
Measuring Internal
Product Attributes

(Size)

Software Size

▪ Size measures only indicate how much of an entity we have.

▪ Size alone cannot directly indicate external attributes such as effort,
productivity, and cost

▪ It doesn’t measure the external attributes like “coding difficulties”,
however, it is a good measure to predict software development time
and resources. e.g.,
▪ Productivity=size/effort
▪ Defect density = Defect count/size

Properties of Valid Software Size
Measurement

● Three properties for any valid measure of software size:
▪ Nonnegativity: All systems have nonnegative size.

▪ Null value: The size of a system with no elements is zero.

▪ Additivity: The size of the union of two modules is the sum of the sizes of the two
modules after subtracting the size of the intersection

Code Size

• The most commonly used measure of source code size is the number
of lines of code (LOCs).

• We must explain how each of the following is handled:
• Blank lines

• Comment lines

• Data declarations

• Lines that contain several separate instructions

• One count can be as much as five times larger than another, simply
because of the difference in counting technique

LOC Definitions

• NCLOC: Non-Commented Lines of Code (Comments and blank lines
removed), sometimes called effective lines of a code.

• CLOC: Number of comment lines of program text (CLOC)

• Total size (LOC) = NCLOC + CLOC

• Density of comments = CLOC / LOC

• Is NCLOC a valid measure?

• The number of executable statements (ES): counts separate
statements on the same physical line as distinct. It ignores comment
lines, data declarations, and headings

Halstead’s Approach

• Halstead’s software science attempted to capture attributes of a
program that paralleled physical and psychological measurements in
other disciplines. He began by defining a program P as a collection of
tokens, classified as either operators or operands. The basic metrics
for these tokens are the following:

• µ
1

= Number of unique operators
•

µ

2
= Number of unique operands

• N
1

= Total occurrences of operators
• N

2
= Total occurrences of operands

• In addition to the above, Halstead defines the following :

• µ
1
* = Number of potential operators.

µ
2
* = Number of potential operands.

Halstead’s Approach

• Halstead Program Length: The total number of operator occurrences
and the total number of operand occurrences. N = N

1
 + N

2

 Estimated program length is, N^ = µ
1
log

2
µ

1
 + µ

2
log

2
µ

2

• Halstead Vocabulary:

 µ = µ

1
+ µ

2

• Program Volume: V = Size * (log
2
 vocabulary) = N * log

2
(µ)

• Program Difficulty: D = (µ
1
 / 2) * (N

2
 / µ

2
)

• Programming Effort: E = D * V = Difficulty * Volume

Halstead’s Approach

Alternative Size Measures

• We can measure the size in terms of
• Number of bytes of computer storage

• Number of characters in the program text

Design Size

• Count design elements rather than LOCs

• Appropriate size measure depends on the design methodology, the
artifacts developed, and the level of abstraction

• To measure the size of a procedural design, you can count the number
of procedures and functions at the lowest level of abstraction

• At higher levels of abstraction, you can count the number of packages
and subsystems. You can measure the size of a package or subsystem
in terms of the number of functions and procedures in the package.

Design Size

• Object-oriented designs add new abstraction mechanisms: objects, classes,
interfaces, operations, methods, associations, inheritance, etc.

• Thus, we will measure the size in terms of packages, design patterns,
classes, interfaces, abstract classes, operations, and methods.

• Packages: Number of sub packages, number of classes, interfaces (Java), or abstract
classes (C++)

• Design patterns:
• Number of different design patterns used in a design
• Number of design pattern realizations for each pattern type
• Number of classes, interfaces, or abstract classes that play roles in each pattern realization

• Classes, interfaces, or abstract classes: Number of public methods or operations,
number of attributes

• Methods or operations: Number of parameters, number of overloaded versions of a
method or operation

Design Size

• Weighted Methods per Class (WMC) measure: measured by
summing the weights of the methods in a class, where weights are
unspecified complexity factors for each method

• Both the number of methods and the number of attributes can serve
as class size measures

• One set of studies found that the number of methods is a better
predictor of class change-proneness than the number of attributes

Requirement Analysis and Specification Size

• Requirement and specification documents generally combine text,
graphs, and special mathematical diagrams and symbols.

• It may be difficult to generate a single-size measure because a
requirement analysis often consists of a mix of document types.

• For example, a use case analysis may consist of a UML use case
diagram along with a set of use case scenarios that may be expressed
as either text or as UML activity diagrams

Requirement Analysis and Specification Size

Cost of a Project

• The cost of a project is due to:
• The requirements for software, hardware, and human resources
• The cost of software development is due to the human resources needed
• Most cost estimates are measured in person-months (PM)

Software Cost Estimation

Actual View

Effort (using LOC)

• Effort Equation

• PM = C * (KDSI)n (person-months)

• where PM = number of person-month (=152 working hours),

• C = a constant,

• KDSI = thousands of "delivered source instructions" (DSI) and

• n = a constant.

Productivity

• Productivity equation

• (DSI) / (PM)

• where PM = number of person-month (=152 working hours),

• DSI = "delivered source instructions"

Schedule and Average Staffing

• Schedule equation

• TDEV = C * (PM)n (months)

• where TDEV = number of months estimated for software development.

• Average Staffing Equation
• (PM) / (TDEV) (FSP)

• where FSP means Full-time-equivalent Software Personnel.

Cost Estimation Process

Errors

Effort

Development Time

Size Table

Lines of Code

Number of Use Case

Function Point

Estimation Process
Number of Personnel

Project Size - Metrics

1. Number of functional requirements

2. Cumulative number of functional and non-functional requirements

3. Number of Customer Test Cases

4. Number of ‘typical sized’ use cases

5. Number of inquiries

6. Number of files accessed (external, internal, master)

7. Total number of components (subsystems, modules, procedures, routines, classes, methods)

8. Total number of interfaces

9. Number of System Integration Test Cases

10. Number of input and output parameters (summed over each interface)

11. Number of Designer Unit Test Cases

12. Number of decisions (if, case statements) summed over each routine or method

13. Lines of Code, summed over each routine or method

Project Size - Metrics

Availability of Size Estimation Metrics:

 Development Phase Available
Metrics

a Requirements Gathering 1, 2, 3

b Requirements Analysis 4, 5

d High Level Design 6, 7, 8, 9

e Detailed Design 10, 11, 12

f Implementation 12, 13

Function Points

• A function point calculates software size with the help of logical
design and performance of functions as per user requirements.

• Function points are a unit of measure used to define the value that
the end user derives, or the functional business requirements the
software is designed to accomplish

• Function Point (FP) is an element of software development that
helps to approximate the cost of development early in the process

Function Points Calculation

STEP 1: Measure size in terms of the amount of functionality in a system.
Function points are computed by first calculating an unadjusted function
point count (UFC). Counts are made for the following categories

❑ External inputs – those items provided by the user that describe distinct
application-oriented data (such as file names and menu selections)

❑ External outputs – those items provided to the user that generate distinct
application-oriented data (such as reports and messages, rather than the
individual components of these)

❑ External inquiries – interactive inputs requiring a response

❑ External files – machine-readable interfaces to other systems

❑ Internal files – logical master files in the system

Function Points

• STEP 2: Multiply each number by a weight factor, according to
complexity (simple, average or complex) of the parameter, associated
with that number. The value is given by a table:

Function Points

• STEP 3: Calculate the total UFP (Unadjusted Function Points)

• STEP 4: Calculate the total TCF (Technical Complexity Factor) by giving
a value between 0 and 5 according to the importance of the following
points (next slide):

TCF=0.65+0.01*DI

Function Points

•Technical Complexity Factors:

1.Data Communication
2.Distributed Functions
3.Performance
4.Heavily Utilized Hardware
5.High Transaction Rates
6.Online Data Entry
7.Online Updating
8.End-user Efficiency
9.Complex Computations

10.Reusability
11.Ease of Installation
12.Ease of Operation
13.Portability
14.Maintainability/Facility change

Each component or subfactor is rated
from 0 to 5, where 0 means the
subfactor is irrelevant, 3 means it is
average, and 5 means it is essential to
the system being built

Function Points

• STEP 5: Sum the resulting numbers to obtain DI (degree of influence)

• STEP 6: TCF (Technical Complexity Factor) by given by the formula
• TCF=0.65+0.01*DI

• STEP 6: Function Points are given by the formula
• FP=UFP*TCF

Function Points Example

Function Points Example

Function Points Example

Function Points Example

Function Points Example

Technical Complexity Factors:
• F1. Data Communication
• F2. Distributed Data Processing
• F3. Performance Criteria
• F4. Heavily Utilized Hardware
• F5. High Transaction Rates
• F6. Online Data Entry
• F7. Online Updating
• F8. End-user Efficiency
• F9. Complex Computations
• F10. Reusability
• F11. Ease of Installation
• F12. Ease of Operation
• F13. Portability
• F14. Maintainability

• Each component or subfactor is rated from 0 to 5, where 0 means the subfactor is
irrelevant, 3 means it is average, and 5 means it is essential to the system being built.

• Sum the resulting numbers to obtain DI (degree of influence)

Function Points Example

•

Function Points Example

• Function Points
• FP=UFP*(0.65+0.01*DI)= 55*(0.65+0.01*30)=52.25

• That means FP=52.25

• ** considering DI or TCF = 30

Relation between LOC and FP

• Relationship:

• LOC = Language Factor * FP

• where
• LOC (Lines of Code)

• FP (Function Points)

Relation between LOC and FP

Assuming LOC’s per FP for:

Java = 53,
C++ = 64

  
aKLOC = FP * LOC_per_FP / 1000

It means for the SpellChekcer Example: (Java)

LOC=52.25*53=2769.25 LOC or 2.76 KLOC

IFPUG

• International Function Point User Group meets regularly to discuss
FPs and their applications, and they publish guidelines with counting
rules.

• Please visit https://ifpug.org/

https://ifpug.org/

COCOMO I

• COCOMO has three different models (each one increasing with detail and
accuracy):

• Basic, applied early in a project

• Intermediate, applied after requirements are specified.

• Advanced, applied after design is complete

• COCOMO has three different modes:
• Organic – “relatively small software teams develop software in a highly familiar,

in-house environment” [Bohem]

• Embedded – operate within tight constraints, product is strongly tied to “complex of
hardware, software, regulations, and operational procedures” [Bohem]

• Semi-detached – intermediate stage somewhere between organic and embedded.
Usually up to 300 KDSI

41

COCOMO I
• COCOMO uses two equations to calculate effort in man months (MM)

and the number on months estimated for project (TDEV)

• MM is based on the number of thousand lines of delivered
instructions/source (KDSI)

 MM = a(KDSI)b * EAF

 TDEV = c(MM)d

• EAF is the Effort Adjustment Factor derived from the Cost Drivers, EAF
for the basic model is 1

• The values for a, b, c, and d differ depending on which mode you are
using

Mode a b c d
Organic 2.4 1.05 2.5 0.38
Semi-detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

COCOMO I

• A simple example:

Project is a flight control system (mission critical) with 310,000 DSI in
embedded mode

• Reliability must be very high (RELY=1.40). So we can calculate:

• Effort = 1.40*3.6*(310)1.20 = 5093 MM

• Schedule = 2.5*(5093)0.32 = 38.4 months

• Average Staffing = 5093 MM/38.4 months = 133 FSP

