Computer Security: Principles and Practice

Fourth Edition, Global Edition

By: William Stallings and Lawrie Brown

Access Control Definitions 1/2

NISTIR 7298 defines access control as:

"the process of granting or denying specific requests to: (1) obtain and use information and related information processing services; and (2) enter specific physical facilities"

Access Control Definitions 2/2

RFC 4949 defines access control as:

"a process by which use of system resources is regulated according to a security policy and is permitted only by authorized entities (users, programs, processes, or other systems) according to that policy"

Access Control Principles

 Access control implements a security policy that specifies who or what (e.g., in the case of a process) may have access to each specific system resource, and the type of access that is permitted in each instance.

Source: Based on [SAND94].

Access Control Policies

- Discretionary access control (DAC)
 - Controls access based on the identity of the requestor and on access rules (authorizations) stating what requestors are (or are not) allowed to do
- Mandatory access control (MAC)
 - Controls access based on comparing security labels with security clearances

- Role-based access control (RBAC)
 - Controls access based on the roles that users have within the system and on rules stating what accesses are allowed to users in given roles
- Attribute-based access control (ABAC)
 - Controls access based on attributes of the user, the resource to be accessed, and current environmental conditions

Subjects, Objects, and Access Rights

Discretionary Access Control (DAC)

- Scheme in which an entity may be granted access rights that permit the entity, by its own violation, to enable another entity to access some resource
- Often provided using an access matrix
 - One dimension consists of identified subjects that may attempt data access to the resources
 - The other dimension lists the objects that may be accessed
- Each entry in the matrix indicates the access rights of a particular subject for a particular object

		OBJECTS			
		File 1	File 2	File 3	File 4
SUBJECTS	User A	Own Read Write		Own Read Write	
	User B	Read	Own Read Write	Write	Read
	User C	Read Write	Read		Own Read Write

(a) Access matrix

Figure 4.2 Example of Access Control Structures

(b) Access control lists for files of part (a)

Figure 4.2 Example of Access Control Structures

Subject	Access Mode	Object
А	Own	File 1
А	Read	File 1
А	Write	File 1
А	Own	File 3
А	Read	File 3
А	Write	File 3
В	Read	File 1
В	Own	File 2
В	Read	File 2
В	Write	File 2
В	Write	File 3
В	Read	File 4
С	Read	File 1
С	Write	File 1
С	Read	File 2
С	Own	File 4
С	Read	File 4
С	Write	File 4

Table 4.2 Authorization Table for Files in Figure 4.2

(Table is on page 113 in the textbook)

UNIX File Access Control

UNIX files are administered using inodes (index nodes)

- Control structures with key information needed for a particular file
- An active inode is associated with exactly one file
- File attributes, permissions and control information are sorted in the inode
- On the disk there is an inode table, or inode list, that contains the inodes of all the files in the file system
- When a file is opened its inode is brought into main memory and stored in a memory resident inode table

Directories are structured in a hierarchical tree

- May contain files and/or other directories
- Contains file names plus pointers to associated inodes

UNIX File Access Control

- Unique user identification number (user ID)
- Member of a primary group identified by a group ID
- Belongs to a specific group
- 12 protection bits
 - Specify read, write, and execute permission for the owner of the file, members of the group and all other users
- The owner ID, group ID, and protection bits are part of the file's inode

(a) Traditional UNIX approach (minimal access control list)

Figure 4.5 UNIX File Access Control

Traditional UNIX File Access Control

- "Set user ID" (SetUID)
- "Set group ID" (SetGID)
 - System temporarily uses rights of the file owner/group in addition to the real user's rights when making access control decisions
 - Enables privileged programs to access files/resources not generally accessible

Sticky bit

- When applied to a directory it specifies that only the owner of any file in the directory can rename, move, or delete that file
- Superuser
 - Is exempt from usual access control restrictions
 - Has system-wide access

Access Control Lists (ACLs) in UNIX

Modern UNIX systems support ACLs

•FreeBSD, OpenBSD, Linux, Solaris

FreeBSD

- •Setfacl command assigns a list of UNIX user IDs and groups
- Any number of users and groups can be associated with a file
- •Read, write, execute protection bits
- A file does not need to have an ACL

When a process requests access to a file system object two steps are performed:

•Step 1 selects the most appropriate ACL

•Step 2 checks if the matching entry contains sufficient permissions

Figure 4.7 Access Control Matrix Representation of RBAC

Table 4.4 Scope RBAC Models

Models	Hierarchies	Constraints
RBAC ₀	No	No
RBAC ₁	Yes	No
RBAC ₂	No	Yes
RBAC ₃	Yes	Yes

Figure 4.9 Example of Role Hierarchy

Constraints - RBAC

- Provide a means of adapting RBAC to the specifics of administrative and security policies of an organization
- A defined relationship among roles or a condition related to roles
- Types:

Mutually exclusive roles	Cardinality	Prerequisite roles
 A user can only be assigned to one role in the set (either during a session or statically) Any permission (access right) can be granted to only one role in the set 	• Setting a maximum number with respect to roles	• Dictates that a user can only be assigned to a particular role if it is already assigned to some other specified role

Summary

- Access control principles
 - Access control context
 - Access control policies
- Subjects, objects, and access rights
- Discretionary access control
- UNIX file access control
 - Traditional UNIX file access control
 - Access control lists in UNIX
- Role-based access control
 - RBAC reference models