripple effect analysis of software
maintenance. COMPSAC, November, 1978, Chicago, Illinois, IEEE Computer Society
Press, Piscataway, NJ, pp. 60–65.

[34] S. S. Yau and J. S. Collofello. 1980. Some stability measures for software maintenance.
IEEE Transactions of Software Engineering6(6), 545–552.

[35] S. S. Yau and J. S. Collofello. 1985. Design stability measures for software maintenance.
IEEE Transactions of Software Engineering, 11(9), 849–856.

[36] S. Black. 2001. Computing ripple effect for software maintenance. Journal of Software
Maintenance and Evolution: Research and Practice, 13, 263–279.

252 IMPACT ANALYSIS

[37] T. J. McCabe. 1976. A complexity measure. IEEE Transactions on Software Engineering,
2(4), pp. 308–320.

[38] S. Black. 2008. Deriving an approximation algorithm for automatic computation of ripple
effect measures. Information and Software Technology, 50, 723–736.

[39] N. Anquetil and T. Lethbridge. 1998. Extracting Concepts from File Names: A New File
Clustering Criterion. Proceedings of the International Conference on Software Engineer-
ing (ICSE), April, 1998, Kyoto, Japan, IEEE Computer Society Press, Los Alamitos, CA,
pp. 84–93.

[40] A. E. Hassan and R. C. Holt. 2006. Replaying development history to assess the effec-
tiveness of change propagation tools. Empirical Software Engineering, 11(3), 335–367.

[41] S. Ibrahim, N. Idris, M. Munro, and A. Deraman. 2005. Implementing a document-
based requirement traceability: A case study. IASTED International Conference on Soft-
ware Engineering (SE 2006), February, 2005, Innsbruck, Austria, ACTA Press, Calgary,
Canada, pp. 124–131.

[42] A. Bianchi, A. Fasolino, and G. Visaggio. 2000. An Exploratory Case Study of the Main-
tenance Effectiveness of Traceability Models. Proceedings of International Workshop
on Program Comprehension, 2000, IEEE Computer Society Press, Los Alamitos, CA,
pp. 149–158.

[43] Luqi. 1990. A graph model for software evolution. IEEE Transactions of Software Engi-
neering, 18(8), 917–927.

[44] M. Lindvall and K. Sandahl. 1998. Traceability aspects of impact analysis in object-
oriented systems. Journal of Software Maintenance and Evolution: Research and Prac-
tice, 10, 37–57.

[45] J. Zhao, H. Yang, L. Xiang, and B. Xu. 2002. Change impact analysis to support architec-
tural evolution. Journal of Software Maintenance and Evolution: Research and Practice,
14, 317–333.

[46] K. V. Berg, J. M. Conejero, and Juan Hernández. 2007. Analysis of crosscutting in early
development phases base on traceability. In: transactions on aspect-oriented software
development (Eds A. Rashid and M. Aksit), LNCS, Vol. 4620, November, pp. 73–104.
Springer, Berlin.

[47] M. O. Elish and D. Rine. 2003. Investigation of Metrics for Object-oriented Design
Logical Stability. Proceedings of Seventh European Conference on Software Maintenance
and Reengineering (CSMR), 2003, IEEE Computer Society Press, Los Alamitos, CA,
pp. 193–200.

[48] M. A. Chauman, H. Kabaili, R. K. Keller, and F. Lustman. 1999. A Change Impact
Model for Changeability Assessment in Object-oriented Software Systems. Proceedings
of Third European Conference on Software Maintenance and Reengineering (CSMR),
1999, IEEE Computer Society Press, Los Alamitos, CA, pp. 130–138.

[49] L. Li and A. J. Offut. 1996. Algorithm Analysis of the Impacts of Changes to Object-
oriented Software. Proceedings of the International Conference on Software Mainte-
nance (ICSM), Phoenix, Arizona, IEEE Computer Society Press, Los Alamitos, CA,
pp. 171–184.

[50] H. Kabaili, R. K. Keller, and F. Lustman. 2005. Assessing object oriented software
changeability with design metrics. IASTED International Conference on Software Engi-
neering (SE 2006), February, 2005, Innsbruck, Austria, ACTA Press, Calgary, Canada,
pp. 61–66.

EXERCISES 253

EXERCISES

1. Which of the following relationships between SLOs indicate a potential depen-
dency between the objects such that a change to the second may require a change
to the first?

(a) <Test case T> is derived from <requirement R>.

(b) <Object code O> is compiled from <source code C>.

(c) <Requirement spec S> was produced according to <plan P>.

(d) <Module M1> was written by the same person as <module M2>.

(e) <Requirement R> is tested with <test case T>.

(f) <Program P1> is an earlier version of <program P2>.

2. Explain the adequacy and effectiveness aspects of impact analysis.

3. Determine the set of potentially impacted procedures due to the change in pro-
cedure A for the execution traces M B G r G r r A C E r r r x and M A C E r
D r r r x using the call graph given in Figure 6.7.

4. Consider the execution trace M B r A C D r E r r r r x M B G r r r x M B C
F r r r r x and the call graph given in Figure 6.7. For the above trace, determine
the set of potentially impacted procedures due to changes in procedures: (a) G;
and (b) C.

5. Discuss the differences between static and dynamic program slicing.

6. Consider the program given in Figure 6.15. Obtain the dynamic slice using the
simple approach discussed in the book for the input value of 1 for N and variable
Z at the end of execution. Explain your observation. Suggest a new approach that
avoids the problem you observed.

begin
S1: read(N)
S2: Z = 0;
S3: Y = 0;
S4: I = 1;
S5: while(I <= N);

do
S6: Z = f1(Z,Y);
S7: Y = f2(Y);
S8: I = I + 1;

end white;
S9: while(Z);

end.

FIGURE 6.15 Program

7. In a data dependency graph, what can you tell from the number of edges that
enter a node corresponding to a statement S?

(a) This is the number of variables appearing in the statement S.

254 IMPACT ANALYSIS

(b) This is the number of statements which use the values of variables set by the
statement S.

(c) This is the number of statements which assign values to variables, where
those values may be used in the execution of statement S.

(d) This is the number of variables whose values are used in the execution of
statement S.

8. What is the major difference between stability analysis and impact analysis?

9. Derive the average recall and average precision over time for M multiple change
sets.

10. Given predicted = {B, X, Y, Z, W, D } and occurred = {B, C, D, E}, calculate
the value of recall and precision.

11. Calculate the value of recall for the change set {{A,B}, {H, G, L}, {P, Q, S, T }},
where {A, B}, {H, G, L}, and {P, Q, S, T} are three connected components.

12. Which of the following characteristics of data-intensive systems make it difficult
to use traditional impact analysis techniques?

(a) There are a large number of different users of the data.

(b) There is a large volume of data.

(c) The applications which access the data are mission critical.

(d) There is a lack of knowledge of what data is stored, and how and why it is
used.

(e) The data is often of very poor quality.

7
REFACTORING

He who rejects change is the architect of decay. The only human institution which
rejects progress is the cemetery.

—Harold Wilson

7.1 GENERAL IDEA

Developers continuously modify, enhance, and adapt software to new requirements
and execution environments. The software evolves with time, and, most likely, it
deviates from its intended design. As the software further evolves and strays too far
away from its original design, three important things happen to the software:

� Decreased understandability: It becomes increasingly difficult to understand
the software and it becomes less maintainable.

� Decreased reliability: The reliability of the software decreases. As the software
deviates from its original design and as documentations become out-of-date,
faults are inadvertently introduced into the software during maintenance.

� Increased maintenance cost: The cost of maintaining the software rises in the
absence of preventive measures.

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

255

256 REFACTORING

The difficulty in understanding the software is due to the:

� increased complexity of the code during the maintenance phase;
� out-of-date documentation;
� code not conforming to standards.

Therefore, there is a need to decrease the complexity of software by improving its
internal quality. The internal quality of software is improved by means of restructuring
the software. If restructuring is performed on an object-oriented software, then it
is called refactoring [1]. Software should be continually restructured during and
between other maintenance activities so that programmers find it easier and easier to
work with it. If programmers find it easy to work with the software, new functions
and features can be easily added to the system, and bugs can be easily fixed.

Restructuring means reorganizing software to give it a different look, or structure.
Source code is restructured to improve some of its non-functional requirements,
without modifying its functional requirements. For example, one may restructure
source code to improve its readability, extensibility, maintainability, and modularity.
Though restructuring does not modify the system’s functional requirements, it can
take place while adding new features, that is, functional requirements, to the system.
Software restructuring is informally stated as the modifications of software in order
to make it [2]:

� easier to understand;
� easier to change;
� easier to update its internal and external documentations; and
� less susceptible to faults when changes are made in the future.

The term software in software restructuring is used in a broad sense to refer to both
code and documentations—both internal and external. A higher level goal of software
restructuring is to increase the software value [2] as explained in the following:

� External software value: This is the value of the software as perceived by the
customers. For example, a software with faults may fail to satisfy the business
needs of the customers. Such software may be seen by the customers to have
less value.

� Internal software value: This represents the cost saving due to three factors: (i)
maintenance cost saving due to a good structure of the software; (ii) cost saving
due to potential reuse of components of a software with good structure; and (iii)
cost saving due to extended use of a software.

Software restructuring activities should be seen as increasing the value of the software
under consideration. While choosing a software restructuring approach it is important
to define goals so that achievement of those goals should produce better software
value. The cost of restructuring should be justified in terms of the expected gain in

GENERAL IDEA 257

software value. Ideally, the expected gain is desired to be quantified. However, in
the absence of widely available quantified data about the effectiveness of structuring
approaches, one could use qualitative data. Some simple restructuring activities are
as follows:

� Pretty printing: Align code statements so that code becomes easier to understand
as logical units.

� Meaningful names for variables: Variable names are chosen to give an indication
of programming plans.

� One statement per line: Write one code statement in one line, as opposed to
many statements in one line.

Developers and managers should be aware of software restructuring for the fol-
lowing reasons [2]:

� Better understanding: By reorganizing software with easily traceable structures,
it becomes easier for programmers to understand it. Ease of understanding
leads to easier documentation, easier testing, potentially greater programmer
productivity, and reduced dependence of the maintenance group on a small
number of programmers who alone understand the code.

� Keep pace with new structures: As time passes, new generations of programmers
are taught new software structures. Therefore, transforming existing software
into new software with structures that are close to what is taught to new pro-
grammers is beneficial because it will enhance the understandability of the
software. This in turn will reduce the time that maintenance programmers take
to become familiar with the software.

� Better reliability: It is easier to locate and fix bugs in well-structured, well-
understood software than in poorly understood software. While fixing bugs in
a poorly understood software, one may introduce more bugs due to side effects
of code modification.

� Longer lifetime: The lifetimes of software can be increased by making them
maintainable by means of improving their structures.

� Automated analysis: Programs with good structures are more amenable to auto-
matic analysis than unstructured programs. For example, a test generation tool is
likely to be more successful in generating an effective set of tests for a program
with a good structure than for a program with complex dependencies among
modules.

Before we move on to the next section, we summarize the characteristics of
restructuring and refactoring as follows:

� The objective of restructuring and refactoring is to improve the internal and
external values of software.

258 REFACTORING

� When a subject program is transformed into a new program, the original pro-
gram’s external behavior is preserved by the new program. In other words, the
two programs are functionally identical from the viewpoint of users.

� Restructuring does not normally involve code transformation to implement
new requirements. Rather, restructuring can be performed without adding new
requirements to the existing system.

� When a subject program is transformed into a new program, the relative level
of abstraction is preserved. For example, a program in C is transformed into
another C program, rather than a program in an assembly language. However,
the concept of program restructuring can be applied to transform legacy code
into a more structured form or migrate it to a different programming language.
That is, restructuring and refactoring can be used in reengineering a system.

7.2 ACTIVITIES IN A REFACTORING PROCESS

To restructure a software system, programmers follow a process with well defined
activities. Those activities are as follows:

� Identify what to refactor.
� Determine which refactorings should be applied.
� Ensure that refactoring preserves the software’s behavior.
� Apply the refactorings to the chosen entities.
� Evaluate the impacts of the refactorings.
� Maintain consistency.

Next, we explain the above items one by one.

7.2.1 Identify What to Refactor

In this step, the programmer identifies what to refactor from a set of software artifacts.
Some examples of software artifacts that the programmer can consider are source
code, design documents, and requirements documents. Having identified the top
level artifact, the programmer can focus on specific portions of the chosen artifact
for refactoring. Specific modules, functions, classes, methods, and data structures
can be identified from the source code for refactoring. For programs written in non-
object-oriented languages, restructuring is generally limited to the level of a function
or a block of code. For programs written in object-oriented languages, the richness
of the languages, namely, interfaces, dynamic binding, subtyping, overriding, and
polymorphism, make restructuring difficult.

The broad concept of code smell is applied to source code to detect where refac-
torings should be applied. A code smell is any symptom in the source code of a
software that possibly indicates a deeper problem. Existence of code smells in source
code do not imply the existence of problems in source code, such as, faults, low level
of performance, and low level of reliability. On the other hand, what code smells

ACTIVITIES IN A REFACTORING PROCESS 259

do imply is that if the problems are not resolved sooner, then it is likely that future
changes may introduce more faults and future changes may be more expensive to
execute. Some examples of code smells are as follows.

� Duplicate Code: This smell occurs when segments of source code are repeated
in many places in the program. If there is a need to change the duplicate code, it
must be ensured that all segments are changed. If some segment is missed, which
is likely to occur, then faults will be introduced. The solutions lie in the nature
of code duplications. For example, if duplications occur in different methods of
the same class, then duplicates can be extracted into a new method. On the other
hand, if duplicate methods occur in subclasses, then the duplicate codes can be
moved to the subclass. In simple cases, code duplication can be eliminated by
introducing a new function and by inserting function calls. In complex cases,
an intermediate subclass can be inserted to factor out the common code [3].

� Long Parameter List: When a method has too many formal parameters, say, more
than four, programmers may make errors while designing calls to the method.
A common error is to reorder the list of actual parameters. A solution may
be found in designing a parameter object, thereby passing a single parameter
instead of a long list of parameters.

� Long Methods: This occurs if a method has a long sequence of statements,
say, hundreds of lines of code. A solution lies in extracting methods from long
fragments of code.

� Large Classes: A smell is said to occur if a class has too many methods, say,
more than 8, and too many variables, say, more than 15. A solution lies in
splitting the class into component classes and creating superclasses.

� Message Chain: A message chain occurs when one calls several methods succes-
sively. An example of a message chain is: student.getID().getRecord()
.getGrade(course). Such a chain can be simplified by means of a helper
function that performs part of the computation of another function. Thus, the
above message chain can be rewritten as: student.getGrade(course).

At the design level, the entities that can be considered for refactoring are software
architecture, global control flow, and database schemas. Class diagrams, statechart
diagrams, and activity diagrams are extensively used to describe various aspects of
software design. Therefore, refactoring of software design involves manipulating
those diagrams. To describe program structures at a very high level, designers
apply design patterns. Therefore, refactoring of design can involve restructuring
or replacing occurrences of poor design patterns in a legacy system with good
design patterns [4]. To refactor a software architecture, Philipps and Rumpe [5]
have proposed an approach where refactoring rules are based on the graphical
representation of a system architecture.

7.2.2 Determine Which Refactorings Should be Applied

In this step, the programmer identifies which refactorings to apply to the portions of
the software identified in the aforementioned first step. For ease of understanding, in

Shrabon
Highlight

260 REFACTORING

nextNode send(Packet p){
 calls this.accept(p);

 accesses nextNode}

Node

print()
accept(Packet p){
 calls this.send(p);
 calls this.print();
 accesses Packet.receiver}

PrintServerWorkstation FileServer

Packet

Node receiver
Node sender

originate(){
 updates Packet.sender}
accept(Packet p){
 calls this.send(p);
 accesses Packet.sender}

save()
accept(Packet p){
 calls this.send(p);
 calls this.save();
 accesses Packet.receiver}

FIGURE 7.1 Class diagram of a local area network (LAN) simulator. From Reference 6.
© 2007 Springer

the following we give some examples of refactorings in the context of a class diagram
shown in Figure 7.1 [6]. The intention is to show what refactorings look like. The
class diagram is about a local area network (LAN) simulator.

� R1: Rename method print to process in class PrintServer. Perform this refac-
toring together with R2.

� R2: Rename method print to process in class FileServer. Perform this refactoring
together with R1. In R1 and R2, the new names of print are the same, because
process prepares for the application of refactoring R4.

� R3: Create a superclass called Server from PrintServer and FileServer, because
their behaviors are very similar.

� R4: Pull up method accept from classes PrintServer and FileServer to the
superclass Server created with R3. Applications of R1 and R2 essentially makes
the two original versions of accept in PrintServer and FileServer identical.

� R5: Move method accept from class PrintServer to class Packet, because method
accept directly accesses the field receiver in class Packet. An advantage of
moving accept from PrintServer to class Packet is that data packets themselves
will decide what actions to take.

� R6: Move method accept from class FileServer to class Packet for the same
reason given for R5.

� R7: Encapsulate field receiver in class Packet, so that another class cannot
directly access this field. The advantages are: (i) there is increased modularity
of the system; and (ii) internal representation of data packets can be modified
without modifying the classes that use data packets.

� R8: Add parameter p of type Packet to method print in class PrintServer so that
the contents of a packet can be printed.

� R9: Add parameter p of type Packet to method save in class FileServer so that
the contents of a packet can be saved.

ACTIVITIES IN A REFACTORING PROCESS 261

From the class diagram shown in Figure 7.1 and the nine refactorings R1 – R9 it is
apparent that one can design a large number of refactorings even for a small system.
A subset of the entire set of refactorings must be carefully chosen, because of the
following reasons.

� Some refactorings must be applied together. For example, refactorings R1 and
R2 are applied together. It is of no use to apply only one of them. If both of
them are not applied together, then R4 cannot be applied, because applying just
one of them or not applying them at all will not make method accept identical
in both classes FileServer and PrintServer.

� Some refactorings must be applied in certain orders. For example, refactorings
R1 and R2 must precede R3. One can apply R3 only after applying R1 and
R2, because applications of R1 and R2 make the methods accept in classes
FileServer and PrintServer identical. In other words, R3 cannot be applied if
R1 and R2 have not yet been applied.

� Some refactorings can be individually applied, but they must follow an order
if applied together. For example, refactorings R1 and R8 can be applied in
isolation. However, if a programmer chooses to apply both, then R1 must occur
before R8.

� Some refactorings are mutually exclusive. For example, refactorings R4 and R6
are mutually exclusive. Refactoring R4 pulls up methods accept from classes
FileServer and PrintServer into the superclass Server, whereas R6 moves the
method accept to class Packet. It is clear that one cannot apply both the refac-
torings together.

For large sets of refactorings, tool support is needed to identify a feasible subset of
refactorings. The following two techniques can be used to analyze a set of refactorings
to select a feasible subset.

� Critical pair analysis: Here the idea is to identify pairs of mutually exclusive
refactorings. Given a set of refactorings, analyze each pair of refactorings for
conflicts. A pair of refactorings is said to be conflicting if both of them cannot
be applied together. For example, R4 and R6 constitute a conflicting set, which
means that one cannot be applied after applying the other.

� Sequential dependency analysis: Sequential dependency of refactorings means
that: (i) in order to apply a refactoring, one or more refactorings must have been
applied before; and (ii) if one refactoring has already been applied, a mutually
exclusive refactoring cannot be applied anymore. For example, after applying
R1, R2, and R3, refactoring R4 becomes applicable. On the contrary, if R4 is
applied, then R6 is not applicable anymore.

7.2.3 Ensure that Refactoring Preserves the Behavior of the Software

Ideally, the behavior of a program after refactoring should be the same as the behav-
ior before refactoring. In the original definition of behavior preservation proposed
by Opdyke [1], program behavior simply referred to input–output behavior. In other

262 REFACTORING

words, for the same set of input values, the programs before refactoring and after refac-
toring were desired to produce the same output values. However, in many applications
preservation of input–output behavior alone is not enough, because preservation of
temporal constraints and non-functional requirements of the program may be key to
the success of refactoring. A non-exclusive list of such non-functional requirements
is as follows:

� Temporal constraints: A temporal constraint over a sequence of operations is that
the operations occur in a desired order. For real-time applications, refactoring
should preserve temporal constraints.

� Resource constraints: Memory, energy, and communication bandwidth are some
examples of critical resources on some computers. Therefore, it is important
that the software after refactoring does not demand more of those resources than
what the software before refactoring demanded.

� Safety constraints: It is important that a software does not lose its safety prop-
erties after it is refactored.

Therefore showing that a refactored program behaves the same ways as the pro-
gram before refactoring is a difficult task. Two pragmatic ways of showing that a
refactored program behaves the same way as the original program are as follows:

� Testing: By means of extensive testing, observe the behavior of the program
before and after refactoring to determine whether or not there is behavior preser-
vation. However, it may be noted that refactoring may invalidate some tests that
were designed based on the structure of the program.

� Verification of preservation of call sequence: The concept of call preservation
means that all method calls are preserved in the refactored program. This is a
slightly more formal, but still weak, way of showing that refactoring preserves
behavior. In a further limited way, the type correctness of a sequence of calls can
be preserved by using type constraints to verify the preconditions of refactorings
and determining what source code to modify [7].

For programs written in languages with a simple and formally defined semantics,
such as Prolog, one can prove for some kinds of refactorings that program semantics
are preserved. On the other hand, for Java and C++ programs, much restrictions have
to be put on language constructs and refactorings to show that program behavior
is preserved.

7.2.4 Apply the Refactorings to the Chosen Entities

This means executing the steps of the refactorings chosen before. The class diagram of
Figure 7.2a has been obtained from Figure 7.1 by focusing on the classes FileServer,
PrintServer, and Packet, and applying refactorings R1, R2, and R3. Next, the class
diagram of Figure 7.2b has been obtained by applying R4 to the class diagram of
Figure 7.2a. Similarly, the class diagram of Figure 7.2c has been obtained by applying
R6 to the class diagram of Figure 7.2a.

ACTIVITIES IN A REFACTORING PROCESS 263

FileServer

 calls f.send(p);
 calls f.process();
 accesses receiver}

Server

process()
accept(Packet p){
 calls this.send(p);
 calls this.process();

 access Packet.receiver}

FileServer

Apply R4
(a)

(b)

Packet

Node receiver
Node sender

process()

FileServer PrintServer

process()

Packet

Node receiver
Node sender

Server

 accept(Packet p){
 calls this.send(p);
 calls this.process();
 accesses Packet.receiver}

PrintServer

process()
accept(Packet p){
 calls this.send(p);
 calls this.process();

 access Packet.receiver}

Apply R6

Server

Packet

PrintServer

process()
accept(Packet p){
 calls this.send(p);
 calls this.process();

 access Packet.receiver}

(c)

Node receiver
Node sender

process()
accept(Packet p){
 calls this.send(p);
 calls this.process();

 access Packet.receiver}

accept(FileServer f){

FIGURE 7.2 Applications of two refactorings. From Reference 6. © 2007 Springer

7.2.5 Evaluate the Impacts of the Refactorings on Quality

Both internal qualities and external qualities are impacted by refactorings. Some
examples of internal qualities are size, complexity, coupling, cohesion, and testa-
bility. Similarly, some examples of external qualities are performance, reusability,
maintainability, extensibility, robustness, and scalability. In general, refactoring tech-
niques are highly specialized, which means that one technique is intended to improve
a small number—generally one—of quality attributes of the program. For exam-
ple, some refactorings eliminate code duplications, some raise reusability, some
improve performance, and some improve maintainability. It is important to note that,
refactorings directly impact internal qualities. Therefore, by measuring the impact of
refactorings on internal qualities, their impacts on external qualities can be estimated.

Some examples of software metrics are coupling, cohesion, and size. Decreased
coupling, increased cohesion, and decreased size are likely to make a software sys-
tem more maintainable. Therefore, to assess the impact of a refactoring technique
for better maintainability, one can evaluate the metrics before refactoring and after
refactoring, and compare them. Kataoka et al. [8] have further investigated the
idea of the coupling metrics by introducing three finer levels of coupling: return
value coupling, parameter coupling, and shared variable coupling. Those couplings

264 REFACTORING

are explained as follows. If method A uses a return value from method B, there
exists a return value coupling between the two methods. If method B receives n
parameters from method A, there exists an n parameter coupling between the two
methods. Similarly, if method A uses n class variables in common with method B,
there exists n shared variable coupling between the two methods. The three kinds of
coupling metrics can be combined to produce a single composite coupling metrics
by taking their weighted sum.

Rather than evaluate the impacts after applying refactorings, one can select
refactoring steps such that the program after refactoring possesses better quality
attributes. Tahvildari and Kontogiannis [9] have used the concept of soft-goal graph—
introduced in detail in the book by Chung, Nixon, Yu and Mylopoulos [10]—to help
guide the application of refactorings. Intuitively, a soft-goal graph for a quality
attribute, for example, maintainability, is a hierarchical graph rooted at the desired
change in the attribute, for example, high maintainability. The internal nodes repre-
sent successive refinements of the attribute and are basically the soft goals. Finally,
the leaf nodes represent refactoring transformations which fulfill or contribute pos-
itively/negatively to soft goals which appear above them in the hierarchy. A partial
example of a soft-goal graph with one leaf node, namely, Move, has been illustrated in
Figure 7.3. The dotted lines between the leaf node Move and three soft goals—High
Modularity, High Module Reuse, and Low Control Flow Coupling imply
that the Move transformation impacts those three soft goals.

g

Move

consistency

Soft−goal or quality attribute

This means selection of all

High maintainability

High source code quality High documentation quality

High structure quality

High encapsulation

Low control flow

 coupling

High module

 reuse

Low data

coupling

High data

consistency

Low input/output

complexity

High cohesion

High control structure quality

High

modularity

. (other leaf nodes)

Legend

Leaf node: Restructuring transformation

Association between leaf nodes and soft oals

High control flow

FIGURE 7.3 An example of a soft-goal graph for maintainability, with one leaf node. From
Reference 11. © 2002 IEEE

FORMALISMS FOR REFACTORING 265

7.2.6 Maintain Consistency of Software Artifacts

A software system is described by many artifacts at different levels of abstractions.
Those artifacts include requirements documents, design documents, source code, and
test suites. If one kind of artifact is changed, then it is important to change some or
all of the other artifacts so that consistency is maintained across the artifacts. For
example, changes in source code may require changes in the design documents and
the test suites. Therefore, the concept of change propagation is used to cope with
inconsistencies across different software artifacts. The concept of change propagation
has been explained in Chapter 6.

7.3 FORMALISMS FOR REFACTORING

In this section, we explain three key formalisms for refactoring: assertions, graph
transformation, and metrics. Assertions are useful in verifying the assumptions made
by programmers. The concept of graph transformation is useful in viewing refac-
torings as applications of transformation rules. The concept of metrics is useful in
quantifying to what extent the internal and external properties of software entities
have changed as a result of applying refactorings.

7.3.1 Assertions

Programmers make assumptions about the behavior of programs at specific points of
their interests, and those assumptions can be tested by means of assertions. Thus, an
assertion is specified as a Boolean expression which evaluates to true or false. When
an assertion is put at a certain point of execution in a program, the programmer thinks
that the assertion always evaluates to true at that point. That is, a programmer can
use an assertion to test their assumptions about the program at the point where the
assertion occurs. If the assertion evaluates to true, normal execution of the program
continues. On the other hand, if the assertion evaluates to false, then it is an indication
of something gone wrong in the computation process. Different execution semantics
can be associated with assertions, when they evaluate to false. For example, when the
assertion fails, program execution is halted and a detailed message can be displayed.

There are three kinds of commonly understood assertions, namely, invariants,
preconditions, and postconditions. An invariant is a Boolean expression that the
programmer always expects to evaluate to true. In other words, an invariant evaluates
to true wherever in the program it is invoked. The concept of a class invariant is a
special case of the general concept of invariant. A class invariant is a condition that
all instances of that class must satisfy. A precondition is a condition that must be
satisfied before a computation, whereas a postcondition is a condition that must be
satisfied after a computation.

Behavior preservation is a key requirement of refactoring and restructuring
techniques. That is, the input–output behavior of a program must remain unchanged
even after changes in a program’s structure due to the applications of refactoring
or restructuring techniques. Invariants, preconditions, and postconditions have been

266 REFACTORING

suggested by researchers to address the problem of behavior preservation. In the
context of object-oriented database schemas, which have much similarities with
UML class diagrams, Banerjee et al. [12] have shown that behavior preserving
transformations can be applied to database schemas by using invariants. An example
of invariant in the schema context is: All instance variables of a class, whether defined
or inherited, have distinct names. Similarly, all methods of a class, whether defined or
inherited, must have distinct names. An obvious problem with the use of assertions in
testing the behavior preserving property of refactoring and restructuring techniques
is the computationally expensive static checking of preconditions, postconditions,
and invariants.

7.3.2 Graph Transformation

Programs and design diagrams, namely, class diagrams and statecharts, can be viewed
as graphs, and refactorings can be viewed as graph production rules. Therefore,
applying refactorings to software can be viewed as applying graph transformations.
Software entities, namely, classes (C), method signatures (M), block structures (B),
variables (V), parameters (P), and expressions (E) are represented by typed nodes
in a graph. The possible relationships among the nodes are: method lookup (l),
inheritance (i), membership (m), (sub)type (t), expression (e), actual parameter
(ap), formal parameter (fp), cascaded expression (∙), call (c), variable access (a),
and update (u).

An example of a program graph has been shown in Figure 7.4. In a program
graph, method bodies are represented as simplified trees with a root at a B-node,
connected with E-nodes, where an E-nodes represent assignments, accessed variables,
parameters, and function calls. A B-node with two E-nodes has been shown within
the dotted box in Figure 7.4. The body of the originate method is contained in the
Node superclass.

l

Node C

BC C

EM E

PM

Workstation

originate

send par

i m i

e

ap

a

c

PrintServer

FIGURE 7.4 An example of a program graph. From Reference 13. © 2006 Elsevier

FORMALISMS FOR REFACTORING 267

l

Node C

CC Workstation

ii

PrintServer

B

EE

e

ap

B

EE

e

ap

PM

mm

M

cc aa

send par

originate

l

FIGURE 7.5 Program graph obtained after applying push-down method refactoring to the
program graph of Figure 7.4. From Reference 13. © 2006 Elsevier

The push-down method refactoring is explained as follows. Assume that there is a
superclass A and two subclasses X and Y designed to inherit A. Also assume that there
is a method m defined in A. If m is not further redefined in X and Y, then method m is
available in both X and Y. Note that if there is no need to use method m in subclass Y,
there is no need to push it down to Y. Another way of accessing m in X and Y is to push m
down to X and Y. The push-down method refactoring has been is applied to the method
originate in the graph of Figure 7.4 to obtain a new graph shown in Figure 7.5.

7.3.3 Software Metrics

Software metrics can be used to quantitatively represent the internal and external
qualities of software. In this subsection, we present the details of calculating two
kinds of metrics, namely, cohesion and coupling. In general, a module consists of
several components, with each component providing a defined functionality used
by components within the same module and components within other modules.
Therefore, it is useful to measure the strength of togetherness of components within
a module so that one can decide whether or not some components should stay in
the same module. The aforementioned concept of the strength of togetherness of
components in the same module is expressed by means of cohesion metrics. On the

268 REFACTORING

other hand, the strength of dependency between modules is expressed by means of
coupling metrics.

Cohesion Metrics Simon et al. [14] have introduced the concept of a distance-
based metric to express design cohesion, where cohesion refers to the degree to
which module components belong together. The distance-based metric is explained
in what follows. Let B be a set of considered properties for a special similarity
viewpoint. Also, let x and y denote two entities (e.g., methods and attributes) of a
“module” (e.g., a class) for which we are interested in finding its cohesion. Then, the
distance between x and y with respect to the considered property set B, denoted by
distB(x, y) is computed as follows:

distB(x, y) = 1 −
|p(x) ∩ p(y)||p(x) ∪ p(y)| (7.1)

where p(x) = {pi ∈ B| x possesses property pi}.
For a method f , the set of its properties, denoted by Bf , is given as follows:

Bf = {f ∪ all methods directly used byf ∪ all attributes used by f }. (7.2)

Similarly, for an attribute g, the set of its properties, denoted by Bg, is given as
follows:

Bg = {g ∪ all methods using g}. (7.3)

For the calculation of distance between two entities, the needed B is given by the
union of the two corresponding sets of attributes. For example, if we are interested
in calculating the distance between two methods f1 and f2, we have B = Bf1

∪ Bf2
.

Similarly, if we are interested in the distance between a method f and an attribute g,
then we have B = Bf ∪ Bg.

Now, given a class C, let M = {m1,… , mk} be the set of methods and A =
{a1,… , mn} be the set of attributes of C. Using the distance-based metric of
Eq. 7.1, one can calculate the distance between all pairs of entities in the set M ∪ A,
and plot C in a graphical manner such that each attribute is represented by a square
and each method by a circle such that the Euclidean distance between two entities is
equal to their distance calculated using Eq. 7.1. Such a notation to represent a class is
called a Virtual Reality Modeling Language [14]. In Figure 7.6, we show the VRML
diagram of two classes C1 and C2. Though method m1 is a part of class C1, it is closer
to the methods and attributes of class C2 than to the methods and attributes of class
C1. Therefore, the Move-method refactoring can be applied to method m1 so that it
becomes a part of class C2. The idea of Move-method refactoring has been explained
by means of refactoring R5 in Section 7.2.2.

Coupling Metrics The idea of coupling presented here was introduced by Kataoka,
Imai, Andou, and Fukaya [15]. First, three basic kinds of couplings are explained:

FORMALISMS FOR REFACTORING 269

Y-axis

C1

C2

m1

X-axis

FIGURE 7.6 An example of a VRML diagram of two classes C1 and C2. Circles denote
methods and squares denote attributes

return value coupling, parameter coupling, and shared variable coupling. Next, the
three kinds of couplings are combined to obtain an overall, composite coupling metric.

� Return value coupling: Let there be two methods A and B. There exists a return
value coupling between A and B if A calls B and B returns a value to A. Similarly,
if B calls A and A provides a return value to B, then there also exists return value
coupling between A and B. The quantity of return value coupling of a method A,
denoted by Crv(A), with all the methods it calls and all the methods it is called
from is computed as follows.

Crv(A) =
∑

m𝜌∈𝜌(A)

Krv(m𝜌) +
∑

m𝜎∈𝜎(A)

Krv(m𝜎), (7.4)

where,

𝜌(A) is the set of methods which provide return values to A.

𝜎(A) is the set of methods that use the return values provided by A.

Krv(m) is the return value coupling inter-class coefficient. Krv(m) = 1 if both
methods m and A belong to the same class. On the other hand, if m and A
are in different classes, then Krv(m) = 𝜅rv, where 𝜅rv > 1.

The idea behind Krv(m) is to consider the likelihood that inter-class coupling
by means of value passing can lead to higher maintenance cost than intra-class
coupling.

270 REFACTORING

� Parameter coupling: Parameter coupling is about the number of parameters
passed when a method calls another method. Method A has n parameter coupling
with method B if method A receives n parameters from B. Similarly, if A passes
n parameters to method C, then there exists n parameter coupling with C. The
quantity of parameter coupling of a method A, denoted by Cpp(A), with all the
methods it calls and all the methods it is called from is computed as follows.

Cpp(A) =
∑

m𝜁∈𝜁(A)

Kpp(m𝜁)pm𝜁
+

∑
m𝜉∈𝜉(A)

Kpp(m𝜉)pm𝜉
, (7.5)

where,

𝜁 (A) is the set of methods that call A.

𝜉(A) is the set of methods that are called by A.

Kpp(m) is the parameter coupling inter-class coefficient. Kpp(m) = 1 if both
methods m and A are in the same class. On the other hand, if m and A are
in different classes, then Kpp(m) = 𝜅pp, where 𝜅pp > 1.

pm𝜁
is the number of parameters received by method m𝜁 when m𝜁 is called

by another method.

pm𝜉
is the number of parameters passed by method m𝜉 when m𝜉 calls another

method.

The idea behind Kpp(m) is to consider the likelihood that inter-class coupling
by means of parameter passing can lead to higher maintenance cost than intra-
class coupling.

� Shared variable coupling: Two methods A and B belonging in the same class are
said to have n shared variable coupling if they use n class or instance variables.
The quantity of shared variable coupling of method A, denoted by Csv(A), with
all the methods in the same class is computed as follows.

Csv(A) =
∑

m𝜒∈𝜒(A)

Ksv(m𝜒)vm𝜒
, (7.6)

where,

𝜒(A) is the set of methods that use class or instance variables in common
with A.

vm is the number of class or instance variables that are used both in m and A.

Ksv(m) is the shared variable inter-class coefficient. Ksv(m) = 1 if both meth-
ods m and A are in the same class. On the other hand, if m and A are in
different classes, then Ksv(m) = 𝜅sv, where 𝜅sv > 1.

The motivation for introducing Ksv(m) is similar to the motivation for intro-
ducing Krv(m).

MORE EXAMPLES OF REFACTORINGS 271

Making decisions about the maintainability of a program from three different
coupling perspectives is a difficult task. Therefore, it is useful to combine the three
coupling metrics to obtain a single, composite coupling metric. While combining the
three coupling metrics, it is useful to note that all the three metrics are not equally
significant. For example, from the standpoint of maintainability of a program, the
influence of accessing an instance variable from another class is arguably more severe
than the influence of receiving a parameter from a method within the same class [15].
The concept of weighted sum is a simple strategy to combine the three coupling
metrics. Three weighting factors, namely, Wrv, Wpp, and Wsv are introduced to repre-
sent the relative importance of Crv(A), Cpp(A), and Csv(A), respectively, such that the
following constraints, denoted by Eqs. 7.7 and 7.8, hold:

Wrv + Wpp + Wsv = 1. (7.7)

0 < Wrv ≤ Wpp ≤ Wsv. (7.8)

Now, the total coupling represented by a single metric can be given by Eq. 7.9:

CT (A) = WrvCrv(A) + WppCpp(A) + WsvCsv(A). (7.9)

In their experiments, Kataoka et al. [15] have used the following values of the
different parameters and weighting factors:

𝜅rv = 1.5, 𝜅pp = 2.0, 𝜅sv = 3.0

Wrv = 0.2, Wpp = 0.2, Wsv = 0.6.

It is important to note that applications of good refactorings should lead to the
reduction in the value of CT (A).

7.4 MORE EXAMPLES OF REFACTORINGS

In Section 7.2.2, we explained some examples of refactoring by applying them to class
diagrams. In this section, we intuitively explain additional examples of refactorings,
without code or class diagrams.

� Substitute Algorithm: A programmer may decide to replace an existing algo-
rithm X in the code with a new algorithm Y for various reasons: (i) implemen-
tation of algorithm Y is clearer (i.e., it takes less time to understand) than the
implementation of algorithm X; (ii) algorithm Y performs better than algorithm
X; and (iii) standardization bodies have recommended to replace algorithm X
with algorithm Y. Algorithm substitution can be easily applied if both the algo-
rithms have the same input–output behaviors.

272 REFACTORING

� Replace Parameter with Method: Consider the following code segment, where
the method bodyMassIndex has two formal parameters.

int person;
:
// person is initialized here;
:
int bodyMass = getMass(person);
int height = getHeight(person);
int BMI = bodyMassIndex(bodyMass, height);
:

The above code segment can be rewritten such that the new bodyMassIndex
method accepts one formal parameter, namely, person, and internally computes
the values of bodyMass and height. The refactored code segment has been
shown in the following:

int person;
:
// person is initialized here;
:
int BMI = bodyMassIndex(person);
:

The advantage of this refactoring is that it reduces the number of parameters
passed to methods. Such reduction is important because one can easily make
errors while passing long parameter lists.

� Push-down Method: Assume that Executive and Clerk are two subclasses
of the superclass Employee as shown in Figure 7.7a. Method overTimePay
has been defined in class Employee. However, if the overTimePay method is
used in the Clerk class, but not in the Executive class, then the programmer
can push down the overTimePay method to the Clerk class as illustrated in
Figure 7.7b.

overTimePay()

Employee

ExecutiveClerk

 (a) (b)

Employee

ExecutiveClerk

overTimePay()

FIGURE 7.7 Illustration of the push-down method refactoring: (a) the class diagram before
refactoring; (b) the class diagram after refactoring

INITIAL WORK ON SOFTWARE RESTRUCTURING 273

CommunicationCommunication

bluetoothInterface()
wifiInterface()
threeGInterface()
fourGInterface()

(a) (b)

wirelessInterface(radio)

FIGURE 7.8 An example of parameterizing a method. There are four methods in (a), whereas
there is one method in (b) with one parameter

� Parameterize Methods: Sometimes programmers may find multiple methods
performing the same computations on different input data sets. Those methods
can be replaced with a new method with additional formal parameters, as illus-
trated in Figure 7.8. In Figure 7.8a, we have the Communication class with four
methods: bluetoothInterface, wifiInterface, threeGInterface, and
fourGInterface. In Figure 7.8b, we have the Communication class with
just one method, namely, wirelessInterface with one parameter, namely,
radio. The method wirelessInterface can be invoked with different values
of radio so that the wirelessInterface method can in turn invoke different
radio interfaces.

7.5 INITIAL WORK ON SOFTWARE RESTRUCTURING

The concept of software restructuring dates back to the mid 1960s, almost as soon as
programs were written in Fortran. In this section, we explain the factors that influence
software structure, classification of early restructuring approaches, and some widely
studied early restructuring techniques.

7.5.1 Factors Influencing Software Structure

Before we discuss restructuring approaches, it is useful to have a broad understanding
of software structure. Software structure is a set of attributes of the software such that
the programmer gets a good understanding of software. Therefore, any factor that
can influence the state of software or the programmer’s perception might influence
software structure. One view of the factors that influence software structure has been
shown in Figure 7.9. In the following, we explain the factors one by one.

� Code: Undoubtedly, the source code has the biggest influence on software struc-
ture. Code quality and style at all levels of details, namely, variables, constants,
statement, level, function, and module, play key roles in understanding code.

274 REFACTORING

Environment

Code

Documentation

Programming environment;

Tools

Programmers

Managers;

Policies

FIGURE 7.9 Factors which can influence software structure. From Reference 2. © 1989
IEEE

For example, adherence to coding standards significantly increases the readabil-
ity of code. Similarly, adoption of common architectural styles enhances code
understanding.

� Documentation: There are two kinds of documentations associated with source
code: (i) in-line documentation of source code; and (ii) external documenta-
tions, namely, requirements documents, design documents, user manuals, and
test cases. Often the in-line documentations determine the programmer’s per-
ception of code structure. Programmers’ perception of software structure is
influenced by clearly written, easily referenced, complete, accurate, and up-to-
date documentations.

� Tools—Programming environment: Development tools can help programmers
better understand source code. Tools can assist programmers trace through the
source code to understand dynamic behavior, animation can help in under-
standing the dynamic strategy used in an algorithm, and cross-referencing of
global variables reveal the interactions among modules. In addition, tools can
reformat code for better readability via pretty printing, highlight keywords, and
take advantage of color coding of source code. For example, comments can be
displayed in one color and executable code in a different color.

� Programmers: Qualities of programmers influence their perception of software
structure. Examples of programmer qualities are individual capabilities, educa-
tion, experience, training, and aptitude. Happenings in their personal lives too
can influence their perception of software structure.

� Managers and policies: Management can play an influencing role in having a
good initial structure and sustain, or even improve, the initial structure by means
of designing policies and allocating resources. Management can design general

INITIAL WORK ON SOFTWARE RESTRUCTURING 275

policies about means, such as adhering to standards, of achieving software
qualities. Similarly, managers can influence the practice of achieving good
software structures by tying the annual performance review of programmers
with their adherence to those standards.

� Environment: This factor refers to the general working environment of pro-
grammers, including the physical facilities and availability of resources when
needed.

All the factors shown in Figure 7.9 influence software structure, to varying degrees.
For example, source code has more influence on restructuring than working envi-
ronment of programmers. Consequently, approaches that influence any factor in
Figure 7.9 can be applied to software restructuring. In the following section, we
present some well-known structuring approaches found in the literature.

7.5.2 Classification of Restructuring Approaches

A broad classification of software restructuring approaches has been shown in
Figure 7.10, and explained in the following.

� Approaches not involving code changes: There are several software restructuring
approaches that do not involve making changes to the existing software. These
approaches are as follows:

– Train programmers: Programmers may be trained in structured programming
and software engineering, including software architectural styles and modu-
larization techniques.

– Upgrade documentation: In-line comments in source code can be made more
accurate and readable. Cryptic comments can be expanded to explain the ratio-
nale behind decisions, and what alternatives had been explored. Comments
can be updated to reflect changes in the code. Similarly, external documen-
tations can be updated to make them consistent with the code, accurate, and
complete. Incomplete and inconsistent documentations constantly frustrate
programmers.

Approaches not involving

Approaches to software restructuring

Approaches involving
code changes code changes

Practices Techniques Tools

FIGURE 7.10 Broad classification of approaches to software structuring

276 REFACTORING

� Approaches involving code changes: A large majority of the approaches involve
making changes to source code in the form of writing new code, making changes
to existing code, deleting code, reformatting code, and moving code chunks
within and between modules. These approaches can be further divided into
three major categories as follows:

– Practices: Some examples of software restructuring practices are: (i) restruc-
turing code with preprocessors; (ii) making code understandable by means of
inspection and walkthroughs; (iii) formatting code by means of adhering to
programming standards and style guidelines; and (iv) restructuring code for
reusability.

– Techniques: Some software restructuring approaches are based on defined
techniques. Some examples of software restructuring techniques are: (i) incre-
mental restructuring; (ii) goto-less approach; (iii) case-statement approach;
(iv) Boolean flag approach; and (v) clustering approach.

– Tools: Many tools have been designed for software restructuring since the late
70s. Some example tools are Eclipse IDE (Integrated Development Environ-
ment), IntelliJ IDEA, jFactor, Refactorit, and Clone Doctor. Some early day
restructuring tools were Refactoring Browser for Smalltalk, Moose Refactor-
ing Engine, CStructure for the C language, a prototype tool for Oberon, and
Griswold’s tool for Scheme.

7.5.3 Restructuring Techniques

In this section, we explain several restructuring techniques developed in the mid-
1970s, before the time of object-oriented programming. The techniques are applied
at different levels of abstractions: reorganization and rewriting of source code to
eliminate goto statements, application of the concept of information hiding to C
programs, wrapping of a highly unstructured system with newly written front ends
and back ends, and remodularization of software with clustering.

A. Elimination-of-goto Approach An important feature of structured program-
ming is that it puts emphasis on the following control constructs: for, while, until,
and if-then-else. It is easy to understand code with such constructs, because those
constructs make occurrences of loop and branching of control clear. Before the onset
of structured programming in the 70s, much source code had been written with goto
statements. A goto statement is an unconditional jump statement that can be found
in several high level programming languages, namely, Fortran, Cobol, and C. It is
difficult to understand the control flow in programs with many goto statements in
them. Ashcroft and Manna [16] have shown that every flowchart program with goto
statements can be transformed into a functionally equivalent goto-less program by
using while statements. They introduce new Boolean variables to keep track of infor-
mation about the sequence of the computation. The resulting program has the same
order of efficiency as the original program. Though it is easy to understand a flowchart
program, it is implemented with goto statements to represent the unconditional jumps
in the flowchart.

INITIAL WORK ON SOFTWARE RESTRUCTURING 277

Baker [17] has given an algorithm to transform a flowgraph into a program
with repeat (do-forever), if-then-else, break, and next statements. The break state-
ment causes a jump out of the enclosing repeat statement, whereas the next state-
ment causes a jump to the next iteration of an enclosing repeat. The goal of this
algorithm is to produce understandable programs, rather than completely elimi-
nate the use of goto statements. The design of the algorithm is based on the idea
of properly nested programs, where repeat statements reflect iteration in the pro-
gram and if-then-else statements reflect branching and merging of control flow. The
restructured program contains goto statements if no other available control construct
describes the flow of control. The algorithm is central to the implementation of a
tool called STRUCT, which translates Fortran programs into programs in RATFOR.
RATFOR is an extended Fortran language that includes while, if-then-else, break,
and next. The programs produced by RATFOR are more readable than the original
Fortran programs.

B. Localization and Information Hiding Approach Localization and information
hiding are well-known software engineering principles that can be applied to design
good quality software. As the name suggests, localization is the process of collect-
ing the logically related computational resources in one physical module. Functions,
procedures, operations, and data types are examples of computational resources in
an imperative programming language, such as C. As a result of localizing computa-
tional resources into separate modules, programmers can restructure a program into
a loosely coupled system of sufficiently independent modules. In the C and Fortran
language, localization is difficult to achieve for the following reasons.

� A variable of a function may be referred by the extern and include statements
and imported and exported to other program modules.

� Data sharing and relations among functions are not explicitly represented in
source code.

By means of information hiding, one can suppress (i.e., hide) the details of imple-
mentations of computational resources, thereby enabling programmers to focus on
high level concepts, which make it easier to understand programs. For example, a
queue is a high level concept, which can be implemented by means of a variety of low
level data structures, namely, singly linked list, doubly linked list, and even arrays.
Therefore, a programmer can design a function by using enqueue and dequeue calls
without any concern for their actual implementations. In other words, a programmer
can design a program by using abstract data types without waiting for their actual
implementations. In the C and Fortran languages, there are no constructs that support
the principle of information hiding. Chu and Patel [18] developed a tool to localize
variables and functions and support information hiding as follows.

� Localization of variables: Organize global variables and functions which refer
to those global variables into package-like groups. This is achieved by applying
the concept of closure of functions to a set of global variables. This step leads
to groups of functions and the global variables referred to by those functions.

278 REFACTORING

data base
Unstructured
 software

Front-end
interface

Back-end

FIGURE 7.11 System sandwich approach to software restructuring. The arrows represent
the flow of data and/or commands

� Localization of functions: Group locally called functions and the calling function
in the same group.

� Information hiding and hierarchical structuring: Organize groups of functions
into hierarchical package structures based on the visibility of functions within
groups. Those functions and variables which are only externally referable and
visible to other packages constitute the package specification, whereas the func-
tions and variables in a package body are hidden from other packages and only
visible to functions in the same package.

The restructuring steps explained above offer a framework for translating a program
in imperative languages, such as C and Fortran, into other languages that support
modularity and hierarchical structure.

C. System Sandwich Approach For badly structured programs that need to be
retained for their output and which cannot be restructured with any hope, a sandwich
approach can be applied, as illustrated in Figure 7.11. The idea is to write a new
front-end interface and a new back-end data base so that it is easy to interface with
the program and the program’s outputs are recorded in a more structured way. The
front-end and the back-end communicate for report generation purpose. The old
system is used just for producing outputs.

D. Clustering Approach Software modularization is an important design step in
which a larger system is partitioned into smaller-sized cohesive chunks, called mod-
ules. During maintenance, a program can be remodularized in two broad ways as
follows:

� System level remodularization: A program is remodularized at the system level
by partitioning the program into smaller modules. This is a top-down approach
to remodularize a program. The concept of system level remodularization has
been illustrated in Figure 7.12.

� Entity level remodularization: At this level, a program is remodularized by
grouping the entities to form larger modules. This is a bottom-up approach to
remodularizing a program. The concept of entity level remodularization has
been illustrated in Figure 7.13.

INITIAL WORK ON SOFTWARE RESTRUCTURING 279

g

Remodularization
into two modules

Initial structure

Further
remodularization

Final
structure

a b

a b

a b

c d

c d

 c d

e

f
g

e
f

g

e

f

a b c d e f g

FIGURE 7.12 Illustration of system level remodularization. Bullets represent low level
entities. Dotted shapes represent modules. Arrows represent progression from one level to
the next

(a) A system with one module—
 the entire system

(b) The system after the first level of
 remodularization with five modules

(c) The system after the second level of remodularization with
 three upper level modules

FIGURE 7.13 Illustration of entity level remodularization. Bullets represent low level enti-
ties. Dotted shapes represent modules

280 REFACTORING

The concept of clustering plays a key role in modularization. Modularization is
defined as the clustering of large amounts of entities in groups in such a way that
the entities in one group are more closely related, based on some similarity metrics,
than entities in different groups. Such groups are called clusters. A broad definition
of clusters can be found in [19]: Clusters are defined as continuous regions of space
containing a relatively high density of points, separated from other such regions by
regions containing a relatively low density of points. Such a broad definition can be
easily applied to software systems, as illustrated in the VRML diagram of Figure 7.6.

While applying the idea of clustering to a set of entities, two basic questions need
to be answered.

� Similarity metrics: Clustering algorithms group similar entities together. There-
fore, there is a need for a metric to capture the idea of similarity. For example, in a
software system, entity a is more similar to b than to c. A similarity metric always
yields a value between 0 and 1, where 1 means highly similar. A number of
metrics to measure similarity are found in the literature: distance measure, asso-
ciation coefficients, correlation coefficients, and probabilistic measures [20]. In
the following, we explain the first two measures.

– Distance measure: The most common distance measures are the squared
Euclidean distance and the Manhattan distance.

– Association coefficients: This measure is also known as the simple matching
coefficient. The association coefficient for two entities x and y are expressed
in terms of the number of features which are present for both the entities.
Let a be the number of features present for both x and y, b be the number of
features present for x but not for y, c be the number of features present for
y but not x, and d be the features not present for both x and y. The simple
matching coefficient is defined as simple(x, y) = (a + d)∕(a + b + c + d). The
Jaccard coefficient is defined as Jaccard(x, y) = a∕(a + b + c).

� Selection of clustering algorithms: Clustering algorithms have been developed
in diverse application areas, namely, image processing, pattern recognition,
biology, software testing, information retrieval, graph theory, and information
architecture. The techniques used in those algorithms can broadly be grouped
into the following four categories.

– Graph theoretical algorithms: These algorithms work on graph representa-
tions of systems to be clustered. The nodes of those graphs represent entities,
and edges represent relationships between nodes. The graph algorithms try
to find subgraphs where each subgraph is a cluster. Many graph theoretical
clustering algorithms use the concepts of minimum-spanning trees, graph
reduction, aggregate node, and k-components.

– Construction algorithms: Clustering algorithms in this group assign the enti-
ties to clusters in one pass. The resulting clusters are either predetermined or
identified by the algorithms. Many algorithms in this category use the follow-
ing common techniques: geographic technique and density search technique.
In the algorithms which are based on geographic techniques, entities are

INITIAL WORK ON SOFTWARE RESTRUCTURING 281

represented on a two-dimensional plane; the algorithm divides the plane into
two halves; and the entities lying on the same side of the dividing line are said
to belong to the same cluster. The algorithms based on density search work as
follows: (i) find regions containing a relatively high density of entities; each
of those regions is a member of the set of initial clusters; (ii) merge clusters to
find lager clusters; members of clusters may be moved to neighboring clusters
while merging them.

– Optimization algorithms: Optimization algorithms are also called improve-
ment algorithms or iterative algorithms. The basic structure of those algo-
rithms has been illustrated in the following:

1. Find an initial partition of k clusters.

2. REPEAT
Determine the seed point of each cluster.
Move each entity to the cluster with the seed point
having the highest level of similarity with the entity.

UNTIL no entities can be moved from one cluster to another.

The centroid of a cluster is taken as the cluster’s seed point. The centroid of a
cluster is interpreted to be the “average” of the cluster. Selection of the initial
set of k clusters can have an impact on the final clustering.

– Hierarchical algorithms: Hierarchical algorithms build a hierarchy of clus-
tering. There are two broad kinds of hierarchical algorithms: agglomerative
algorithms and divisive algorithms. The working of an agglomerative algo-
rithm has been illustrated in Figure 7.13, whereas Figure 7.12 illustrates the
working of a divisive algorithm. The clustering of a hierarchical algorithm can
be visualized in a dendogram. The dendogram representation of the hierarchy
in Figure 7.12 has been shown in Figure 7.14.

The general structure of an agglomerative algorithm is as follows:

1. IF there are N entities, begin with N clusters such that
each cluster contains a unique entity.
Compute the similarities between the clusters.

2. WHILE there is more than a cluster
DO

Find the most similar pair of clusters and merge them
into a single cluster.
Recompute the similarities between the clusters.

END

Divisive clustering algorithms work in a top-down manner as follows. (i) in
the beginning, all the N entities belong to one cluster; and (ii) in each step,
a cluster is partitioned into two clusters. Finally, after N steps, there are N
clusters with one entity in each cluster.

282 REFACTORING

a b c d e f g

FIGURE 7.14 Dendogram representation of Figure 7.12

E. Program Slicing Approach The concept of program slicing, including forward
program slicing and backward program slicing, has been explained in Chapter 4.
Informally, the set of statements that can affect the value of a variable at some point
of interest in a program is called a backward program slice. Similarly, the set of
statements that are likely to be affected by the value of a variable at some point of
interest in a program is called a forward program slice. The key idea in program
slicing is to identify and extract a cohesive subset of statements from a program.
Therefore, if a module supports multiple functionalities, a portion of the code can be
extracted to form a new module. For example, let us consider a module A supporting
functionalities {f1, f2, f3, f4}. If subsets A′ = {f1, f2} and A′′ = {f3, f4} are more
cohesive, while the degree of cohesion between members of the two subsets is weak,
then module A can be split up into two modules A′ and A′′ by applying the idea of
program slicing [21].

In addition, large functions can be decomposed into smaller functions by means
of program slicing to restructure programs [22] and reuse code segments [23]. The
idea of program slicing can be applied to object-oriented programs as well [24].

7.6 SUMMARY

Software refactoring and restructuring are topics of continued research for more than
three decades. Several books have been written on the topic of software refactoring.
Therefore, this chapter opened with an introduction to the idea of software refactoring
and restructuring. We explained the negative impacts of software straying away from
its original design: decreased understandability, decreased reliability, and increased
maintenance cost. Therefore, a higher level goal of software refactoring is to increase
the external software value and internal software value. In the second section, we
explained the activities in a refactoring process: identifying what to refactor, deter-
mine which refactorings to apply, ensure that refactorings preserve the behavior of

LITERATURE REVIEW 283

the software, apply the refactorings to the chosen entities, evaluate the impacts of
the refactorings, and maintain consistency. We explained the concept of code smell
by means of many examples, and showed what many refactorings look like. The
ideas of critical pair analysis and sequential dependency analysis were explained
toward finding a feasible subset of refactorings from a given set. In order to ensure
that refactoring preserves the program’s behavior, we explained two pragmatic ways:
testing and verification of preservation of call sequence. We argued that preservation
of input–output behavior of programs is not enough, and identified three other impor-
tant behaviors that must be preserved: temporal constraints, resource constraints, and
safety constraints. Applications of a few common refactorings were explained with
class diagrams.

In the third section, we explained formalisms and techniques for refactoring:
assertions, graph transformation, and software metrics. We explained two kinds of
software metrics: cohesion and three kinds of coupling. The three kinds of coupling
are: return value coupling, parameter coupling, and shared variable coupling. In the
fourth section, we gave more examples of refactorings.

In the fifth section, we discussed the initial work on software restructuring: factors
influencing software structure, classification of restructuring approaches, and restruc-
turing techniques. The factors affecting software structures are code, documentation,
tools, programmers, managers and policies, and environment. The two broad cate-
gories of approaches to restructuring are approaches not involving code changes and
approaches involving code changes. The restructuring techniques that we explained
are elimination-of-goto, system sandwich, localization and information hiding, and
clustering approaches.

LITERATURE REVIEW

Many researchers have contributed to various facets of software restructuring and
software refactoring for more than three decades, with hundreds of research publica-
tions and numerous tools. In addition, excellent books have been written and edited
on the topic.

The main research results in software restructuring until the mid 1980s have
been succinctly compiled in the form of an edited book by Arnold [25]: Tutorial on
Software Restructuring. The book has been organized into eight parts. After a very
good introduction in Part I, perspectives on software structure are provided in five
research articles in Part II. In Part III, origins and effects of poor software structure are
discussed in five articles. Strategies and tools for recognizing software structure are
discussed in Part IV. Code level approaches and system level approaches to infusing
software with structure are discussed in Part V and Part VI, respectively. Finally,
restructuring criteria and rule-based restructuring are presented in Parts VII and VIII,
respectively.

Seventy-two refactorings have been explained with class diagrams and code by
Fowler in his book Refactoring: Improving the Design of Existing Code [26]. In the

284 REFACTORING

chapter Refactoring Tools by Roberts and Brant, they explain the technical criteria
and the practical criteria for a refactoring tool. The technical criteria are as follows.

� Program database: For a tool to be useful, it is important that search and mean-
ingful operations (e.g., substitution) on program entities can be performed,
without the need for program testing.

� Parse trees: Parse trees are an important representation of programs, because a
large number of refactorings operate at the method level and below.

� Accuracy: Accuracy means to what extent the program behavior has been pre-
served by the refactorings.

On the other hand, the practical criteria are as follows.

� Speed: It may be noted that tools in software development are created to support
programmers. If tools do not fit the way programmers carry out their tasks,
then tools will not be adopted. Therefore, speed of refactoring is important to
programmers. If some refactorings take too long to achieve accuracy, then tool
designers may not support those refactorings.

� Undo: An undo operation comes very handy in exploring the consequences
of refactorings. If a programmer does not like the results of refactorings, an
undo operation allows him to revert to the original program, without having to
explicitly keep a copy of the program.

� Integration with tools: For refactoring tools to be widely used, it is important
that such tools are made a part of integrated development environments (IDE).

In the book entitled Refactoring, Reuse, and Reality [26], the author has identified
some reasons why programmers did not refactor their code.

� Since the benefits of refactorings are long term, a programmer may not be
motivated to do it now.

� Since refactoring is an overhead, it does not contribute to day-to-day produc-
tivity.

� There is no guarantee that implementations of some refactorings do not intro-
duce faults.

The chapter also discussed how to reduce the overhead of refactoring and the idea of
refactoring safely. Intuitively, safe refactoring means refactoring a program without
introducing faults into the program.

Ping and Kontogiannis [27] have proposed an approach to refactor web sites to
the controller-centric architecture. Their approach is twofold: (i) a domain model is
defined to represent dependencies among web pages in order to understand the struc-
ture of the current web site; and (ii) a system architecture is designed as a reference
model for restructuring the existing web site into a controller-centric architecture
based on the well-known concept of odel view controller (MVC). A link between
two web pages is said to exist if one page contains a link to the other. For dependency

LITERATURE REVIEW 285

analysis, links are grouped into two broad categories: reference link and conditional
link. They consider four kinds of reference links as follows.

� Inner link: This means a web page has a link to itself.
� Handover link: This means that a link leads to a different page.
� Include link: This means that the target page is included in the source page

when the link is activated.
� Invocation link: This represents a communication link between a source page

and a target page.

The book Refactoring HTML: Improving the Design of Existing Web Applications
by Harold [28] is solely about refactorings of HTML code. The book has a full chapter
about smells of bad HTML code. Some example smells are:

� Illegible code: This code is difficult to understand.
� Slow page rendering: Though communication networks, databases, and servers

can contribute to delay in page display, there is said to be a problem if page
rendering from a locally saved file takes a long time.

� Pages look significantly different in different browsers: A problem is said to be
present if the pages are illegible when browsed with common browsers, namely,
Internet Explorer and Firefox.

Next, the book explains six broad categories of refactorings for HTML code as
follows.

� Well-Formedness: Add End-Tag is an example of this category of refactorings.
� Validity: Remove All Non-Existent Tags is an example of the validity category.
� Layout: Add an ID Attribute is an example of layout refactorings.
� Accessibility: Introduce Skip Navigation is an example of accessibility.
� Web Applications: Prevent Caching is an example of web application

refactorings.
� Content: Correct Spelling is an example of content refactorings.

In their book Refactoring in Large Software Projects [29], Lippert and Roock
explain architecture smells, best practices for large refactorings, refactoring rela-
tional databases, refactoring application program interfaces (API), and tool-based
detection and avoidance of architecture smells. Intuitively, large refactorings possess
the following characteristics.

� Long time: Here, days and weeks mean long time.
� Significant change: This means changes to the more significant concepts,

namely, software architecture, databases, and APIs.
� Large team: Almost all the people currently involved with the development

and/or maintenance of the software are involved.

286 REFACTORING

An excellent survey of software refactoring can be found in the article by Mens
and Tourwe [30]. By means of a running example, they explain all the refactoring
activities found in Section 7.2. Additional discussions of refactoring techniques and
formalisms and types of software artifacts can be found in the article. Finally, the
article presents insightful discussions of tool support for automation of refactoring
activities. The desirable features of a tool for refactoring are reliability, configurability,
coverage, scalability, and language independence.

REFERENCES

[1] W. F. Opdyke. 1992. Refactoring: A program restructuring aid in designing object-
oriented application framework. PhD thesis, University of Illinois at Urbana-Champaign.

[2] R. S. Arnold. 1989. Software restructuring. Proceedings of the IEEE, 77(4), 607–616.

[3] S. Ducasse, M. Rieger, and S. Demeyer. 1999. A Language Independent Approach for
Detecting Duplicated Code. Proceedings of the International Conference on Software
Maintenance, 1999, IEEE Computer Society Press, Los Alamitos, CA, pp. 109–118.

[4] J. H. Jahnke and A. Zundorf. 1997. Rewriting Poor Design Patterns by Good Design
Patterns. Proceedings of the ESE/FSE Workshop on Object-Oriented Reengineering,
1997, ACM, New York.

[5] J. Philipps and B. Rumpe. Refinement of Information Flow Architecture. Proceedings
of the International Conference on Formal Engineering Methods, 1997, IEEE Computer
Society Press, Los Alamitos, CA.

[6] T. Mens, G. Taentzer, and O. Runge, 2007. Analyzing refactoring dependencies using
graph transformation. Software and Systems Modeling, 63, 269–285.

[7] F. Tip, A. Kiezun, and D. Baumer. 2003. Refactoring for Generalization Using Type
Constraints. Proceedings of SIGPLAN Conference on Object-Oriented Programming,
2003, Systems, Languages, and Applications, ACM, New York, pp. 13–26.

[8] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin. 2001. Automated Support
for Program Refactoring using Invariants. Proceedings of the International Conference
on Software Maintenance, 2001, IEEE Computer Society Press, Los Alamitos, CA,
pp. 736–743.

[9] L. Tahvildari and K. Kontogiannis. 2002. A methodology for Developing Transformations
Using the Maintainability Soft-goal Graph. Proceedings of Working Conference on
Reverse Engineering, 2002, IEEE Computer Society Press, Los Alamitos, CA, pp. 77–
86.

[10] L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. 2000. Non-Functional Requirements
in Software Engineering. Kluwer Publishing.

[11] L. Tahvildari and K. Kontogiannis. 2002. A Software Transformation Framework for
Quality-driven Object-oriented Re-engineering. Proceedings of the International Con-
ference on Software Maintenance, 2002, IEEE Computer Society Press, Los Alamitos,
CA, pp. 596–605.

[12] J. Banerjee, H. Kim W. Kim, and H. F. Korth. 1987. Semantics and Implementation of
Schema Evolution in Object-oriented Databases. Proceedings of the ACM SIGMOD
Conference, 1987, ACM, New York, pp. 311–322.

REFERENCES 287

[13] B. Hoffmann, D. Janssens, and N. V. Eetvelde. 2006. Cloning and expanding graph
transformation rules for refactoring. Electronic Notes in Theoretical Computer Science,
152, 53–67.

[14] F. Simon, F. Steinbruckner, and C. Lewerentz. 2001. Metrics Based Refactoring. Proceed-
ings of the European Conference on Software Maintenance and Reengineering, 2001,
IEEE Computer Society Press, Los Alamitos, CA, pp. 30–38.

[15] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. 2002. A Quantitative Evaluation of
Maintainability Enhancement by Refactoring. Proceedings of the International Confer-
ence on Software Maintenance, 2002, IEEE Computer Society Press, Los Alamitos, CA,
pp. 576–585.

[16] E. Ashcroft and Z. Manna. 1971. The Translation of ‘goto’ Programs to ‘while’ Programs.
Proceedings of the 1971 IFIP Congress, 1971, pp. 250–260.

[17] B. S. Baker. 1977. An algorithm for structuring flowgraphs. Journal of the ACM, 24(1),
98–120.

[18] W. C. Chu and S. Patel. 1992. Software Restructuring by Enforcing Localization and
Information Hiding. Proceedings of the Conference on Software Maintenance, 1992,
IEEE Computer Society Press, Los Alamitos, CA, pp. 165–172.

[19] B. Everitt. 1974. Cluster Analysis. Heineman Educational Books, London.

[20] T. A. Wiggerts. 1997. Using Clustering Algorithms in Legacy Systems Remodularization.
Proceedings of the Working Conference on Reverse Engineering, 1997, IEEE Computer
Society Press, Los Alamitos, CA, pp. 33–43.

[21] H. S. Kim, Y. R. Kwon, and I. S. Chung. 1994. Restructuring programs through program
slicing. International Journal of Software Engineering and Knowledge Engineering, 4(3),
349–368.

[22] A. Lakhotia and J.-C. Deprez. 1998. Restructuring programs by tucking statements into
functions. Information and Software Technology, 40, 677–689.

[23] F. Lanubile and G. Ducasse. 1997. Extracting reusable functions by flow graph-based
program slicing. IEEE Transactions on Software Engineering, 23(4), 246–258.

[24] L. Larsen and M. J. Harrold. 1996. Slicing Object-oriented Software. Proceedings of the
International Conference on Software Engineering, 1996, IEEE Computer Society Press,
Los Alamitos, CA, pp. 495–505.

[25] R. S. Arnold. 1986. Tutorial on Software Restructuring. IEEE Computer Society Press,
Los Alamitos, CA.

[26] M. Fowler. 1999. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley.

[27] Y. Ping and K. Kontogiannis. 2004. Refactoring Web Sites to the Controller-centric
Architecture. Proceedings of the 8th European Conference on Software Maintenance
and Reengineering, 2004, IEEE Computer Society Press, Los Alamitos, CA, pp. 204–
213.

[28] E. R. Harold. 2008. Refactoring HTML: Improving the Design of Existing Web Applica-
tions. Addison Wesley.

[29] M. Lippert and S. Roock. 2006. Refactoring in Large Software Projects: Performing
Complex Restructurings Successfully. John Wiley.

[30] T. Mens and T. Tourwe. 2004. A survey of software refactoring. IEEE Transactions on
Software Engineering, 30(2), 126–139.

288 REFACTORING

EXERCISES

1. Briefly explain the need for restructuring software.

2. List the key activities in a software refactoring process.

3. How do programmers identify what to refactor?

4. How do you identify what refactorings to apply?

5. How do you select a feasible subset from a given set of refactorings?

6. Briefly explain the concept of preserving the software’s behavior while refactoring.

7. Identify four key formalisms and techniques for refactoring.

8. Briefly explain the concept of assertions by means of examples.

8
PROGRAM COMPREHENSION

The most incomprehensible thing about the world is that it is comprehensible.
— Albert Einstein

8.1 GENERAL IDEA

It is important to comprehend the details of any complex artifact to be able to main-
tain it, because maintenance requires modifications to portions of the systems—and
maintaining a software system is no different. Inaccurate and incomplete understand-
ing of a software system before performing a modification on it is likely to severely
degrade its performance and reliability. Therefore, good program comprehension
plays an important role in providing effective software maintenance and enabling
successful evolution of software systems. In order to get a handle on the role of pro-
gram comprehension, we look at the five types of tasks commonly associated with
software maintenance and evolution and the types of activities involving those tasks.
As listed in Table 8.1, the five kinds of maintenance and evolution tasks are adaptive,
perfective, and corrective maintenance; reuse; and code leverage. The detailed activ-
ities associated with each of the five tasks have been listed in the second column of
Table 8.1. Table 8.1 indicates that understanding the system or problem is common to
all maintenance and evolution tasks. It may be noted that understanding of a system
is a cognitive issue, and to study the cognitive processes behind the tasks in Table 8.1,
a number of cognition models have been developed, as listed in Table 8.2.

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

289

290 PROGRAM COMPREHENSION

TABLE 8.1 Tasks and Activities Requiring Code Understanding

Maintenance Tasks Activities

Adaptive Understand system
Define adaptation requirements
Develop preliminary and detailed adaptation design
Code changes
Debug
Regression tests

Perfective Understand system
Diagnosis and requirements definition for improvements
Develop preliminary and detailed perfective design
Code changes/additions
Debug
Regression tests

Corrective Understand system
Generate/evaluate hypotheses concerning problem
Repair code
Regression tests

Reuse Understand problem
Find solution based on close fit with reusable components
Locate components
Integrate components

Code leverage Understand problem
Find solution based on predefined components
Reconfigure solution to increase likelihood of using

predefined components
Obtain and modify predefined components
Integrate modified components

Source: From Reference 1. © 1995 IEEE.

TABLE 8.2 Code Cognition Models

Model Maintenance Activity Authors

Control flow Understand Pennington
Functional Understand Pennington
Top-down Understand Soloway, Adelson, and Ehrlich
Integrated Understand, Corrective,

Adaptive, and Perfective
Von Mayrhauser and Vans

Other Enhancement Letovsky
Understand Brooks

Shneiderman and Mayer

Source: From Reference 1. © 1995 IEEE.

BASIC TERMS 291

8.2 BASIC TERMS

Some researchers use the term maintainer to refer to the person who is maintaining
a software system. They want to differentiate a maintainer from a programmer. In
order to understand the cognition models of Table 8.2, we discuss the following set
of terms in the following subsections:

� Goal of code cognition
� Knowledge
� Mental model

8.2.1 Goal of Code Cognition

A maintainer sets out to understand a program with a specific goal in her mind. An
example of specific goal is debugging the program to detect a fault, that is, the cause
of a known failure. Another example is adding a new function to the existing system.
Identifying the goals can help in defining the scope of program comprehension, where
scope refers to complete or partial understanding of code.

A program comprehension process is a sequence of activities that use existing
knowledge about a system to acquire new knowledge that ultimately meets the goals
of a code comprehension task. In other words, program comprehension is a pro-
cess of knowledge acquisition about the program. The different kinds of knowledge
associated with program comprehension are explained below.

8.2.2 Knowledge

As software specialists, programmers possess two kinds of knowledge:

� General knowledge: This covers a broad range of topics in computer systems
and software development. A non-exhaustive list of topics is: algorithms and
data structures, operating systems, programming principles, programming lan-
guages, programming environment, software architectures and design tech-
niques, testing and debugging techniques, different solution approaches, and
computer networks. More general knowledge enable a programmer to gain
more software-specific knowledge.

� Software-specific knowledge: This represents an understanding of the details of
the software to be comprehended. The details of a software system include the
application domain, the problem being solved by the software, and the solution
strategy adopted in the software system.

While gaining software-specific knowledge during the process of program com-
prehension, programmers may find the need to have more general knowledge about
computer systems and, therefore, acquire the relevant general knowledge by referring
to other sources. For example, in order to comprehend the performance aspect of a
wireless Internet-based application, a programmer may want to know some details
of the medium access control (MAC) protocols for wireless local area networks

292 PROGRAM COMPREHENSION

Need fulfilled

Gain
general

knowledge

Gain
software−specific

knowledge

If there is a need

FIGURE 8.1 Gaining general knowledge and software-specific knowledge

(WLAN). The general knowledge may involve the concept of maximum data packet
size, for example. The programmer may also want to learn how the transmission
control protocol’s (TCP) congestion control mechanism affects data delivery perfor-
mance. Therefore, there is a need for a programmer to go back and forth between
acquiring general knowledge and software-specific knowledge, as illustrated in
Figure 8.1. Some examples of software-specific knowledge are as follows:

� The software system implements public-key cryptography for data encryption.
� The software system has been structured as a three-tier client–server architec-

ture.
� Module x implements a location server.
� A certain for loop in method y may execute for a random number of times.
� Variable mcount keeps track of the number of times module z is invoked.

In the process of gaining new knowledge about a software system, a programmer
essentially learns the details concerning the following aspects:

� Functionality: This includes an understanding of the functional and non-
functional requirements of the software system.

� Software architecture: Knowledge about a system’s software architecture leads
to further inquisitions about the system. For example, if a programmer knows
that the system has been designed with a three-tier client/server architecture,
then he will try to know more about distribution of functionalities, assignment
of resources to services, and so on.

� Control flow and data flow: Understanding the control flow in a system helps
comprehend the execution sequences of the modules. The programmer gets to
know the sequences in which data are accessed and updated.

� Exception handling: The programmer needs to know what actions the software
system takes in response to exceptions, such as timeout, unavailability of run-
time resources, and execution errors, to name a few.

� Stable storage: This refers to the means for storing intermediate results in non-
volatile memory so that program execution can be resumed at a point where
failure occurred.

BASIC TERMS 293

� Implementation details: The programmer may want to know what algorithms
have been chosen and how those have been implemented. Moreover, the pro-
grammer may want to know the functionality and data scope of objects and their
implementation details.

8.2.3 Mental Model

The concept of mental model [2] is frequently used in the discussion of program
comprehension. A mental model describes a programmer’s mental representation of
the program to be comprehended. Consequently, a mental model of a program is not
unique. Rather, different programmers may have different mental models depending
upon their own knowledge and interpretation about the same program. A programmer
develops a mental model of a software by identifying both static and dynamic elements
of the software system. For example, a for loop is an element of a program. A system
call to open a TCP connection is a program element. Similarly, the overall control
flow is a program element. A programmer must have a good understanding of the
individual program elements as well as how some of them interact.

A. Static Elements of the Mental Model The static elements of a program are as
follows:

� Text-structures
� Chunks
� Schemas
� Plans
� Hypotheses

Text-structure: Code text and its structure are known as text-structure. Text-structure
knowledge is useful in gaining control flow knowledge for program understanding.
A programmer can easily identify the following kinds of text-structures: (i) loop
constructs, namely, for, while, and until; (ii) sequences; (iii) conditional constructs,
namely, if-then-else; (iv) variable definitions and initializations; (v) calling hier-
archies within and among modules; and (vi) definitions of module parameters. A
programmer can examine text-structure at the statement level and for their dependen-
cies. Understanding text-structure is the beginning of program comprehension.

Chunk: The concept of program chunks enables programmers to create higher level
abstractions from lower level abstractions. A program chunk is a block of related
code segments. For example, a code block initializing a module’s parameters is a
useful chunk that tells the programmer about the nature of the parameters and their
value ranges. A for loop is another example of code chunk, whose understanding
will create an abstraction of the loop as an internal functional step performed by
the program.

294 PROGRAM COMPREHENSION

Schema: Research on text comprehension has produced an important concept called
schema. Schemas are generic knowledge structures that guide the comprehender’s
interpretations, inferences, expectations, and attention when passages are compre-
hended [3]. The concept of programming plans, to be explained in this chapter,
corresponds to the above notion of schemas [4].

Plans: Plans are broad kinds of knowledge elements used by programmers in order
to comprehend programs. A knowledge element is anything that is useful in under-
standing a program. For example, if the name of a function gives an indication of
the activity performed by the function, then the function identifier is a knowledge
element. A second example of knowledge element is a block of comments describing
a for() loop. In addition, a for() loop itself is a knowledge element, because a
programmer can read the chunk of code representing the loop and get a good idea
about what the code does. A third example of knowledge element is the description of
the problem domain of the program. Plans easily attract the attention of programmers
while they are reading a program and its documentations. A doublylinked list and a
heap data structure are examples of plans. The designer has planned to implement
certain concepts with those data structures. A plan is a kind of schema with two parts:
slot type and slot filler. Slot types describe generic objects, whereas slot fillers are
customized to hold elements of particular types. For example, a tree data structure
is a generic slot type, whereas a code segment, such as a for() loop’s code, is an
example of a slot filler. The programmer links the slot-type and slot-filler structures
by means of the widely used modeling relationships, namely, kind-of and is-a.

There are two broad kinds of plans as follows:

� Domain plans: These include knowledge about the real-world problem, includ-
ing its environment, that the software system is solving. For example, if a
software system is for numerical analysis application, plans to develop a soft-
ware package will include schemas for different aspects of linear algebra, such
as matrix multiplication and matrix inversion. As another example, if a software
system is for voice-over-IP (Internet Protocol) applications, plans to develop
the package will include schemas for locating destinations and setting up a call.
Domain plans help programmers understand the code. For example, without a
basic understanding of how destination users are located before setting up a
call, code comprehension will not be accurate.

� Programming plans: Programming plans are program fragments representing
action sequences that programmers repeatedly apply while coding. A repeated
action sequence is also known as a stereotypic action sequence. A programmer
may design a for() loop to search an item in a data set and repeatedly use
the loop in many places in the program. Such a for() loop is an example of a
programming plan to implement the system. Programming plans differ in their
granularities to support low level or high level tasks.

Hypotheses: As programmers read code and the related documents, they start devel-
oping an understanding of the program to varying degrees. The qualities of their
understanding can be characterized in terms of depth, breadth, and degree of accuracy.

BASIC TERMS 295

Programmers can test the results of their understanding as conjectures, which are also
called hypotheses by Letovsky [5]. The three kinds of conjectures are as follows:

� Why: Why conjectures hypothesize the purpose of a program element. A pro-
gram element can be a function, a procedure, a design choice, or even a con-
ditional statement at the lowest level of code. Verification of a why conjecture
allows the programmer to have a good understanding of the purpose of the
program element.

� How: How conjectures hypothesize the method for realizing a program goal.
Given a program goal, say, as a deliverable functionality, the programmer needs
to understand how that goal has been accomplished in the program.

� What: What conjectures enable programmers to classify program elements.
For example, when a programmer finds an identifier, she should be able to
classify it according to known, high level types, such as, constants, variables,
and functions. Further classification of identifiers can be done in terms of their
functions. For example, a variable called TCPcon1 may hold a TCP connection
identifier, and another variable called RetransTimer may hold a timer for packet
retransmission.

A conjecture may not be completely correct because of the incomplete understanding
of code by the programmer. Therefore, it is useful to talk about the degree of certainty
of conjectures. At the beginning of the comprehension process, a programmer might
make uncertain guesses, whereas she may be able to make almost certain conclusions
after having a good comprehension of the program. Hypotheses are a way for a
programmer to understand code in an incremental manner. After some understanding
of the code, the programmer forms a hypothesis and verifies it by reading code.
Verification of a hypothesis results in either accepting the hypothesis or rejecting it.
By continuously formulating new hypotheses and verifying them, the programmer
understands more and more code and in increasing details.

B. Dynamic Elements of the Mental Model The dynamic elements of a program
are as follows:

� Chunking
� Cross-referencing
� Strategies

Chunking: Recall that lowest level chunks are code fragments representing low
level functionalities. In order to understand a program in terms of its higher level
functionalities, a programmer creates higher level abstraction structures by combining
lower level chunks. This process of creating higher level chunks is called chunking.
Note that chunking is not a one-step process. Rather, the concept of chunking can be
repeatedly applied to create increasingly higher levels of abstractions. When a block
of code is recognized, it is replaced by the programmer with a label representing

296 PROGRAM COMPREHENSION

the functionality of the code block. Similarly, a block of lower level labels can be
replaced with one higher level label representing a higher level functionality.

Cross-referencing: Cross-referencing means being able to link elements of different
abstraction levels. This helps in building a mental model of the program under study.
For example, control flow and data flow can be program elements at a lower level,
whereas functionalities are higher level program elements—and there is a need for
being able to make links between control flow and data flow elements and program
functionalities.

Strategies: Intuitively, a strategy is a planned sequence of actions to reach a specific
goal. A strategy is formulated by identifying actions to achieve a goal. For example,
if the goal is to understand the code representing a function, one can define a strategy
as follows. Understand the overall computational functionality of the function, that
is, what the function is expected to compute, by reading its specification, if it exists;
understand all the input parameters to the function; read all code line-by-line; identify
chunks of related code; and create a higher level model of the function in terms of
the chunks. Creating a higher level model from lower level models requires cross-
referencing, as explained before. In other words, strategies guide the two dynamic
elements, namely, chunking and cross-referencing, to produce higher level abstraction
structures.

8.2.4 Understanding Code

The two key factors influencing code understanding are: (i) acquiring knowledge
from code; and (ii) the level of expertise of the code reader. Code is a rich source
of information to understand it, while the level of expertise determines how quickly
the code is understood. Experienced programmers can manipulate the information
available in code more easily and quickly than novice programmers to construct more
accurate mental models. These two factors are explained in detail in the following.

A. Acquiring Knowledge from Code Several concepts can be applied while reading
code in order to gain a high level understanding of programs. In the absence of those
concepts, code comprehension can be a difficult task. In what follows, we explain
those concepts.

� Beacons: A beacon is code text that gives us a cue to the computation being
performed in a code block. For example, meaningful procedure names, such
as swap(), sort(), select(), startTimer(), and openTCPconnection
give us a high level understanding of code blocks. Code with good quality
beacons are easier to understand. By good quality beacons we mean whether
or not the beacons precisely reflect the code functionalities. For example the
beacon sendTCPpackets is more useful than the beacon sendpackets, because
the former indicates that data packets are sent over a TCP connection.

� Rules of programming discourse: Rules of programming discourse specify the
conventions, also called “rules,” that programmers follow while writing code.

BASIC TERMS 297

The rules are increasingly followed as programmers become more experienced.
Some examples of those rules are the following:

– Function name: The function name agrees with what the function does.
For example, function names sort(), delete(), startTimer(), and
openTCPconnection() are clearly understood, and those functions should
perform tasks implied by their names. Moreover, a function should return the
kind of arguments implied by its name. For example, sort() should return
a sorted data structure, delete() should return OK status, startTimer()
should return a timer object, and openTCPconnection() should return an
opened TCP connection identifier.

– Variable name: Choose meaningful names for variables and constants. By
looking at the name of a variable, one should be reasonably clear about the pur-
pose of the variable. For example, the variable count indicates that the pro-
grammer is counting something. Similarly, the integer constant MAX_USERS
gives an indication that the maximum number of users supported by the
system is given by the constant MAX_USERS.

Essentially, the rules set up expectations in the minds of a reader about what
should be in the program. In addition, it is assumed that programs are com-
posed from programming plans governed by rules of programming discourse.
Otherwise, a correct program from the viewpoint of solving the problem can be
difficult for a programmer to write and difficult for a reader to comprehend.

B. Levels of Expertise of Code Readers Programmer experience and domain knowl-
edge have a positive impact on code comprehension. Expert programmers tend to
possess the following characteristics [6, 7]:

� Organization of knowledge by functional characteristics: A novice programmer
is likely to organize program knowledge in terms of the program syntax, whereas
experts organize knowledge in terms of algorithms and program functionalities.
Consequently, the constructs used by experts are succinct and more informative
than the program syntax used by novice programmers. In other words, expert
programmers create a complementing view of the program, rather than what is
plainly seen as a result of using program syntax.

� Comprehension with flexibility: Experts tend to generate a breadth-first view of
the program, and keep adding useful details as more information is available
during the understanding process. This is due to their better understanding of
the program and their ability to more quickly discard invalid hypotheses and
assumptions than novice programmers.

� Development of specialized design schemas: A schema is a higher order knowl-
edge structure for describing program behavior in a specific domain of activity
[8]. The knowledge structure specifies principal elements in a domain and
includes mechanisms which facilitate the comprehension and generation pro-
cesses. It is used to organize complex entities or concepts into constituents.
An example of a specialized design schema is the divide-and-conquer schema

298 PROGRAM COMPREHENSION

[7]. Using the divide-and-conquer schema, a programmer can divide a system
into subsystems, and a problem into subproblems. Design schemas can vary
in complexity and granularity, and, even some schemas can be simple rules: if
the caller and the callee are independent processes, let them communicate by
passing messages.

8.3 COGNITION MODELS FOR PROGRAM UNDERSTANDING

Research literature on software engineering is replete with cognition models. In this
section, we explain the commonly referenced models one-by-one:

� Letovsky model
� Shneiderman and Mayer model
� Brooks model
� Soloway, Adelson, and Ehrlich model (top-down model)
� Pennington model (bottom-up model)
� Integrated metamodel

8.3.1 Letovsky Model

Letovsky’s program comprehension model has been shown in Figure 8.2 [5]. The
model consists of five main components: a knowledge base, a mental model, an
assimilation process, some external representations about the software system, and,
possibly, a dangling purpose unit. In the following we explain the above five compo-
nents one by one.

1. Knowledge base: A programmer needs to assimilate a large body of knowl-
edge to create a mental model of the software system under consideration. A

4. Assimilation

1. Specification
2. Implementation
3. Annotation

Programming expertise
Goals
Plans
Problem domain
Rules of discourse

bottom-up)
(top-down or

1. Knowledge base

process Documentation

Code

Manuals

5. Dangling purpose unit

2. External representations

3. Mental representation layers

FIGURE 8.2 Letovsky’s program comprehension model

COGNITION MODELS FOR PROGRAM UNDERSTANDING 299

knowledge base is a body of information about the program, and it includes the
following:
� Programming expertise: Programming expertise is useful in asking probing

questions, making conjectures to create abstractions from low level details by
connecting observed code details with known program goals, and searching
for specific information in the code. Conjectures are also called hypotheses
[1]. The questions are grouped into five categories: why, how, what, whether,
and discrepancy. Why questions are designed to know about the purpose of
actions and design choices. How questions assist the programmer to learn
about the way some goal of the code is accomplished. What questions are
used to find out what a variable or code fragment is. Whether questions are
asked to know if the code behaves in a certain way. Discrepancy questions
are meant for resolving confusions and apparent inconsistencies in the code.
Some example questions are: Why is the variable being reset to zero?, What
is being done to the memory block after the data is transmitted?, and Why
(confusion) is the memory block being deleted in two places? After ask-
ing questions, programmers often conjecture answers to their own questions
based on their current understanding of the program. Similar to the classifi-
cation of questions, programmers design why, how, and what conjectures. A
why conjecture is made to assert an understanding of the purpose of an action
or a design choice. A how conjecture is constructed to show an understanding
of the way some goal of the program is accomplished. A what conjecture
is formulated to demonstrate an understanding of what a variable or code
segment does. Some conjectures could be pure guesses, because insufficient
information may be available to make a conjecture with a higher degree
of certainty.

� Goals: A programmer may find recurring computational code blocks, such
as sort, search, delete, connect (to servers), start timers, transmit, and receive.
It is useful to know the meaning of those recurring computational goals in
the program, especially, why those computations are being performed, to be
able to create a higher level of abstraction.

� Problem domain: Programmers need to have a broad understanding of the
application domain of the code. A good understanding of the application
domain serves as a backdrop for clearly and quickly understanding code
segments in order to identify their goals and creating abstractions. For exam-
ple, a programmer with a background in computer networks and distributed
computing will find it easier to understand code for web-based applications
than understanding the MATLAB libraries.

� Plans: Programmers have their own ways (also called plans) of finding solu-
tions to problems that they need to solve. In addition, they use widely used
solutions to some common problems, such as running-total loop, converging-
iteration loop, handling a received message, and handling an event. Program-
mers’ own plans and widely used plans by others are helpful in recognizing
code patterns.

300 PROGRAM COMPREHENSION

� Rules of discourse: Programmers have knowledge of stylistic conventions in
writing code, which assist them in recognizing the goals of procedures and
interpreting variables. For example, if a constant is called MAX_RECORDS and
is used in a record processing loop, the programmer quickly recognizes that
the loop is going to iterate for a maximum count of MAX_RECORDS. Similarly,
if a method in Java is called OpenTCPConnection(), then the programmer
recognizes that the program will most likely open a TCP connection with a
remote computer. It takes much effort to understand variable names, such as
i, with no clear meaning. One may guess that the variable is being used as a
loop counter, an array index, and so on.

2. External Representations: The external representations of a program include
its source code, documentation in the form of some comments, and manuals.
The comments may appear in varying degrees of details, accuracies, and con-
sistencies. The manuals are useful in understanding the high level goals of the
code, whereas the inline comments are useful in understanding the low level
details.

3. Mental Representation: By reading code and the accompanying documents,
if there are any, ideally, a programmer may strive to create the following:
� Specification of the program: Here specification means a complete and

unambiguous description of the goals of the programs. The goals of the
program can be specified by identifying the user-level functions (i.e., the
functional requirements), attributes of the functions (i.e., the non-functional
requirements), and constraints. Understanding the complete non-functional
requirements and program constraints is more difficult than understanding
the functional requirements.

� High level implementation of the program: This means producing a com-
plete and unambiguous description of the actions and data structures of the
program. The actions can be identified at many levels of abstractions, such
as individual statements, individual function calls, and sequences of calls.
Similarly, the data structures can be identified at many levels of abstrac-
tions, such as individual variables, fields of structures (or, records), complete
structures, and files. It is important to choose the right level of abstractions,
because there are large numbers of individual statements and sequences of
calls. Therefore, function calls appear to be the right kind of abstraction to
describe actions.

� Annotation of the program: Having understood the goals of the programs and
identified the program’s actions and data structures, it is important to make
a two-way association between the goals and the actions and data structures.
The two-way association is made by annotating the program in the following
ways: (i) How each goal in the specification is accomplished and by which
actions and data structures; and (ii) what goals use the services of a given
action or a data structure. In other words, a programmer establishes a kind of
traceability matrix between program goals and actions and data structures.
If one views the development process of the program as a layered system

COGNITION MODELS FOR PROGRAM UNDERSTANDING 301

where the top layer is the set of program goals and the bottom layer is
source code, then the annotation can be viewed as the abstraction of the
middle layer connecting the top and the bottom layers. Basically, a program
annotation is used to bridge the abstraction gap between the top and the
bottom layers.

A programmer may not be able to create the final mental model, that is cor-
rect and complete, in one pass. The initial mental model may be incomplete
and inconsistent. For example, many goals might be missing from the initial
mental model. Similarly, the programmer might make mistakes in annotating
the goals and the actions. Ambiguity may arise by identifying multiple goals
with the same action (i.e., code segment).

4. Assimilation Process: Programmers combine their knowledge base and the
external representations (i.e., documentation, code, and manuals) to create their
mental models. Such a task is performed with a process called the assimilation
process. The assimilation process guides the programmer to look at certain
pieces of information, such as a code segment or a comment, and move for-
ward/backward while reading the code. The assimilation process can work in
three ways: top-down, bottom-up, and opportunistic. In the top-down approach,
a programmer first identifies the goals of the program, followed by possible
implementations of those goals such that the implementations match against
the code. In the bottom-up approach, a programmer first identifies program
plans from source code, makes annotations, and moves up to the top, goal
layer. In reality, programmers rarely follow such pure top-down or bottom-up
approaches. Rather, programmers combine the two approaches to take best
advantage of whatever opportunity is available to make best progress in terms
of knowledge gain at any given time. For example, one may start the assimila-
tion process by reading code and identifying some goals. Next, the programmer
may consider those goals and further understand the program in a top-down
manner to gain a more complete knowledge about the identified goals and their
implementations.

5. Dangling Purpose Unit: It may be recalled that the annotation layer serves
as a link between the high level goal layer and the low level implementation
layer, thereby showing what actions implement what goals and what goals
have been implemented by what actions. Sometimes, it may be difficult to
achieve a complete understanding of the relationship between the specification
layer (i.e., the goals) and the low level actions. Therefore, the dangling pur-
pose unit captures those goals whose implementations have not been clearly
understood.

8.3.2 Shneiderman and Mayer Model

Shneiderman–Mayer’s program comprehension model [9] has been depicted in
Figure 8.3. The model consists of three key components: short-term memory of the
programmer, the programmer’s knowledge (both semantic knowledge and syntactic

302 PROGRAM COMPREHENSION

Knowledge (Long term memory)

High

Low

High

Low

Java

C

Prolog

Syntactic knowledgeSemantic knowledge

Short-term
memoryProgram

Internal semantics

FIGURE 8.3 Shneiderman and Mayer program comprehension model

knowledge) to understand the code, and internal semantics of the code as understood
by the programmer. In the following, we explain those three items in detail:

� Internal semantics: A programmer can read the code of a software system
and develop an understanding of the code at different levels of abstractions.
At the highest level of abstraction, the programmer develops an understanding
of what the program does. In other words, develop an understanding of the
functionalities of the program. The what aspect of a program gives us an idea
about the purpose of the program. Some examples are as follows: a program
inverts a matrix, a program encrypts a file with the triple data encryption standard
(3DES), and a program sorts input records. One may understand the purpose
of the program before understanding the statement-level details. At the lowest
level of abstraction, the programmer understands the purpose of code segments
and algorithms used to realize the program goals. In between the two extreme
levels, programmers develop an internal semantic structure to represent the
program details. An example of intermediate-level abstraction is the concept of
call graphs—what modules are called by a given module and what modules use
the services of the given module.

� Knowledge: Here knowledge refers to the application domain knowledge and
programming knowledge, which are stored in the long-term memory of the
programmer. Programming knowledge includes both semantic knowledge and

COGNITION MODELS FOR PROGRAM UNDERSTANDING 303

syntactic knowledge. On the one hand, semantic knowledge means program-
ming concepts and techniques at different levels of abstractions. For example, (i)
at a lower level, the programmer understands the meaning of individual program
statements; (ii) at the intermediate level, the programmer understands how the
values of two variables are swapped; (iii) at a high level, the programmer knows
how to perform sorting and binary searching; and, (iv) at a further high level,
a programmer with domain knowledge in computer networking knows how to
route IP packets. Semantic knowledge is better gained and stored by means of
abstractions, away from the details of programming languages. On the other
hand, syntactic knowledge concerns individual programming languages and it
is more specific, detailed, and generally arbitrary. For example, the concept of
value assignment is represented by means of at least two notations in computer
programming: “=” and “:=”. Syntactic knowledge is quickly gained and quickly
forgotten, whereas it takes more time to gain semantic knowledge and it stays
longer in the long-term memory of programmers. Often languages share syn-
tactic representations (Java and C languages share some syntactic structures.)
The “knowledge” that we refer to in this section exists in the memory of the
programmers.

� Short-term memory: While a programmer is reading code, information about the
code enters the short-term memory of the programmer. The capacity of the short-
term memory is very limited, and, therefore, the programmer must be able to
quickly identify chunks, create their abstractions, and represent those abstrac-
tions in some internal form explained before. The programmer processes its
short-term memory by using the semantic and syntactic knowledge of the code.

In the Shneiderman and Mayer model, program comprehension involves utilizing
one’s knowledge in identifying chunks of source code and creating an internal rep-
resentation of the code in the form of a hierarchy of abstractions. One may have to
create the hierarchy in several iterations, because it may not be possible to completely
understand code in one pass of reading.

8.3.3 Brooks Model

There are three key elements in the program comprehension model of Brooks [10],
illustrated in Figure 8.4 and explained in the following:

� Code viewed as performing mappings from a problem domain to the program-
ming domain: Developing a software system can be seen as performing a series
of mappings from one domain to the next, starting from the problem domain
and finishing in the programming domain (i.e., solution domain). The results
of the mappings are documented with varying degree of details, whereas the
thought processes that perform the mappings are generally missing from the
documentations. Let us consider the problem of routing data packets by a router
on the Internet.

304 PROGRAM COMPREHENSION

Intermediate
domain knowledge

Construct
and verify
hypotheses

Match

Source code +
internal and external
documentations

Problem domain
knowledge

Programming
domain knowledge

(Mental model)
Hierarchy of primary and subsidiary hypotheses

FIGURE 8.4 An overview of Brooks comprehension model

– Step 1: The input to a router is an IP data packet.

– Step 2: The destination address of the packet is extracted from the packet
header.

– Step 3: A local routing table is looked up to find the output port on the router.

– Step 4: The IP packet is transmitted on that output port to reach the next
router on the path to the destination address.

In Step 2, a standard data structure is used to extract the destination address
value. In Step 3, a prefix matching algorithm is used for table look-up to find the
output port to reach the destination. In Step 4, the IP packet is handed over to the
lower protocol layer, namely, data link layer, with a request to transmit the packet
on the given output port. Thus, the concept of packet routing has created a new
level of domain knowledge, namely, standard data structure to access the fields
of IP packets, prefix matching algorithm, and interfacing with data link layer.
Next, the standard data structure for IP packets, prefix matching algorithm, and
interfacing with data link layer are implemented in the programming language.
Finally, when the router executes the code, an IP packet on a given input port
appears on a certain output port of the router. This example illustrates the
presence of three domains of knowledge: modeling of IP packets, modeling of

COGNITION MODELS FOR PROGRAM UNDERSTANDING 305

table look-up, and modeling of the interface with the lower layer protocol. One
may note that there is domain-specific information in each domain and there is
information about relationships between entities belonging to nearby domains.
An example of relationship between entities in nearby domains is as follows:
the model of an IP packet contains information about the destination address
and the model of table look-up uses the destination address to find out the
output port to reach the destination. For correct and complete understanding of
the program, it is important to understand the mappings and their relationships,
which is realized by means of constructing hypotheses and validating them.

� Understanding the mappings in terms of hypotheses: Programmers read all avail-
able documentations—requirements documents, source code, users manuals,
maintenance manuals, and all other available information about the system—
and try to reconstruct the mappings as much as they can. They are said to
have truly comprehended the program if all the mappings are exactly recon-
structed. However, for complex systems, such a task is far from complete and
may be incorrect. Programmers try to understand the program by formulating
hypotheses in terms of what they find from the available documentations, their
expectations, their current level of understanding of the program, and their
knowledge of the problem domain and programming in general. Hypothesis
construction begins with the generation of a primary hypothesis concerning the
global structure of the program in terms of inputs, outputs, major data struc-
tures, and the processing sequences. A programmer familiar with the program’s
application domain can form the primary hypothesis by looking at the name of
the program and reading its brief description. The primary hypothesis must be
general enough to cover the breadth of the program and specific enough to guide
the construction of subsequent hypotheses. Hypotheses can be organized in a
hierarchical manner to represent both the breadth and depth of comprehending
the program. A large fraction of the hypotheses constructed by experienced
programmers is likely to be valid, whereas novice programmers generally take
more time in constructing valid hypotheses.

� Verification and refinement of hypotheses: A hypothesis represents a program-
mer’s understanding of a certain aspect of the program— and that understanding
may be correct, incorrect, or partially correct. Therefore, a hypothesis must be
verified or refined by means of further understanding of the program. Program-
mers verify a hypothesis by searching the program text and related documen-
tations for beacons that confirm the hypothesis. While reading code to find
beacons, programmers try to develop a broad understanding of the program
by having an open mind about the system, rather than stay focused only on
the hypothesis under consideration. Therefore, strong beacons for any structure
are very likely to be noticed, even if the structure is not related to the present
hypothesis. Noticing strong beacons for structures, whether or not they are used
in the verification of the current hypothesis, is useful for the following reasons:

– The structure can be readily used in a later hypothesis, thereby speeding up
program comprehension.

306 PROGRAM COMPREHENSION

– By discovering new structures in the code, a programmer can design new
hypotheses. A new hypothesis can increase the breadth or depth of compre-
hension.

A programmer can continue constructing and validating hypothesis, thereby creating
a hierarchical structure of hypotheses, where the top one is the primary hypothesis
and the others are subsidiary hypotheses, and code segments are bound to specific
hypothesis. Ideally, all program segments are unambiguously bound to the hypothesis
structure, thereby indicating complete comprehension of the program. However,
programmers may encounter a number of problems while verifying hypotheses.

� The programmer fails to find code to bind to a subsidiary hypothesis.
� The same code is bound to multiple subsidiary hypotheses.
� The programmer fails to bind a code segment to any hypothesis.

The above problems can be resolved by adopting new hypotheses, refining the existing
hypotheses, and altering and adding to the bindings of code segments to hypotheses.
Therefore, programmers need to iterate the process of hypothesis construction and
verification. Brooks has identified a number of factors having an impact on program
comprehension, as explained in the following:

� Programs differ in comprehensibility: We can identify two broad aspects of
programs that affect their comprehensibility, namely, characteristics of the exe-
cutable portion of the source code and the quality of documentation. In the
following, we explain the above two items in detail:

– Characteristics of source code: The number of identifiers, the number of
statements, and the amount of branching affect program comprehension. If a
programmer finds a large number of identifiers and conditional statements in
a program, they need to keep a lot of information in their short-term mem-
ory and will ask many “why” questions while reading code. However, the
constructs that have a higher level of impact on program understanding are
the control constructs. For example, a program with many for and while
loops make understanding difficult. Concurrency and synchronization also
make program understanding very difficult. Finally, process synchroniza-
tion techniques, such as synchronization via global variables, make program
understanding very difficult.

– Quality of documentation: Documentation of programs can be classified into
two groups: internal and external. Internal documentation is closely inter-
twined with the program text, whereas external documentation are found
in entities separated from source code. The programmers can find internal
documentations in the following indicator forms:
✽ prologue comments, including data and variable dictionaries;
✽ variable, structure, procedure and label names;

COGNITION MODELS FOR PROGRAM UNDERSTANDING 307

✽ declarations;
✽ comments associated with statements and code segments;
✽ code indentation; and
✽ input/output formats and header.

On the other hand, external documentation includes the following indicator
forms:

✽ user’s manual;
✽ program logic manuals;
✽ flowcharts;
✽ cross-reference listing;
✽ published descriptions of algorithms; and
✽ published standards referenced by the program.

The usefulness of a certain documentation is a function of the beacon it
describes and the importance of the beacon for the specific hypothesis under
consideration. Different documentations are useful in different stages of
hypothesis construction. For example, in the initial stages of hypothesis verifi-
cation, the hypotheses tend to be very broad and focus on the global properties
of the system. Therefore, documentations with a focus on the overall function-
ality of the system, such as user’s manual and flowcharts, are more effective in
comprehending the program. It is important to note that more documentation
may not necessarily lead to better accuracy in program comprehension. If a
program concept has been described by means of many different indicators,
it is likely that the programmer will easily notice one form and use it. For
instance, a functionality of a program can be considered as a program con-
cept, and the concept may be described in different ways in different places:
requirements specification, user’s manual, and inline comments. As a con-
crete example, “draw a line” is a functionality of a graphics program, and
this functionality can be described in many ways in many places. Different
indicators mean different ways of describing a program concept. For exam-
ple, the “draw a line” functionality is generally described in different ways in
requirements specification, user’s manual, and inline comments. On the other
hand, if a large number of indicators redundantly present the same informa-
tion, then they may obscure or overwhelm other indicators that contain unique
information. In other words, over documentation may be counter-productive
to program comprehension. In addition, a programmer needs to be aware of
the possibility of contradicting indicators, that is, the user’s manual says one
thing and the inline comments say something contradicting.

� Task differences affect comprehension: Programmers may comprehend the same
program from different viewpoints, depending upon the tasks they want to per-
form after comprehending the program. Some examples of tasks that program-
mers may perform on the program are: fixing bugs, modifying the contents and
format details of output, and increasing the readability of code. A programmer

308 PROGRAM COMPREHENSION

who needs to fix bugs in a program needs to be more concerned with the control
structure of the program, whereas a programmer who is trying to reformat the
output will be more focused on the output statements. Therefore, a program-
mer’s perspective of the source code affects how they start their comprehension
process.

� Programmers differ in their ability to comprehend programs: Programmers
possess different abilities to comprehend programs. Their individual abilities
to construct effective hypotheses and verify them depend on the programmer’s
following abilities:

– Domain knowledge: A programmer’s knowledge about the problem domain
plays an important role in understanding the top level goals of the program
and the mappings from layer to layer. For example, a programmer with deep
mathematics background is better positioned to understand code for numer-
ical analysis than a programmer without much mathematics background.
Similarly, a programmer with background in aeronautics is likely to be more
capable of quickly understanding code for airplane wing design.

– Programming knowledge: It is needless to say that programmers must have
a thorough knowledge of the programming language to understand the code
details.

– Comprehension strategies: Comprehension strategies include a large number
of fine decisions: where to start, how to proceed, how to construct hypoth-
esis, how to verify hypothesis, how to refine hypothesis, how quickly to
reject hypothesis, when to postpone the verification of a hypothesis, when
to reconsider a hypothesis whose verification had been postponed before,
and how to read code and documentations. An experienced programmer may
move between program text and documentations quickly, whereas a novice
programmer may read everything line-by-line.

In summary, the comprehension model of Brooks puts emphasis on constructing
a hierarchy of verified hypothesis and associating code segments with lower level,
subsidiary hypotheses. A programmer is said to have completely and correctly com-
prehended a program if each code segment has been assigned to some hypothesis,
no code segment remains unassigned, and no code segment is assigned to multiple
hypothesis. An overview of the Brooks model has been illustrated in Figure 8.4.

8.3.4 Soloway, Adelson, and Ehrlich Model

The top-down program comprehension model of Soloway, Adelson, and Ehrlich
[4, 11], depicted in Figure 8.5, works in a top-down manner, and it applies when the
code or type of code is familiar to the programmer. Two fundamental concepts in
the model are programming plans (also called schemas) and programming rules of
discourse, as explained in Section 8.2.3. Expert programmers have and use specific
programming plans and rules of programming discourse to comprehend programs.

COGNITION MODELS FOR PROGRAM UNDERSTANDING 309

Rules of discourse

(documents)

External representations

Understanding
process:

Matching
documents to

plans

Internal representation

Current mental representation of program

Programming plans

Chunk Chunk

(Plans)

FIGURE 8.5 Soloway, Adelson, and Ehrlich comprehension model

Programs that do not follow the plans and violate the rules of discourse are harder to
understand. Some concrete rules of programming discourse are as follows:

� The names of the variables reflect their purpose.
� Code that is not going to be executed is not included.
� A tested condition must have the potential of evaluating to true.
� A variable that is initialized by means of an assignment statement is subsequently

updated with assignment statements.
� Use an if statement to execute a code segment once, whereas for() and
while() loops are used to repeatedly execute code segments.

Expert programmers have strong expectations about what programs should look like.
When those expectations are not fulfilled, their comprehension performance drops
significantly, almost to the levels of novice programmers.

Similar to the other models, external representations, namely, documentations,
play a key role in program understanding in this model. Examples of documentations
are requirements documents, design documents, source code, user manuals, refer-
ence manuals, maintenance manuals, test case documents, test execution reports, and
even field reports. As depicted in Figure 8.5, the understanding process matches pro-
gramming plans found in source code with external documentations using rules of
discourse. During the understanding process, the programmer creates a hierarchical
knowledge structure representing their understanding of the code. Therefore, com-
prehension begins with a high level program goal, and finer, lower level subgoals
are generated to realize the upper level goals. Programming comprehension is an

310 PROGRAM COMPREHENSION

iterative process, such that, in each iteration, the programmer expands their under-
standing of the code by refining the already identified subgoals and identifying new
subgoals. The process is said to be complete when the programmer has associated all
the programming plans with the goal hierarchy.

8.3.5 Pennington Model

The Pennington model [12, 13] has been depicted in Figure 8.6. The model applies two
concepts, namely, textbase and situation model, developed by van Dijk and Kintsch
[14]. It is important to pay attention to the loop {Match – Mental representation –
Text structure knowledge} followed by the textbase. The programmer iterates through
the loop, thereby incrementally creating the mental representation. Finally, when
the programmer stops iterating through the loop, the final mental representation is
known as the textbase. There is a similar relationship between the second mental

Text structure
knowledge

Plan
knowledge

Match
(Comprehension

process)

Match
(Comprehension

process)

Cross-reference
map

Mental
representation

Mental
representation

External

(Program code)
representations

External
representations
documents

Beacons

Beacons

Hypothesized
new plans

Textbase
(Final mental
model)

Situation model
(Final mental
model)

FIGURE 8.6 Pennington model

COGNITION MODELS FOR PROGRAM UNDERSTANDING 311

representation box and the situation model. The concepts of textbase and situation
model are explained as follows.

� Textbase (Program model): Some people equate being able to recall portions
of a text with comprehending the text. A textbase represents information that
the reader of a text can recall from memory after reading the text. A textbase
includes a hierarchy of representations comprising a surface-level knowledge
of the text, a microstructure of relationships among text propositions, and a
macrostructure organizing the text representation. One may note that a textbase
does not necessarily contain the exact words or lines used in the text. Though a
textbase represents the superficial understanding of a programmer, it is a useful
abstraction of a program for many reasons, because major code segments are
recognized more easily than minor segments. The textbase basically describes
a program model in terms of the control flow of the program, because when
programmers read new code they build a control flow abstraction of the code.
This model is built in a bottom-up manner by:

– identifying beacons for elementary code blocks;

– chunking microstructures into macrostructures; and

– cross-referencing the existing contents of the textbase with the situation
model.

� Situation model: A situation model represents what the text is about. The
model requires knowledge of the real-world domains and objects. Program-
mers mentally represent the code in terms of real-world objects by using plan
knowledge. For example, the code line “status = delete(ProcessQueue,
printJob1);” is mentally represented as “delete the printJob1 from the
queue of processes.” Also, lower level plan knowledge is chunked into higher
level plan knowledge by using the concepts of operations, control flow, data
flow, state, and functions. The situation models are built via cross-referencing
and chunking. To build the situation model, the cross-referencing process takes
information from the textbase and builds higher order plans by means of con-
structing hypotheses.

A high level description of the model is as follows:

� The programmer assimilates their understanding of the code, knowledge of the
text structure, and the situation model to create a mental model in the form of a
textbase.

� The programmer assimilates the external representations of the code, (i.e.,
documentations), plan knowledge (i.e., problem domain knowledge and
intermediate-level programming concepts), and the textbase to create the situa-
tion model.

� The textbase and the situation model are cross-referenced to refine and update
the two models.

Figure 8.6 indicates that the program model represented by the textbase can change
after a programmer starts constructing the situation model. In addition, a new program

312 PROGRAM COMPREHENSION

model can impact the situation model. Cross-referencing between the program model
and the situation model enables the programmer to maintain consistency between the
two models.

While reading code, programmers gain knowledge about the following aspects of
code to varying degree of details.

� Operations: At the level of source code, operations are actions that the program
performs. Some examples are assigning a value to an integer variable, comparing
the values of two integer variables, and swapping the values of two character
variables. Therefore, operations can have varying levels of granularities. After
reading code for a while, a programmer learns what operations the program is
performing.

� Control Flow: Control flow refers to the ordering of operations (i.e., actions)
in a program. By looking at sequences of actions, a programmer can identify
before and after relationships between actions. For example, a programmer can
ask: Has a timer been started after transmitting a data packet? and What actions
are taken after a timer expires?

� Data Flow: Data flow refers to the sequences of transformations being per-
formed on input data to produce program outputs. The concept of input data is
very broad, including values of variables and file contents. Variables are defined
(i.e., initialized), used, redefined, reused, and so on. The value of a variable
can be used in two ways: (i) to perform a computation, known as c-use; and
(ii) to construct a predicate, known as p-use. For example, a variable appearing
in the condition portion of an if() statement is an example of predicate use
of the variable. By understanding the data flow aspect of a program, one can
ask: What are the input variables that determine the values of output variable
LossCount?

� State: In general, the values of all variables of a program define the state of exe-
cution of the program. Programmers can ask useful questions relating to program
states: When an acknowledgement packet arrives, has the timer expired?

� Function: Programs can be characterized by top level goals and subgoals. Also,
programs can be characterized by hierarchies of functions performed by code
blocks. Functional relations concern the goals and subgoals of the program and
their associations with code segments. By understanding functional relations in
a program, one can answer questions such as Is this loop computing the average
monthly credit of a customer? and Is this sequence of actions establishing a
phone connection between two customers?

8.3.6 Integrated Metamodel

When programmers read the code and documentations, they start understanding
the code at all levels of abstractions simultaneously. As they read the code, they
simultaneously understand the program’s control flow (i.e., how the program works),
the program’s functions (i.e., what the program does), and the overall situation of
the program (i.e., what the code is about). Moreover, programmers do not follow a

COGNITION MODELS FOR PROGRAM UNDERSTANDING 313

Situation modelUnderstanding
process

Documents

Schema (plan)

Current mental

representation

of program

Program model

Short-term

memory

Microstructure

Macrostructure

Chunking

Read

Beacons

Short-term

Read

code

Documents and
code

Documents and

Beacons

Chunking Low level

High-level

mappings

mappings

memory

top-down
model

From

From program model

Situation model

Match
comprehension

process

Match
comprehension

process

knowledge
Program domain

knowledge
Problem domain

structures
model
Situation

structures
model
Program

Programming plans
Rules of discourse

structures
Top-down

Knowledge base

Program model

Top-down model

FIGURE 8.7 Integrated Metamodel. From Reference 1. © 1995 IEEE

purely top-down or bottom-up approach to comprehending code. Rather, they become
opportunistic and their strategy combines both top-down and bottom-up approaches.

The integrated code comprehension metamodel proposed by Mayrhauser and Vans
[1, 15] has been depicted in Figure 8.7. The four major components of the model are
explained in the following.

� Top-down model: The top-down model, also known as domain model, represents
domain knowledge about the program [11]. For example, domain knowledge
about IP routing includes IP packet header format, IP table look-up, prefix
matching, and packet transmission. Similarly, domain knowledge about oper-
ating systems includes process scheduling, memory management, and device
management. Domain knowledge provides guidance to programmers while
designing effective strategies to read and understand code. Construction of the
top-down model is effective for familiar code or type of code, because it requires
that the reader possess domain knowledge.

� Program model: When a programmer reads unfamiliar code, he tries to under-
stand the control flow aspect of the code via his programming skills and standard

314 PROGRAM COMPREHENSION

programming constructs [12, 13]. If the programmer understands what the pro-
gram is doing from the control flow aspect, then he has a program model of the
code. However, the programmer has not developed a complete understanding
of the functions of the program.

� Situation model: We have already explained the concept of a situation model
while discussing Pennington’s model in this section. After building a program
model (or, at least a portion of the program model), a programmer builds a
situation model by using control flow and data flow information in a bottom-up
manner. Referring to the earlier example of IP routing (see the top-down model
above), packet forwarding is an example of the situation model.

� Knowledge base: The knowledge base provides a medium for interactions
among the above three models, namely, top-down model, program model,
and situation model, and comprises the following three kinds of knowledge
structures:

– Top-down structures: The top-down structures include two key elements
from the Soloway, Adelson, and Ehrlich model, namely, programming plans
and rules of discourse. The programming plans are categorized into strate-
gic plans, tactical plans, and implementation plans. Strategic plans describe
language-independent, global strategies used in a program. An example of
a strategic plan is the state model of packet discard policy used by an IP
router. Tactical plans are local strategies for solving problems described by the
higher level strategic plans. Therefore, strategic plans are further decomposed
into language-independent tactical plans. For IP routing, tactical plans may
include classification of packets based on the time elapsed so far since their
creation, the average times needed to route them to their destinations, the ser-
vice category of the packet (e.g., voice-over-IP). Algorithms for management
of packet queues are also a part of tactical plans. Strategic plans are understood
by means of fine-grained tactical plans. Finally, implementation plans are lan-
guage dependent and are used to code tactical plans. A Java method used to
implement a queue to reflect the order of arrivals of packets is an example of
implementation plan. Such a queue can be implemented as a doubly linked list.

– Program model structures: The program model structures include two
kinds of knowledge, namely, text-structure knowledge and plan knowledge.
Text-structure knowledge is described by means of control primes, and plan
knowledge is described in terms of algorithms, control flow, data flow, and
data structures.

– Situation model structures: The situation model structures are described in
terms of problem domain knowledge and functional knowledge. The problem
domain knowledge is also known as real-world knowledge.

In the integrated metamodel, all the three models, namely, the top-down model,
the program, and the situation model, are simultaneously built. Here, the meaning of
simultaneity is that no model waits for another model to be completely built; rather,
the programmer takes an opportunistic approach and simultaneously built all the three
models by updating the knowledge base with the understanding of one model and

PROTOCOL ANALYSIS 315

applying the knowledge to further build another model. For example, the knowledge
generated from the program model can be used to expand and/or refine the situation
model, and vice versa. The programmer uses the knowledge base for guidance to
make a transition from one model to another.

The knowledge base is also called long-term memory, and it is generally orga-
nized into schemas (or, plans) as explained before in this section. Schemas are
knowledge structures with two parts: slot types and slot fillers. Knowledge struc-
tures are linked by means of the commonly used concepts of modeling asso-
ciations, namely, kind-of and is-a relationships. As shown in Figure 8.7, the
knowledge base is partitioned into three groups specifically related to the three
comprehension models: programming plans and rules of discourse are related to the
top-down model; program domain knowledge is related to the program model, and
problem domain knowledge and functional knowledge are related to the situation
model. However, structures built by any of the three models are available to the
other models.

8.4 PROTOCOL ANALYSIS

Novice programmers can learn by observing how experienced programmers behave
during program comprehension. Similarly, researchers can learn by observing how
both novice and experienced programmers behave during program comprehension.
Ideally, we want to observe all aspects of programmers’ behavior while they are
trying to understand the code, such as the following:

� What is the programmer studying?
� What is the programmer thinking when he sees something interesting?
� What does the programmer do after he finds something interesting?
� What is the rational thinking behind the programmer’s action?

Answering the above questions is a cumbersome—if not impossible—task. An
elaborate mechanism and much resources are required to be able to observe how
programmers behave during program comprehension. Protocol analysis, studied in
the field of psychological research, is a key concept used in finding answers to
the above questions. It is a methodology for eliciting verbal reports from partici-
pants (programmers in our case) about their thought sequences as a valid source
of data on thinking [16]. In the field of psychology, protocol analysis is used to
study cognitive processes and behavior analysis. It has also been used in usability
testing and educational psychology. Protocol analysis is composed of two sequential
steps:

� Concurrent verbalization of a comprehension task: This step produces textual
data representing the thought sequence of a programmer as he performs the
comprehension task by reading the code. This text is known as protocol data.

� Analysis of protocol data: The protocol data is analyzed to understand the
characteristics of the thinking performed by the programmer.

316 PROGRAM COMPREHENSION

Concurrent verbalization of comprehension tasks: Programmers trying to understand
a software are asked to verbalize their thoughts while working on a specific task,
and the said verbalization is recorded on audio-visual systems. In other words, pro-
grammers are asked to “think aloud” while working: they say loudly everything that
they think, evaluate, and (mentally) move. This is called think-aloud protocol (TAP).
Thinking aloud reflects the knowledge currently active in the programmer’s working
memory. The verbal reports almost always indicate the programmer’s goals, oper-
ators, and evaluative processes [17]. Some examples of concurrent verbalization is
as follows:

� I want to read the external documentations. What? No external documentations!
I wanted to speak with the developers who designed and implemented the
system, but they are all gone! I mean they have left the company.

� Okay. I am reading the code prologue.
� Now I know that the system is for enabling customers to make seat reservations

in a restaurant and placing orders.
� I find interesting keywords in the prologue: phone, cell phone, and laptops.

I think one could make reservations by calling a restaurant or on the Web. I
guess… customers might be able to place orders from their cell phones.

� Let me read the module called MakeReservation.
� …
� On line# 206, I see MobileDeviceType in a data structure to interpret received

messages from clients. This verifies my guess that the system supports user
interactions via smartphones.

� …

The above thinking-aloud action of the programmer can be recorded and tran-
scribed. The transcribed verbal report is called protocol data (or, simply protocol)
about the comprehension process. Protocol data is a list of statements, questions,
and, sometimes, amazements, uttered by a programmer while reading code and doc-
umentations. Protocol data reflects not only the programmer’s thought process, but
also much interesting details noticed about the program. Different programmers with
the same level of experience will most likely produce different protocol data for the
same program, because they are likely to think differently. Protocol data produced by
a novice programmer and an experienced programmer will be very different in their
details, sources of those data, and reasoning.

Analysis of protocol data: There is no common, detailed procedure to analyze protocol
data. Rather, a very general description of protocol analysis is as follows.

� Divide protocol data into several segments, say, speech sentences.
� Assign the segments to different predefined categories. Assignment of proto-

col segments to different categories is called encoding. Coding categories are
generally selected with a model of the verbalization process in mind. For exam-
ple, in the coding system of Ericsson and Simon [16], there are four types of

VISUALIZATION FOR COMPREHENSION 317

segments: intentions, cognitions, planning, and evaluations. Intentions are eas-
ily recognized by verbs of the type, “shall,” “will,” “must,” and so on. The
cognition category contains segments which put attention on selected aspects
of the current situation, and those segments are recognized by constructions
indicating presence and immediacy. Planning is easily recognized by condi-
tional constructions, namely, “if A then B else C.” Evaluations are recognized
by indications of implicit and explicit comparisons of alternatives, namely,
“yes,” “no,” “okay,” and “fine.”

� Analyze the categorized protocol data to build a comprehension model of the
programmer. A comprehension model can be represented as a transition net,
which resembles finite-state machines, where computations (represented with
cognitions and intentions) are associated with states, and planning and evalua-
tions are associated with transitions. Transition nets are easy to construct and
understand, and those are simple tools to model thought processes, verbalized
as a TAP, of programmers.

8.5 VISUALIZATION FOR COMPREHENSION

Software visualization is one of the techniques applied in reverse engineering, and it
has been explained in detail in Section 4.6.6. In this section, we further explain the
idea as it has been supported with various tools for program comprehension.

Cleveland [18] has described a tool, called Program UNderstanding Support envi-
ronment (PUNS), developed at IBM to provide multiple views of a program to aid its
understanding. The tool supports the program understanding task by organizing and
presenting the different viewpoints of a program: a call graph for a set of procedures,
a control flow graph for an individual procedure, a graph representing the relationship
between a file and a procedure that uses the file, a data flow graph, and a definition-use
chain for a variable. By performing static analysis of the code, the tool detects low
level relationships and organizes them in a user-friendly environment so that the user
can easily navigate through the graphs while switching between low level and high
level objects. The two key components of the tool are as follows: (i) a repository and
the associated routines—the routines load the repository and generate responses to
queries from the user; and (ii) a user interface presents information about the program
to the user and aids the user in navigating through the graphs.

Harandi and Ning [19] have presented a program analysis tool (PAT) to repre-
sent programming concepts with an object-oriented framework and a heuristic-based
concept recognition mechanism to extract high level functional concepts from source
code. The tool is based on the human expert’s analysis model, and tries to aid program-
mers answer the following questions. (i) What high level concepts does the program
implement? (ii) How are the high level concepts coded in terms of low level details?
Two types of knowledge are explicitly represented by PAT: program knowledge and
analysis knowledge. The former is represented by programming concepts found in the
code, whereas the later is represented by information contained in program plans. The
tool manages two databases to manipulate the two types of knowledge: (i) a database

318 PROGRAM COMPREHENSION

of coding heuristics, data structure definitions, and functional coding pattern; and
(ii) a database of rules for program plans covering value accumulation, counting,
sequential search of ordered and unordered structures, different kinds of searching,
and sorting.

The positive impact of software visualization, by means of control structure dia-
grams (CSD), on program comprehension has been shown by Hendrix, Cross II,
and Maghsoodloo [20]. Graphical notations are used to render source code in the
CSD approach. The CSD is an algorithmic level diagram that clearly depicts control
constructs, control paths, and the overall structure of each program unit, say, function
or method. The CSD is a kind of extension to other diagrams, such as class diagrams
and data flow diagrams. The authors performed experiments with two groups of stu-
dents: one group was given the source code in plain text only, whereas the second
group received the source code rendered with CSD. All the students were asked to
respond to questions regarding the structure and execution of one source code mod-
ule of a public domain graphics library. The response time and the correctness of
the responses were recorded. Statistical analysis revealed that the CSD significantly
enhanced the students’ program comprehension capabilities.

The concept of fisheye view [21] is another visualization technique to support
programmer’s navigation and comprehension. A fisheye view displays those parts of
the source code that have the highest degree of interest (DOI) related to the current
focus of the programmer. Jakobsen and Hornbaek [22] have presented the design
of a fisheye interface based on the Eclipse Java development environment. Both the
proposed and Eclipse’s interfaces use an overview plus detail approach: an overview
of the entire document is displayed to the right of the detailed view window. The
overview displays the source code reduced in size to fit the entire document within
the space of the overview area. Because of size reduction, the text displayed in the
overview area is unreadable, but one can discern some structural features of the code,
such as method boundaries and blocks of comments. The portion of the code shown
in the detail area is visually connected with its location in the overview. In addition,
the fisheye interface of Jakobsen and Hornbaek possesses the following features.

� Focus and context area: The detailed view of the code divided into two areas:
the focus area and the context area. The context area displays the code context of
the code shown in the focus area. Moreover, the context area displays a distorted
view of the context, because much code needs to be squeezed into a small area
– and this is achieved by diminishing the font size of text.

� Degree of Interest Function: A DOI function is used to determine if and how
much the text lines are diminished in size in the context area. The DOI function
is based on an a priori interest defined by: (i) the type of code line for which the
DOI is being calculated; and (ii) the line’s distance from the focus point. The
type of a code line is determined by deducing the abstract syntax tree node from
the line. Code lines containing keywords package, class, interface, or
method are assigned a higher a priori interest than other lines. Lines containing
if, for, switch, try, while, catch, or finally are also assigned a higher
a priori interest. The distance of a line from the focus point is calculated by using

VISUALIZATION FOR COMPREHENSION 319

the concepts of syntactic distance and semantic distance. Syntactic distance is
measured in terms of the “gap” in their indentation levels; that is, lines in the
same indented block as the focus point are thought to be closer to the focus point
than lines on other indentation levels and lines in other blocks, thus contribut-
ing to a higher DOI. Semantic distance is about the similarity of information
contained between two lines; that is, lines containing declarations of classes,
methods, and variables that are used in the focus point are considered to be
closer to the focus point, thus contributing to a higher DOI. Lines with semantic
closeness to the focus point are highlighted with an alternate background color
to show their semantic relation to the lines in the focus point.

� Magnification Function: A magnification function assigns a priority to each line
of code according to its DOI so that the font size of less interesting lines can be
reduced. Lines with similar degrees of interest are assigned priorities according
to their distance in lines from the focus area so that lines closest to the focus area
are allocated space first. Such a strategy is useful in deciding how to effectively
use the display space.

� User Interaction: The focus area offers the same functionalities for interactions
with the code file as a standard text editor. As the user navigates through the
focus area, the context area automatically changes. Conversely, clicking on a
line in the context area highlights the focus area around that line.

The authors conducted an experiment with 16 participants to compare the usabil-
ity of fisheye view with a common, linear presentation of code. The participants
generally preferred the fisheye view interface and performed comprehension tasks
significantly faster.

UML (Unified Modeling Language) class diagrams can aid programmers in code
comprehension, and the spatial organization of those diagrams play a key role [23].
There are numerous algorithms for drawing UML class diagrams (see [23]). Based on
perceptual theory [24], Sun and Wong [23] have classified criteria and guidelines for
effective layout of UML class diagrams. Several theories of perception have been pro-
posed: Marr’s theory, Gibson’s theory, Gestalt’s theory, and Theory of notation. Two
broad principles, namely, perceptual organization and perceptual segregation can
be applied to organize UML class diagrams. The former indicates when entities are
organized in near proximity, whereas the latter indicates when entities are separated
in Gestalt’s theory of figure–ground segregation. The following are some important
principles of perceptual organization, most of which are from Gestalt’s theory.

� Good figure: Generally, simpler figures with the right amount of details are
considered to be good. Complex figures and figures with a lot of details do not
increase our understanding of structures represented by those figures.

� Similarity: Similar entities appear to be grouped together. For example, entities
with the same shape, say, a circle, appear to indicate the same concept, say,
processing.

� Proximity: Entities that are close to each other are grouped together.

320 PROGRAM COMPREHENSION

� Familiarity (Meaningfulness): If a group of elements appear to be familiar, it is
more likely that they are grouped together.

� Element Connectedness: Entities that are physically connected are seen to be
constituting a single unit.

On the other hand, the concept of perceptual segregation is explained as follows.
When one looks at the environment, what is seen is a whole picture, not as separate
parts. There are images in the environment that people are aware of in a particular
moment—this would be the figure. The ground makes up the image if one does not
focus on it or one is not aware of it. The following factors make an entity more like
a figure that can be easily recognized.

� Symmetry: Symmetric areas are commonly seen as a figure.
� Orientation: Entities with horizontal and vertical orientations are more likely

to be seen as figures than other orientations.
� Contours: Edges are useful in perceiving if something is a figure.

The above explained principles of perceptual organization and perceptual segregation
are expressed in terms of “laws” for drawing UML class diagrams. Those laws are
called:

� Law of good figure
� Law of similarity
� Law of continuation
� Law of proximity
� Law of familiarity
� Law of connectedness
� Law of symmetry
� Law of orientation
� Law of contour.

For example, the law of continuation is described as: minimize edge crossings and
bends, because it is easy to follow a class diagram with minimum number of edge
crossings and bends. They have evaluated the class diagrams produced by two tools,
namely, Borland Together and Rational Rose, by applying the above laws.

Wettel and Lanza [25] have proposed a three-dimensional (3D) visualization of
programs based on the city metaphor. With the city metaphor, classes are represented
as buildings located in city districts which in turn represent packages. The concept of
habitability, which makes a place livable, is at the core of the city metaphor, and the
corresponding programming concept is familiarity. The more familiar a programmer
is with the code, the easier it is to understand the code. Thus, intuitively, habituality
is the characteristic of code that enables programmers coming to the code later in
the software system’s life to understand its intentions and constructions [26]. They

LITERATURE REVIEW 321

also support the concept of locality by providing a navigable environment in which
one can move. In summary, the programmer perceives code as a city with visual
orientation points and freedom of movement and interaction.

8.6 SUMMARY

The chapter began with a general introduction to program comprehension. Next we
explained the concepts of knowledge and mental model. The concept of mental model
was explained by means of the static elements of mental models, dynamic elements of
mental models, and acquiring knowledge from code. This was followed by a discus-
sion of the characteristics of expert programmers. Static elements of mental models
include: text-structures, code chunks, schemas, plans, and hypotheses. On the other
hand, the dynamic elements of mental models are: chunking, cross-referencing, and
strategies. Next, we explained the following comprehension models: Letovsky model,
Shneiderman and Mayer model, Brooks model, Soloway, Adelson, and Ehrlich model,
Pennington model, and Integrated metamodel. Studying programmers’ behaviors and
actions during their program comprehension processes are key to understanding the
details of their thinking. Therefore, we explained the concept of protocol analysis
that involves the think-aloud protocol in which programmers are asked to verbalize
their thinking. Finally, we explained the idea of program understanding by means of
software visualization.

LITERATURE REVIEW

A programmer is said to have understood a program when he is able to explain the
program by means of human-oriented concepts different from the tokens used to
construct the source code of the program. Examples of human-oriented concepts are
the program’s structure and behavior and the program’s relationships to its applica-
tion domain. The concept “Allow the customer to withdraw money” is a high-level
concept, which is much different from the following C-program statement:

if (Balance > RequestedAmount && DailyLimitNotReached)
then GrantWithdrawalRequest(RequestedAmount, Customer).

While reading code, it is important that programmers are able to associate high
level concepts to code segments. Biggerstaff, Mitbander, and Webster [27, 28] have
studied the concept assignment problem: discovering the human-oriented concepts
and assigning them to their implementations as code segments. Human-oriented con-
cept recognition requires plausible reasoning and relies on a priori knowledge from
the specific application domains. Two general steps are applied when attempting
to assign concepts to code: (i) identify which entities and relationships in a large
program are important; (ii) assign those entities and relationships to known or dis-
covered domain concepts and relations. Deep understanding of programs relies on

322 PROGRAM COMPREHENSION

an a priori knowledge of the expectations about the problem domain and commonly
used software architectures. The authors have reported a design recovery tool, called
DESIRE, developed at the Microelectronics and Computer Consortium. The tool uses
informal knowledge, such as variable names and comments, a domain model, and
traditional formal analysis to build a hierarchy of concepts to collectively describe a
program.

Gold and Bennett [29] have proposed a hypothesis-based concept assignment
method. The method assigns descriptive terms to their implementations in source
code. The terms relate to computational intents and are nominated by the programmer.
Informal information, such as identifier names and comments are used in assigning
concepts. The method works in three phases: (i) generate an ordered list of hypotheses
from code; (ii) group the hypotheses using their conceptual affiliation to produce a
list of hypothesis segments; and (iii) evaluate the evidence in the segments and assign
a concept to each segment. The overall output of the method is a list of concepts,
associated with blocks of source code. The effectiveness of the method has been
demonstrated by applying it to legacy code in COLBOL II.

Tonella [30] has proposed to represent a program as a concept lattice of decompo-
sition slices, by combining the concepts of decomposition slice graphs and concept
lattice. A decomposition slice graph is obtained by applying the idea of program slic-
ing [31]. Visual inspection of this representation aids programmers in understanding
the decomposition of the program into functionalities and subfunctionalities.

REFERENCES

[1] A. V. Mayrhauser and A. M. Vans. 1995. Program comprehension during software
maintenance and evolution. Computer, 28(8), 44–55.

[2] P. N. Johnson-Laird. 1983. Mental Models. Harvard University Press, Cambridge, MA.

[3] A. C. Graesser. 1981. Prose Comprehension Beyond the Word. New York: Springer-
Verlag.

[4] E. Soloway and K. Ehrlich. 1984. Empirical studies of programming knowledge. IEEE
Transactions on Software Engineering, SE-10(5), 595–609.

[5] S. Letovsky, 1986. Cognitive Processes in Program Comprehension. Proceedings of
the First Workshop in Empirical Studies of Programmers, 1986, Ablex, Norwood, NJ,
pp. 58–79.

[6] I. Vessey. 1985. Expertise in debugging computer programs: A process analysis. Inter-
national Journal of Man-Machine Studies, 23, 459–494.

[7] R. Guindon. 1990. Knowledge exploited by experts during software systems design.
International Journal of Man-Machine Studies, 33, 279–282.

[8] R. Jeffries, A. A. Turner, P. Polson, and M. E. Atwood. 1981. The processes involved
in designing software. In: Cognitive Skills and Their Acquisition (Ed. R. R. Anderson) ,
Erlbaum, Hillsdale, NJ.

[9] B. Shneiderman and R. Mayer. 1995. Syntactic and semantic interactions in programmer:
A model and experimental results. International Journal of Computer and Information
Sciences, 8(3), 219–238.

REFERENCES 323

[10] R. Brooks. 1983. Towards a theory of the comprehension of computer programs. Inter-
national Journal of Man-Machine Studies, 18, 543–554.

[11] E. Soloway, B. Adelson, and K. Ehrlich. 1988. Knowledge and Processes in the Com-
prehension of Computer Program (Eds M. Chi, R. Glaser, and M. Farr), pp. 129–152.
A. Lawrence Erlbaum Associates, Hillsdale, NJ.

[12] N. Pennington. 1987. Comprehension Strategies in Programming. Proceedings of the 2nd
Workshop on Empirical Studies of Programmers, 1987, Ablex, Norwood, NJ, pp. 100–
112.

[13] N. Pennington. 1987. Stimulus structures and mental representations in expert compre-
hension of computer programs. Cognitive Psychology, 19, 295–341.

[14] T. A. van Dijk and W. Kintsch. 1983. Strategies of Discourse Comprehension. Academic
Press, New York.

[15] A. V. Mayrhauser and A. M. Vans. 1994. Comprehension Processes During Large-scale
Maintenance. Proceedings of the 16th International Conference on Software Engineering,
1994, IEEE Computer Society Press, Los Alamitos, CA, pp. 39–48.

[16] K. A. Ericsson and H. A. Simon. 1984. Protocol Analysis: Verbal Reports as Data. MIT
Press, MA.

[17] C. Fisher. 1987. Advancing the Study of Programming with Computer-aided Protocol
Analysis. Proceedings of the 2nd Workshop on Empirical Studies of Programmers, 1987,
Ablex, Norwood, NJ, pp. 198–216.

[18] L. Cleveland. 1989. A program understanding support environment. IBM Systems Jour-
nal, 28(2), 324–344.

[19] M. T. Harandi and J. Q. Ning. 1990. Knowledge-based program analysis. IEEE Software,
January, pp. 74–81.

[20] D. Hendrix, J. H. Cross II, and S. Maghsoodloo. 2002. The effectiveness of control struc-
ture diagrams in source code comprehension activities. IEEE Transctions on Software
Engineering, 28(5), 463–477.

[21] G. W. Furnas. 1981. The fisheye view: A new look at structured files. In: Readings in
Information Visualization: Using Vision to Think (Eds S. K. Card, J. D. Mackinlay, and
B. Shneiderman), pp. 312–330, Morgan-Kaufmann.

[22] M. R. Jakobsen and K. Hornbaek. 2006. Evaluating a Fisheye View of Source Code.
Proceedings of ACM CHI 2006 Conference on Human Factors in Computing Systems,
2006, ACM, New York.

[23] D. Sun and K. Wong. 2005. On Evaluating the Layout of UML Class Diagrams for
Program Understanding. Proceedings of the 13th International Workshop on Program
Comprehension (IWPC’05), 2005, IEEE Computer Society Press, Los Alamitos, CA.

[24] M. Petre, A. Blackwell, and T. Green. 1998. Cognitive questions in software visualization.
In: Software Visualization: Programming as a Multimedia Experience (Eds J. Stasko,
J. Domingue, M. Brown, and B. Price), pp. 453–480. MIT Press.

[25] R. Wettel and M. Lanza. 2007. Program Comprehension Through Software Habitability.
Proceedings of the 15th International Conference on Program Comprehension (ICPC’07),
2007, IEEE Computer Society Press, Los Alamitos, CA.

[26] R. P. Gabriel. 1996. Patterns of Software. Oxford University Press, New York, NY.

[27] T. J. Biggerstaff, B. Mitbander, and D. Webster. 1993. The Concept Assignment Problem
in Program Understanding. Proceedings of the 15th International Conference on Software
Engineering, 1993, IEEE Computer Society Press, Los Alamitos, CA.

324 PROGRAM COMPREHENSION

[28] T. J. Biggerstaff, B. Mitbander, and D. Webster. 1994. Program understanding and the
concept assignment problem. Communications of the ACM, 37(5), 72–83.

[29] N. Gold and K. Bennett. 2002. Hypothesis-based concept assignment in software main-
tenance. IEE Proceedings-Software, 149(4), 103–110.

[30] P. Tonella. 2003. Using a concept lattice of decomposition slices for program understand-
ing and impact analysis. IEEE Transactions on Software Engineering, 29(6), 495–509.

[31] M. Weiser. 1984. Program Slicing. IEEE Transactions on Software Engineering, 10(4),
352–357.

EXERCISES

1. What is meant by program comprehension?

2. Explain the two broad kinds of knowledge that programmers need to possess for
program comprehension.

3. Explain the concept of mental model in program comprehension.

4. Identify and summarize the static elements of mental models.

5. Identify and summarize the dynamic elements of mental models.

6. Identify and summarize three characteristics of expert programmers from the
standpoint of program comprehension.

7. Briefly explain the Letovsky model for program comprehension.

8. Briefly explain the Shneiderman and Mayer model for program comprehension.

9. Briefly explain the Brooks model for program comprehension.

10. Briefly explain the Soloway, Adelson, and Ehrlich model for program compre-
hension.

11. Briefly explain the Pennington model for program comprehension.

12. Briefly explain the Integrated metamodel for program comprehension.

9
REUSE AND DOMAIN ENGINEERING

Before software can be reusable it first has to be usable.
—Ralph Johnson

9.1 GENERAL IDEA

Software reuse continues to be practiced since the early days of programming. Sep-
arate compilation of Fortran II subroutines and increased use of Fortran subroutine
libraries are examples of reuse practiced in the early days of programming [1]. Formal
software reuse was first introduced by Dough McIlroy. He envisioned an industry
for the development of reusable components and the industrialization of the produc-
tion of application software from off-the-shelf components [2]. Other examples of
early development of reuse include the concept of program families introduced by
David Parnas [3] and the concepts of domain and domain analysis introduced by
Jim Neighbors [4]. A set of programs with several common attributes and features
is known as a program family. On the other hand, domain analysis means finding
objects and operations of a set of similar software systems in a specific problem
domain. A domain is a field of expertise or a specialized body of knowledge. The
concept of program families is related to the concept of domain analysis [3, 5, 6]. In
this context, software reuse involves two main activities: software development with
reuse and software development for reuse.

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

325

326 REUSE AND DOMAIN ENGINEERING

Intuitively, software reuse means using existing assets in the development of a
new system. Reusable assets can be both reusable artifacts and software knowledge.
There are four types of reusable artifacts as follows [7]:

� Data reuse: It involves a standardization of data formats. A standard data
interchange format is necessary to design reusable functions.

� Architectural reuse: This means developing: (i) a set of generic design styles
about the logical structure of software; and (ii) a set of functional elements and
reuse those elements in new systems.

� Design reuse: This deals with the reuse of abstract design. A selected abstract
design is custom implemented to meet the application requirements.

� Program reuse: This means reusing executable code. For example, one may
reuse a pattern-matching system, that was developed as part of a text processing
tool, in a database management system.

The reusability property of a software asset indicates the degree to which the asset
can be reused in another project. For a software component to be reusable, it needs to
exhibit the following properties that directly encourage its use in similar situations.

1. Environmental independence: This means that a component performs a task,
and it makes minimal interactions with other components. Dependencies arise
from the referencing of global data and assumptions made about the operational
usage. The components with the environmental independence characteristic
can be reused irrespective of the environment from which they were originally
captured.

2. High cohesion: A component is said to have high cohesion, if its subsystems
cooperate with each other to achieve a single objective. Components with high
cohesion allow easy interpretation of their functionality.

3. Low coupling: If two components either do not interact with each other at all
or at best interact by passing no data or only a few primitive data items, there
is said to be low coupling. Low coupling components are excellent candidates
for reuse. If a component or function performs one specific task and has few
or no dependencies, it will be much more reusable than if it performs multiple
tasks, has many side effects, and needs other components.

4. Adaptability: Adaptability means being easily changed to run in a new envi-
ronment.

5. Understandability: If a program component is easily comprehended, program-
mers can quickly make decisions about its reuse potential.

6. Reliability: It is the ability of a software system to consistently perform its
intended function without degradation or failure.

7. Portability: It is the usability of the same software in different environment.
Therefore, components that are portable are excellent candidates for reuse.

GENERAL IDEA 327

9.1.1 Benefits of Reuse

One benefits in several ways from software reuse. The most obvious advantage of
reuse is economic benefit. Projects become more cost-effective if some existing assets
are reused. Other tangible benefits of reuse are as follows [8, 9]:

1. Increased reliability: Reusable components tend to reveal more failures because
of the extra efforts put in their design and their extensive usage.

2. Reduced process risk: Reusing components can reduce risks inherent in soft-
ware projects, because a working, presumed fault-free component is being
reused, thereby reducing much uncertainty.

3. Increase productivity: By reusing artifacts and processes, software engineers
become more productive because their activities, namely, specification, design,
implementation, and testing, consume less time and effort. For reuse to be
justified, the time to find the reuse component and adapt it must be much less
than the time needed to develop the component anew. A reuse library stores
reuse assets and provides an interface to search the repository [10, 11].

4. Compliance with standards: Reusing code in a software system being devel-
oped can improve its compliance with standards, thereby raising its quality.
For example, by reusing familiar user interfaces, the usability of a system is
increased.

5. Accelerated development: Software development time can be reduced by
reusing assets.

6. Improved maintainability: Reusable components generally possess some
desired characteristics: modularity, compliance with standards, low coupling
and high cohesion, and consistent programming style. Not surprisingly, these
characteristics are very much sought in maintainable programs. Therefore, any
attempt to raise the reusability of an asset will contribute to better maintain-
ability.

7. Less maintenance effort and time: Reusable components are easy to understand
and change during a software modification. A significant benefit is obtained
while executing perfective maintenance for two reasons: (i) new components
needed during perfective maintenance can be obtained from reuse libraries and
(ii) almost 50% of maintenance cost is attributed to perfective maintenance [12].

9.1.2 Reuse Models

Development of assets with the potential to be reused requires additional capital
investment. The organization can select one or more reuse models that best meet
their business objectives, engineering realities, and management styles [13]. Reuse
models are classified as proactive, reactive, and extractive.

� Proactive approaches: In proactive approaches to developing reusable com-
ponents, the system is designed and implemented for all conceivable
variations; this includes design of reusable assets. A proactive approach is

328 REUSE AND DOMAIN ENGINEERING

to product lines what the Waterfall model is to conventional software. The term
product line development, which is also known as domain engineering, refers
to a “development-for-reuse” process to create reusable software assets (RSA).
This approach might be adopted by organizations that can accurately estimate
the long-term requirements for their product line. However, this approach faces
an investment risk if the future product requirements are not aligned with the
projected requirements.

� Reactive approaches: In this approach, while developing products, reusable
assets are developed if a reuse opportunity arises [14]. This approach works, if
(i) it is difficult to perform long-term predictions of requirements for product
variations; or (ii) an organization needs to maintain an aggressive production
schedule with not much resources to develop reusable assets. The cost to develop
assets can be amortized over several products. However, in the absence of a
common, solid product architecture in a domain, continuous reengineering of
products can render this approach more expensive.

� Extractive approaches: The extractive approaches [15] fall in between the proac-
tive approaches and the reactive ones. To make a domain engineering’s initial
baseline, an extractive approach reuses some operational software products.
Therefore, this approach applies to organizations that have accumulated both
artifacts and experiences in a domain, and want to rapidly move from traditional
to domain engineering.

9.1.3 Factors Influencing Reuse

Reuse factors are the practices that can be applied to increase the reuse of artifacts.
There are several factors that influence software reuse. Frakes and Gandel [16] iden-
tified four major factors for systematic software reuse: managerial, legal, economic,
and technical.

� Managerial: Systematic reuse requires upper management support, because:
(i) it may need years of investment before it pays off; and (ii) it involves
changes in organization funding and management structure that can only be
implemented with executive management support. The management activities
that directly support a reuse program are creating and managing incentives,
educating personnel, and effecting a change in culture [17].

� Legal: This factor is linked with cultural, social, and political factors, and it
presents very difficult problems. Potential problems include proprietary and
copyright issues, liabilities and responsibilities of reusable software, and con-
tractual requirements involving reuse. Use of third-party software makes this
issue more important [18].

� Economic: Software reuse will succeed only if it provides economic benefits.
A study by Favaro [19] found that some artifacts need to be reused more than
13 times to recoup the extra cost of developing reusable components.

� Technical: This factor has received much attention from the researchers actively
engaged in library development [11], object-oriented development paradigm

DOMAIN ENGINEERING 329

[20], and domain engineering [21]. A reuse library stores reusable assets and
provides an interface to search the repository. One can collect library assets in
a number of ways: (i) reengineer the existing system components; (ii) design
and build new assets; and (iii) purchase assets from other sources. Next, those
reusable components are put through a certification process, including testing
and verification, to assure that the components have the desired attributes [22].
Finally, the components are put into various categories for effective searching.

9.1.4 Success Factors of Reuse

An organization that attempts to implement a reuse program needs to address a broad
spectrum of technical and nontechnical problems. It is difficult and risky to execute
a successful reuse program. There is no common solution that all organizations can
follow. Rather, each organization must analyze its own requirements, implement a
process to measure the effectiveness of reuse, define the expected benefits, discover
and eliminate impediments, and manage risks. The following steps aid organizations
in running a successful reuse program [20]:

� Develop software with the product line approach.
� Develop software architectures to standardize data formats and product inter-

faces.
� Develop generic software architectures for product lines.
� Incorporate off-the-shelf components.
� Perform domain modeling of reusable components.
� Follow a software reuse methodology and measurement process.
� Ensure that management understands reuse issues at technical and nontechnical

levels.
� Support reuse by means of tools and methods.
� Support reuse by placing reuse advocates in senior management.
� Practice reusing requirements and design in addition to reusing code.

9.2 DOMAIN ENGINEERING

The term domain engineering refers to a “development-for-reuse” process to create
RSA. It is also referred to as product line development. Domain engineering is the set
of activities that are executed to create RSA to be used in specific software projects.
For a software product family, the requirements of the family are identified and a
reusable, generic software structure is designed to develop members of the family. In
the following, we explain analysis, design, and implementation activities of domain
engineering.

� Domain analysis comprises three main steps: (i) identify the family of products
to be constructed; (ii) determine the variable and common features in the family
of products; and (iii) develop the specifications of the product family.

330 REUSE AND DOMAIN ENGINEERING

The feature-oriented domain analysis (FODA) method developed at the Soft-
ware Engineering Institute [23] is a well-known method for domain analysis.
The FODA method describes a process for domain analysis to discover, analyze,
and document commonality and differences within a domain.

� Domain design comprises two main steps. (i) Develop a generic software
architecture for the family of products under consideration; and (ii) develop
a plan to create individual systems based on reusable assets. The design activity
emphasizes a common architecture of related systems. The common architec-
ture becomes the basis for system construction and incremental growth. The
design activities are supported by architecture description languages (ADLs),
namely, Acme [24], and interface definition languages (IDLs) [25], such as
Facebook’s Thrift.

� Domain implementation involves the following broad activities: (i) identify
reusable components based on the outcome of domain analysis; (ii) acquire
and create reusable assets by applying the domain knowledge acquired in the
process of domain analysis and the generic software architecture constructed in
the domain design phase; (iii) catalogue the reusable assets into a component
library. Development, management, and maintenance of a repository of reusable
assets make up the core of domain implementation.

Application engineering (a.k.a. product development) is complementary to domain
engineering. It refers to a “development-with-reuse” process to create specific sys-
tems by using the fabricated assets defined in domain engineering [26]. Application
engineering composes specific application systems by: (i) reusing existing assets; (ii)
developing any new components that are needed; (iii) reengineering some existent
software; and (iv) testing the overall system. Similar to the standard practices in soft-
ware engineering [27], it begins by eliciting requirements, analyzing the requirements,
and writing a specification. However, the requirements are specified in incremental
chunks, called delta, from a set of generic system requirements developed during
domain engineering.

Both domain and application engineering processes feed on each other, as illus-
trated in Figure 9.1. Application engineering is fed with reusable assets from domain
engineering, whereas domain engineering is fed with new requirements from appli-
cation engineering. A closed loop occurs between the two engineering processes
because application engineers may discover that the present reusable assets do not
cover some requirements. Therefore, some application-specific development and/or

Domain engineering

Domain analysis

Domain design

Domain implementation

Application engineering

System requirements

System derivation

System tailoring

Reusable assets

New requirements

FIGURE 9.1 Feedback between domain and application engineering

DOMAIN ENGINEERING 331

tailoring is required [28]. To make the reusable assets consistent with the needs of
the product, the new requirements are fed back into domain engineering.

In the following sections, we briefly discuss nine domain engineering approaches
reported in the literature [13, 29, 30]: Draco, domain analysis and reuse environment
(DARE), family-oriented abstraction, specification, and tTransportation (FAST),
feature-oriented reuse method (FORM), “Komponentbasierte Anwendungsentwick-
lung” (KobrA), product line UML-based software engineering (PLUS), product line
software engineering (PuLSE), Koala, and reuse-driven software engineering busi-
ness (RSEB).

9.2.1 Draco

Based on transformation technology, Draco is the first prototype of the domain
engineering approach proposed by Neighbors [5]. Neighbor’s work provided an
important contribution in domain engineering in the form of generative programming
and transformation systems. However, it is very complex to apply in production
environment.

9.2.2 DARE

A method and a toolset for performing domain engineering constitute DARE [31].
To make domain models, the DARE process utilizes three information sources: code,
documents, and expert knowledge. The generic architectures, feature tables, and
facet tables, and all models and information are stored in a domain book. Successful
industry applications of DARE include building of database at Oracle [32].

9.2.3 FAST

The former Lucent Technologies (now Alcatel-Lucent) introduced the FAST method
in 1999 [33] to develop telecommunication infrastructure. Applied in product line
engineering, FAST defines a pattern of engineering processes. Three sub-processes
constitute FAST: domain qualification (DQ), domain engineering (DE), and appli-
cation engineering (AE). A product line that is worthy of investment is identified
with domain qualification. Domain engineering enables the development of product
line environments and assets. By using product line assets, application engineering
develops products rapidly.

9.2.4 FORM

FORM, developed at Pohang University of Science and Technology [34, 35], is
basically an extension of the FODA method [23]. FORM finds commonalities and
differences in a product line in terms of features, and uses those findings to develop
architectures and components for product lines. A feature model captures the com-
monalities and variabilities to support: (i) development of assets for reusable product
lines; and (ii) development of products using the reusable assets. Therefore, two
processes are key to FORM: asset development and product development.

332 REUSE AND DOMAIN ENGINEERING

9.2.5 KobrA

KobrA is a method for component-based application development [30]. The two
main activities in KobrA are: framework engineering and application engineering.
By means of framework engineering, one makes a common framework that manifests
all variations in products making up the family. A set of components are organized in
the form of a tree in a framework, and each component is described at the specification
level and realization level. The specification level of abstraction described the compo-
nents externally visible properties and behavior. The realization level of abstraction
describes how the component satisfies the contracts with other components. Next,
application engineering is applied on the framework to build specific applications.

9.2.6 PLUS

The UML-based modeling method to develop single systems has been extended in
PLUS to support product lines [36]. In PLUS, (i) for requirements analysis activities,
use-case modeling and feature modeling are provided; (ii) there are mechanisms to
model the static aspects, dynamic interactions, state machines, and class dependency
for product lines; and (iii) component-based software design and software architecture
patterns are supported for product line design activity.

9.2.7 PuLSE

Product line software engineering (PuLSE) methodology was developed to enable the
conceptualization and deployment of software product lines for large enterprises [37].
The PuLSE methodology comprises three key elements: (i) the deployment phases;
(ii) the technical components; and (iii) the support components. The deployment
phases describe activities for initialization, construction of infrastructure, usage of
infrastructure, and management and evolution of product lines. The technical compo-
nents describe how to operationalize the development of the product line. The support
components are guidelines enabling better evolution, adaptation, and deployment of
the product line.

9.2.8 Koala

Koala is a language to describe architectures for product lines for embedded software
to be used in home appliances [38]. It was originally developed at Philips Corporation.
To support product variations, diversity interfaces and switches are provided in Koala.
Internal diversity of components are handled by means of diversity interfaces and the
switches are used to route connections between interfaces. The extra functions of a
component are treated as optional interfaces.

9.2.9 RSEB

RSEB is a use-case-driven reuse method based on UML [39]. It was designed to
facilitate both asset reuse and the development of reusable software. RSEB supports
both domain engineering and application engineering. The former comprises two
processes: application family engineering and component system engineering. The

REUSE CAPABILITY 333

former is used to develop and maintain the overall layered system architecture. On
the other hand, the latter is used to develop component systems.

9.3 REUSE CAPABILITY

Reuse capability concerns gaining a comprehensive understanding of the development
process of an organization with respect to reusing assets and establishing priorities for
improving the extent of reuse. It is defined by Ted Davis [40] as “the range of expected
results in reuse proficiency, efficiency, and effectiveness that can be achieved by an
organizations process” (p. 128). The concept of reuse opportunities is used as a basis
to define reuse efficiency and reuse proficiency. An asset provides a reuse opportunity
when the asset—to be developed or existing—satisfies an anticipated or current need.
There are two broad kinds of reuse opportunities: targeted and potential. Targeted
reuse opportunities are those reuse opportunities on which the organization explicitly
spends much efforts. On the other hand, potential reuse opportunities are those reuse
opportunities which will turn into actual reuse, if exploited. Not always a targeted
opportunity turns into a potential opportunity.

Now we define reuse proficiency and reuse efficiency by means of

RA, RP, and RT ,

where:

RA counts the actual reuse opportunities exploited;
RP counts the potential opportunities for reuse; and
RT counts the targeted opportunities for reuse.

Reuse proficiency is the ratio RA∕RP, and reuse efficiency is the ratio RA∕RT . The
benefits and costs of reusing assets in a project are succinctly captured by the concept
of reuse effectiveness, which is represented as:

N(CNR − CR)∕CD,

where:

N = number of products, systems, or versions developed with the reusable
assets;

CNR = cost of developing new assets without using reusable assets;
CR = cost of utilizing, that is, identifying, assessing, and adapting reusable

assets;
CD = cost of domain engineering, that is, developing assets for reuse and

building a reuse infrastructure.

The concepts of reuse efficiency and reuse proficiency are used to measure the
impacts of reuse capability. The linkage between the two concepts and reuse capability
has been illustrated in Figure 9.2. The ovals denote the sets of potential, target, and
actual reuse opportunities. For simplicity, assume that the areas of the ovals denote
the counts of the assets corresponding to those opportunities. Now, in terms of the
elements of the figure, reuse efficiency is calculated by dividing the area of the actual
reuse oval by the area of the target oval. Similarly, reuse proficiency is calculated by

334 REUSE AND DOMAIN ENGINEERING

Target

opportunities

Target

opportunities

Potential

opportunities

Potential

opportunities

Reuse efficiency = 0.10

Reuse profeciency = 0.08
Reuse efficiency = 0.95

Reuse profeciency = 0.65

Actual reuse

Actual reuse

Low reuse capability High reuse capability

FIGURE 9.2 Reuse capability. From Reference 40. © 1993 IEEE

dividing the area of the actual reuse oval by the area of the oval representing potential
reuse.

Two possible scenarios of low reuse capability and high reuse concerning the
extent of reuse capability can be found in Figure 9.2. An informal approach to
reuse results in low reuse, because potential opportunities—shown as dashes—are
overlooked. In Figure 9.2, potential opportunities may exclude target opportunities,
because: (i) the potential opportunities are unknown; and (ii) target opportunities may
not be planned explicitly. Therefore, with many target opportunities falling outside
the potential opportunities, the resulting reuse efficiency and proficiency become low.
In addition, with resources being spent on many opportunities not resulting in actual
reuse, reuse effectiveness becomes low.

9.4 MATURITY MODELS

A reuse maturity model (RMM) is an aid for performing planning and self-assessment
to improve an organization’s capability to reuse existing software artifacts. Such a
model helps the organization’s understanding of their existing and future goals for
reuse activities. In other words, such a model can be used in planning systematic reuse.
Organizations developing and maintaining multiple products, software systems, and
versions are the primary stakeholders of the maturity models. In this section we
discuss briefly three maturity models: reuse maturity model [41], reuse capability
model [40], and RiSE maturity model [42].

9.4.1 Reuse Maturity Model

In circa 1991, Koltun and Hudson [41] presented the first RMM. The model provides
a concise form of obtaining information on reuse practices in organizations. The
model comprises 5 levels and 10 dimensions of reuse maturity as shown in Table 9.1.
The columns of the table indicate the different levels of reuse maturity. Maturity
improves on a scale from 1 to 5, where level 1 corresponds to Initial/Chaotic state
and level 5 corresponds to the Ingrained state. Much automated tool support and
measurement of reuse to track progress are the hallmarks of level 5. The rows of the
table correspond to different dimensions of reuse maturity, namely, Planning to reuse

T
A

B
L

E
9.

1
R

eu
se

M
at

ur
it

y
M

od
el

R
eu

se
M

at
ur

ity
L

ev
el

s

D
im

en
si

on
of

R
eu

se
1.

In
iti

al
/C

ha
ot

ic
2.

M
on

ito
re

d
3.

C
oo

rd
in

at
ed

4.
Pl

an
ne

d
5.

In
gr

ai
ne

d

M
ot

iv
at

io
n/

C
ul

tu
re

R
eu

se
di

sc
ou

ra
ge

d
R

eu
se

en
co

ur
ag

ed
R

eu
se

in
ce

nt
iv

iz
ed

re
in

fo
rc

ed
re

w
ar

de
d

R
eu

se
in

do
ct

ri
na

te
d

R
eu

se
in

th
e

w
ay

w
e

do
bu

si
ne

ss
P

la
nn

in
g

to
re

us
e

N
on

e
G

ra
ss

ro
ot

s
ac

tiv
ity

Ta
rg

et
s

of
op

po
rt

un
ity

B
us

in
es

s
im

pe
ra

tiv
e

Pa
rt

of
st

ra
te

gi
c

pl
an

B
re

ad
th

of
re

us
e

In
di

vi
du

al
W

or
k

gr
ou

p
D

ep
ar

tm
en

t
D

iv
is

io
n

E
nt

er
pr

is
e

w
id

e
R

es
po

ns
ib

le
fo

r
m

ak
in

g
re

us
e

ha
pp

en

In
di

vi
du

al
in

iti
at

iv
e

Sh
ar

ed
in

iti
at

iv
e

D
ed

ic
at

ed
in

di
vi

du
al

D
ed

ic
at

ed
gr

ou
p

C
or

po
ra

te
gr

ou
p

w
ith

di
vi

si
on

lia
is

on
s

P
ro

ce
ss

by
w

hi
ch

re
us

e
is

le
ve

ra
ge

d
R

eu
se

pr
oc

es
s

ch
ao

tic
;

un
cl

ea
r

ho
w

re
us

e
co

m
es

in

R
eu

se
qu

es
tio

ns
ra

is
ed

at
de

si
gn

re
vi

ew
s

(a
ft

er
th

e
fa

ct
)

D
es

ig
n

em
ph

as
is

pl
ac

ed
on

of
f-

th
e-

sh
el

f
pa

rt
s

Fo
cu

s
on

de
ve

lo
pi

ng
fa

m
ili

es
of

pr
od

uc
ts

A
ll

so
ft

w
ar

e
pr

od
uc

ts
ar

e
ge

ne
ri

ci
ze

d
fo

r
fu

tu
re

re
us

e
R

eu
se

as
se

ts
Sa

lv
ag

e
ya

rd
(n

o
ap

pa
re

nt
st

ru
ct

ur
e

to
co

lle
ct

io
n)

C
at

al
og

id
en

tifi
es

la
ng

ua
ge

-
an

d
pl

at
fo

rm
-s

pe
ci

fic
pa

rt
s

C
at

al
og

or
ga

ni
ze

d
al

on
g

ap
pl

ic
at

io
n

sp
ec

ifi
c

lin
es

C
at

al
og

in
cl

ud
es

ge
ne

ri
c

da
ta

pr
oc

es
si

ng
fu

nc
tio

ns

Pl
an

ne
d

ac
tiv

ity
to

ac
qu

ir
e

or
de

ve
lo

p
m

is
si

ng
pi

ec
es

in
ca

ta
lo

g
C

la
ss

ifi
ca

ti
on

ac
ti

vi
ty

In
fo

rm
al

,i
nd

iv
id

ua
liz

ed
M

ul
tip

le
in

de
pe

nd
en

t
sc

he
m

es
fo

r
cl

as
si

fy
in

g
pa

rt
s

Si
ng

le
sc

he
m

e
ca

ta
lo

g
pu

bl
is

he
d

pe
ri

od
ic

al
ly

So
m

e
do

m
ai

n
an

al
ys

es
do

ne
to

de
te

rm
in

e
ca

te
go

ri
es

Fo
rm

al
,c

om
pl

et
e

co
ns

is
te

nt
tim

el
y

cl
as

si
fic

at
io

n
Te

ch
no

lo
gy

su
pp

or
t

Pe
rs

on
al

to
ol

s,
if

an
y

M
an

y
to

ol
s,

bu
tn

ot
sp

ec
ia

liz
ed

fo
r

re
us

e
C

la
ss

ifi
ca

tio
n

ai
ds

an
d

sy
nt

he
si

s
ai

ds
E

le
ct

ro
ni

c
lib

ra
ry

se
pa

ra
te

fr
om

de
ve

lo
pm

en
t

en
vi

ro
nm

en
t

A
ut

om
at

ed
su

pp
or

t
in

te
gr

at
ed

w
ith

de
ve

lo
pm

en
t

en
vi

ro
nm

en
t

M
et

ri
cs

N
o

m
et

ri
cs

on
re

us
e

le
ve

l,
pa

yo
ff

,o
r

co
st

s
N

um
be

r
of

lin
es

of
co

de
us

ed
in

co
st

m
od

el
s

M
at

ur
ity

tr
ac

ki
ng

of
re

us
e

oc
cu

rr
en

ce
s

of
ca

ta
lo

g
pa

rt
s

A
na

ly
se

s
do

ne
to

id
en

tif
y

ex
pe

ct
ed

pa
yo

ff
s

fr
om

de
ve

lo
pi

ng
re

us
ab

le
pa

rt
s

A
ll

sy
st

em
ut

ili
tie

s,
so

ft
w

ar
e

to
ol

s
an

d
ac

co
un

tin
g

m
ec

ha
ni

sm
s

in
st

ru
m

en
te

d
to

tr
ac

k
re

us
e

L
eg

al
,c

on
tr

ac
tu

al
ac

co
un

ti
ng

co
ns

id
er

at
io

ns

In
hi

bi
tio

n
to

ge
tti

ng
st

ar
te

d
In

te
rn

al
ac

co
un

tin
g

sc
he

m
e

fo
r

sh
ar

in
g

co
st

s
an

d
al

lo
ca

tin
g

be
ne

fit
s

D
at

a
ri

gh
ts

an
d

co
m

pe
ns

at
io

n
is

su
es

re
so

lv
ed

w
ith

cu
st

om
er

R
oy

al
ty

sc
he

m
e

fo
r

al
l

su
pp

lie
rs

an
d

cu
st

om
er

s

So
ft

w
ar

e
tr

ea
te

d
as

ke
y

ca
pi

ta
la

ss
et

So
ur

ce
:

Fr
om

R
ef

er
en

ce
43

.©
19

96
A

C
M

.

335

336 REUSE AND DOMAIN ENGINEERING

and Motivation/Culture. For each row, the amount of organizational commitment
increases as the organization moves from level 1 to level 5.

To benefit from this model, an organization evaluates its current maturity level
before embarking on a reuse improvement program. Essentially, the organization
identifies its placement on each of the 10 dimensions. Next, activities are performed
to raise the level of reuse maturity. Upon reaching the highest level of reuse maturity,
reuse activities become part of the business practice. The main obstacles to reaching
the highest level of reuse are: technical, cultural, financial, institutional, and legal.
This model was not applied in real case studies, but are considered as the key insights
for the reuse capability model developed by Ted Davis [40].

9.4.2 Reuse Capability Model

The reuse capability model (RCM) [40] is used together with the reuse adoption
process defined by the Software Production Consortium (SPC) [44]. The adoption
process for reuse is a solution to implement a program for reuse, and it is based on
the implementation model defined by Rubén Prieto-Diaz [14]. RCM comprises two
models, namely, an assessment model and an implementation model. An organization
can use the assessment model to: (i) understand its current capability to reuse artifacts;
and (ii) discover opportunities to improve its reuse capability. A set of critical success
factors are at the core of the assessment model. The success factors are described as
goals that an organization uses to evaluate the present state of their reuse practice. The
organization will get to know its strengths and learn opportunities for improvement.
On the other hand, the organization can apply the implementation model in prioritizing
the critical factor goals by grouping them into stages.

Assessment model: The success factors in the assessment model are grouped into four
categories: application development, asset development, management, and process
and technology. The critical success factors have been listed in Table 9.2. The various
groups of critical success factors reflect the different views of reuse in an organization.

Now we briefly explain the four groups of factors one-by-one.

� Application Development Factors: The application development factors concern
issues which are critical to the successful reuse of assets in the development of
products. These factors relate to all the activities in the processes followed by
the organization to develop software products.

� Asset Development Factors: The asset development factors concern issues
which are critical to the successful development or acquisition of assets for
reuse. These factors relate to all types of reusable assets, namely, requirements,
architectures, design, source code, and test cases.

� Management Factors: The management factors concern issues which are critical
to management’s role in enabling reuse. These factors are quite broad, relat-
ing to such diverse aspects as products, business of the organization, finance,
marketing, and product management.

� Process and Technology Factors: This group of factors concern general process
issues across asset development, application development, and the management.

MATURITY MODELS 337

TABLE 9.2 Critical Success Factors

Application
Development
Factors

Asset Development
Factors

Management
Factors

Process and
Technology
Factors

Asset awareness and
accessibility

Needs identification Organizational
commitment

Process definition
and integration

Asset identification Asset interface and
architecture definition

Planning and
direction

Measurement

Asset evaluation and
verification

Needs and solution
relationships

Cost and pricing Continuous
process
improvement

Application
integrability

Commonality and
variability definition

Legal and contractual
constraints

Training

Asset value
determination

Tool support

Asset reusability
Asset quality

Technology
innovation

Each critical success factor is defined in terms of one or more goals. The critical
success factors and the corresponding goals have been described in the guidebook for
adopting reuse [44]. The goals describe what is to be achieved—and not how those
goals can be realized. Therefore, there is much flexibility in achieving those goals.
As an example, the needs identification factor has the following goals:

� Identify the current needs for solutions of the developer.
� Identify the anticipated needs for solutions of the developer.
� Identify the current needs for solutions of the customer.
� Identify the anticipated needs for solutions of the customer.
� Use the identified needs as a reference to develop or acquire reusable assets to

meet the specified needs.

Implementation model: Establishing goals and making strategies to achieve those
goals are complex tasks. The goals are divided into four stages, namely, opportunistic,
integrated, leveraged, and anticipating. In this section, brief descriptions of the four
stages will be provided by focusing on the key characteristics of the stages. Specifi-
cally, each characteristic relates to a goal in the implementation model. More details
of the implementation model can be found in the reuse adoption guidebook [44].

� Opportunistic: A common reuse strategy does not fit all projects so each project
develops its own strategy to reuse artifacts. The strategy includes: (i) defining
reuse activities in the project plan; (ii) using tools to support the reuse activities;
(iii) identifying the needs of the developers and developing or acquiring reusable

338 REUSE AND DOMAIN ENGINEERING

artifacts; and (iv) identifying reusable artifacts throughout the life cycle of the
project.

� Integrated: The organization defines a reuse process and integrates it with its
development process. It is important for the organization to support the reuse
process by means of policies, procedures, resource allocation, and organiza-
tional structure.

� Leveraged: To extract the maximum benefits from reuse in groups of related
products, a strategy for reuse in product lines is developed.

� Anticipating: Reusable assets are acquired or developed based on anticipated
customer needs.

9.4.3 RiSE Maturity Model

The RiSE maturity model [42] was developed during the RiSE project through discus-
sions with industry partners [45]. The model structure intends to be flexible, modular,
and adaptable to the needs of the organization that will use them. Thus, the model
was based on two principles: modularity and responsibility. The term modularity is
used in the sense of processes with less coupling and maximum cohesion, and the
term responsibility is used in the sense of the possibility to establish one or more
team responsible for each process, or activity. The RiSE maturity model includes: (i)
reuse practices grouped by perspectives and in organized levels representing different
degrees of software reuse achieved; and (ii) reuse elements describing fundamental
parts of reuse technology, such as assets, documentation, tools, and environments.
Reuse elements and reuse assets are synonymous.

Maturity levels, as listed below, indicate the: (i) reuse elements that are expected
to be used in the organization; and (ii) the reuse practices that are expected to be
implemented and followed in the organization. The activities at level n and higher
are based on the reuse elements implemented and practices followed at level n − 1,
such that 1 < n ≤ 5. The five maturity levels are as follows:

1. Level 1: Ad hoc Reuse

2. Level 2: Basic Reuse

3. Level 3: Initial Reuse

4. Level 4: Organized Reuse

5. Level 5: Systematic Reuse

Associated with each level of maturity are a list of reuse practices and a list of
reuse elements. Each maturity level is characterized by its own goals to be achieved.
The maturity levels are discussed next.

Level 1: Ad hoc Reuse At Level 1: (i) software is developed in a traditional way,
without reusing assets; (ii) management does not support reuse; and (iii) reuse prac-
tices might be performed as an individual initiative by developers. By default, all
organizations making no reuse efforts fall in Level 1.

MATURITY MODELS 339

Level 2: Basic Reuse At Level 2, simple tools are used to develop reusable technical
assets, namely, documents, software design, and code. Those technical assets con-
sider all the requirements of the system without making any distinction between
domain-specific aspects and business aspects. Developers manually modify the
reusable assets to complete an implementation. Organizations benefit by acquir-
ing experience in system design and software reuse. The following goals are defined
for Level 2.

� Goal 1: Best practices in reuse are adopted in the design and implementation of
the software product.

� Goal 2: Use the technical assets, namely, code and documentation, to build
software.

Level 3: Initial Reuse At Level 3, organizations make a distinction between busi-
ness assets and domain-related assets, because it is useful to maintain the business
issues independent from the implementation issues. The advantage of the aforemen-
tioned decoupling is that the same implementation asset can be reused in different
projects having slightly different business requirements. Separating business assets
from domain-related assets is important for system families. Next, reuse practices are
institutionalized. Moreover, to automate the engineering process, efforts are made.
An asset manager, which is basically a reuse repository, stores the engineering pro-
cess knowledge [41]. To evaluate the effectiveness of reuse activities and practices,
metrics are defined. For example, a count of the times a certain module is reused is a
measure of the reuse of that module. At Level 3, the following goals are defined:

� Goal 1: Separate business-specific aspects from domain-related aspects.
� Goal 2: Use defined process.

Level 4: Organized Reuse Level 4 is characterized by a better integration of all
reuse abstraction levels. Reuse is introduced at the highest abstraction level. Staff
members know the reuse vocabulary and have reuse expertise. Reuse occurs across
all functional areas. At Level 4, domain engineering is performed. Reuse-based
processes are in place to support and encourage reuse, and the organization has a
focus on developing families of products. The organization has all the data needed
to decide which assets to build or what to acquire, because it has a reuse inventory
organized along application-specific lines. The reuse practices within the projects start
to be quantitatively managed, and quality metrics are collected and analyzed. All costs
associated with assets development and all savings from its reuse are reported and
shared. Projects are statistically controlled through standardized metrics that lead to
a better control of the objectives of the project. For Level 4, the goals and practices
are as follows:

� Goal 1: Enhance the organization’s competitive advantage.
� Goal 2: Integrate reuse activities in the whole software development process.
� Goal 3: Ensure efficient reuse performance.

340 REUSE AND DOMAIN ENGINEERING

Level 5: Systematic Reuse At Level 5, the organization’s knowledge base is
planned, organized, stored, and maintained in a reuse inventory (a.k.a. asset man-
ager) and is used with focus on the software development process. By the time an
organization reaches this level, all major obstacles to reuse have been removed. All
definitions, guidelines, and standards are in place enterprise wide. Domain engineer-
ing practices are put in place. Knowledge and reusable assets are regularly validated
to make strategic assets reusable. For future reuse, all software products are gener-
alized. Domain analysis is performed across all product lines. All system utilities,
tools, and accounting mechanisms are instrumented to track reuse. From the reuse
inventory perspective, the development process supports a planned activity to acquire
or develop missing pieces in the catalog. From the technological perspective, the
organization has automated reuse support integrated with their development process.
From the business perspective, the organization benefits from having implemented a
software reuse approach. The organization expresses its system development capa-
bility in the form of reusable assets. The capability to reuse assets accelerates the
time to market. All costs are associated to a product line or a particular asset and all
savings from its reuse are reported and shared. At Level 5, the goals and practices are
as follows.

� Goal 1: Reuse is “the way we do business.”
� Goal 2: Establish and maintain complete reuse-centric development.

Perspective and Factors In the RiSE maturity model, 15 factors were considered,
and those are divided into 4 perspectives: organizational, business, technological, and
processes. The organizational perspective concerns activities that are closely related
to management decisions required to organize and manage a reuse project. Table 9.3
shows the factors related to the organizational perspective and their distribution
across the RiSE maturity model levels. The business perspective addresses issues
related to the business domain and market decisions for the organization. Table 9.4
shows the factors related to the business perspective. The technological perspective
covers development activities in the software reuse engineering discipline and factors
related to the infrastructure and technological environment. Table 9.5 shows the
factors related to the technological perspective. Finally, the processes perspective
includes only those activities which support the implementation of the engineering
and the project management practices. Table 9.6 shows the factors related to the
processes perspective.

9.5 ECONOMIC MODELS OF SOFTWARE REUSE

Project managers and financial managers can use the general economics model of
software reuse in their planning for investments in software reuse. The project man-
ager needs to estimate the costs and potential payoffs to justify systematic reuse.
Increased productivity is an example of payoff of reuse. In the following section,
we discuss cost model of Gaffney and Durek [46], application system cost model of
Gaffney and Cruickshank [47], and business model of Poulin and Caruso [48].

T
A

B
L

E
9.

3
R

iS
E

M
at

ur
it

y
M

od
el

L
ev

el
s:

O
rg

an
iz

at
io

na
lF

ac
to

rs
[4

2]

L
ev

el
s

Fa
ct

or
s

of
In

flu
en

ce
1.

A
d

ho
c

2.
B

as
ic

3.
In

iti
al

4.
O

rg
an

iz
ed

5.
Sy

st
em

at
ic

P
la

nn
in

g
fo

r
re

us
e

–
N

on
-e

xi
st

en
t

–
G

ra
ss

ro
ot

ac
tiv

ity

–
R

eu
se

is
vi

ew
ed

as
si

ng
le

-p
oi

nt
op

po
rt

un
iti

es

–
In

di
vi

du
al

ac
hi

ev
em

en
ts

ar
e

re
w

ar
de

d

–
Ta

rg
et

s
of

op
po

rt
un

ity

–
O

rg
an

iz
at

io
n

re
sp

on
si

bl
e

fo
r

re
us

e

–
A

ke
y

bu
si

ne
ss

st
ra

te
gy

–
B

us
in

es
s

im
pe

ra
tiv

e

–
R

eu
se

oc
cu

rs
ac

ro
ss

al
lf

un
ct

io
na

la
re

as

–
Pa

rt
of

a
st

ra
te

gi
c

pl
an

–
D

is
cr

im
in

at
or

in
bu

si
ne

ss
su

cc
es

s

So
ft

w
ar

e
re

us
e

ed
uc

at
io

n
–

L
ac

k
of

ex
pe

rt
is

e
by

st
af

f
m

em
be

rs

–
Fr

eq
ue

nt
re

si
st

an
ce

to
re

us
e

–
B

as
ic

de
fin

iti
on

s
of

re
us

e
ar

e
ag

re
ed

up
on

–
T

he
st

af
f

ha
s

th
e

ex
pe

rt
is

e
an

d
kn

ow
-h

ow
to

ob
ta

in
be

ne
fit

s
w

ith
re

us
e

–
T

he
st

af
f

m
em

be
rs

kn
ow

th
e

re
us

e
vo

ca
bu

la
ry

an
d

ha
ve

re
us

e
ex

pe
rt

is
e

–
A

ll
de

fin
iti

on
s,

gu
id

el
in

es
,a

nd
st

an
da

rd
s

ar
e

in
pl

ac
e,

en
te

rp
ri

se
w

id
e

L
eg

al
,c

on
tr

ac
tu

al
,

ac
co

un
ti

ng
co

ns
id

er
at

io
ns

–
In

hi
bi

tio
n

to
ge

tti
ng

st
ar

te
d

–
In

te
rn

al
ac

co
un

tin
g

sc
he

m
e

fo
r

sh
ar

in
g

co
st

s
al

lo
ca

tin
g

be
ne

fit
s

–
D

at
a

ri
gh

ts
an

d
co

m
pe

ns
at

io
n

is
su

es
re

so
lv

ed
w

ith
cu

st
om

er

–
R

oy
al

ty
sc

he
m

e
fo

r
al

ls
up

pl
ie

rs
an

d
cu

st
om

er
s

–
So

ft
w

ar
e

tr
ea

te
d

as
ke

y
ca

pi
ta

la
ss

et

(c
on

ti
nu

ed
)

341

T
A

B
L

E
9.

3
(c

on
tin

ue
d)

L
ev

el
s

Fa
ct

or
s

of
In

flu
en

ce
1.

A
d

ho
c

2.
B

as
ic

3.
In

iti
al

4.
O

rg
an

iz
ed

5.
Sy

st
em

at
ic

F
un

di
ng

,c
os

ts
,a

nd
fin

an
ci

al
fe

at
ur

es
–

C
os

ts
of

re
us

e
ar

e
un

kn
ow

n
–

C
os

ts
of

re
us

e
ar

e
“f

ea
re

d”
–

Pa
yo

ff
of

re
us

e
is

“k
no

w
n”

an
d

un
de

rs
ta

nd
fo

r
a

gi
ve

n
do

m
ai

n

–
In

ve
st

m
en

ts
m

ad
e

in
re

us
e,

pa
yo

ff
s

ex
pe

ct
ed

–
C

os
ts

of
re

us
e

ar
e

“k
no

w
n”

–
A

ll
co

st
s

as
so

ci
at

ed
w

ith
an

as
se

t’s
de

ve
lo

pm
en

ta
nd

al
l

sa
vi

ng
s

fr
om

its
re

us
e

ar
e

re
po

rt
ed

an
d

sh
ar

ed

–
A

ll
co

st
s

as
so

ci
at

ed
to

a
pr

od
uc

tl
in

e
or

a
pa

rt
ic

ul
ar

as
se

ta
nd

al
l

sa
vi

ng
fr

om
its

re
us

e
ar

e
re

po
rt

ed
an

d
sh

ar
ed

R
ew

ar
ds

an
d

in
ce

nt
iv

es
–

R
eu

se
is

di
sc

ou
ra

ge
d

by
m

an
ag

em
en

t
–

R
eu

se
is

en
co

ur
ag

ed
–

R
eu

se
is

m
ot

iv
at

ed
re

in
fo

rc
ed

,r
ew

ar
de

d
–

R
eu

se
is

in
do

ct
ri

na
te

d
–

R
eu

se
is

“t
he

w
ay

w
e

do
bu

si
ne

ss
”

In
de

pe
nd

en
t

re
us

ab
le

as
se

ss
de

ve
lo

pm
en

t
te

am

–
In

di
vi

du
al

in
iti

at
iv

e
(p

er
so

na
lg

oa
la

s
tim

e
al

lo
w

s)

–
Sh

ar
ed

in
iti

at
iv

e
–

D
ed

ic
at

ed
in

di
vi

du
al

–
D

ed
ic

at
ed

gr
ou

p
–

C
or

po
ra

te
gr

ou
p

(f
or

vi
si

bi
lit

y
no

tc
on

tr
ol

)
w

ith
di

vi
si

on
lia

is
on

s

342

T
A

B
L

E
9.

4
R

iS
E

M
at

ur
it

y
M

od
el

L
ev

el
s:

B
us

in
es

s
F

ac
to

rs
[4

2]

L
ev

el
s

Fa
ct

or
s

of
In

flu
en

ce
1.

A
d

ho
c

2.
B

as
ic

3.
In

iti
al

4.
O

rg
an

iz
ed

5.
Sy

st
em

at
ic

P
ro

du
ct

fa
m

ily
ap

pr
oa

ch
–

Is
ol

at
ed

pr
od

uc
ts

–
N

o
fa

m
ily

pr
od

uc
t

ap
pr

oa
ch

–
C

om
m

on
fe

at
ur

es
an

d
re

qu
ir

em
en

ts
ac

ro
ss

th
e

pr
od

uc
ts

–
C

om
m

on
al

iti
es

an
d

re
us

e
po

ss
ib

ili
tie

s
w

er
e

id
en

tifi
ed

–
Pr

od
uc

tl
in

e
do

m
ai

n
an

al
ys

es
pe

rf
or

m
ed

–
Fo

cu
s

on
de

ve
lo

pi
ng

fa
m

ili
es

of
pr

od
uc

ts

–
D

om
ai

n
en

gi
ne

er
in

g
pe

rf
or

m
ed

–
D

om
ai

n
an

al
ys

is
pe

rf
or

m
ed

ac
ro

ss
al

l
pr

od
uc

tl
in

es

–
Pr

od
uc

tf
am

ily
ap

pr
oa

ch

So
ft

w
ar

e
re

us
e

ed
uc

at
io

n
–

C
ha

ot
ic

de
ve

lo
pm

en
tp

ro
ce

ss
un

cl
ea

r
w

he
re

re
us

e
co

m
es

in

–
R

eu
se

qu
es

tio
ns

ra
is

ed
at

de
si

gn
re

vi
ew

s
(a

ft
er

th
e

fa
ct

)

–
D

ev
el

op
m

en
tp

ro
ce

ss
de

fin
ed

(s
om

e
re

us
e

ac
tiv

ity
in

di
ca

tio
ns

)

–
D

es
ig

n
em

ph
as

is
pl

ac
ed

on
re

us
e

of
of

f-
th

e-
sh

el
f

pa
rt

s

–
Pr

od
uc

tl
in

e
do

m
ai

n
an

al
ys

es
pe

rf
or

m
ed

–
Sh

ar
ed

un
de

rs
ta

nd
in

g
of

al
lt

he
ac

tiv
iti

es
ne

ed
ed

to
su

pp
or

t
re

us
e

–
Fo

cu
s

on
de

ve
lo

pi
ng

fa
m

ili
es

of
pr

od
uc

ts

–
R

eu
se

-b
as

ed
pr

oc
es

se
s

ar
e

in
pl

ac
e

to
su

pp
or

ta
nd

en
co

ur
ag

e
re

us
e

–
D

om
ai

n
en

gi
ne

er
in

g
pe

rf
or

m
ed

–
A

ll
so

ft
w

ar
e

pr
od

uc
ts

ge
ne

ra
te

d
fo

r
fu

tu
re

re
us

e

–
D

om
ai

n
an

al
ys

es
pe

rf
or

m
ed

ac
ro

ss
al

l
pr

od
uc

tl
in

es

–
Pr

od
uc

tf
am

ily
ap

pr
oa

ch

343

T
A

B
L

E
9.

5
R

iS
E

M
at

ur
it

y
M

od
el

L
ev

el
s:

Te
ch

no
lo

gi
ca

lF
ac

to
rs

[4
2]

L
ev

el
s

Fa
ct

or
s

of
In

flu
en

ce
1.

A
d

ho
c

2.
B

as
ic

3.
In

iti
al

4.
O

rg
an

iz
ed

5.
Sy

st
em

at
ic

R
ep

os
it

or
y

sy
st

em
s

us
ag

e
–

Sa
lv

ag
e

ya
rd

(N
o

ap
pa

re
nt

st
ru

ct
ur

e
to

co
lle

ct
io

n)

–
C

at
al

og
id

en
tifi

es
la

ng
ua

ge
-a

nd
pl

at
fo

rm
-s

pe
ci

fic
pa

rt
s

–
Si

m
pl

e
st

ru
ct

ur
e

lik
e

co
nc

ur
re

nt
ve

rs
io

ns
sy

st
em

s

–
C

on
si

de
re

d
m

ai
nl

y
so

ur
ce

co
de

–
C

at
al

og
in

cl
ud

es
ge

ne
ri

c
da

ta
pr

oc
es

si
ng

fu
nc

tio
ns

–
C

on
si

de
re

d
so

ft
w

ar
e

co
m

po
ne

nt
s,

re
po

rt
s

an
d

do
cu

m
en

tm
od

el
s

–
C

at
al

og
or

ga
ni

ze
d

al
on

g
ap

pl
ic

at
io

n
sp

ec
ifi

ca
tio

ns

–
H

av
e

al
ld

at
a

ne
ed

ed
de

ci
de

w
hi

ch
as

se
ts

to
bu

ild
/a

cq
ui

re

–
C

on
si

de
re

d
sc

re
en

ge
ne

ra
to

rs
da

ta
ba

se
el

em
en

ts
an

d
te

st
ca

se
s

–
Pl

an
ne

d
ac

tiv
ity

to
ac

qu
ir

e
or

de
ve

lo
p

m
is

si
ng

pi
ec

es
in

ca
ta

lo
g

–
C

on
si

de
re

d
al

la
rt

if
ac

ts
of

so
ft

w
ar

e
de

ve
lo

pm
en

tl
if

e
cy

cl
e

Te
ch

no
lo

gy
su

pp
or

t
–

Pe
rs

on
al

to
ol

s,
if

an
y

–
A

co
lle

ct
io

n
of

to
ol

s,
e.

g.
,C

M
,b

ut
no

t
sp

ec
ia

liz
ed

to
re

us
e

–
G

en
er

al
-p

ur
po

se
an

al
yz

er
s

co
m

bi
ne

d
to

as
se

ss
re

us
e

le
ve

ls

–
C

la
ss

ifi
ca

tio
n

ai
ds

an
d

sy
nt

he
si

s
ai

ds

–
St

an
da

rd
iz

at
io

n
on

co
m

po
ne

nt
s

an
d

ar
ch

ite
ct

ur
e

–
To

ol
s

cu
st

om
iz

ed
to

su
pp

or
tr

eu
se

–
D

ig
ita

ll
ib

ra
ry

se
pa

ra
te

fr
om

de
ve

lo
pm

en
t

en
vi

ro
nm

en
t

–
A

ut
om

at
ed

su
pp

or
t

in
te

gr
at

ed
w

ith
de

ve
lo

pm
en

ts
ys

te
m

–
Fu

lly
in

te
gr

at
ed

w
ith

de
ve

lo
pm

en
ta

nd
re

po
rt

in
g

sy
st

em
s

344

T
A

B
L

E
9.

6
R

iS
E

M
at

ur
it

y
M

od
el

L
ev

el
s:

P
ro

ce
ss

es
F

ac
to

rs
[4

2]

L
ev

el
s

Fa
ct

or
s

of
In

flu
en

ce
1.

A
d

ho
c

2.
B

as
ic

3.
In

iti
al

4.
O

rg
an

iz
ed

5.
Sy

st
em

at
ic

Q
ua

lit
y

m
od

el
s

us
ag

e
–

N
o

qu
al

ity
m

od
el

ad
op

tio
n

–
So

m
e

qu
al

ity
ac

tiv
iti

es
w

er
e

in
co

rp
or

at
ed

in
th

e
so

ft
w

ar
e

de
ve

lo
pm

en
t

pr
oc

es
s

–
So

ft
w

ar
e

de
ve

lo
pm

en
t

pr
oc

es
s

gu
id

ed
by

a
qu

al
ity

m
od

el

–
H

ig
h

qu
al

ity
m

od
el

us
ag

e
in

th
e

en
gi

ne
er

in
g

de
pa

rt
m

en
t

–
Q

ua
lit

y
m

od
el

co
m

pl
et

el
y

ad
op

te
d

in
th

e
or

ga
ni

za
tio

n
ac

tiv
iti

es

So
ft

w
ar

e
re

us
e

m
ea

su
re

m
en

t
–

N
o

m
et

ri
cs

on
le

ve
lo

f
re

us
e,

pa
yo

ff
,o

r
co

st
of

re
us

e

–
N

um
be

r
of

lin
es

of
re

us
ed

co
de

fa
ct

or
ed

in
to

co
st

m
od

el
s

–
M

an
ua

lt
ra

ck
in

g
of

re
us

e
oc

cu
rr

en
ce

s
of

ca
ta

lo
g

pa
rt

s

–
A

na
ly

se
s

pe
rf

or
m

ed
to

id
en

tif
y

ex
pe

ct
ed

pa
yo

ff
s

fr
om

de
ve

lo
pi

ng
re

us
ab

le
pa

rt
s

–
A

ll
sy

st
em

ut
ili

tie
s,

so
ft

w
ar

e
to

ol
s,

an
d

ac
co

un
tin

g
m

ec
ha

ni
sm

s
in

st
ru

m
en

te
d

to
tr

ac
k

re
us

e

Sy
st

em
at

ic
re

us
e

pr
oc

es
s

–
N

o
re

us
ed

-b
as

ed
pr

oc
es

s
–

So
m

e
re

us
e

ac
tiv

iti
es

w
er

e
ad

op
te

d
in

th
e

de
ve

lo
pm

en
tp

ro
ce

ss

–
Pl

an
ni

ng
to

ad
ap

tt
he

so
ft

w
ar

e
de

ve
lo

pm
en

t
pr

oc
es

s
of

th
e

or
ga

ni
za

tio
n

fo
r

a
re

us
e-

ba
se

d
pr

oc
es

s

–
D

ev
el

op
m

en
tp

ro
ce

ss
of

th
e

or
ga

ni
za

tio
n

is
ad

ap
te

d
to

re
us

e
co

nc
ep

ts

–
R

eu
se

be
ne

fit
s

an
d

co
nc

ep
ts

ar
e

cl
ea

r
fo

r
th

e
en

gi
ne

er
in

g
te

am

–
D

ev
el

op
m

en
tp

ro
ce

ss
is

re
us

ed
ba

se
d

–
Sy

st
em

at
ic

re
us

e
pr

oc
es

s
is

en
te

rp
ri

se
w

id
e

O
ri

gi
n

of
th

e
re

us
ed

as
se

ts
–

N
o

re
us

e
as

se
ts

–
B

ui
ld

fr
om

sc
ra

tc
h,

so
m

et
im

es
in

di
re

ct
ly

–
B

ui
ld

fr
om

ex
is

te
nt

pr
od

uc
ts

;a
da

pt
in

g
ex

is
tin

g
pr

od
uc

ts

–
B

ui
ld

fr
om

ex
is

tin
g

pr
od

uc
ts

;e
xt

ra
ct

ed
th

ro
ug

h
a

re
en

gi
ne

er
in

g
pr

oc
es

s

–
Pl

an
ni

ng
th

e
de

si
gn

an
d

bu
ild

in
g

of
re

us
ab

le
as

se
ts

ac
co

rd
in

g
to

pr
od

uc
tf

am
ily

P
re

vi
ou

s
de

ve
lo

pm
en

t
of

re
us

ab
le

as
se

ts

–
N

o
de

ve
lo

pm
en

to
f

re
us

ab
le

as
se

ts
–

Pa
ra

lle
lw

ith
de

ve
lo

pm
en

t
–

B
ef

or
e

de
ve

lo
pm

en
t

–
B

ef
or

e
de

ve
lo

pm
en

t
–

B
ef

or
e

de
ve

lo
pm

en
t

345

346 REUSE AND DOMAIN ENGINEERING

9.5.1 Cost Model of Gaffney and Durek

The two cost and productivity models proposed by Gaffney and Durek [46] for
software reuse are: first order reuse cost model and higher order cost model. The cost
of reusing software components has been modeled in the first order reuse cost model,
whereas the higher order cost model considers the cost of developing reusable assets.

First Order Reuse Cost Model In this model, we assume the following conditions
[49].

1. The reused software satisfies the black-box requirements in the sense that it
is stable and reliable. If the behavior of the component becomes unreliable,
unstable, or inconsiderably different than the project’s needs, the component
becomes a white box because it needs to be fixed.

2. Users of the reusable components have adequate expertise in the context of
reuse.

3. There is adequate documentation of the components to be reused.

4. The cost of reusing the components is negligible.

As explained in what follows, three broad categories of program code are used in
a project.

� Sn: It represents the new code added to the system.
� So: It represents the original source code from the preexisting system. So includes

both lifted code and modified code. Lifted code means unchanged, original code
taken from past releases of a product. The source code from modified (partial)
parts are not considered as reused code.

� Sr: It represents the reuse source code that are not developed or maintained
by the organization. The reuse code is obtained from completely unmodified
components normally located in a reuse library.

The effective size, denoted by Se, is an adjusted combination of the modified source
code and the new source code, as given in the following equation.

Se = Sn + So(Ad × Fd + Ai × Fi + At × Ft)

where:

Ad = is a normalized measure of design activity,
Ai = is a normalized measure of integration activity,
At = is a normalized measure of testing activity, and
Ad + Ai + At = 1.

The expression within the parentheses, namely, (Ad × Fd + Ai × Fi + At × Ft), is
a weighted sum of relative efforts from design, implementation, and test; Fd , Fi, and
Ft represent relative efforts from design, implementation, and test, respectively.

ECONOMIC MODELS OF SOFTWARE REUSE 347

One or more reusable components comprise the rest of the system. Reusable
components are assumed to be black boxes so their sizes are assumed to be not
available. Therefore, the relative sizes of reusable components can be obtained by
estimating the size of the reusable components with the assumption that those are built
from the scratch. Letting Sr denote the estimated size of reusable components, the
relative sizes of reusable components is given by R, where R is expressed as follows:

R =
Sr

Se + Sr
.

Let C be the cost of software development for a given product relative to that
for all new code (for which C = 1). Let R be the proportion of reused code in the
product as defined earlier (R ≤ 1). Let b be the cost, relative to that for all new code,
of incorporating the reused code into the new product. Note that b = 1 for all new
code. The relative cost for software development is:

[(relative cost of all new code) ∗ (proportion of new code)]
+
[(relative cost of reused software) ∗ (proportion of reused software)].

Therefore:

C = (1)(1 − R) + (b)(R) = (b − 1)R + 1

and the associated relative productivity is:

P = 1
C

= 1
(b − 1)R + 1

.

b must be <1 for reuse to be cost-effective. The size of b depends on the life cycle
phase—requirements, design, implementation, or testing—of the reusable compo-
nents. As an example, let us consider the relative cost of the development activities
as shown in Table 9.7. Table 9.8 shows example relative activity costs to calculate
the relative component reuse cost b. For instance, if we want to reuse a requirements
component, then the accompanying costs are in the form of design, implementation,
and test activities, which are 0.37, 0.22, and 0.33, respectively. Therefore, the relative
cost to reuse requirements is b = (0.37 + 0.22 + 0.33) = 0.92. On the other hand,
if code is reused, then the additional tasks will involve requirements and testing.
Therefore, the relative cost to reuse code is b = (0.08 + 0.33) = 0.41.

TABLE 9.7 Relative Costs of Development Activities

Activity Activity Code Activity Cost

Requirements Req 0.08
Design Des 0.37
Implementation Imp 0.22
Test Test 0.33

348 REUSE AND DOMAIN ENGINEERING

TABLE 9.8 Relative Reuse Cost (b)

Component Type
Activities to be
Completed

Relative Reuse
Cost (b)

Requirements Des, Imp, Test 0.92
Design Req, Imp, Test 0.63
Code Req, Test 0.41
Requirements, Design, Code, Test 0.33

Higher Order Reuse Cost Model Estimating the cost of developing reusable com-
ponents is key to formulating a reuse cost model. By combining the development
cost of the reusable components into the economic model, we have

C = (1 − R) × 1 +
(

b + a
n

)
R,

where a is the cost of developing reusable components relative to the cost of build-
ing new non-reusable components from the scratch, and n is the number of uses
over which the cost of reusable components is amortized. Now, the model can be
rewritten as

C =
(

b + a
n
− 1

)
R + 1.

9.5.2 Application System Cost Model of Gaffney and Cruickshank

An application system cost model based on domain engineering and application
engineering was proposed by Gaffney and Cruickshank. The cost of an applica-
tion system is expressed as the sum of two component costs: (i) the investment in
domain engineering apportioned over N application systems; and (ii) the cost of
application engineering to develop a specific system. Therefore, the cost of an appli-
cation system, Cs, is equal to the prorated cost of domain engineering plus the cost
of application engineering. In addition, let the cost of application engineering be the
cost of the new code plus the cost of the reused code in the new application system,
and let R denote the fraction of code that is reused code.

Now, we have

Cs = Cdp + Ca

Cs = Cd∕N + Cn + Cr,

where:

Cdp = Cd∕N and Ca = Cn + Cr;
Cs = the total cost of the application system;
Cd = the total cost of domain engineering;

ECONOMIC MODELS OF SOFTWARE REUSE 349

Cdp = the prorated portion of Cd shared by each of the N application systems;
Ca = the cost of an application system;
Cn = the cost of the new code in the application system;
Cr = the cost of the reused code in the application system.

Each of the costs, Cd, Cn, and Cr, is taken to be the product of a unit cost
(LM/KSLOC) and an amount of code (KSLOC), where LM/KSLOC stands for labor
months/1000 source lines of code (LOC). Hence,

Cd = Cde ∗ St, Cn = Cvn ∗ Sn,

and

Cr = Cvr ∗ Sr.

The equation for reuse cost is

Cs = CusSs =
CdeSt

N
+ CvnSn + CvrSr,

where:

Cus = unit cost of the application system;
Cde = unit cost of domain engineering;
Cvn = unit cost of new code developed for this application system;
Cvr = unit cost of reusing code in this application system;

St = expected value of the unduplicated size of the reuse library, measured
in source statements;

Sn = amount of new code in terms of source statements developed for this
application system;

Sr = amount of reused code incorporated into this application system in source
statement;

Ss = total size of the application system in source statement.

Let Sn∕Ss = l − R and Sr∕Ss = R, where R is the proportion of reuse. The reuse
cost equation can be rewritten as

Cus =
Cde

N

St

Ss
+ Cvn(1 − R) + CvrR.

Now let St∕Ss = K, the library relative capacity. Thus, the basic reuse cost equation is

Cus =
Cde

N
K + Cvn − (Cvn − Cvr)R.

The basic reuse cost equation assumes a single reuse of Sr units (SLOC, KSLOC) in
each of the “N application” systems. Thus, this expression is applicable to systematic
reuse of units of code relatively dense in functionality.

350 REUSE AND DOMAIN ENGINEERING

9.5.3 Business Model of Poulin and Caruso

Poulin and Caruso [48] developed a model at IBM to improve measurement and
reporting software reuse. The authors present a measure for reuse level, the financial
and the productivity benefit of reuse. They consider potential benefits of reuse against
the cost of resources expended to identify and integrate reusable assets into a system.
Their results are based on a set of data points as follows:

� Shipped source instruction (SSI): SSI is the total count of executable code lines
in the source files of a product. Calling a reused part is counted as one SSI.

� Changed source instruction (CSI): CSI is the total count of executable code
lines that are new, added, or modified in a new release of a product. Note that
CSI does not include RSI and unchanged instructions from past releases of the
system. Calling a reused part is counted as one CSI.

� Reused source instruction (RSI): RSI is the total source instructions shipped
but not developed or maintained by the reporting organization. RSI does not
include base instructions from past releases of a product. In addition, RSI does
not include source instructions from partly changed components. Independent
of the number of times the component is called or expanded, source instructions
from a reused component are counted just once.

� Source instruction reused by others (SIRBO): SIRBO is the total lines of source
instructions of an organization reused by others. SIRBO is a measure of the
contributions of an organization to reuse, and it is calculated as follows:

SIRBO = (Source instructions per part)
× (The number of organizations using the part).

� Software development cost (Cost per LOC): This metric concerns the develop-
ment of new software, and it is calculated in two steps. (i) Let S denote the
total cost of the organization, including overhead; and (ii) divide S by the total
outputs of the organization in number of LOC. It may be noted that one needs
to know the cost of developing the software without reuse so as to understand
the financial benefit of reuse.

� Software development error rate (Error rate): It is a historical average number of
errors uncovered in the products. To estimate the cost of avoiding maintenance,
a historical average value is used.

� Cost per error: To quantify the advantage of better quality reusable assets, the
historical mean cost of maintaining components with traditional development
methods is used as a base line. Now, the cost per error metric is calculated in
two steps: (i) let S denote the sum of all costs; and (ii) divide S by the number
of errors repaired.

The aforementioned metrics are combined to form three derived metrics: reuse
percent, reuse cost avoidance, and reuse value added. The reuse percent and reuse
cost avoidance metrics give indications of an organization’s reuse activities. The reuse
value added metric includes recognition for writing reusable code.

ECONOMIC MODELS OF SOFTWARE REUSE 351

1. Reuse Percent (RP): It reflects the extent of reuse in a product. RP is analogous
to R in the model of Gaffney and Durek. Poulin and Caruso make a distinction
between the reuse percent of a product release and the reuse percent of a
product:

Reuse percent of a product = RSI
RSI + SSI

× 100%.

Reuse percent of a product release = RSI
RSI + CSI

× 100%.

2. Reuse cost avoidance (RCA): The purpose of this metric is to measure reduced
total product costs as a result of reuse. One must retrieve and evaluate the
reusable assets to choose the appropriate ones to be integrated into the system
being developed. According to studies performed by Poulin et al. [50], there
are significant financial benefits due to reusing assets. For example, the cost
of integrating a reusable software element is 20% of the cost of developing
the same element anew. The financial benefit due to adopting reuse in the
development phase of a project is calculated as follows:

Development cost avoidance = RSI × (1 − 0.2) × (new code cost).

In addition, saving in maintenance cost attributed to reuse is much more than
those during software development, because of the fewer defects in reused
components [51]. The saving is

Service cost avoidance = RSI × (error rate) × (cost per error).

The total reuse cost avoidance is calculated as the sum of cost avoidance in
the development and maintenance activities, which is

Reuse cost avoidance = Development cost avoidance
+ Service cost avoidance.

3. Reuse value added (RVA): The main idea behind RVA is to provide a metric
to reward an organization that reuses software components and help other
organizations by developing reusable components. RVA is derived from SSI,
RSI, and SIRBO:

Reuse value added = (SSI + RSI) + SIRBO
SSI

.

Organizations with no involvement in reuse have an RVA = 1. An RVA = 2
indicates that the organization is twice as effective as it would be without reuse.
In this case the organization was able to double its productivity either directly
by reusing it or indirectly by maintaining software that other organizations
are using.

352 REUSE AND DOMAIN ENGINEERING

9.6 SUMMARY

We explained the concepts of reuse including program families and domain analysis.
In addition, we discussed four major factors that influence software reuse: managerial,
legal, economic, and technical.

Next we examined two concepts: domain engineering and application engineering.
Domain engineering is also known as product line development, while application
engineering being known as product development. Domain engineering is a set of
activities that produce RSA to be used in several software projects. It includes analysis,
design, and implementation activities. On the other hand, application engineering
refers to a “development-with-reuse” process to create specific systems. Then we
introduced nine domain engineering approaches reported in the literature: Darco,
DARE, FAST, FORM, KobrA, PLUS, PuLSE, Koala, and RSEB.

Next, we discussed three maturity models: RMM, RCM, and RiSE maturity model.
We concluded the chapter with a discussion of economic model of software reuse to
justify. Finally, we discussed three models: the cost model of Gaffney and Durek, the
application system cost model of Gaffney and Cruickshank, and the business model
of Poulin and Caruso.

LITERATURE REVIEW

Numerous books and articles have been written about reuse. There are two good reuse
research articles by Frakes and Kang [13] and Mili et al. [52]. A two-part book about
reuse has been authored by Stanislaw Jarzabek (Effective Software Maintenance and
Evolution: A Reuse-Based Approach, Auerbach Publications, Boca Raton, FL, 2007).
The first part focuses on traditional methods for software maintenance. The second
part describes a novel approach called “mixed strategy.” In mixed-strategy program
representation, code contains information about program design and modifications
occurring over the lifetime of the system. A good discussion of integration reuse with
an object-oriented development process can be found in “Software Reuse: Architec-
ture, Process and Organization for Business Success” (I. Jacobson, M. Griss and
P. Jonsson, Addison-Wesley, 1997).

A thorough treatment of a framework for practicing reuse within the software life
cycle can be found in IEEE Std 1517-1999, “IEEE Standard for Information Tech-
nology – Software Life Cycle Processes – Reuse Processes.” The standard provides
a framework to extend the software life cycle processes to include software reuse.
Moreover, the reuse adoption process [44], defined by the Software Productivity
Consortium (SPC), provides a solution to implement a reuse program, and it is based
on the implementation of the model proposed by Prieto-Diaz [14]. RCM [40] is used
together with the reuse adoption process defined by SPC.

The article by Parastoo Mohagheghi and Reidar Conradi, “An empirical inves-
tigation of software reuse benefits in a large telecom roduct.” ACM Transactions
on Software Engineering and Methodology, 17(3), 2008, pp. 13:1–31, based on an
empirical study, describes the benefits of software reuse in a large telecommunication

REFERENCES 353

product. The key observation was that lower fault density and less modified code
occurred between successive releases of the reused components.

Software product lines enjoy increasingly wide adoption in the software industry.
The Software Engineering Institute defines basic concepts, activities, and practices
that ensure success. In the article “SEI’s software product line tenets,” IEEE Software,
July/August, 2002, pp. 32–40, the author Linda M. Northrop described the success
stories and lessons learned while defining and applying this approach. Readers who
are interested in relationships between software evolution and software product line
process are recommended to study the following two articles.

Samuel A. Ajila and Ali B. Koba, Evolution support mechanisms for software product lines
process. Journal of Systems and Software, 81(10), 2008, pp.1784–1801.

Stephen R. Schach and Amir Tomer, Development/maintenance/reuse: Software evolution
in product lines. Proceedings of the first Conference on Software Product Lines: Experi-
ence and Research Directions, Denver, Colorado, Kluwer Academic, Norwell, MA, 2000,
pp. 437–450.

The first article describes mechanisms to support evolution of software product lines.
In the second article, the authors extend the evolution tree model and propagation
graph model to describe the evolution of a software product line.

Readers interested in product-line development may read the article by Capretz,
Ahmed, Al-Maati, and Al Aghbari (COTS-based software product line development.
International Journal of Web Information Systems, Emerald Group Publishing, 4(2),
2008, pp. 165–180). The authors discussed COTS-based software product line devel-
opment methodology based on Y-model [53]. The methodology integrates the concept
of software product line with COTS.

REFERENCES

[1] J. Backus. 1998. The history of fortran i, ii, iii. IEEE Annals of the History of Computing,
20(4), 68–78.

[2] M. D. McIlroy. 1969. Mass Produced Software Components. Proceedings of Software
Engineering Concepts and Techniques, 1968 NATO Conference on Software Engineering
(Eds P. Naur, B. Randell, J. N.), pp. 138–155, Available through Petrocelli-Charter,
New York.

[3] D. L. Parnas. 1976. On the design and development of program families. IEEE Transac-
tions of Software Engineering, 2(1), 1–9.

[4] J. M. Neighbor. 1980. Software construction using components. Technical Report
160, Department of Information and Computer Sciences, University of California,
Irvine, CA.

[5] J. M. Neighbors. 1984. The draco approach to constructing from software reusable
components. IEEE Transactions of Software Engineering, 10(5), 564–574.

[6] R. Prieto-Diaz. 1990. A domain analysis: An introduction. ACM Software Engineering
Notes, 15(2), 47–54.

354 REUSE AND DOMAIN ENGINEERING

[7] T. C. Jones. 1984. Reusability in programming: A survey of the state of the art. IEEE
Transactions of Software Engineering, 10(5), 488–494.

[8] P. Grubb and A. Takang. 2003. Software Maintenance Concepts and Practice, 2nd edition.
World Scientific, Singapore.

[9] I Sommervilles. 2001. Software Engineering, 6th edition. Pearson Education Limited,
Harlow, England.

[10] R. Prieto-Diaz. 1991. Implementing faceted classification for software reuse. Communi-
cations of the ACM, 34(5), 88–97.

[11] A. Mili, R. Mili, and R. T. Mittermeir. 1998. A survey of software reuse libraries. Annals
of Software Engineering, 5, 349–414.

[12] B. P. Lientz and E. B. Swanson. 1980. Software Maintenance Management. Addison-
Wesley, Reading, MA.

[13] W. Frakes and Kyo Kang. 2005. Software reuse research: Status and future. IEEE Trans-
actions of Software Engineering, 31(7), 529–536.

[14] R. Prieto-Diaz. 1991. Making software reuse work: An implementation model. ACM
Software Engineering Notes, 16(3), 61–68.

[15] C. Krueger. 2002. Eliminating the adoption barrier. IEEE Software, 19(4), 29–31.

[16] W. Frakes and P. Gandel. 1990. Representing reusable software. Information and Software
Technology, 32(10), Butterworth-Heinemann Ltd, 1990, pp. 653–664.

[17] W. Frakes and S. Isoda. 1994. Success factors of systematic reuse. IEEE Software, 11(5),
14–19.

[18] M. L. Griss. 1993. Software reuse: From library to factory. IBM Systems Journal, 32(4),
548–564.

[19] J. Favaro. 1991. What price reusability? a case study. Ada Letter, 11(3), 115–124.

[20] D. C. Rine. 1993. Supporting reuse with object technology. IEEE Software, 30(10),
43–45.

[21] J. L. Diaz-Herrera. 2001. Domain engineering. In: Handbook of Software Engineering
and Knowledge Engineering (Ed. S. K. Change), Vol. 1, pp. 305–328. World Scientific
Publishing Co., Singapore.

[22] S. Beydeda and V. Gruhn (Eds.). 2005. Testing Commerical-off-the-Shelf Components
and Systems. Springer, Berlin, Germany.

[23] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and S. A. Peterson. 1990. Feature-
oriented domain analysis (foda) feasibility study. CMU/SEI-90-TR-21, ADA 235785,
Pittsburgh, PA, Software Engineering Institute, Carnegie Mellon University.

[24] B. Schmerl and D. Garlan. 2004. Acmestudio: Supporting Style-centered Architecture
Development (Research Demonstration). Proceedings of the 26th International Confer-
ence on Software Engineering, May, 2004, IEEE Computer Society Press, Los Alamitos,
CA, pp. 23–28.

[25] J. Nester, J. M. Newcomer, P. Giannini, and D. Stone. 1990. IDL: The Language and its
Implementation. Prentice-Hall, Upper Saddle River, NJ.

[26] L. M. Northrop. 2002. SEI’s software product line tenets. IEEE Software, 19(4),
32–40.

[27] R. H. Thayer. 2002. Software system engineering: A tutorial. IEEE Computer, 2002,
pp. 68–73.

REFERENCES 355

[28] R. R. Macala, L. D. Stuckey, and D. C. Gross. 1996. Managing domain-specific product-
line development. IEEE Software, 13(3), 57–67.

[29] E. S. Almeida, A. Alvaro, D. Lucrédio, V. C. Garcia, and S. R. L. Meira. 2005. A survey
on software reuse processes. IEEE International Conference on Information Reuse and
Integration (IRI), August, 2005, Las Vegas, Nevada, IEEE Computer Society Press, Los
Alamitos, CA, pp. 66–71.

[30] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laintenberger, R. Laqua, D. Muthiq,
B. Paech, J. Wust, and J. Zettel. 2002. Component-based Product Line Engineering with
UML. Addison-Wesley, Reading, MA.

[31] W. Frakes, R. Prieto-Diaz, and C. Fox. 1998. Dare: Domain analysis and reuse environ-
ment. Annals of Software Engineering, 5, 125–141.

[32] O. Alonso. 2003. Generating text search application for databases. IEEE Software, 20(3),
98–105.

[33] D. M. Wiess and C. T. R. Lai. 1999. Software-line Engineering: A Family-based Software
Development Process. Addison-Wesley, Reading, MA.

[34] K. C. Kang, J. Lee, and P. Donohoe. 2002. Feature-oriented product line engineering.
IEEE Software, 19(4), 58–65.

[35] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. 1998. Form: A feature-
oriented reuse method and domain-specific reference architecture. Annals of Software
Engineering, 5, 143–168.

[36] H. Gomaa. 2004. Designing Software Product Lines with UML: From Use Case to
Pattern-Based Software Architectures. Addison-Wesley, Reading, MA.

[37] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J-M.
Debaud. 1999. Pulse: A Methodology to Develop Software Product Lines. Proceedings
of the 1999 Symposium on Software Reusability, May, 1999, Los Angeles, CA, ACM
Press, New York, pp. 122–131.

[38] R Ommering, F. Linden, J. Kramer, and J. Magee. 2000. The koala component model for
consumer electronics software. IEEE Software, 78–85. doi: 10.1109/2.825699

[39] I. Jacobson, M. L. Gries, and P. Jonsson, 1997. Reuse-driven Software Engineering
Business (RSEB). Addison-Wesley, Reading, MA.

[40] T. Davis. 1993. The Reuse Capability Model: A Basis for Improving an Organization’s
Reuse Capability. Proceedings of 2nd IEEEACM International Workshop on Software
Reusability, 1993, Herndon, VA, IEEE Computer Society Press/ACM Press, Los Alami-
tos, CA, pp. 126–133.

[41] P. Koltun and A. Hudson. 1991. A reuse maturity model. In 4th Annual Workshop on
Software Reuse, Herndon, VA, IEEE Computer Society Press/ACM Press, Los Alamitos,
CA.

[42] V. C. Garcia, D. Lucrédio, A. Alvaro, E. S. Almeida, R. P. M. Fortes, and S. R. L. Meira.
2007. Towards maturity model for a reuse incremental adoption. Brazilian Symposium
on Software Component, Architectures and Reuse (SBCARS), August, 2007, Campinas,
São Paulo, Brazil, pp. 61–73.

[43] W. Frakes and C. Terry. 1996. Software reuse: Metrics and models. ACM Computing
Surveys, 28(2), 415–435.

[44] SPC. 1993. Reuse adoption guidebook. Version 02.00.05., Technical Report SPC-92051-
CMC, Software Productivity Consortium, 279.

356 REUSE AND DOMAIN ENGINEERING

[45] E. S. Almeida, A. Alvaro, D. Lucrédio, V. C. Garcia, and S. R. L. Meira. 2004.
Rise Project: Towards a Robust Framework for Software Reuse. IEEE International
Conference on Information Reuse and Integration (IRI), August, 2004, Las Vegas,
Nevada, IEEE Computer Society Press, Los Alamitos, CA, pp. 48–53.

[46] J. E. Gaffney and T. A. Durek. 1989. Software reuse - key to enhanced productivity:
Some quantitative models. Information and Software Technology, 31(5), 258–267.

[47] Jr. J. E. Gaffney and R. D. Cruickshank. 1992. A General Economics Model of Soft-
ware Reuse. Proceedings of the 14th International Conference on Software Engi-
neering (ICSE), May, 1992, Melbourne, Australia, ACM Press, New York, pp. 327–
337.

[48] J. S. Poulin and J. M. Caruso. 1993. A Reuse Measurement and Return on Investment
Model. Second International Workshop on Software Reusability, March, 1993, Lucca,
Italy, IEEE Computer Society Press, Los Alamitos, CA, pp. 152–166.

[49] R. W. Jensen. 2004. An economic analysis of software reuse. CrossTalk A Journal of
Defense Software Engineering, 4–8.

[50] J. S. Paulin, J. M. Caruso, and D. R. Hancock. 1993. The business case for software
reuse. IBM Systems Journal, 32(4), 567–594.

[51] S. R. Schach. 1994. The economic impact of software reuse on maintenance. Journal of
Software Maintenance and Evolution: Research and Practice, 6(4), 185–196.

[52] H. Mili, F. Mili, and A. Mili. 1995. Reusing software: Issues and research directions.
IEEE Transactions of Software Engineering, 21(6), 528–562.

[53] L. F. Capretz. 2005. Y: A new component-based software life cycle model. Journal of
Computer Science, 1(1), 76–82.

EXERCISES

1. Explain the terms reuse and reusability with respect to software development
and maintenance.

2. Explain why it is important to reuse software instead of writing it from the
scratch.

3. Explain the difference between reverse engineering and reuse engineering. What
is software reclamation with regard to reuse engineering?

4. Compare and contrast the different approaches to reuse: proactive, reactive, and
extractive.

5. Explain the differences between: (i) vertical and horizontal reuse; and (ii) gen-
erative and compositional reuse.

6. Explain the concepts of “development-for-reuse” and “development-with-reuse.”

7. Briefly explain the five maturity levels in the RiSE maturity model.

8. Briefly explain the two components (assessment and implementation) of reuse
capability model.

EXERCISES 357

9. A programming team develops and maintains 80K SSI and the team additionally
uses 20K RSI from a reuse library. Calculate the reuse percentage for the team.

10. An organization has a historical new code development cost of $200 per line, an
error rate of 1.5/KLOC, and cost of $43K to fix an error. Calculate the value of
RCA for integrating 20K RSI into the product.

11. A programming team maintains 80KLOC and uses 20KLOC from a reuse library.
In addition, five other departments reuse a 10KLOC module the programming
team contributed to the organizational reuse library. What is the value of RVA of
the programming team?

12. Suppose that you joined a new company that has no reuse program. The first task
for you is to implement the reuse program.

(a) What is the first step that you would take?

(b) Outline the technical, managerial, economical, organizational and legal steps
that you would go through.

(c) What difficulties do you anticipate and how would you mitigate them?

GLOSSARY

A man is born alone and dies alone; and he experiences the good and bad consequences
of his karma alone; and he goes alone to hell or the supreme abode.

—Chanakya

Abstract syntax tree (AST) An abstract syntax tree is a tree representation of the
syntax of some source code that has been written in a programming language.
Each node of the tree denotes a construct occurring in the source code. The tree
is abstract in the sense that it may not represent some constructs that appear in
the original source. An AST is often built by a parser as part of the processing of
compiling source code.

Accidental reuse This informal practice, in which components are selected from
general libraries, is usually called opportunistic reuse or accidental reuse.

Activity An action of one of the following types: an investigation activity, a modifi-
cation activity, a management activity, or a quality assurance activity. An activity
may be made up of a number of sub-activities. Usually, it takes as input one or
more existing artifacts and outputs zero, one, or many new or modified artifacts.

Actual impacted set (AIS) The set of components actually modified as the results
of performing a change request.

Adaptive maintenance The process that modifies the software to properly inter-
face with a changing or changed environment. Adaptive maintenance includes

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

359

360 GLOSSARY

system changes, additions, deletions, modifications, extensions, and enhance-
ments to meet the evolving needs of the environment in which the system must
operate.

Adequacy It is the capability of an impact analysis approach to produce a set of
potentially affected elements that includes all the objects to be modified.

Adherence It is the ability of the approach to produce a CIS which is as adherent
as possible to the AIS. The smaller the difference between these two sets, the
smaller the number of candidate objects that will fail to be included in the actual
modification, and the smaller the effort required to specify the change. Adherence
is expressed by means of the following ratio called S-Ratio:

S-Ratio = ∣ AIS ∣
∣ CIS ∣

.

If the approach is adequate, AIS is included in CIS, so that ∣ AIS ∣ ≤ ∣ CIS ∣ and
S-Ratio varies in the range from 0 to 1.

Agile software development It is an iterative and incremental (revolutionary)
approach to software development which is performed in a highly collaborative
manner with “just enough” ceremony that produces high quality software. Agile
methods refer to a collection of “lightweight” software development methodolo-
gies that are basically aimed at minimizing risk and achieving customer satisfaction
through a short feedback loop.

Annotation of the program If one views the development process of the program
as a layered system where the top layer is the set of program goals and the bottom
layer is source code, then the annotation can be viewed as the abstraction of
the middle layer connecting the top and the bottom layers. Basically, a program
annotation is used to bridge the abstraction gap between the top and the bottom
layers.

Antiregression work A term introduced by Lehman and Belady to describe the work
done to decrease the complexity of a program without altering the functionality of
the system as perceived by the users. Anti-regressive work includes activities such
as code rewriting, refactoring, reengineering, restructuring, and redocumenting.

Application engineering The process of constructing or refining application sys-
tems by reusing assets.

Application gateway An application gateway is used for a semidecomposable LIS.
This gateway is positioned between separable user and system interfaces and the
legacy application.

Artifact Artifacts that together correspond to a software product can be of the
following types: document that can be subdivided into textual and graphical doc-
uments, component off-the-shelf products, and object code components. Textual
documents include source code listings, plans, design, and requirements specifi-
cations.

GLOSSARY 361

Aspect A modular unit designed to implement a (crosscutting) concern. In other
words, an aspect provides a solution for abstracting code that would otherwise be
spread throughout, that is, crosscut the entire program.

Aspect-oriented software development An approach to software development
that addresses limitation inherent in other approaches, including object-oriented
programming. The approach aims to address crosscutting concerns by provid-
ing means for systematic identification, separation, representation, and compo-
sition. Crosscutting concerns are encapsulated in separate modules, known as
aspects, so that localization can be promoted. This results in better support
for modularization, thereby reducing development, maintenance, and evolution
costs.

Assembler Refers to a computer program to translate between lower level represen-
tations of computer programs. The original sequence is usually called the assembly
language and the output called object code.

Assertion An assertion is a Boolean statement which should never be false or can
be false only if an error has occurred. In other words, an assertion is a check on
a condition which is assumed to be true, but it can cause a problem if it is not
true.

Asset An item, such as design, specifications, source code, documentation, test
suites, manual procedures, that has been designed for use in multiple contexts.

Backward wrappers Backward wrappers emulate the legacy technology on top of
the new database.

Bad smell A bad smell is a structure in the code that suggests— and sometimes even
scream for—opportunities for refactoring.

Baseline Specification or product that has been formally reviewed and agreed upon
that thereafter serves as the basis for further development, and can be changed
only through a change control procedure.

Beacon A beacon is a code text that gives a clue to the computation being performed
in a code block.

Big bang It is a reengineering approach to replace an entire system at one. It is also
known as Cold turkey strategy.

Black-box testing It is a method of software testing that examines the functionality
of an application without peering into its internal structures or workings.

Butterfly A methodology to migrate a mission-critical LIS to a target system in a
simple, fast, and safe way. The methodology eliminates, during the migration,
the need of simultaneously accessing both the legacy and target systems, and,
therefore, avoids the complexity of maintaining the consistency between these
two information systems.

Call graph It is a directed graph in which nodes represent functions (components
or methods) and an edge from node A to node B means that A may call B.

Candidate impact set (CIS) The set of components estimated to be affected accord-
ing to a particular impact analysis approach. It is also known as estimated impacted
set.

362 GLOSSARY

Change control Change control is the process responsible for evaluating the results
of maintenance event investigations and deciding whether or not to approve a
product modification.

Change coupling It is the implicit dependency between two or more software enti-
ties that have been observed to frequently change together during the evolution
of a system. This co-change information can either be present in the versioning
system, or must be inferred by analysis.

Change management The process of making changes to software and controlling
their effects during the entire life cycle of the software.

Change propagation activity It ensures that a change made in one component is
propagated properly throughout the entire system.

Chicken little This migration methodology is a refinement of the composite database
migration approach.

Chunk A chunk is a block of related code segment. The concept of program chunks
enable programmers to create higher levels of abstractions from the lower level of
abstractions.

Chunking A programmer creates higher level abstraction structures by combining
lower level chunks. The process of creating higher level of chunks is called
chunking.

Cliché A cliché is a pattern that appears frequently in programs (e.g., algorithms,
data structures, domain-specific patterns).

Closed source software (CSS) Closed source software is developed by a single
person or company. Only executable code is made available, while the all important
source code is kept secret. The software is normally copyrighted or patented and
is legally protected as intellectual property. The owner of the software distributes
the software directly or via vendors to the end user.

Cold turkey It is a migration strategy that rewrites LIS from scratch using modern
architecture, tools, and databases, running on a new platform.

Code decay Code decay is antithesis of evolution. While the evolution process
involves progressive changes, the changes are degenerative in the case of decay.

Code churn It is the amount of code change taking place within a software unit over
time.

Code smell A code smell is a symptom in the source code of a software that possibly
indicates a deeper problem.

Commercial off-the-shelf (COTS) components Software components produced
by third-party vendor organizations, that can be reused in a system, are known
as commercial off-the-shelf components. Often, these types of components are
delivered without their source code.

Compilation It refers to the translation of source code into object code by a compiler.
A compiler is a computer program that translates text written in one computer lan-
guage (the source language) into another computer language (the target language).
The original sequence is usually called the source code and the output is called
object code.

GLOSSARY 363

Composite database It is a migration methodology in which the LIS and its target
IS operated in parallel throughout the migration project. The target applications
are gradually rebuilt on the target platform using software tools and technology.

Concepts Concepts are units of human knowledge that can be processed by the
human mind in one instance.

Conceptual schema A conceptual schema of a database is an abstract, computer-
independent description of the information that the data implement. A conceptual
schema expressed into the entity-relationship model comprises entity types, rela-
tionship types, attributes and various properties and constraints that translate the
concepts and structures of the application domain.

Configuration A configuration is a set of related items (a.k.a. configuration items)
satisfying three criteria: (i) the configuration is uniquely identifiable; (ii) the items
are consistent, that is, the items work with one another in a way that is well
understood; and (iii) the set of items is recreatable as a unit.

Configuration item It is an elementary part (usually a file) of the configuration that
must be: (i) identified or versioned; (ii) tracked; and (iii) controlled.

Configuration management The set of activities that is developed to manage
changes to the software’s documentation and code throughout the software life
cycle.

Construction The process of writing, assembling, or generating assets.

Control flow analysis It refers to the order in which the individual statements,
instructions, or function calls of an imperative or functional program are executed
or evaluated.

Corrective maintenance A process that includes isolation and correction of defects
in the software. The correction repairs the software product to satisfy requirements.

Crosscutting concerns Concerns that do not fit within the dominant decomposition
of a given software system, and as such have an implementation that cuts across
that decomposition. Aspect-oriented programming is intended to be a solution to
modularize such crosscutting concerns.

Cross-referencing It means being able to link elements of different abstraction
levels. This helps in building a mental model of the program under study.

Customer The person or persons for whom the product is intended, and usually, but
not necessarily, who decides the requirements.

Cut over It is the last step in the migration process from the LIS to the target system.

Data administration Data administration or data resource management is an organi-
zational function working in the areas of information systems that plans, organizes,
describes, and controls data resources.

Data conversion Data conversion is the migration of the data instance from the old
database to the new one.

Database gateway Both the forward gateway and reverse gateway are also known as
database gateways, since it encapsulates the entire database service and database
from the perspective of application modules.

364 GLOSSARY

Database reverse engineering It is a software engineering process through which
one tries to understand and redocument the files and/or the database of an appli-
cation. In the process, conceptual schema is recovered from the application.

Data flow analysis Data flow analysis is a technique for gathering information about
the possible set of values calculated at various points in a computer program. A
program’s control flow graph (CFG) is used to determine those parts of a program
to which a particular value assigned to a variable might propagate. The information
gathered is often used by compilers when optimizing a program.

Data reverse engineering (DRE) The use of structured techniques to reconstitute
the data assets of an existing system. The two vital aspects of the DRE process
are to: (i) recover data assets that are useful or valuable; and (ii) reconstitute
the recovered data assets to make them more useful. Thus, DRE can be regarded
as adding value to the existing data assets, making it easier for organizations to
conduct business efficiently and effectively.

Decompilation It is a tool by which a high level source code of an executable
program is discovered. A decompiler is the name given to a computer program
that performs the reverse operation to that of a compiler.

Design recovery It aims at recreating design abstractions from the source code,
existing documentation, experts’ knowledge, and any other source of information.
In design recovery the domain knowledge, external information, and deduction or
fuzzy reasoning are added to the observations of the subject system to identify
meaningful higher level abstractions beyond those obtained directly by examining
the system itself.

Decay Decay is the antithesis of evolution. While the evolution process involves
progressive changes, the changes are degenerative in the case of decay.

Development model A framework used to guide the set of activities performed to
translate user needs into software product.

Development process One of the primary processes of the ISO/IEC life cycle model.
It provides guidance for the development of software.

Development technology The technology used when the product and its constituent
artifacts were originally constructed. The original development technology con-
straints the possible maintenance procedures.

Disassembler A disassembler is a computer program that translates machine lan-
guage into assembly language—the inverse operation to that of an assembler.
Disassembly, the output of a disassembler, is often formatted for human readabil-
ity rather than suitability for input to an assembler, making it principally a reverse
engineering tool.

Discovered impact set (DIS) New impact components that are discovered during
the implementation of the change request which are not included in the candidate
impact set (CIS).

Domain A problem space. A sphere of activity, concern, or function.

Domain analysis Domain analysis is the process of analyzing related software
systems in a domain to find their common and variable parts. Domain analysis is

GLOSSARY 365

the first phase of domain engineering. It is a key method for realizing systematic
software reuse.

Domain design It covers the development of a common architecture for all the
members of the system family and a plan of how individual systems will be
created based on the reusable assets.

Domain engineering A reuse-based approach to defining the scope, specifying the
structure, and building the assets for a class of systems, subsystems, or applica-
tions. Domain engineering may include the following activities: domain definition,
domain analysis, domain design, and domain implementation.

Domain implementation a.k.a. product line The process of creating adaptable
assets that can be reused in the development of software systems within a domain.
Domain implementation may also include the specification of a software devel-
opment process that describes how software systems in the domain are developed
through reuse of assets.

Domain model A product of domain analysis that provides a representation of
the requirements of the domain. The domain model identifies and describes the
structure of data, flow of information, functions, constraints, and controls within
the domain that are included in software systems in the domain. The domain model
describes the commonalities and variabilities among requirements for software
systems in the domain.

Domain-specific language A problem- or task-oriented modeling language used
to simplify the process of assembling, customizing, generating, or configuring a
system or component.

Effectiveness It is the ability of the impact analysis approach to produce results
that actually benefit the maintainer’s work. The abstract definition of effectiveness
is refined by means of three characteristics: Ripple-sensitivity, Sharpness, and
Adherence.

Equivalence tests The equivalence test aims to ensure that the behavior of the
software system after a maintenance activity of one or more of its components is
exactly the same as before the change.

E-type program The distinctive properties of E-type programs are: (i) the problem
that they address cannot be formally and completely specified; (ii) the program
has an imperfect model of the operational domain embedded in it; (iii) the pro-
gram reflects an unbounded number of assumptions about the real world; (iv) the
installation of the program changes the operation domain; and (v) the process of
developing and evolving E-type software is driven by feedback.

Event management Event management is the process responsible for handling the
stream of events received by the maintenance organization.

Evolution process A software process model that explicitly takes into account the
iterative and incremental nature of the software development.

External reuse (a.k.a. public reuse) The portion of a product which was constructed
externally.

366 GLOSSARY

Extreme programming (XP) This is a software development methodology which
is self-adaptive and people oriented. It is a specific instance of agile software
development that aims to simplify and expedite the development of new software
in a volatile environment of rapidly changing requirements. XP begins with five
values: communication, feedback, simplicity, courage, and respect. It then builds
up 12 rules/recommendations, which XP projects should follow.

False positive impact set (FPIS) The set of components in the candidate impact set
(CIS) that are not impacted by the implementation of a change request.

Feedback In engineering, feedback refers to the case when at least some part of the
output(s) of the system are fed back to the input, normally for control purposes.
In systems thinking and related disciplines, that is system dynamics, feedback
describes a property of many complex systems in which the outputs determine the
inputs.

Forward engineering Forward engineering is the traditional process of moving
from high level abstractions and logical, implementation-independent designs to
the physical implementation of a system.

Forward gateway The forward gateway translates and redirects LIS application
calls to the new database service. The LIS interoperates with its target system
through a forward gateway while legacy applications and interfaces are being
reengineered.

Forward migration It is a type of migration methodology which involves the initial
migration of database including the data to a modern DBMS then gradually migrat-
ing the legacy application program and interfaces. It is also known as database
first approach.

Forward wrappers The forward wrappers translate data and queries from the legacy
data model and interface to those expected by the new components.

Framework A set of cooperating classes or frames that makes up a reusable design
for a specific class of software.

Free and open source software (FOSS) Software of which the source code is
available for users and third parties to be inspected and used. It is made available
to the general public with either relaxed or non-existent intellectual property
restrictions. It is generally used as a synonym of free software even though the
two terms have different connotations. Free emphasizes the freedom to modify
and redistribute under the terms of the original license while open emphasizes the
accessibility to the source code.

Fully decomposable information system A fully decomposable information sys-
tem is one where applications, interfaces and databases are considered to be distinct
components with clearly defined interfaces. Applications must be independent of
each other and interact only with the database service.

Gateway A software module introduced between operational software components
to mediate between them.

Glue A glue is a piece of code that one builds to combine different components.

GLOSSARY 367

Graph exchange language (GXL) It is an XML-based standard exchange format for
sharing data between tools. Formally, GXL represents typed, attributed, directed,
ordered graphs which are extended to represent hypergraphs and hierarchical
graphs. The GXL has been ratified by reengineering and graph transformation
research communities and is being considered for adoption by other communities.

Graph transformation (a.k.a. graph rewriting) A theory and a set of associated
tools that allows to modify graph-based structures by means of transformation
rules, and to reason about the formal properties of these rules.

Hazard State of a system or a physical situation which, when combined with certain
environmental conditions, could lead to an accident or mishap. A hazard is a
prerequisite for an accident.

Horizontal reuse A type of reuse where assets are used across domains.

Horizontal (a.k.a. external) traceability It refers to the ability to trace artifacts
between different models.

Horseshoe It is a visual metaphor to describe a three-step architectural reengineering
process. The first step—represented on the left side of the horseshoe—aims at
extracting the architecture from the source code (abstraction principle). The second
part of the process—represented in the upper part of the horseshoe—is related to
architecture transformation toward the target architecture (alteration principle).
The last part—on the right side of the horseshoe—represents the instantiation of
the new architecture (refinement).

Hypothesis Programmers test the results of their program understanding as a con-
jecture.

Impact analysis (IA) Task of identifying potential consequences of a change, or
estimating what needs to be modified to accomplish the change.

Incremental development It is a staging and scheduling strategy in which the
various parts of the system are developed at different times or rates, and integrated
as they are completed.

Information system (IS) It is often used to designate large-scale business applica-
tions.

Information system gateway It is a kind of gateway for nondecomposable sys-
tems which are positioned between end-user and other information systems and
LIS. An information system gateway encapsulates the whole functionality of
the legacy system. It is a primary means for dealing with the migration of user
interface.

Internal reuse (a.k.a. private) The extent to which modules within a product are
reused within the same product.

Investigation activity An activity that assesses the impact of undertaking a modifi-
cation arising from a change request.

Iterative development It is a rework scheduling strategy in which time is set aside
to revise and improve parts of the system.

Knowledge base A knowledge base is a body of information about the program.

368 GLOSSARY

Knowledge elements A knowledge element is anything that is useful in understand-
ing a program.

Knowledge structure It specifies principal elements in a domain and includes mech-
anisms which facilitate the comprehension and generation process. It is used to
organize complex entities or concepts into constituents.

Legacy system a.k.a. Legacy information system (LIS) A legacy system is any sys-
tem that significantly resists modifications and change. It may have been developed
using an outdated programming language or an obsolete development method.
Most likely it has changed hands several times and shows signs of many modifi-
cations and adaptations.

Lexical analysis It is the process of converting a sequence of characters into
a sequence of tokens. Programs performing lexical analysis are called lexical
analyzers.

Logical schema The description of the data structures as they are implemented by
the data manager, and they are seen by the application programmer. For example,
the logical schema of a relational database describes its tables, columns, and
primary and foreign keys as well as all the explicit and implicit constraints to
which the data are submitted.

Maintainer An organization or a personal who performs maintenance activities.

Maintenance event A problem report or change request originating from a customer
or user of the maintained product or a member of the maintenance organization.

Maintenance management The process used to manage the maintenance service
as opposed to the procedure used to manage individual maintenance requests.
The organization process is established and maintained by senior maintenance
managers. It is responsible for defining the structure of the maintenance organiza-
tion such that it can fulfill its service level agreement. Maintenance management
has three main concerns other than the normal concerns of quality assurance
and project management: event management, configuration control, and change
control.

Maintenance model A framework used to guide the set of activities to perform
maintenance.

Maintenance organization structure The roles undertaken by maintenance human
resources in a maintenance organization in order to perform the required admin-
istrative procedures.

Maintenance process One of the primary processes of the ISO/IEC life cycle model.
It provides guidance for the maintenance of software.

Management activity An activity related to the management of the maintenance
process or to the configuration control of the maintained product.

Mental model It describes a programmer’s mental representation of the program to
be comprehended.

Method A systematic procedure defining steps and heuristics to permit the accom-
plishment of one or more activities.

GLOSSARY 369

Metric A metric is a quantitative measure of the degree to which a system, compo-
nent, or process possesses a given attribute.

Migration A variant of reengineering in which the transformation is driven by a
major technology change is called migration.

Migration of information legacy system LIS migration basically moves an exist-
ing, operational system to a new platform, retaining the legacy system’s func-
tionality and causing minimal disruption to the existing operational business
environment.

Mishap Also called an accident, an unintended event that results in death, injury,
illness, damage or loss of property, or harm to the environment.

Model A model is a simplified representation of a system on a higher level of
abstraction. It is an abstract view on the actual system emphasizing those aspects
that are of interest to someone. Depending on the system under consideration,
we talk about, for example, software models (for software systems) and database
model (for database systems).

Model-driven engineering A software engineering approach that promotes the use
of models and transformations as primary artifacts throughout the software devel-
opment process. Its goal is to tackle the problem of developing, maintaining and
evolving complex software systems by raising the level of abstraction from source
code to models. As such, model-driven engineering promises reuse at the domain
level, increasing the overall software quality.

Modification activity An activity that takes one or more input artifacts and produces
one or more output artifacts that, when incorporated into an existing system, change
its behavior or implementation.

Modification request The means by which problems are reported and enhancements
are requested. It is also known as change request.

Nondecomposable information system A nondecomposable information system
is one in which no functional components are separable.

Non-functional requirements Non-functional requirements are requirements
which specify criteria to be used to judge the operation of a system, rather than
specific behavior. Non-functional requirements are often called qualities of a
system.

Normalization A normalization reduces a program to another program in a sub-
language, with the purpose of decreasing its syntactic complexity. Elimination of
GOTO and module flattening in a program are examples of program normalization.

Open source software (OSS) Software of which the source code is available for
users and third parties to be inspected and used. It is made available to the general
public with either relaxed or non-existent intellectual property restrictions. It is
generally used as a synonym of free software even though the two terms have
different connotations. Open emphasizes the accessibility to the source code,
while free emphasizes the freedom to modify and redistribute under the terms of
original license.

370 GLOSSARY

Obfuscation It is a transformation that makes a program harder to understand. Pro-
grams known as obfuscators operate on source code, object code, or both, mainly
for the purpose of deterring reverse engineering, disassembly, or decompilation.

Optimization An optimization is a transformation that improves the run-time and/or
space performance of a program.

Paradigm The philosophy adopted during the original construction of the main-
tained product, for example, the object-oriented paradigm or procedural paradigm.
The original paradigm constrains the possible maintenance procedures.

Perfective maintenance The process that improves the software in terms of per-
formance, processing efficiency, or maintainability. These activities may include
restructuring the code, creating and updating documentations, or tuning the system
to improve performance.

Physical schema A physical schema of a database is the implementation of its
logical schema. It is the technical descriptions of a database where all the physical
constructs, such as indices, and parameters, such as page size or buffer management
policy, are specified.

Plan A plan is an abstract representation of a cliché.

Portfolio analysis The portfolio analysis establishes measures of technical quality
and business value for a set of software systems and evaluate this against the
measure on a chi-square chart.

Precision In data mining or information retrieval, precision is defined as the pro-
portion of retrieved and relevant data or documents to all the data or documents
retrieved:

precision = ∣ {relevant documents} ∩ {retrieved documents} ∣
∣ {retrieved documents} ∣

Precision is a measure of how well the technique performs in not returning
non-relevant items. Precision is 100% when every document returned to the
user is relevant to the query. Being very precise usually comes at the risk of
missing documents that are relevant, hence precision should be combined with
recall.

Preventive maintenance Software maintenance performed for the purpose of pre-
venting problems before they occur. It is an activity during which one attempts to
prevent an unnecessary change in the future.

Principle of abstraction The gradual increase in the abstraction level of a system
representation is created by the successive replacement of existing detailed infor-
mation with information that is more abstract. Abstraction produces a represen-
tation that emphasizes certain system characteristics by suppressing information
about others.

Principle of alteration Alteration is the making of one or more changes to a system
representation without changing the degree of abstraction, including addition,
deletion, and modification of information.

GLOSSARY 371

Principle of refinement The gradual decrease in the abstraction level of a system
representation is caused by the successive replacement of existing systems with
more detailed information.

Procedure The conduct followed to perform an activity. A procedure may be clas-
sified as a method, technique, or script. A procedure may be adopted to perform a
specific activity from a set of possible procedures.

Process A process is a collection of related activities to accomplish some task. A
process can be described by creating a process model.

Process model A process can be described by creating a process model. A process
model represents key relationships among a variety of objects, such as activities,
data objects, tools, and human roles within a process. In other words, it is a
framework to identify, define, and organize data, strategies, rules, and processes
needed to support the way an organization wants to do business. Process models
are important vehicles for understanding, evaluating, reasoning, and improving
process.

Product A product is a software application, product, or package that is under-
going modification. A product is a conglomerate of a number of different
artifacts.

Product upgrade A change to the baseline product that implements or documents a
maintenance activity. An upgrade may be a new version of the product, an object
code patch, or a restriction notice.

Program analysis Program analysis reduces a program to one aspect, such as its
control flow or data flow. Analysis can thus be considered a transformation to a
sublanguage or an aspect language.

Program comprehension (a.k.a. program understanding) It is a process of knowl-
edge acquisition about the program. It is the task of building mental models of
an underlying software system at various abstraction levels, ranging from mod-
els of the code itself to ones of the underlying application domain, for software
maintenance, evolution, and reengineering purposes.

Program dependency graph (PDG) The program dependency graph (PDG) of a
program has one node for each simple statement and one node for each control
predicate expression. It has two types of directed edges—data dependency edges
and control dependency edges. A data dependency edge from vertex vi to vertex vj
implies that the computation performed at vertex vi directly depends on the value
computed at vertex vj. A control dependency edge from vi to vj means that node vi
may or may not be executed depending on the Boolean outcome of the predicate
expression at node vj.

Program families A set of programs whose common properties are so extensive
that it becomes advantageous to study the common properties of these programs
before analyzing individual differences.

Program migration In migration, a program is transformed to another language
at the same level of abstraction. This can be a translation between dialects, or a
translation from one language to another.

372 GLOSSARY

Program rephrasing Program rephrasing is source-code-level changes. Rephras-
ings are transformations that transform a program into a different program in the
same language.

Program slicing Program slicing is a method used by experienced computer pro-
grammers for abstracting from programs. Starting from a subset of a program’s
behavior, slicing reduces that program to a minimal form which still produces
that behavior. The reduced program, called a “slice,” is an independent program
guaranteed to faithfully represent the original program within the domain of the
specified subset of behavior.

Program translation Program translation is a source-code-level change. In program
translation a program is transformed from a source language into a program in a
different target language.

Protocol analysis It is a methodology for eliciting verbal reports from participants
about their thought sequences as a valid source of data on thinking.

Protocol data The thinking-aloud action of the programmer can be recorded and
transcribed. The transcribed verbal report is called protocol data.

P-type program It is based on a practical abstraction of the problem rather than on
a completely defined specification. Even though the exact solution may exist, the
solution produced by a P-type program is tempered by the environment in which
it must be produced. The solution of a P-type program is acceptable if the results
make sense to the stakeholder(s) in the world in which the problem is embedded.

Quality assurance activity An activity aimed at ensuring that a modification activity
does not damage the integrity of the product being maintained. Quality assurance
activities may be classified as testing.

Recall In data mining or information retrieval, recall is defined as the proportion of
relevant data or documents retrieved, out of all relevant data or documents known
or available:

precision = ∣ {relevant documents} ∩ {retrieved documents} ∣
∣ {relevant documents} ∣

Recall is 100% when every relevant item is retrieved. In theory, it is easy to achieve
good recall: simply return every item in the collection, thus recall by itself is not
a good measure and should be combined with precision.

Reclamation Reclamation is the process of reclaiming something from loss or from
a less useful condition. Some technical articles use this term as a synonym of
reengineering.

Re-code In the context of software engineering, re-code involves changing the imple-
mentation characteristics of the source code.

Re-design In the context of software engineering, re-design involves changing the
design characteristics. Possible changes include restructuring a design architec-
ture, altering a system’s data model as incorporated in data structures or in a
database, and improving an algorithm.

GLOSSARY 373

Redocumentation Redocumentation aims at producing/revising alternate views of
a given artifact, at the same level of abstraction, for example, pretty printing source
code or visualizing control flow graph. It is a weak form of restructuring.

Reengineering Software reengineering is an activity that: (1) improves one’s under-
standing of software, or (2) prepares or improves the software itself, usually for
increased maintainability, reusability, or evolvability.

Refactoring Refactoring is the object-oriented equivalent of restructuring. Refactor-
ing is a change to the internal structure of software to make it easier to understand
and cheaper to modify without changing its observable behavior.

Rehosting It means reengineering of source code without addition or reduction of
features in the transformed targeted source code. It includes porting, migration, or
conversion of the existing code and data from one computing platform to another,
from one operating system to another, from one language to another, or all of the
above, but no new features are added to the code.

Rejuvenation It is a periodic preemptive rollback of continuously running applica-
tions to prevent failures in the future. Rejuvenation may sometimes increase the
downtime of the application, however it prevents the occurrence of more severe
and costly failures.

Release A release is a version of a software system that has been approved and
distributed to users outside the development team.

Replace It is a type of software reengineering strategy that incorporates the prin-
ciples of abstraction and refinement. To change an existing system character-
istic, abstraction is used to reconstruct a system representation at a level of
abstraction that contains no information about the characteristic. Refinement is
then used to create a suitable target system representation at a lower level of
abstraction.

Repository A kind of database, or file system in which the version history of a
software system are stored. The repository may be used to store source code,
executable code, documentation or any other type of software artifacts of which
different versions may exist over time or even at the same time.

Resource Everything that is used to perform an activity. Resources may be hardware,
software, and human resources.

Respecify In the context of software engineering, respecify involves changing the
requirement characteristics. This type of changes can refer to changing only the
form of existing requirements that is taking informal requirements expressed in
English and generating a formal specification expressed in a formal language
such as SDL or UML. This type of change can also refer to changing system
requirements, such as the addition of new requirements, or the deletion or alteration
of existing requirements.

Restructuring Restructuring is the transformation from one representation form
to another at the same relative abstraction level, while preserving the system’s
external behavior.

374 GLOSSARY

Rethink In the context of software engineering, rethink involves changing the
conceptual characteristics. This type of change can result in drastic changes
to a system. Rethinking a system means manipulating the concepts embodied
in an existing system to create a system that operates in a different problem
domain.

Reusability The degree to which an asset can be used in more than one software
system, or in building other assets.

Reuse The use of an asset in the solution of a different problem.

Reuse capability The range of expected results in reuse proficiency, efficiency, and
effectiveness that can be achieved by an organization’s process.

Reuse effectiveness It is the ratio of the reuse benefit to the reuse cost.

Reuse efficiency It is the ratio of the actual reuse opportunities exploited to the
organizations targeted reuse opportunity.

Reuse maturity model It is a self-assessment and planning aid for improving an
organization’s reuse capability. A reuse maturity model is at the core of planned
reuse, helping organizations understand their past, current, and future goals for
reuse activities.

Reuse opportunity It is an occasion where an asset (existing or to be developed
for reuse) may satisfy a need (current or anticipated). Within the set of reuse
opportunities there are potential reuse opportunities and targeted reuse opportu-
nities. Potential reuse opportunities are the set of reuse opportunities that will
result in actual reuse when exploited. Targeted reuse opportunities are the set
of reuse opportunities toward which an organization directs its effort implicitly
and explicitly. A targeted reuse opportunity may not always be a potential reuse
opportunity.

Reuse proficiency It is the ratio of the value of actual reuse opportunities exploited
to the value of potential reuse opportunities.

Reuse library A classified collection of assets that allows searching, browsing, and
extracting.

Reverse engineering In the context of software, reverse engineering is defined as
the process of analyzing a subject system to: (i) identify the system’s components
and their interrelationships; and (ii) create representations of the system in another
form or at a higher level of abstraction.

Reverse gateway A reverse gateway enables target applications to access the LIS
database. It is employed to convert calls from the newly created applications and
redirect them to the legacy database service.

Reverse migration It is a type of migration methodology in which the LIS appli-
cations are gradually migrated to the target platform while the legacy database
remains on the original platform. The LIS database migration is the final step of
the migration process. It is also known as database last approach.

Rework This is a type of software reengineering strategy that incorporates the prin-
ciples of abstraction, alteration, and refinement. To change an existing system’s

GLOSSARY 375

characteristics, abstraction is used to reconstruct a system representation at the
appropriate abstraction level. Alteration is then used to transform the reconstructed
system representation into the target system representation at the same level of
abstraction. Finally, refinement is used to create a suitable target system represen-
tation at a lower level of abstraction.

Rewrite It is a type of software reengineering strategy that incorporates only the
principle of alteration. To change an existing system, alteration is used to transform
the existing system, represented at some level of abstraction, into the target system,
represented at the same abstraction level.

Ripple effect The effect caused by making a small change to a system which affects
many other systems.

Ripple-sensitivity It is the property of the approach to produce results that are
affected by the ripple effect. From the point of view of an impact analysis approach,
an indicator of the ripple effect may be the cardinality of the set of objects that
are indirectly impacted by the change (IIS) (a.k.a. secondary impacted set), given
the set of objects that are directly affected by the change (DIS) (a.k.a. primary
impacted set). The software maintenance engineer expects the cardinality of IIS
to be not very far from the cardinality of the direct impact set; in other words,

Amplification = ∣ IIS ∣
∣ DIS ∣

⟶ 1

where ∣ IIS ∣ is the cardinality of the indirectly impact set and ∣ DIS ∣ is the
cardinality of the direct impact set. Ripple-sensitivity is expressed by the Amplifi-
cation ratio. If Amplification is much greater than 1, this means that the approach
produces a much larger indirect impact set than the direct impact set.

Rules of programming discourse It specifies the conventions, also called “rules,”
that programmers follow while writing code.

Scattering and tangling Occur when the code needed to implement a given concern
is spread out (scattered) over and clutters (is tangled with) the code needed to
satisfy one or more other concern. Scattering or tangling are typically the results
of a program’s inability to handle what is called a crosscutting concern.

Schema It is a knowledge structure for describing program behavior in a specific
domain of activity.

Script A guideline for constructing and amending a specific type of document.

Screen scrapping It is a wrapping technique that replaces old, text-based interfaces
with new graphical interfaces.

Semidecomposable information system A semidecomposable information system
is one where only the user and the system interfaces are separate components, but
applications and database service are not separable.

Service-level agreement (SLA) An agreement between the providers of a main-
tenance service and the customers of a maintenance service that specifies the
performance targets for the maintenance service.

376 GLOSSARY

Service-oriented Architecture (SOA) In software engineering, an SOA is a set of
principles and methodologies for designing and developing software in the form
of interoperable services. These services are well-defined business functionalities
that are built as software components that can be reused for different purposes.

Sharpness It is the property of the impact analysis approach to avoid including
all the objects or components belonging to the software system in the candidate
impact set, unless they really should be included. Sharpness is expressed by means
of the following ratio called Change Rate:

Change Rate = ∣ CIS ∣
∣ System ∣

where ∣ System ∣ is the cardinality of the set of the software system objects; ∣ CIS ∣
is the cardinality of the candidate impact set. CIS is of course included in “System,”
so that ∣ CIS ∣ ≤ ∣ System ∣ and Change Rate falls in the range from 0 to 1.

Side effect It is an error or other undesirable behavior that occurs as a result of a
modification.

Soft-goal graph A soft-goal graph for a quality attribute is a hierarchical graph
rooted at the desired change in the attribute. Internal nodes represent successive
refinements of the attribute and are the soft goals. The leaf nodes represent refac-
toring transformations which fulfill or contribute positively/negatively to soft goals
which appear above them in the hierarchy.

Software aging Software product aging is degradation in software code and docu-
mentation quality by frequent maintenance, whereas software process execution
aging manifests as degradation in performance or transient failures in a continu-
ously running software system.

Software clone Copying code fragments and then reuse by pasting with or without
modifications is called software cloning and pasted code fragment (with or without
modifications) is called a clone of the original.

Software clone detection The activity of locating duplicates or fragments of code
with a high degree of similarity and redundancy.

Software configuration management (SCM) It is configuration management
applied to software systems.

Software entropy The combination of defect repairs and enhancements tends to
gradually degrade the structure and increase the complexity of the software appli-
cation. The increase in software complexity (e.g., Cyclomatic complexity) over
time is called software entropy.

Software evolution It is defined as “the applications of software maintenance activi-
ties and processes that generate a new operational software version with a changed
customer-experienced functionality or properties from a prior operational version,
where the time period between versions may last from less than a minute to
decades, together with the associated quality assurance activities and processes,
and with the management of the activities and processes.”

GLOSSARY 377

Software life cycle objects (SLOs) SLOs are work products representing docu-
ments of one kind or another containing varied levels of software engineering
information.

Software maintenance The totality of activities required to provide cost-effective
support to a software system. Activities are performed during pre-delivery stage
as well as the post-delivery stage. Note that pre-delivery activities include plan-
ning for post-delivery operations, supportability, and logistics determination.
Post-delivery activities include software modification, training, and operating
help desk.

Software migration An activity of the ISO/IEC 14764 maintenance process. It
includes the activity of moving an old system to a new operational environment.

Software reclamation A technique to convert the existing software into standard
building blocks (objects) to form new programs.

Software retirement An activity of the ISO/IEC 14764 maintenance process. It
involves removing a product from service in an orderly manner once it has outlived
its usefulness.

Stability measures The resistance to the potential ripple effect that a program would
have when it is modified.

Stakeholder Person or organization that influences a system’s behavior or is
impacted by the system.

Starting impact set (SIS) The initial set of components thought to be affected by a
software change request.

Strategy A strategy is a planned sequence of actions to reach a specific goal. A
strategy is formulated by identifying actions to achieve a goal.

S-type program It implements solution to the problems that can be completely and
unambiguously specified, for which, in theory at least, a program implementation
can be proven to be correct with respect to the specification. The definition of the
S-type requires that the program is correct in the full mathematical sense relative
to the specification.

Syntactic analysis It is the process of analyzing a sequence of tokens to determine
their grammatical structure with respect to a given (more or less) formal grammar.

Systematic reuse The practice of reuse according to a well-defined repeatable
process.

Tailoring Tailoring is a piece of code to enhance the functionality of a component.
Tailoring is done by adding some elements to a component to enrich it with a new
functionality not provided by the original component.

Technique A procedure used to accomplish an activity that is less rigorously defined
than a method.

Text-structure Code text and its structure are known as text-structure. Understand-
ing text-structure is the beginning of program comprehension.

Thinking aloud It reflects the knowledge currently active in the programmer’s
working memory.

378 GLOSSARY

Usability A measure of an executable software unit’s or system’s functionality, case
of use, and efficiency.

User The person or persons operating or interacting directly with the system. The
user often states requirements to the customer, supplier, or maintainer.

Version A version is a snapshot of a certain software system at a certain point in
time. Whenever a change is made to the software system, a new version is created.
The version history is the collection of all versions and their relationships.

Version control It is a software tool to retrace and restore programming past, proceed
along two or more development lines in a single project, and coordinate the work
with other people in the same project.

Vertical reuse A type of reuse in which assets are reused within an application
domain.

Vertical (a.k.a. internal) traceability It refers to the ability to trace dependent
artifacts within a model.

Wrapping It is a black-box modernization technique—surrounds the LIS with a
software layer that hides the unwanted complexity of the existing data, individual
programs, application systems and interfaces with the new interfaces. Essentially,
this gives old components new operation or a “modern and improved” look.

White-box reuse Reuse of a component by applying major changes to the com-
ponent.

White-box testing It is a method of testing software that tests internal structures
or workings of an application, as opposed to its functionality that is black-box
testing.

INDEX

One of the great defects of English books printed in the last century is the want of
an index.

—Lafcadio Hearn a.k.a Koizumi Yakumo

Abstract syntax tree (AST), 157, 318, 358
Abstraction, 135–136, 142, 149
Accelerated development, 327
Acceptance

test, 98–99
testing, 153

Accidental reuse, 358
Accounting, 116
Activity, 40, 358
Activity definition, 95
Activity-based classification, 28
Actual impact set (AIS), 225–226, 358
Ad hoc reuse, 338
Ada SDA (System Dependency Analyzer),

171
Adaptability, 16, 326
Adaptive, 1, 30–31, 289
Adaptive maintenance, 27, 358
Adequacy, 227, 359

Adherence, 227–228, 274, 359
Age, 39
Agglomerative algorithms, 281
Agile

programming, 58
software development, 359
software methodology, 13

Aging, 53, 375
Aiken, Peter, 11
Albrecht, A. J., 162
Alteration, 10, 137–138, 140
Amplification, 227
Analysis

knowledge, 317
and planning, 150–151
of protocol data, 315–316
state, 123

Annotation, 164, 300
Annotation of the program, 359

Software Evolution and Maintenance: A Practitioner’s Approach, First Edition.
Priyadarshi Tripathy and Kshirasagar Naik.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

379

380 INDEX

Anomaly, 60
Antiregression, 35, 58, 359
Antithesis, 54
Application

domain, 39
engineering (AE), 330–331, 348, 359
gateway, 206, 359
program interface (API), 189
wrappers, 191

Approval, 104
Approval task steps, 106
Architectural reuse, 15, 326
Architecture description languages (ADLs),

330
Architecture extraction, 135
Arnold, Robert S., 176
Arthur, Jay Lowell, 2, 45
Artifacts, 12, 38, 42, 133, 258, 359
Aspect, 360
Aspect-oriented software development, 155,

360
Assembler, 165, 360
Assertion, 164, 265, 360
Assessment model, 336
Asset, 360
Assimilation process, 15, 301
Association coefficient, 280
Assumptions management, 56
Audit, 116
Auditing, 116, 118
Automated analysis, 257
Available support community, 68

Backus–Naur Form (BNF), 157
Backward

search, 235
slice, 159
wrappers (b-wrappers), 189, 191, 360

Bad smell, 360
Baseline, 37, 118, 360
Basic conceptualization, 170
Basic reuse, 338–339
Bazaar, 58
Beacon, 296, 360
Behavior preserving transformation, 266
Belady, Laszlo, 1
Bennett, Keith H., 45
Behavioral dependencies, 69
Big bang, 360

Big Bang approach, 144, 202
Black-box

components, 5
reengineering, 11, 189
requirements, 346
testing, 360

Bottom-up, 301
Branch, 114
Brooks model, 303
Build process, 70
Building, 115
Business model of Poulin and Caruso,

350
Business

process reengineering (BPR), 199
rules, 159

Butterfly, 12, 360
Butterfly methodology, 208
Byrne, Eric J., 138

Call graph, 13, 158, 234–235, 317, 360
Call graph-based analysis, 13, 224
Call preservation, 262
Call, use and define (CUD), 245
Candidate impact set (CIS), 225–226, 231,

360
Canning R. G., 1, 25
Capability Maturity Model (CMM), 64
Carry on maintenance, 11, 188
Cathedral, 58
Causation, 149
Centroid, 281
Certification, 149, 329
Change

control, 42, 361
coupling, 361
management, 115, 361
mini-cycle model, 7, 91
propagation, 13, 245, 265
propagation activity, 94, 225, 361
propagation heuristics, 243, 247
propagation model, 242–243
rate, 228
request (CR), 26, 43, 92, 116, 119, 215,

223, 225, 243
request schema, 121
set, 243–244
source instruction (CSI), 350
system, 42

INDEX 381

Chapin, Ned, 28–29, 45
Chicken little, 12, 361
Chicken little

migration, 207
strategy, 206

Chidamber and Kemerer (CK) metrics, 162,
164

Chikofsky and Cross II, 153–154
Chrysaliser, 208, 210–212
Chunk, 293, 361
Chunking, 15, 295, 361
City metaphor, 320
CK metric suite, 162
Class diagram, 260, 262, 265–266
Cleansing, 195
Clearcase, 115, 118
Cliché, 171, 361
Client organization, 43
Clone, 61, 164, 177, 375
Closed source software (CSS), 3, 49, 58, 87,

361
Closed state, 125
Closedown, 88–89
Clustering, 278, 280
Clusters

business rules, 29, 31, 36
documentation, 29, 31, 34
software properties, 29, 31, 35
support interface, 29, 31, 34

COCOMO model, 199
Code

changes, 275–276
churn, 361
cognition, 291
decay, 53–54, 361
layout (FIL), 246
leverage, 289
readers, 297
smell, 258, 361

CodeCrawler, 171
Cognitions, 317
Cohesion, 263
Cohesion metric, 267–268
Cold turkey, 12, 201, 361
Commercial off-the-shelf (COTS), 5–6, 36,

62, 361
Commit state, 123
Common goals, 44
Compilation, 141, 152, 165, 361

Complex refactoring, 14
Complexity, 263
Complexity metrics, 162
Compliance, 327
Component

collaboration, 68
reconfiguration, 65
reuse, 167
selection, 67

Component-based software (CBS), 5–6,
62

Composite database, 12, 362
Composite database approach, 205
Comprehension strategies, 308
Computationally redundant data, 213
Computer-aided software engineering

(CASE), 40
Concept assignment problem, 228
Concepts, 93, 228, 362
Conceptual

data, 213
level, 136
normalization, 170
phase, 168
schema, 167, 195, 362

Concurrent version system (CVS), 118
Configuration, 362

baseline, 117
control board (CCB), 118
item, 362
management (CM), 9, 42, 66–67, 103,

111, 148, 362
Conformance, 150
Conjectures, 14, 295, 299
Connectivity matrix, 232
Conservation of familiarity, 3, 39, 50, 52,

60, 242
Conservation of organizational stability, 3,

50, 52, 60, 242
Construction, 362
Construction algorithms, 280
Constructive Cost Model II (COCOMO II),

202
Consultive, 30–31
Context area, 318
Continuing change, 3, 50–51, 134, 242
Continuing growth, 3, 50, 52, 134, 242
Contours, 320
Contracting, 12

382 INDEX

Control
data, 213
dependency edges, 236
flow, 292, 312

Control flow
analysis (CFA), 10, 362
graph (CFG), 142, 158, 317

Control structure diagram (CSD), 318
Controlled interfaces, 69
Controlling, 118
Corrections, 28
Corrective, 1, 30–31, 289
Corrective maintenance, 26, 362
Correlation coefficients, 280
Cost estimation, 12
Cost model of Gaffney and Durek, 340
Cost per error, 350
Cost-benefit analysis, 12, 200
Coupling, 54, 263
Coupling between object class (CBO), 163
Coupling metrics, 268
Critical pair analysis, 261
Crosscutting concerns, 362
Cross-referencing, 15, 295–296, 362
Customer, 362
Cut over, 196, 362
Cut-and-run, 196
Cyclomatic complexity, 162–163, 197–198,

241

Dangling purpose, 301
Data

access-allocator (DAA), 208, 210–212
administration, 166, 362
analysis, 169
archival, 109, 111
assets, 166
banker, 214
cleaning, 195
conversion, 167, 195, 362
dependency edges, 235–236
description language (DDL), 168
flow, 292, 312
flow analysis (DFA), 10, 158, 363
flow graph (DFG), 317
forward engineering, 166
locator, 214
management system (DMS), 168
reduction, 148

reengineering, 152
representation, 148
reuse, 15, 326
reverse engineering (DRE), 11, 166, 363
structure conceptualization, 168
structure extraction, 168

Database, 166
Database

first, 12, 189, 203
gateway, 206, 362
last, 12, 204
management system (DBMS), 167–168
reverse engineering (DBRE), 167, 195,

363
wrappers, 189

Data-oriented application, 165–167
Data-Transformer, 208, 212
Davis, Ted, 336
Decay, 363
Decision tree, 32
Decision tree-based criteria, 31
Declining quality, 3, 50, 53, 134, 242
Decompilation, 135, 141, 165, 363
Decompiler, 152, 164
Definition-use, 317
Degree of interest (DOI), 318
Delivery, 99
Density search technique, 280–281
Dependency analysis, 12
Dependency graph, 13, 229, 234
Dependency graph-based analysis, 13, 234
Depth of inheritance tree (DIT), 163
Design, 96
Design

level, 136
recovery, 154, 363
reuse, 16, 326
clones, 164

Developer, 2
Developer information (DEV), 246
Development

cost avoidance, 351
model, 363
process, 111, 363
replay (DR), 246
for reuse, 325, 328, 329
with reuse, 325, 330
staff, 44
technology, 41, 363

INDEX 383

Device-drivers, 61
Direct impact, 231
Disassembler, 164, 363
Discard and redevelop, 11, 188
Discovered impact set (DIS), 225–226,

363
Distance measure, 280
Distance-based, 268
Distance-based approach, 233
Distinctive appearance, 160
Divide-and-conquer schema, 297–298
Divisive algorithms, 281
DMS (Design Maintenance System),

171
DMS–DDL text analysis, 169
Documentation, 104, 146, 166, 274

change, 94
task steps, 105

Documenting, 118
Domain, 325, 363

analysis, 15, 325, 329, 36
design, 330, 364
engineering (DE), 328–329, 331, 348,

364
implementation, 330, 364
knowledge, 303, 304, 308, 314
model, 313, 331, 364
plans, 294
qualification (DQ), 331
specific languages (DSLs), 364

Domain analysis and reuse environment
(DARE), 331

Draco, 331
Duplicate code, 259
Dynamic

call graph, 158
elements, 295
growth, 44
program slice, 225, 237–238

Economic, 328
Effective size, 346
Effective visual metaphors, 162
Effectiveness, 227, 363
Eighth law, 50, 53
Element connectedness, 320
Elimination-of-goto, 276
Embedded knowledge, 53
Empirical studies, 54, 60

Encapsulation, 146–148
Encoding, 316
Engineering change (EC), 112, 124
Engineering view point, 46
Enhancements, 28
Enhancive, 30–31
Enterprise JavaBeans (EJB), 201
Entity-relationship (ER), 167
Entropy, 53, 375
Environment, 275
Environmental independence, 326
Equivalence tests, 217, 364
Error flow analysis, 238
Establishing baseline, 118
Estimated impact set (EIS), 93
E-type program, 48, 51, 134, 364
E-type software, 56
E-type systems, 3
Euclidean distance, 268
Evaluation, 317
Evaluative, 30–31
Event management, 42, 364
Evidence-based classification, 28
Evolution, 1, 7, 44–45, 87–88
Evolution

of E-type software, 49
management, 57
process, 49, 51, 53, 89, 364
of software, 44

Evolutionary
approach, 146
model, 92
trajectory, 51

Evolves, 2
Exception handling, 292
Execution history, 237
Explanatory (what/why), 45
Extensibility, 256, 263
External

documentation, 307
interface, 192
representation, 300
reuse (a.k.a. public reuse), 364
software value, 256

External traceability, see Horizontal
traceability

Extract, transform, and load (ETL), 195
Extractive, 327–328
Extreme programming (XP), 13, 365

384 INDEX

Facebook, 330
Failure handling, 70
False positive, 233
False positive impact set (FPIS), 225–226,

365
Familiarity, 320
Fan-in, 162–163
Fan-out, 162–163
Family-oriented abstraction, specification,

and translation (FAST), 331
Feature location, 229
Feature-oriented domain analysis (FODA),

330
Feature-oriented reuse method (FORM),

331
Features, 228
Feedback, 365
Feedback system, 3, 49, 50, 53, 242
Feedback, evolution, and software

technology (FEAST), 54
FermaT, 172
Fifth law, 50, 52
First law, 50–51
First order reuse cost model, 346
Fisheye view, 318
Focus area, 318
Forward

engineering, 10, 135, 139, 154, 365
gateway, 203, 205–206, 365
migration, 203, 365
searching, 235
slicing, 159, 225
software engineering principles, 210
wrappers (f-wrappers), 189, 365

FOSS evolution, 60
Fourth law, 50, 52
Framework, 365
Free and Open Source Software (FOSS), 4,

58, 365
Free software, 4, 58
Free software, 58
Free/Libre/Open Source Software (FLOSS),

58, 90
Freeze, 11, 188
Frequency, 246
Friendly user interface, 162
Frozen, 209
Frozen functionality, 63
Full reuse model, 85, 87

Fully decomposable, 204–205, 365
Function, 146, 312
Function

name, 297
point (FP), 162, 163
wrappers, 191

Functional
knowledge, 314–315
requirements, 256
enhancement, 134

Functionality, 292
Functionalization, 149

Gate keepers, 59
Gateway, 203, 365
Gateway co-ordinators, 208
General knowledge, 291
Generation of

code, 149
design, 149

Generic knowledge structure, 294
Geographic technique, 280–281
Gestalt’s theory, 319
Gibson’s theory, 319
Global

factors, 60
variable (GV), 163

Glue, 62–63, 365
Goals, 155, 164, 291, 299
Goals/models/tools, 10, 155
Good figure, 319
Good use of interactions, 162
Goto-less, 276
Granularity, 191
Graph exchange language (GXL), 172, 366
Graph rewriting, see Graph transformation
Graph theoretical algorithm, 280
Graph transformation, 265–266, 366
Graphical user interface (GUI), 194
Grep, 228
Groomative, 30–31
Groups, 29
Guru, 243

Habitability, 320
Halpern, Mark I., 1, 44
Halstead complexity (HC), 163
Halstead, Maurice, 164
Hardware maintenance, 2

INDEX 385

Hazard, 28, 366
Hex-Rays Decompiler, 172
Hierarchical algorithms, 281
High cohesion, 16, 326
High information content, 160–161
High level of visibility, 70
Higher order reuse cost model, 346, 348
Historical co-change (HIS), 245
Horizontal reuse, 366
Horizontal traceability, 224, 229–230, 366
Horseshoe, 366
Horseshoe model, 138
human resource, 43
Hypertext markup language (HTML), 194
Hypotheses, 14, 293–295, 299, 305, 308,

366
Hypotheses strategies, 14

I/O-emulator, 194
Iceberg, 1, 92
IDA Pro Disassembler and Debugger, 172
Identification, 113
IEEE 1042, 9
IEEE/EIA 1219, 8, 94, 99
Imagix 4D, 172
Immediacy, 317
Impact analysis (IA), 12, 93, 223, 225, 366
Implement

change, 94
parallel operations and training, 110
state, 123

Implementation, 97
details, 293
level, 136
model, 337

Improvement algorithm, 281
Improving maintainability, 134
Improving quality, 134
Incompatibility of upgrades, 63
Increasing complexity, 3, 50–51, 134, 242
Incremental

approach, 145, 233
development, 86, 366

Indirect impact, 231
Individuality, 160
Information system (IS), 187, 366
Information system gateway, 206–207, 366
Information-flow metric, 164
Initial development, 7, 87–88

Initial entity, 244
Initial reuse, 338, 339
Input, 95
Inspection, 276
Integrated, 338
Integrated metamodel, 312, 314
Integration, 166
Intention-based classification, 26
Intentions, 317
Inter-class coupling, 269
Interface converter, 193
Interface description languages (IDLs),

330
Intermodule change propagation, 240
Internal

documentation, 306
interface, 193
reuse, 366
semantic, 302
software value, 256
traceability, see Vertical traceability

Internet Protocol (IP), 39
Interpretation, 149
Interprocedural analysis, 158
Intra-class coupling, 269
Intramodule change propagation, 238
Intraprocedural analysis, 158
Invariants, 265
Inverse square law, 54–56
Investigation activity, 40, 366
Investigation report, 42
IRAP (Input–Output Reengineering and

Program Crafting), 172
is-a, 294, 315
ISO/IEC 12207, 8, 107
ISO/IEC 14764, 8, 25–26, 99
Isolation, 115, 148
Iterative, 12

algorithm, 281
approach, 145
development, 86, 366
enhancement model, 85–86
method, 212
models, 7
process, 99

JAD (JAva Decompiler), 173
Java 2 Enterprise Edition (J2EE), 201
Jazayeri, Mehdi, 2

386 INDEX

Kaizen, 86
kind-of, 294, 315
Kitchenham, A, 28
Knowledge, 291, 301–302

acquisition, 166, 291
base, 15, 298, 314, 366
elements, 294, 367
structure, 297, 309, 315, 367

Koala, 332
KobrA, 332

Lack of cohesion in methods (LCOM), 163
Law of

connectedness, 320
continuation, 320
contour, 320
evolution, 3
familiarity, 320
good figure, 320
orientation, 320
proximity, 320
similarity, 320
software evolution, 49
symmetry, 320

Legacy, 187
Legacy

DB, 214
DB manager, 214
information systems (LIS), 140, 188,

367
SampleData, 208
software, 11
state, 213
system, 11, 89, 187–188, 192, 195, 203,

367
Legal, 328
Lehman, Meir M., 1, 3, 44
Lehman’s law, 3, 51, 212
Letovsky model, 298
Leveraged, 338
Lexical analysis, 10, 157, 367
Library, 118
License agreements, 165
Lines of code (LOC), 163
Linus’s law, 59
Linux, 4, 59–60
LIS migration, 195–196
Local area network (LAN) simulator, 260
Locality, 321

Logical
phase, 168
schema, 167–168, 195, 367

Long-term memory a.k.a. knowledge base,
315

Low coupling, 16, 326
Low visual complexity, 160–161

Macrostructure, 311
Magnification function, 319
Maintainability, 256, 263, 327
Maintained

product, 37–38
product dimension, 37

Maintainer, 2, 291, 367
Maintenance, 1, 4, 25, 45

activities, 26
activities-based classification, 4
adaptive, 4
corrective, 4
cost, 327
of COTS-based systems, 5–6
engineer, 2
event, 42, 367
evidence-based classification, 5
factors, 37
iceberg, 1, 25
intention-based classification, 4
management, 42, 367
model, 84, 367
organization, 41–43
organization structure, 42, 367
perfective, 4
plan, 99, 101–102
preventive, 4
process, 37–38, 95, 100, 367
request, see Change request (CR)
review, 100, 105
staff, 44

Make, 112, 115
Management activity, 40, 367
Managerial, 328
Managers and policies, 274
ManSART, 173
Marr’s theory, 319
McCabe IQ, 173
McIlroy, Dough, 15
Mean time to maintenance request

(MTMR), 215

INDEX 387

Mediator, 68
Medium access control (MAC), 291
Mental model, 14, 291, 293, 367
Mental representation, 300
Merging, 114
Message

chain, 259
handler, 193
oriented middleware (MOM), 201

Metadata, 214–215, 217
Method, 41, 367
Metric, 95, 265, 267, 368
Metrication, 146
Microstructure, 311
Middleware, 64–65
Migrate, 12, 188
Migrate data, 216
Migrating to a new technology, 134
Migration, 12, 100, 106, 140–141, 368

of legacy information system, 140, 368
of LIS, 195
plan, 107
plan task steps, 108
planning, 196
process, 215
projects, 12
standard, 107
build, 70

Minimal component coupling, 70
Mishap, 28, 368
Mission-critical

legacy system, 201
project, 196

Model, 156, 368
Model-driven engineering, 140, 368
Modification activity, 40, 368
Modification

implementation, 100, 105
of specification, 149
request (MR), 95, 102, 119, 368

Modification request
analysis, 103
task steps, 104

Modularity, 256
Module

connection analysis, 238
level, 192
wrapper, 194

Monolithic systems, 4

Multi-agent, 53
Multi-level, 53
Multi-loop, 53

Neighbors, Jim, 15, 325
New DB, 214
New DB manager, 214
New state, 213
Nondecomposable, 205–206
Nondecomposable information system, 204,

368
Non-functional requirements, 256, 368
Normalization, 141, 148, 368
Notification

of completion, 108, 110
intent, 107
of intent, 110

Number of children (NOC), 163

Obfuscation, 369
Object

identification, 149
interpretation, 149

Objectives, 134
Observable behavior, 13
Occurred set, 244
Off-the-shelf component, 329
Onion model, 58–59
Open source community (OSC), 58
Open source software (OSS), 368
Openness of components, 67
Operations, 312
Opportunistic, 301, 337
Optimization, 141, 369
Optimization algorithm, 281
Option task steps, 104
Options, 104
Organized reuse, 338–339
Orientation, 320
Original equipment manufacturer (OEM),

67
OS/360 operating system, 54
Output, 95
Outsource, 11, 188
Overloading, 195

Paradigm, 41, 369
Parallel operation, 196, 108
Parameter coupling, 263–264, 269–270

388 INDEX

Parameterize methods, 273
Paranas, David, 15, 325
Parse tree, 157
Parsing, 148
Partial approach, 145
Partially persistence, 166
Path-based dynamic impact analysis, 235
PBS (Portable Bookshelf), 173
Pennington model, 310
Peopleware, 43
Perceptual

organization, 319
segregation, 319
theory, 319

Perfective, 1, 289, 327
Perfective

maintenance, 27, 49, 369
modification, 45

Performance, 30, 31, 263
Permanent files, 166
Persistent data structure, 166
Phase model, 150
Phased interoperability, 196
Phaseout, 8, 88–89, 187
Physical phase, 168
Physical schema, 168, 195, 369
Plan, 171, 369
Plan

change, 93
recognition, 171

Planning, 117, 317
Plans, 164, 293–294, 299, 315
PLUS, 332
Pollution, 53
Poor lexicon, 54
Portability, 15, 326
Portfolio analysis, 12, 197, 369
Postconditions, 265
Post-delivery activities, 26
Post-operation review, 109
Practices, 276
Precision, 226–227, 243–244, 246–247, 369
Preconditions, 265
Pre-delivery activities, 26
Predicted set, 244
Presence, 317
Pretty printing, 257
Preventive, 30–31
Preventive maintenance, 27, 51, 137, 369

Primary data, 212
Primitive refactoring, 14
Principle of

abstraction, 135, 369
alteration, 137, 142, 369
refinement, 135, 370

Priority, 122
Proactive, 327
Probabilistic measures, 280
Problem

domain, 299
domain knowledge, 311, 314
identification, 95

Procedural
granularity, 148
level, 192

Procedure, 41, 370
Procedure wrapper, 194
Process, 59, 144, 370
Process

implementation, 100
improvement (how), 45
information, 246
level, 191
metrics, 230
model, 92, 144, 370

Product, 37, 370
component, 39
development, 330
line development, 328–329
line, see Domain implementation
metrics, 230
quality, 40
reconfiguration, 68
upgrade, 37, 370

Productivity, 327
Program

analysis, 169, 370
analysis tool (PAT), 317
comprehension, 14, 93, 165, 291,

309–310, 370
conversion, 196
dependency, 224
dependency graph (PDG), 235, 370
documentation, 94
domain knowledge, 315
families, 15, 325, 370
fragments, 294
graph, 266

INDEX 389

knowledge, 317
level, 192
metrics, 162
migration, 152, 165, 370
model, 311, 313–314, 315
model structure, 314
plans, 171
reading, 149
rephrasing, see Rephrasing
restructuring, see Restructuring
reuse, 16, 326
slices, 10
slicing, 158, 282, 371
translation, 141, 371
understanding, see Program

comprehension
wrapper, 194

Programmers, 274
Programming

environment, 274
knowledge, 302, 308
plans, 294, 308, 315
rules of discourse, 308

Project justification, 12
Prolog, 262
Properly nested programs, 277
Proprietary software, 49
Protocol

analysis, 315, 371
data, 315–316, 371

Proximity, 319
Pruning, 246
P-type program, 47, 371
PuLSE, 332
Push down method, 267, 272

Quality assessment, 167
Quality assurance activity, 40, 371
Query the tool first, 245
Quick fix model, 85

Random, 246
Rationalization of control flow, 148
Raymond, Eric S., 58–59
Reachability

graphs, 232
matrix, 233

Reactive, 327–328
Read coupling, 163

Readability, 256
Real-world knowledge, see Domain

knowledge
RE-Analyzer, 173
Recall, 226–227, 243–244, 246–247, 371
Recency, 246
Reclamation, 371
Recode, 140, 143, 152, 371
Reconstitute, 166
Redesign, 141, 143, 371
Redocumentation, 152–153, 372
Redocumentation of artifacts, 154
Reductive, 30–31
Redundant structural data, 213
Reengineered components, 214
Reengineered state, 213
Reengineering, 9–10, 133, 138–139, 154,

372
Reengineering

assistant (RA), 174
process, 144

Refactor, 258
Refactoring, 13, 94, 141, 256, 259, 372
Refinement, 135–136, 142
Reflexive property, 240
Reformative, 30–31
Regeneration, 149
Regression testing, 13, 94
Rehosting, 140, 372
Rejuvenation, 27, 372
Release management, 57
Releases, 60, 372
Reliability, 16, 255, 257, 326–327
Remote procedure calls (RPCs), 189
Renovation, 141, 150–151
Rephrasing, 140, 371
Replace, 141, 143, 372
Replace parameter with method, 272
Replace strategy, 142
Replacement strategies, 152
Repository, 118, 372
Repository database, 146
Representation, 160
Requirements level, 136
Residual

data, 213
DB, 214
DB manager, 214

Resilience to change, 161

390 INDEX

Resource, 372
constraints, 262
dependencies, 69

Respecify, 141, 143, 372
Response for a class (RFC), 163
Restored components, 214
Restored state, 213
Restructuring, 13–14, 94, 137, 256–258,

372
Restructuring algorithm, 142
Rethink, 141, 143, 373
Retirement, 100, 109, 376
Retirement plan, 110
Return value coupling, 263–264, 269
Reusability, 16, 263, 373
Reusable

artifacts, 326
assets, 15, 330
components, 347–348
software assets (RSA), 328–329

Reuse, 289, 373
assets, 346
capability, 333–334, 373
capability model (RCM), 334–336
cost avoidance (RCA), 351
effectiveness, 333–334, 373
efficiency, 333, 373
library, 327, 329, 346, 349, 373
maturity model (RMM), 334, 373
opportunity, 333, 373
oriented model, 84
percent (RP), 351
proficiency, 333, 373
program, 329
value added (RVA), 351

Reused source instruction (RSI), 350
Reverse

engineering, 10, 135, 139, 153–154,
156, 164, 373

gateway, 204–206, 373
migration, 204, 373

Review state, 122
Review task steps, 106
Revision control system (RCS), 112
Rework, 141, 143, 373
Rework strategy, 142
Rewrite, 141, 143, 373
Rewrite strategy, 142
Rigi, 174

Ripple effect, 13, 39, 93, 238, 374
analysis, 13, 225
for a program (REP), 242
and stability tool (REST), 242

Ripple effects measurement, 242
Ripple-sensitivity, 227, 374
RiSE maturity model, 334, 338
Risk, 327
Risky, 57
Robustness, 263
Roll over, 212
Royce, Winston, 6, 86
RSEB, 332
Rules of

discourse, 300, 315
programming discourse, 296, 374

Safe, 57
Safety constraints, 262
Sample DataStore, 208–210
Sandbox, 115
Scalability, 263
Scalability of visual complexity, 161
Scattering and tangling, 374
Schema(s), 293–294, 308, 315, 374

analysis, 166
conversion, 195
de-optimization, 170
integration, 169
translation and redesign, 166
untranslation, 170

Scientific view point, 46
Screen scrapping, 194, 374
Script, 41, 374
Scrubbing, 195
Second law, 50–51
SEELA, 174
Self-regulation, 3, 50–51, 60, 242
Semantic

distance, 319
knowledge, 301, 303

Semantically redundant data, 213
Semidecomposable, 204–205
Semidecomposable information system,

204, 374
Sequential dependency analysis, 261
Service cost avoidance, 351
Service-level agreement (SLA), 42–43,

374

INDEX 391

Service-oriented architecture (SOA), 42,
375

Servicing, 8, 88–89
Seventh law, 50, 53
Severity, 122
Shared variable coupling, 263–264,

269–270
Sharpness, 227–228, 375
Shipped source instruction (SSI), 350
Shneiderman and Mayer Model, 301
Short-term memory, 301, 303
Side effect, 93, 154, 236, 375
Similarity, 319
Similarity metrics, 280
Simple navigation, 161
Single entity suggestions, 245
Situation model, 310–311, 314–315
Situation model structures, 314
Sixth law, 50, 52
Size, 38, 44, 263
Slot-filler, 294
Slot-type, 294
Slot fillers, 315
Slot types, 315
Sneed, Harry M., 12
Sockets, 189
Soft-goal graph, 264, 375
Software

agents, 53
aging, see Aging
architecture, 292
artifacts, 258
assessment, 167
asset, 326
certification laboratories (SCL), 64
clone, see Clone
configuration management (SCM), 9,

84, 111, 375
crises, 15
development, 26
development cost, 350
development error rate, 350
development life cycle (SDLC), 83–84
entropy, see Entropy
evolution, 375
geriatrics, 39
lifecycle objects (SLOs), 231–232, 376
maintainability, 26
maintenance, 2–3, 6, 25–26, 83–84, 376

maintenance life cycle (SMLC), 7
maintenance standards, 8
metric, see Metric
migration, 376
production consortium (SPC), 336
quality, 53
reclamation, 376
reconnaissance, 228
reengineering, 9–10
rejuvenation, 27
restructuring, 256, 275–276
retirement, see Retirement
reuse, 15, 325–326
specific knowledge, 291
structure, 273
value, 256
visualization, 135, 360, 317

Soloway, Adelson, and Ehrlich model,
308

Source code
control system (SCCS), 112
reengineering reference model

(SCORE/RM), 146
Source instruction reused by others

(SIRBO), 350
Source-to-source translation, 152
SPE taxonomy, 46
Specification

of actions, 149
of constraints, 149

Speech sentences, 316
S-Ratio, 228
Stability

analysis, 238
measure, 238, 376

Stable storage, 292
Staged model, 7, 87, 187
Staged model

for CSS, 87–88
for FLOSS, 90

Stakeholders, 117, 198–199, 376
Starting impact set (SIS), 93, 225, 228–231,

376
State, 312
Statecharts, 266
Static

call graph, 158
elements, 293
program slice, 236

392 INDEX

Static (continued)
program slicing, 224
slice, 237

Strategy, 295–296, 376
Structural data, 213
S-type program, 46, 376
Submit state, 120
Substitute algorithm, 271
Suitability for automation, 161–162
Support levels, 43
Swanson, E. Burton, 1, 4
Swanson’s classification, 4
Symmetric suggestions, 244
Symmetry, 320
Syntactic

analysis, 10, 157, 376
dependencies, 69
distance, 319
knowledge, 301–303

System
monitoring, 66, 69
sandwich approach, 278
service wrappers, 191
test, 98
transition, 153

Systematic reuse, 338, 340, 376

Tailorability of components, 68
Tailoring, 62, 376
Target SampleData, 208
Target system, 133–134, 142, 144, 208
Target system testing, 150, 152
Team structure, 58
Technical, 328
Technical dimension, 113
Technique, 41, 276, 376
Temporal constraints, 262
TempStore (TS), 208–210, 212
Termination-condition, 208–209, 212
Test generation, 148–149
Test Maturity Model (TMM), 64
Test Process Improvement (TPI) model, 64
Test verdict, 124
Testability, 263
Testing, 196, 262
Testing and debugging, 66
Textbase model, 310–311
Text-structure, 293, 376
Textual information, 246

Theory of notation, 319
Think aloud protocol (TAP), 316
Thinking-aloud, 316, 376
Third law, 50–51
Threshold value, 208–209, 212
Tools, 156, 274, 276
Top-down, 301
Top-down model, 313, 315
Top-down structure, 314
Torvals, Linus Benedict, 59
Traceability, 224, 229
Traceability analysis, 12
Training, 30–31
Training task steps, 108
Transaction level, 192
Transaction wrapper, 194
Transformation, 148
Transition net, 317
Transitive, 240
Transitive closure, 234
Transmission control protocol (TCP), 292
Trojan horse, 64
Trouble shooting, 68
Trunk, 114
Tuval Software Industries, 174
Two-phase commit protocol, 205
Type decision question, 33

Understandability, 16, 326
Unix operating system, 115
Unreliable COTS components, 64
Unsafe, 57
Updative, 30–31
Usability, 377
User, 377

interaction, 319
interface, 214, 216
manual, 94
request, 45

Validation and verification, 149
Variability, 44
Variable name, 297
Varying levels of detail, 161
Verification, 103, 262
Verification of hypothesis, 14
Verification state, 124
Version, 377
Version control (VC), 113, 377

INDEX 393

Versioned staged model, 89–90
Vertical reuse, 377
Vertical traceability, 224, 230, 377
Virtual Reality Modeling Language

(VRML), 268
Visualization, 160

Walkthrough, 276
Waterfall model, 6–7, 86
Weighted methods per class (WMC), 162
Weighted sum, 271
Weiser, Mark, 158
White-box reuse, 377
White-box testing, 377

Whole path profiling, 235
Wide Spectrum Language (WSL), 172
Wireless local area networks (WLAN), 292
Workspace control, 115
Wrap, 11, 188
Wrapper, 11, 64–65, 189, 192
Wrapping, 62, 195, 377
Wrapping legacy systems, 12
Write coupling, 163

YACC, 157

Zero–one (0–1) matrix, 239
Zipf distribution, 246

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

	Software Evolution and Maintenance
	Contents
	Preface
	Who should read this book?
	How should this book be read?
	Notes for instructors

	Acknowledgments

	List of Figures
	List of Tables
	1 Basic Concepts and Preliminaries
	1.1 Evolution Versus Maintenance
	1.1.1 Software Evolution
	1.1.2 Software Maintenance

	1.2 Software Evolution Models and Processes
	1.3 Reengineering
	1.4 Legacy Systems
	1.5 Impact Analysis
	1.6 Refactoring
	1.7 Program Comprehension
	1.8 Software Reuse
	1.9 Outline of The Book
	References
	Exercises

	2 TAXONOMY OF SOFTWARE MAINTENANCE AND EVOLUTION
	2.1 General Idea
	2.1.1 Intention-Based Classification of Software Maintenance
	2.1.2 Activity-Based Classification of Software Maintenance
	2.1.3 Evidence-Based Classification of Software Maintenance

	2.2 Categories of Maintenance Concepts
	2.2.1 Maintained Product
	2.2.2 Maintenance Types
	2.2.3 Maintenance Organization Processes
	2.2.4 Peopleware

	2.3 Evolution of Software Systems
	2.3.1 SPE Taxonomy
	2.3.2 Laws of Software Evolution
	2.3.3 Empirical Studies
	2.3.4 Practical Implications of the Laws
	2.3.5 Evolution of FOSS Systems

	2.4 Maintenance of Cots-Based Systems
	2.4.1 Why Maintenance of CBS Is Difficult?
	2.4.2 Maintenance Activities for CBSs
	2.4.3 Design Properties of Component-Based Systems

	2.5 Summary
	Literature Review
	References
	Exercises

	3 Evolution and Maintenance Models
	3.1 General Idea
	3.2 Reuse-Oriented Model
	3.3 The Staged Model for Closed Source Software
	3.4 The Staged Model for Free, Libre, Open Source Software
	3.5 Change Mini-Cycle Model
	3.6 IEEE/EIA Maintenance Process
	3.7 ISO/IEC 14764 Maintenance Process
	3.8 Software Configuration Management
	3.8.1 Brief History
	3.8.2 SCM Spectrum of Functionality
	3.8.3 SCM Process

	3.9 CR Workflow
	3.10 Summary
	Literature Review
	References
	Exercises

	4 Reengineering
	4.1 General Idea
	4.2 Reengineering Concepts
	4.3 A General Model for Software Reengineering
	4.3.1 Types of Changes
	4.3.2 Software Reengineering Strategies
	4.3.3 Reengineering Variations

	4.4 Reengineering Process
	4.4.1 Reengineering Approaches
	4.4.2 Source Code Reengineering Reference Model
	4.4.3 Phase Reengineering Model

	4.5 Code Reverse Engineering
	4.6 Techniques Used for Reverse Engineering
	4.6.1 Lexical Analysis
	4.6.2 Syntactic Analysis
	4.6.3 Control Flow Analysis
	4.6.4 Data Flow Analysis
	4.6.5 Program Slicing
	4.6.6 Visualization
	4.6.7 Program Metrics

	4.7 Decompilation Versus Reverse Engineering
	4.8 Data Reverse Engineering
	4.8.1 Data Structure Extraction
	4.8.2 Data Structure Conceptualization

	4.9 Reverse Engineering Tools
	4.10 Summary
	Literature Review
	References
	Exercises

	5 Legacy Information Systems
	5.1 General Idea
	5.2 Wrapping
	5.2.1 Types of Wrapping
	5.2.2 Levels of Encapsulation
	5.2.3 Constructing a Wrapper
	5.2.4 Adapting a Program for Wrapper
	5.2.5 Screen Scraping

	5.3 Migration
	5.4 Migration Planning
	5.5 Migration Methods
	5.5.1 Cold Turkey
	5.5.2 Database First
	5.5.3 Database Last
	5.5.4 Composite Database
	5.5.5 Chicken Little
	5.5.6 Butterfly
	5.5.7 Iterative

	5.6 Summary
	Literature Review
	References
	Exercises

	6 Impact Analysis
	6.1 General Idea
	6.2 Impact Analysis Process
	6.2.1 Identifying the SIS
	6.2.2 Analysis of Traceability Graph
	6.2.3 Identifying the Candidate Impact Set

	6.3 Dependency-Based Impact Analysis
	6.3.1 Call Graph
	6.3.2 Program Dependency Graph

	6.4 Ripple Effect
	6.4.1 Computing Ripple Effect

	6.5 Change Propagation Model
	6.5.1 Recall and Precision of Change Propagation Heuristics
	6.5.2 Heuristics for Change Propagation
	6.5.3 Empirical Studies

	6.6 Summary
	Literature Review
	References
	Exercises

	7 REFACTORING
	7.1 General Idea
	7.2 Activities in a Refactoring Process
	7.2.1 Identify What to Refactor
	7.2.2 Determine Which Refactorings Should be Applied
	7.2.3 Ensure that Refactoring Preserves the Behavior of the Software
	7.2.4 Apply the Refactorings to the Chosen Entities
	7.2.5 Evaluate the Impacts of the Refactorings on Quality
	7.2.6 Maintain Consistency of Software Artifacts

	7.3 Formalisms For Refactoring
	7.3.1 Assertions
	7.3.2 Graph Transformation
	7.3.3 Software Metrics

	7.4 More Examples of Refactorings
	7.5 Initial Work on Software Restructuring
	7.5.1 Factors Influencing Software Structure
	7.5.2 Classification of Restructuring Approaches
	7.5.3 Restructuring Techniques

	7.6 Summary
	Literature Review
	References
	Exercises

	8 Program Comprehension
	8.1 General Idea
	8.2 Basic Terms
	8.2.1 Goal of Code Cognition
	8.2.2 Knowledge
	8.2.3 Mental Model
	8.2.4 Understanding Code

	8.3 Cognition Models for Program Understanding
	8.3.1 Letovsky Model
	8.3.2 Shneiderman and Mayer Model
	8.3.3 Brooks Model
	8.3.4 Soloway, Adelson, and Ehrlich Model
	8.3.5 Pennington Model
	8.3.6 Integrated Metamodel

	8.4 Protocol Analysis
	8.5 Visualization for Comprehension
	8.6 Summary
	Literature Review
	References
	Exercises

	9 REUSE AND DOMAIN ENGINEERING
	9.1 General Idea
	9.1.1 Benefits of Reuse
	9.1.2 Reuse Models
	9.1.3 Factors Influencing Reuse
	9.1.4 Success Factors of Reuse

	9.2 Domain Engineering
	9.2.1 Draco
	9.2.2 DARE
	9.2.3 FAST
	9.2.4 FORM
	9.2.5 KobrA
	9.2.6 PLUS
	9.2.7 PuLSE
	9.2.8 Koala
	9.2.9 RSEB

	9.3 Reuse Capability
	9.4 Maturity Models
	9.4.1 Reuse Maturity Model
	9.4.2 Reuse Capability Model
	9.4.3 RiSE Maturity Model

	9.5 Economic Models of Software Reuse
	9.5.1 Cost Model of Gaffney and Durek
	9.5.2 Application System Cost Model of Gaffney and Cruickshank
	9.5.3 Business Model of Poulin and Caruso

	9.6 Summary
	Literature Review
	References
	Exercises

	Glossary
	Index
	EULA

