

1)Learn as much as possible about the target of
analysis.
◦ Read and understand the specifications, architecture

documents, and other design materials.
◦ Discuss and brainstorm about the target with a group.
◦ Determine system boundary and data sensitivity/criticality.
◦ Play with the software (if it exists in executable form).
◦ Study the code and other software artifacts (including the

use of code analysis tools).
◦ Identify threats and agree on relevant sources of attack

(e.g., will insiders be considered).

2) Discuss security issues surrounding the
software.
◦ Argue about how the product works and determine

areas of disagreement or ambiguity.

◦ Identify possible vulnerabilities, sometimes making
use of tools or lists of common vulnerabilities.

◦ Map out exploits and begin to discuss possible fixes.

◦ Gain understanding of current and planned security
controls.

3)Determine probability of compromise.
◦ Map out attack scenarios for exploits of

vulnerabilities.

◦ Balance controls against threat capacity to
determine likelihood.

4)Perform impact analysis.
◦ Determine impacts on assets and business goals.

◦ Consider impacts on the security posture.

5)Rank risks.

6)Develop a mitigation strategy.
◦ Recommend countermeasures to mitigate risks.

7)Report findings.
◦ Carefully describe the major and minor risks, with

attention to impacts.

◦ Provide basic information regarding where to spend
limited mitigation resources.

Two basic categories:
1. Commercial: STRIDE from Microsoft, Security Risk

Management Guide, also from Microsoft, ACSM/SAR
(Adaptive Countermeasure Selection
Mechanism/Security Adequacy Review) from Sun

2. Standards-Based: ASSET (Automated Security Self-
Evaluation Tool) from the National Institute on
Standards and Technology (NIST) , OCTAVE
(Operationally Critical Threat, Asset, and Vulnerability
Evaluation) from SEI

 Asset: A system component, data, or even a
complete system.

 Risk: The probability that an asset will suffer
an event of a given negative impact.

 Threat: The actor or agent who is the source
of danger.

 Vulnerability: In general, a vulnerability is a
defect or weakness in system security
procedures.

 Countermeasures or safeguards: Technical
controls prescribed for an information system
which, taken together, adequately protect the
confidentiality, integrity, and availability of
the system and its information.

 Probability: The likelihood that a given event
will be triggered. Three simple buckets:

1. High (H)

2. Medium (M),

3. Low (L).

STRIDE is an acronym for
◦ Spoofing,

◦ Tampering,

◦ Repudiation,

◦ Information disclosure,

◦ Denial of service, and

◦ Elevation of privilege.

Source: Official Link

https://www.microsoft.com/security/blog/2007/09/11/stride-chart/

 Missing Stakeholders
 Wrong Stakeholders
 Ambiguous Requirements
 Incomplete Requirements
 Conflicting Requirements
 Infeasible Requirements
 Unverifiable Requirements
 Undocumented Assumptions
 Invalid Assumptions
 Inadequate Validation

 Design flaws account for 50% of security
problems.

 Some requirements are not specified properly.
 Validation rules might be improper in

requirement stage.
 Designer should know about tools and

languages.
 Designer should be aware of known attacks.

One classic risk-analysis method expresses risk as a financial loss,
or annualized loss expectancy, based on the following equation:

ALE = SLE × ARO
where SLE is the single loss expectancy and ARO is the annualized
rate of occurrence.

For an example,
A event causes financial loss for ABC market. Let’s assign a cost of
$150 for any such event, so SLE = $150. With an ARO of just 100
such events per year, the cost to the company (or ALE) will be
$15,000.

 In the case of a Web server providing a company's
face to the world, a Web site defacement might be
difficult to quantify as a financial loss.

 Traditional risk analysis techniques do not necessarily
provide an easy guide of all potential vulnerabilities
and threats to be concerned about at a component
level.

Source: Risk analysis in software design

https://ieeexplore.ieee.org/document/1324606

During the risk analysis process one should consider…
 The threats who are likely to attack our system.
 The risks present in each tier's environment.
 The kinds of vulnerabilities that might exist in each

component, as well as the data flow.
 The business impact of such technical risks, were they to

be realized.
 The probability of such a risk being realized.
 Any feasible countermeasures that could be implemented

at each tier.

 A risk analysis should be carried out only once a
reasonable, big-picture overview of the system
has been established.

 Thus the first step of the process shown in the
figure is to build a one-page overview of the
system under analysis. Sometimes a one-page
big picture exists, but more often it does not.

 The one-page overview can be developed
through a process of artifact analysis coupled
with interviews.

Three critical steps (or subprocesses) make up
the heart of this architectural risk analysis
approach

 Attack resistance analysis

 Ambiguity analysis

 Weakness analysis

Four steps are involved in this subprocess
 Identify general flaws using secure design literature and

checklists (e.g., cycling through the Spoofing, Tampering,
... categories from STRIDE). A knowledge base of historical
risks is particularly useful in this activity.

 Map attack patterns using either the results of abuse case
development or a list of attack patterns.

 Identify risks in the architecture based on the use of
checklists.

 Understand and demonstrate the viability of these known
attacks (using something like exploit graphs; see the
Exploit Graphs box).

 Ambiguity analysis helps to uncover ambiguity
and inconsistency

 Ambiguity analysis is the subprocess capturing
the creative activity required to discover new
risks

 This process, by definition, requires at least two
analysts (the more the merrier) and some amount
of experience

 this subprocess works best when carried out by a
team of very experienced analysts

 Weakness analysis is a subprocess aimed at
understanding the impact of external software
dependencies.

 It can be happened in Frameworks, network
topology

 Example flaws
◦ Debug interfaces
◦ Unused (but privileged) product "features“
◦ Interposition attacks—DLLs, library paths, client

spoofing

Architectural Risk Analysis Is a Necessity

