

1)Learn as much as possible about the target of
analysis.
◦ Read and understand the specifications, architecture

documents, and other design materials.
◦ Discuss and brainstorm about the target with a group.
◦ Determine system boundary and data sensitivity/criticality.
◦ Play with the software (if it exists in executable form).
◦ Study the code and other software artifacts (including the

use of code analysis tools).
◦ Identify threats and agree on relevant sources of attack

(e.g., will insiders be considered).

2) Discuss security issues surrounding the
software.
◦ Argue about how the product works and determine

areas of disagreement or ambiguity.

◦ Identify possible vulnerabilities, sometimes making
use of tools or lists of common vulnerabilities.

◦ Map out exploits and begin to discuss possible fixes.

◦ Gain understanding of current and planned security
controls.

3)Determine probability of compromise.
◦ Map out attack scenarios for exploits of

vulnerabilities.

◦ Balance controls against threat capacity to
determine likelihood.

4)Perform impact analysis.
◦ Determine impacts on assets and business goals.

◦ Consider impacts on the security posture.

5)Rank risks.

6)Develop a mitigation strategy.
◦ Recommend countermeasures to mitigate risks.

7)Report findings.
◦ Carefully describe the major and minor risks, with

attention to impacts.

◦ Provide basic information regarding where to spend
limited mitigation resources.

Two basic categories:
1. Commercial: STRIDE from Microsoft, Security Risk

Management Guide, also from Microsoft, ACSM/SAR
(Adaptive Countermeasure Selection
Mechanism/Security Adequacy Review) from Sun

2. Standards-Based: ASSET (Automated Security Self-
Evaluation Tool) from the National Institute on
Standards and Technology (NIST) , OCTAVE
(Operationally Critical Threat, Asset, and Vulnerability
Evaluation) from SEI

 Asset: A system component, data, or even a
complete system.

 Risk: The probability that an asset will suffer
an event of a given negative impact.

 Threat: The actor or agent who is the source
of danger.

 Vulnerability: In general, a vulnerability is a
defect or weakness in system security
procedures.

 Countermeasures or safeguards: Technical
controls prescribed for an information system
which, taken together, adequately protect the
confidentiality, integrity, and availability of
the system and its information.

 Probability: The likelihood that a given event
will be triggered. Three simple buckets:

1. High (H)

2. Medium (M),

3. Low (L).

STRIDE is an acronym for
◦ Spoofing,

◦ Tampering,

◦ Repudiation,

◦ Information disclosure,

◦ Denial of service, and

◦ Elevation of privilege.

Source: Official Link

https://www.microsoft.com/security/blog/2007/09/11/stride-chart/

 Missing Stakeholders
 Wrong Stakeholders
 Ambiguous Requirements
 Incomplete Requirements
 Conflicting Requirements
 Infeasible Requirements
 Unverifiable Requirements
 Undocumented Assumptions
 Invalid Assumptions
 Inadequate Validation

 Design flaws account for 50% of security
problems.

 Some requirements are not specified properly.
 Validation rules might be improper in

requirement stage.
 Designer should know about tools and

languages.
 Designer should be aware of known attacks.

One classic risk-analysis method expresses risk as a financial loss,
or annualized loss expectancy, based on the following equation:

ALE = SLE × ARO
where SLE is the single loss expectancy and ARO is the annualized
rate of occurrence.

For an example,
A event causes financial loss for ABC market. Let’s assign a cost of
$150 for any such event, so SLE = $150. With an ARO of just 100
such events per year, the cost to the company (or ALE) will be
$15,000.

 In the case of a Web server providing a company's
face to the world, a Web site defacement might be
difficult to quantify as a financial loss.

 Traditional risk analysis techniques do not necessarily
provide an easy guide of all potential vulnerabilities
and threats to be concerned about at a component
level.

Source: Risk analysis in software design

https://ieeexplore.ieee.org/document/1324606

During the risk analysis process one should consider…
 The threats who are likely to attack our system.
 The risks present in each tier's environment.
 The kinds of vulnerabilities that might exist in each

component, as well as the data flow.
 The business impact of such technical risks, were they to

be realized.
 The probability of such a risk being realized.
 Any feasible countermeasures that could be implemented

at each tier.

 A risk analysis should be carried out only once a
reasonable, big-picture overview of the system
has been established.

 Thus the first step of the process shown in the
figure is to build a one-page overview of the
system under analysis. Sometimes a one-page
big picture exists, but more often it does not.

 The one-page overview can be developed
through a process of artifact analysis coupled
with interviews.

Three critical steps (or subprocesses) make up
the heart of this architectural risk analysis
approach

 Attack resistance analysis

 Ambiguity analysis

 Weakness analysis

Four steps are involved in this subprocess
 Identify general flaws using secure design literature and

checklists (e.g., cycling through the Spoofing, Tampering,
... categories from STRIDE). A knowledge base of historical
risks is particularly useful in this activity.

 Map attack patterns using either the results of abuse case
development or a list of attack patterns.

 Identify risks in the architecture based on the use of
checklists.

 Understand and demonstrate the viability of these known
attacks (using something like exploit graphs; see the
Exploit Graphs box).

 Ambiguity analysis helps to uncover ambiguity
and inconsistency

 Ambiguity analysis is the subprocess capturing
the creative activity required to discover new
risks

 This process, by definition, requires at least two
analysts (the more the merrier) and some amount
of experience

 this subprocess works best when carried out by a
team of very experienced analysts

 Weakness analysis is a subprocess aimed at
understanding the impact of external software
dependencies.

 It can be happened in Frameworks, network
topology

 Example flaws
◦ Debug interfaces
◦ Unused (but privileged) product "features“
◦ Interposition attacks—DLLs, library paths, client

spoofing

Architectural Risk Analysis Is a Necessity

