
For many years now, software practi-
tioners have been collecting metrics

from source code in an effort to better
understand the software they are develop-
ing or changing. Maintainability Index
(MI) is a composite metric that incorpo-
rates a number of traditional source code
metrics into a single number that indicates
relative maintainability. As originally pro-
posed by Oman and Hagemeister, the MI
is comprised of weighted Halstead metrics
(effort or volume), McCabe’s Cyclomatic
Complexity, lines of code (LOC), and
number of comments [1, 2]. Two equa-
tions were presented: one that considered
comments and one that did not.

The original polynimial equations
defining MI are as follows:
33--MMeettrriicc:: MI=171-3.42ln(aveE)-
0.23aveV(g’) - 16.2ln(aveLOC)

where aveE is the average Halstead
Effort per module, aveV(g’) is the aver-
age extended cyclomatic complexity per
module, and aveLOC is the average lines
of code per module.

44--MMeettrriicc:: MI=171-3.42ln(aveE)-
0.23aveV(g’)-16.2ln(aveLOC)
+0.99aveCM

where aveE is the average Halstead
Effort per module, aveV(g’) is the aver-
age extended cyclomatic complexity
per module, aveLOC is the average
lines of code per module, and aveCM
is the average number of lines of com-
ments per module.
The rationale behind this selection of

metrics was to construct a rough order,
composite metric that incorporated quan-
tifiable measurements for the following:
• Density of operators and operands

(how many variables and how they are
used).

• Logic complexity (how many execution
paths are in the code).

• Size (how much code is there).

• Human insight (comments in the code).
Other variants of the MI have evolved
using slightly different metrics, metric
combinations, and weights [3, 4, 5]. Each
has the general flavor of the basic MI
equation and underlying rationale.

“Subjective measures
applied via human code

reviews still play an
extremely important role

in assessing software
maintainability.”

Reasonable success has been achieved
in using MI to quantify and improve soft-
ware maintainability both during develop-
ment and maintenance activities [4, 6, 7,
8, 9, 10, 11,].

Practically speaking though, the MI is
only one piece in understanding the main-
tainability puzzle. Furthermore, it should
not be interpreted in a vacuum. Rather it
should be used as an indicator to direct
human investigation and review. The fol-
lowing sections discuss some practical
insight in applying MI to typical software
systems.

DDiissccuussssiioonn ooff MMII EEqquuaattiioonnss
Several variants of the MI equations have
evolved over time. Some academic opinion
places more confidence in Halstead’s
Volume Metric than his Effort Metric so
the MI equations were adjusted to incor-
porate the use of Halstead’s Volume.
Additionally, studies have shown that the
MI model was often overly sensitive to the
comment metric in the 4-Metric equation
and thus that portion of the equation was
modified to limit the contribution of com-

ments in MI [11, 12].
The typical modified MI equations

look similar to the following:
33--MMeettrriicc:: MI = 171 -5.2ln(aveV)
-0.23aveV(g’) - 16.2ln(aveLOC)

where aveV is the average Halstead
Volume per module, aveV(g’) is the
average extended cyclomatic complex-
ity per module, and aveLOC is the
average lines of code per module.

44--MMeettrriicc:: MI = 171 -5.2ln(aveV)
-0.23aveV(g’) -16.2ln(aveLOC)
+50.0sin

where aveV is the average Halstead
Volume per module, aveV(g’) is the
average extended cyclomatic complex-
ity per module, aveLOC is the average
lines of code per module, and perCM
is the average percent of lines of com-
ments per module.
Examination of these equations indi-

cates that picking the appropriate MI
equation is still a subject for discussion1.
The consideration of comments in the MI
is a big discussion point. First, if a human
assessment of the software concludes that
the majority of the comments in the soft-
ware are correct and appropriate, then the
4-Metric MI is potentially appropriate.
Otherwise, the 3-Metric equation is prob-
ably a better fit. Second, if the 4-Metric
equation is selected, it is still possible that
the comments may inappropriately skew
the MI. New research has been performed
and additional modifications have been
proposed to further refine the MI [13].
These refinements appear to add stability
to the behavior of the MI for assessing spe-
cific types of software systems.

OObbsseerrvvaattiioonnss
As mentioned earlier, numerous papers
have been written describing the successful
application of MI as part of the software
development process or within a software

TThhee SSooffttwwaarree MMaaiinnttaaiinnaabbiilliittyy IInnddeexx RReevviissiitteedd
Kurt D. Welker

Idaho National Engineering and Environmental Laboratory

In 1991 Oman and Hagemeister introduced a composite metric for quantifying software maintainability. This
Maintainability Index (MI) has evolved into numerous variants and has been successfully applied to a number of
industrial strength software systems. After nearly a decade of use, MI continues to provide valuable insight into soft-
ware maintainability issues. This article presents some of the author’s observations about the practical use of MI in
determining software maintainability.

18 CROSSTALK The Journal of Defense Software Engineering August 2001

maintenance assessment. What is often
not discussed are some simple, common
sense guidelines that should be considered
when using an objective metric such as
MI. Presented in the next few paragraphs
are some general observations the author
has gathered from applying MI to a vari-
ety of software systems.

CCoommmmeennttss iinn tthhee CCooddee:: Comments in
the source code are a two-edged sword
when it comes to considering their role in
software maintenance. Accurate, up-to-
date comments that provide additional
insight not already obvious from the
source code are generally quite helpful
when it comes to making changes later on.
However, comments that have not contin-
ued to evolve with their associated soft-
ware can actually be a maintenance hin-
drance.

Comments, just like source code, will
degrade over time as maintenance activi-
ties are performed unless specific actions
are taken to keep them from becoming
inaccurate. Comments are not executed at
run-time; they are usually for people.
Only people can tell if the comments in
the code are helpful or not. Just because
there are comments in the code does not
mean that the code is more maintainable.

Furthermore, not all real comments
are detectable by automated tools. For
instance, when writing self-documenting
code, some software developers put engi-
neering units in the variable names
(distanceFt or effectivePowerW). These
types of comments are quite helpful to the
human developer, ignored by the compil-
er and also most metrics extraction tools,
yet certainly make the software more
maintainable.

When determining how an automated
tool will credit maintainability for com-
ments in the code, a human must first
determine the quality and usefulness of
the comments. A variant MI equation
could be developed that penalizes main-
tainability based on the poor quality of the
comments. Current 4-Metric MI equa-
tions that include a metric for comments,
must be applied with some human
insight. Comparisons between the 3-
Metric MI and the 4-Metric MI are also
helpful in flagging source code with inap-
propriate comments. One guideline is that
when there is more than a 15-point delta
between the 3-Metric MI and the 4-

Metric MI, comments in the associated
source code should be manually examined
for appropriateness.

Here is the bottom line on MI and
comments: A man in the maintainability
assessment loop is essential both in decid-
ing how to measure comments in the
source code (which MI equations) and
then in determining the meaning of the
results (do the comments make the soft-
ware easier to maintain).

“Comments in the
source code are a
two-edged sword ...”

IInntteerrpprreettaattiioonn ooff RReessuullttss:: Source code
metrics provide only an objective measure.
MI works the same. Subjective measures
applied via human code reviews still play
an extremely important role in assessing
software maintainability. After all people
maintain the software. Automated main-
tenance is not a reality yet. Therefore, it
only makes sense that there are some char-
acteristics of software construction that
take a person to quantify for attributes
such as maintainability. Determining
maintainability purely by objective meas-
ures can be deceiving. Take for instance
the following simplistic example.
Consider two versions of a program that
print the words to “The Twelve Days of
Christmas” (see Figure 1, page 20). Sorry
but I don’t remember whom to credit for
writing Example 1. A few metrics for the
two versions are as follows in Figure 2,
page 20.

Possible interpretations might include:
Based on the 3-Metric MI alone, Example
1 is slightly more maintainable; based on
cyclomatic complexity alone, Example 1 is
more maintainable; based on lines of code,
Example 1 is more maintainable, i.e. less
code to maintain? Based on the 4-Metric
MI, Example 2 is more maintainable, but
did the comments really make the differ-
ence? No, the comments are okay but they
are not the driving factor for judging
maintainability. Based on effort alone,
Example 2 is more maintainable than
Example 1.

What made your decision regarding
which source was more maintainable? It

was probably the human examination of
the source code. Which version of the
source would you want to maintain?
Especially when you learn that Example 1
contains a bug as the word eighth is mis-
spelled in the output. This example may
be extreme, but it illustrates the point.
The metrics for real-world software can
present similar difficulties.
OObbjjeecctt OOrriieenntteedd DDeeccoommppoossiittiioonn aanndd
FFrraaccttuurriinngg:: Software languages, architec-
tures, and decomposition techniques have
evolved since the original development
and validation of the MI equations.
Object-oriented analysis and design have
influenced the structure of today’s soft-
ware systems. Typical object-oriented soft-
ware tends to be decomposed into smaller
modules than software systems that were
decomposed using other techniques.
Consider all the get and set methods in a
typical object class. What impact does
having a large number of smaller modules
play in the MI?

Object-oriented software is funda-
mentally composed of operators and
operands and has a number of executable
paths through the code. The lines of code
may still be counted and commented.
From this perspective, MI still provides a
good fit [11]. But additionally, there are
constructs such as classes and inheritance
that could be considered in tailoring MI
for an object-oriented system.

Discussion of these types of MI
enhancements will be postponed for
another time. It appears, though, that
object-oriented systems by nature have a
fairly high MI due to the typical smaller
module size. Naturally, smaller modules
contain less operators and operands, less
executable paths, and less lines of com-
ments and code; therefore, the MI tends
to be higher. It is the author’s opinion that
even so, the MI is still applicable for
object-oriented systems, but that maybe
the maintainability classification thresh-
olds should be raised when interpreting
MI’s from object-oriented systems. MI is
still great for identifying overly complex
(and therefore difficult to maintain) mod-
ules in object-oriented systems.

Is it possible to decompose a software
system into modules that are too small?
Yes, software fracturing can occur and
when that happens, modules loose cohe-
sion and the coupling between modules

August 2001 www.stsc.hill.af.mil 19

The Software Maintainability Index Revisited

20 CROSSTALK The Journal of Defense Software Engineering August 2001

increases. When fracturing occurs, the
maintainability of the system (from a
human perspective) actually decreases, and
metrics such as MI are not necessarily a
realistic measure of the actual maintain-
ability. Controlled software development
processes, good software engineering prac-
tices, and code reviews again become key
in assuring and assessing maintainability.
Thus it is evident that high MI does not

guarantee the code is maintainable. A man
in the loop is still essential.

CCoonncclluussiioonn
Using the MI to assess source code and
thereby identify and quantify maintain-
ability is an effective approach. The MI
provides one small perspective into the
highly complex issues of software mainte-
nance. The MI provides an excellent guide
to direct human investigation. Hopefully,
this paper provides some insight to the
practical use of MI. To recap, continue to
comment source code but do not put too
much faith in comments to improve
maintainability. Continue to measure
maintainability using MI but do not

interpret the results in a vacuum. Be aware
of the limitations of objective metrics such
as MI. Changing technologies will require
changing metrics.u

RReeffeerreenncceess
1. Oman, P.W.; Hagemeister, J.; and

Ash, D., A Definition and Taxonomy
for Software Maintainability, Tech-
nical Report #91-08-TR, Software
Engineering Test Laboratory, Univ-
ersity of Idaho, Moscow, ID, 1991.

2. Oman, P.W. and Hagemeister, J.,
(1992) Metrics for Assessing a
Software System’s Maintainability,
Proceedings of the Conference on
Software Maintenance, IEEE
Computer Society Press, Los
Alamitos, CA, 1992, pp. 337-344.

3. Coleman, D., Assessing Maintainab-
ility, Proceedings of the Software
Engineering Productivity Conference
1992, Hewlett-Packard, Palo Alto,
CA, 1992, pp. 525-532.

4. Coleman, D.; Ash, D.; Lowther, B.;
and Oman, P.W., Using Metrics to
Evaluate Software System Maintainab-
ility, IEEE Computer, 1994, 27(8), pp.
44-49.

5. Oman, P.W. and Hagemeister, J.,
Constructing and Testing of Poly-
nomials Predicting Software Maintai-
nability, Journal of Systems and
Software, 1994, 24(3), pp. 251-266.

6. Ash, D.; Alderete, J.; Yao, L.; Oman,
P.W.; and Lowther, B., Using Software
Maintainability Models to Track Code
Health, Proceedings of the Interna-
tional Conference on Software
Maintenance, IEEE Computer
Society Press, Los Alamitos, CA,
1994, pp. 154-160.

7. Coleman, D.; Lowther, B.; and
Oman, P.W., The Application of
Software Maintainability Models on
Industrial Software Systems, Journal of
Systems and Software, 1995, 29(1), pp.
3-16.

8. Oman, P.W., Applications of an
Automated Source Code Maintain-
ability Index, Technical Report #95-
08-SL, Software Engineering Test
Laboratory, University of Idaho,
Moscow, ID, presented at the 1995
Software Technology Conference, Salt
Lake City, UT.

9. Pearse, T. and Oman, P.W., Maintain-

Software Engineering Technology

Figure 1: The Twelve Days of Christmas - Sample Code

Figure 2: The Twelve Days of Christmas - Metrics

August 2001 www.stsc.hill.af.mil 21

ability Measurements on Industrial
Source Code Maintenance Activities,
Proceedings of the International
Conference on Software Maintenance,
IEEE Computer Society Press, Los
Alamitos, CA, 1995, pp. 295-303.

10. Welker, K. and Oman, P.W., Software
Maintainability Metrics Models in
Practice, CrossTalk, Nov./Dec.
1995, pp. 19-23 and 32.

11. Welker, K.; Oman, P.W.; and
Atkinson, G., Development and
Application of an Automated Source
Code Maintainability Index, Journal of
Software Maintenance, 1997,
May/June, pp. 127-159.

12. Lowther, B., The Application of
Software Maintainability Metric
Models on Industrial Software
Systems, master’s thesis, Department
of Computer Science, University of
Idaho, Moscow, ID, 1993.

13. Liso, A., Software Maintainability
Metrics Model: An Improvement in
the Coleman-Oman Model,”
Crosstalk, Aug. 2001, pp. 15-17.

NNoottee
1. The discussions in this article can

apply to either set of MI definitions.
The majority of people use the latter
set of MI definitions. I still use the
original MI equations for some appli-
cations. If used to track software over
its life, it is important not to change
equations mid-stream. There are other
variants of the MI equations that
organizations have tailored for specific
interests (both the 3- and 4-metric
versions). The discussion in the paper
generally applies to most of these as
well.

The Software Maintainability Index Revisited

CCoommiinngg EEvveennttss

August 27-30
Software Test Automation Conference

www.sqe.com/testautomation

August 27-31
5th IEEE International Symposium on

Requirements Engineering
www.re01.org

Sept. 10-14
Joint 8th European Software

Engineering Conference and 9th ACM
SIGSOFT International Symposium on
the Foundations of Software Engineering

www.esec.ocg.at

Oct. 15-18
16th Annual SEI Symposium

www.asq.org/ed/conferences

Oct. 15-19
21st International Conference on
Software Testing and EXPO 2001
www.qaiusa.com/conferences

Oct. 22-24
11th International Conference

On Software Quality
www.asq.org/ed/conferences

Oct. 29-Nov. 2
Software Testing Analysis and Review

www.sqe.com/starwest

Nov. 4-7
Amplifying Your Effectiveness (AYE)

www.ayeconference.com

Feb. 4-6, 2002
International Conference on COTS-
Based Software Systems (ICCBSS)

At the Heart of the Revolution
www.iccbss.org

April 28 - May 3, 2002
STC 2002

“Forging the Future of Defense
Through Technology”
www.stc-online.org

AAbboouutt tthhee AAuutthhoorr
KKuurrtt DD.. WWeellkkeerr is an advisory engineer at the Idaho National Engineering
and Environmental Laboratory with 14 years experience in software develop-
ment, systems integration, and software measurement. He is a technical lead
on the Electronic Combat System Integration Project performing reengi-
neering, integration, and software maintenance on several electronic combat
analysis models for the Air Force Information Warfare Center that simulate
radar detection, weapon lethality envelopes, electronic counter-measures,

reconnaissance, passive detection, and communications jamming. He functioned as the princi-
ple investigator for the development of a general-purpose lexical scanner/parser tool called the
Data Stream Analyzer that provides data format integration. He also functioned as the princi-
ple investigator on a software measurement/process-improvement research initiative. He has
been using MI to assess and track software maintainability for about eight years. Welker has a
bachelor’s of science degree in computer science from Brigham Young University and a master’s
of science degree in computer science from the University of Idaho.

IIddaahhoo NNaattiioonnaall EEnnggiinneeeerriinngg
aanndd EEnnvviirroonnmmeennttaall LLaabboorraattoorryy
IIddaahhoo FFaallllss,, IIddaahhoo
EE--mmaaiill:: wwddkk@@iinneell..ggoovv

Dear Crosstalk,

I was reading the new June 2001 issue
Vol. 14 No. 6 yesterday and was non-
plussed to read in three different places
(From the Publisher, the abstract to the
first article Extending UML to Enable the
Definition and Design of Real-Time
Embedded Systems, and the text of The
Quality of Requirements in Extreme
Programming), references to Universal
Markup Language (UML).

All three of the contexts refer to the
Unified Modeling Language created by
Booch, Rumbaugh, and Jacobson of
Rational Software Corporation. There is
no real-time software design methodolo-
gy called Universal Markup Language to
my knowledge.

Thanks for an excellent publication.

Regards,
Karl Woelfer
Seattle, WA

LL ee tt tt ee rr tt oo tt hh ee EE dd ii tt oo rr

