
Measuring Internal Product
Attributes
(Structure)

Aspects of Structural Measures

• Size is important as discussed in the previous lecture. However, we
must investigate the characteristics of a product structure, and
determine how they affect the outcomes.

•A Software module or design (structure) can be viewed from several
perspectives. The perspectives depend on
• The level of abstraction—program unit (function, method, class), package,

subsystem, and system
• The way the module or design is described—syntax and semantics
• The specific attribute to be measured

Structural Perspective

•We can think of structure from at least two perspectives:

•1. Control flow structure: Addresses the sequence in which
instructions are executed. This aspect of the structure reflects the
iterative and looping nature of programs in a program

•2. Data flow structure: Follows the trail of a data item as it is created
or handled by a program. Data flow measures depict the behavior of
the data as it interacts with the program.

Structure Measure

•We evaluated size measure in terms of three properties
• Nonnegativity
• Null values
• Additivity

•To evaluate the structure measure we have to consider the following
properties
• Complexity
• Length
• Coupling
• Cohesion

Structural Complexity Properties

•Complexity refers to the complexity of a system

•The complexity of a system depends on the number of links between
elements, and should, at a minimum, satisfy the following properties
• Nonnegativity: complexity cannot be negative
• Null values: the complexity of a system with no links is zero
• Symmetry: The complexity of a system does not depend on how links are

represented
• Module monotonicity: System complexity “is no less than the sum of the

complexities of any two of its modules with no relationships in common”
• Disjoint module additivity: The complexity of a system of disjoint modules is

the sum of the complexities of the modules.

Length Properties

• For software entities, we might be interested in the distance in terms
of links from one element to another
• Nonnegativity: System length cannot be negative.
• Null value: A system with no links has zero length.
• Nonincreasing monotonicity for connected components: Length does not

increase when adding links between connected elements.
• Nondecreasing monotonicity for nonconnected components: Length does not

decrease when adding links between nonconnected elements.
• Disjoint modules: The length of a system of disjoint modules is equal to the

length of the module with the greatest length.

Coupling
• Coupling is the measure of the degree of interdependence between

the modules. Good software will have low coupling.
• Data Coupling: If the dependency between the modules is based on the

fact that they communicate by passing only data, then the modules are said
to be data coupled. In data coupling, the components are independent of
each other and communicate through data. Example-customer billing
system

• Stamp Coupling In stamp coupling, the complete data structure is passed
from one module to another module but uses only a part of it. E.g., passing
structure variable in C or object in C++ language to a module

• Control Coupling: If the modules communicate by passing control
information, then they are said to be control coupled. e.g., a control flag, a
comparison function passed to a sort algorithm.

• External Coupling: In external coupling, the modules depend on other
modules, external to the software being developed or to a particular type
of hardware. Ex- protocol, external file, device format, etc.

• Content Coupling: Content coupling, or pathological coupling, occurs when
one module modifies or relies on the internal workings of another module.
This is the worst form of coupling and should be avoided. An example
would be a search method that adds an object which is not found to the
internal structure of the data structure used to hold information.

Coupling Properties

• 1. Nonnegativity: Module coupling cannot be negative.

• 2. Null value: A module without links to elements that are external to the
module has zero coupling.

• 3. Monotonicity: Adding intermodule relationships does not decrease
coupling.

• 4. Merging modules: Merging two modules creates a new module that has
a coupling that is at most the sum of the coupling of the two modules.

• 5. Disjoint module additivity: Merging disjoint modules without links
between them creates a new module with a coupling that is the sum of the
coupling of the original modules.

Cohesion

•Cohesion is the indication of the relationship within the module. It is
the concept of intra-module. Cohesion has many types but usually,
high cohesion is good for software.

• Increasing cohesion is good for software whereas increasing coupling
is avoided for software.

•Highly cohesive gives the best software whereas loosely coupling
gives the best software

Cohesion Properties

1. Nonnegativity and normalization: Module cohesion is normalized so
that it is between zero and one.

2. Null value: A module whose elements have no links between them
has zero cohesion.

3. Monotonicity: Adding links between elements in a module cannot
decrease the cohesion of the module.

4. Merging modules: Merging two unrelated modules creates a new
module with a maximum cohesion no greater than that of the
original module with the greatest cohesion.

Object-Oriented structural attributes and
measures
• The object management group (OMG) defined the Unified Modeling Language

(UML), which includes a set of diagram types for modeling object-oriented
systems at various levels of abstraction to describe the structure, behavior, and
interactions of a system. The commonly used UML diagram types include the
following:

• Class diagrams: Model each class and its connections to other classes.
• Object diagrams: Model a configuration of run-time objects.
• Activity diagrams: Model the steps taken for a system to complete a task.
• State machine diagrams: Model of finite-state machine representations.
• Use case diagrams: Model external actors, the “use cases” that they take part

in, and the dependencies between use cases.
• Sequence diagrams: Model the sequences of messages passed between

objects in order to complete a task.

Measuring Coupling in Object-Oriented
Systems
• In addition to the coupling properties described earlier, several

orthogonal coupling properties can help to evaluate coupling
measures
• Type: What kinds of entities are coupled?
• Strength: How many connections of a particular kind?
• Import or export: Are the connections import and/or export?
• Indirect: Is indirect coupling measured?
• Inheritance: Are connections to or from inherited entities counted?
• Domain: Are the measures used to indicate the coupling of individual

attributes, methods, classes, sets of classes (e.g., packages), or the system as
a whole?

Coupling example

Coupling example

Coupling example

Measuring Cohesion in Object-Oriented
Systems
•Method cohesion is conceptually the same as the cohesion of an

individual function or procedure.

•Class cohesion is an intraclass attribute. It reflects the degree to which
the parts of a class—methods, method calls, fields, and attributes
belong together. A class with high cohesion has parts that belong
together because they contribute to a unified purpose. Most of the
proposed cohesion metrics are class-level metrics.

Cohesion metrics

•Researchers have developed many different object-oriented cohesion
metrics

•The majority of object-oriented cohesion metrics are calculated by
inspecting the syntax of the software.

Cohesion Metrics

• Lack of cohesion metric (LCOM) is a metric proposed by Chidamber
and Kemerer (Chidamber and Kemerer 1994). Here, the cohesion of a
class is characterized by how closely the local methods are related to
the local instance variables in the class.

• LCOM is defined as the number of disjoint (i.e., nonintersecting) sets
of local methods. Two methods in a class intersect if they reference or
modify common local instance variables.

• LCOM is an inverse cohesion measure; higher values imply lower
cohesion.

Cohesion Metrics

• Tight class cohesion (TCC) and loose class cohesion (LCC) are based on connections
between methods through instance variables (Bieman and Kang 1995). Two or
more methods have a direct connection if they read or write to the same instance
variable. Methods may also have an indirect connection if one method uses one or
more instance variables directly and the other uses the instance variable indirectly
by calling another method that uses the same instance variable. TCC is based on
the relative number of direct connections:

TCC(C) = NDC(C)/NP(C)
• where NDC(C) is the number of direct connections in class C and NP(C) is the

maximum number of possible connections. LCC is based on the relative number of
direct and indirect connections:

• LCC(C) = (NDC(C) + NIC(C))/NP(C)
where NIC(C) is the number of indirect connections.

Cohesion Metrics

•Ratio of cohesive interactions (RCI) is defined in terms of cohesive
interactions (CIs). RCI is the relative number of CIs:

RCI(C) = NCI(C)/NPCI(C)

where NCI(C) is the number of actual CIs in class C and NPCI(C) is the
maximum possible number of CIs. RCI satisfies all four cohesion
properties

Object-Oriented Length Measures

• In object-oriented systems, length/distances depend on the perspective
and the model representing an appropriate view of the system

• Inheritance in a class diagram is represented as a hierarchy or tree of
classes.

• The depth of inheritance tree (DIT) is a metric suite of object-oriented
metrics defined by Chidamber and Kemerer 1994

• The nodes in the tree represent classes, and for each such class, the DIT
metric is the length of the maximum path from the node to the root of the
tree.

• DIT is a measure of how many ancestor classes can potentially affect this
class

Object-Oriented Reuse Measure

•One of the key benefits of object-oriented development is its support for
reuse through data abstraction, inheritance, encapsulation, etc.

• Two perspectives of reuse:

• (1) client perspective: the perspective of a new system or system
component that can potentially reuse existing components. The potential
reuse measures include the number of direct and indirect server classes
and interfaces reused.

• (2) server perspective: the perspective of the existing components that
may potentially be reused, for example, a component library or package.
From the server perspective, we are concerned with the way a particular
entity is being reused by clients.

