Computer Security: Principles and Practice

Fourth Edition, Global Edition

By: William Stallings and Lawrie Brown

Chapter 5

Database and Data Center Security

Database Security

The increasing reliance on cloud technology to host part or all of the corporate database

Most enterprise environments consist of a heterogeneous mixture of database platforms, enterprise platforms, and OS platforms, creating an additional complexity hurdle for security personnel There is a dramatic imbalance between the complexity of modern database management systems (DBMS) and the security technique used to protect these critical systems

> Reasons database security has not kept pace with the increased reliance on databases are:

The typical organization lacks fulltime database security personnel Databases have a sophisticated interaction protocol, Structured Query Language (SQL), which is complex

Effective database security requires a strategy based on a full understanding of the security vulnerabilities of SQL

Databases

- Structured collection of data stored for use by one or more applications
- Contains the relationships between data items and groups of data items
- Can sometimes contain sensitive data that needs to be secured

Query language

 Provides a uniform interface to the database for users and applications

Database management system (DBMS)

- Suite of programs for constructing and maintaining the database
- Offers ad hoc query facilities to multiple users and applications

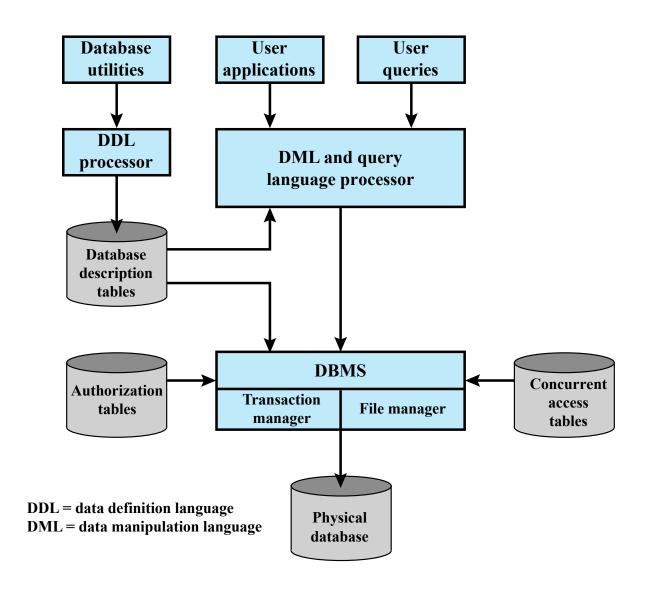


Figure 5.1 DBMS Architecture

Relational Databases

• Table of data consisting of rows and columns

- Each column holds a particular type of data
- Each row contains a specific value for each column
- Ideally has one column where all values are unique, forming an identifier/key for that row
- Enables the creation of multiple tables linked together by a unique identifier that is present in all tables
- Use a relational query language to access the database
 - Allows the user to request data that fit a given set of criteria

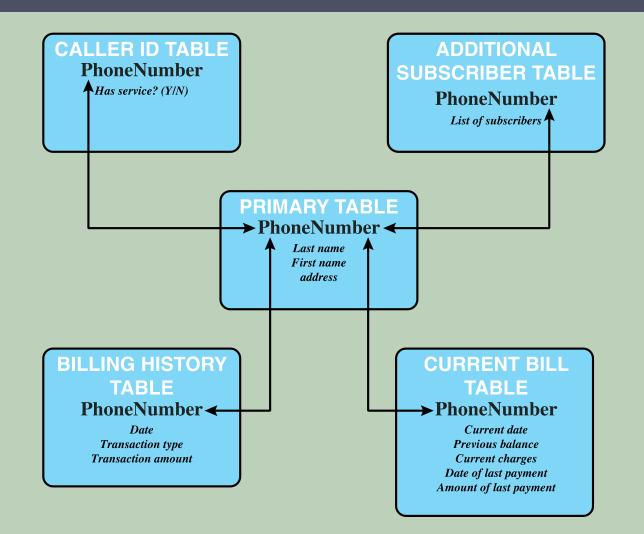


Figure 5.2 Example Relational Database Model. A relational database uses multiple tables related to one another by a designated key; in this case the key is the PhoneNumber field.

Relational Database Elements

Relation

• Table/file

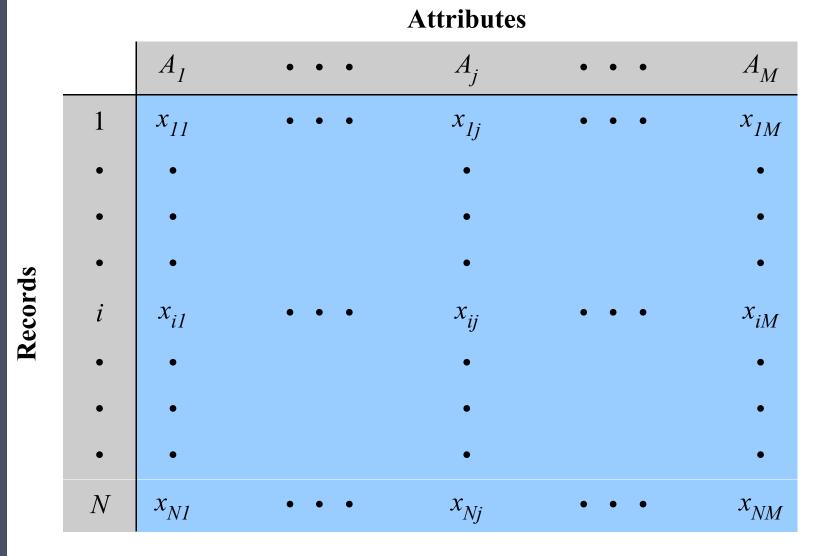
Tuple

- Row/record
- Attribute
 - Column/field

Primary key

- Uniquely identifies a row
- Consists of one or more column names

Foreign key


• Links one table to attributes in another

View/virtual table

- Result of a query that returns selected rows and columns from one or more tables
- Views are often used for security purposes

Table 5.1Basic Terminology for Relational Databases

Formal Name	Common Name	Also Known As
Relation	Table	File
Tuple	Row	Record
Attribute	Column	Field

Figure 5.3 Abstract Model of a Relational Database

Department Table

ſ	Did	Dname	Dacctno
	4	human resources	528221
	8	education	202035
ſ	9	accounts	709257
ſ	13	public relations	755827
	15	services	223945

Employee Table Ename Did Salarycode Eid Ephone 15 Robin 23 2345 6127092485 Neil 13 12 5088 6127092246 Jasmine 4 26 6127099348 7712 15 22 6127093148 Cody 9664 Holly 8 23 3054 6127092729 6127091945 Robin 8 24 2976 Smith 9 21 4490 6127099380 foreign primary

key

(a) Two tables in a relational database

key

Dname	Ename	Eid	Ephone
human resources	Jasmine	7712	6127099348
education	Holly	3054	6127092729
education	Robin	2976	6127091945
accounts	Smith	4490	6127099380
public relations	Neil	5088	6127092246
services	Robin	2345	6127092485
services	Cody	9664	6127093148

(b) A view derived from the database

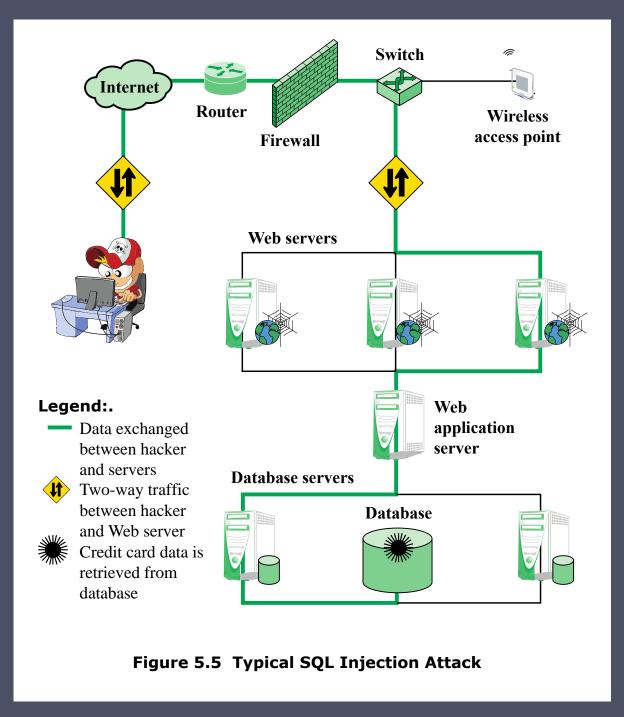
Figure 5.4 Relational Database Example

primary

key

Structured Query Language (SQL)

- Standardized language to define schema, manipulate, and query data in a relational database
- Several similar versions of ANSI/ISO standard
- All follow the same basic syntax and semantics


SQL statements can be used to:

- Create tables
- Insert and delete data in tables
- Create views
- Retrieve data with query statements

SQL Injection Attacks (SQLi)

- One of the most prevalent and dangerous networkbased security threats
- Designed to exploit the nature of Web application pages
- Sends malicious SQL commands to the database server

- Most common attack goal is bulk extraction of data
- Depending on the environment SQL injection can also be exploited to:
 - Modify or delete data
 - Execute arbitrary operating system commands
 - Launch denial-of-service (DoS) attacks

Injection Technique

The SQLi attack typically works by prematurely terminating a text string and appending a new command

Because the inserted command may have additional strings appended to it before it is executed the attacker terminates the injected string with a comment mark "- -"

Subsequent text is ignored at execution time

SQLi Attack Avenues

User input

• Attackers inject SQL commands by providing suitable crafted user input

Server variables

• Attackers can forge the values that are placed in HTTP and network headers and exploit this vulnerability by placing data directly into the headers

Second-order injection

Cookies

• An attacker could alter cookies such that when the application server builds an SQL query based on the cookie's content, the structure and function of the query is modified

Physical user input

• Applying user input that constructs an attack outside the realm of web requests

Inband Attacks

- Uses the same communication channel for injecting SQL code and retrieving results
- The retrieved data are presented directly in application Web page
- Include:

Tautology

This form of attack injects code in one or more conditional statements so that they always evaluate to true

End-of-line comment

After injecting code into a particular field, legitimate code that follows are nullified through usage of end of line comments

Piggybacked queries

The attacker adds additional queries beyond the intended query, piggybacking the attack on top of a legitimate request

Inferential Attack

 There is no actual transfer of data, but the attacker is able to reconstruct the information by sending particular requests and observing the resulting behavior of the Website/database server

• Include:

- Illegal/logically incorrect queries
 - This attack lets an attacker gather important information about the type and structure of the backend database of a Web application
 - The attack is considered a preliminary, informationgathering step for other attacks
- Blind SQL injection
 - Allows attackers to infer the data present in a database system even when the system is sufficiently secure to not display any erroneous information back to the attacker

SQLi Countermeasures

Three types:

- Manual defensive coding practices
- Parameterized query insertion

Defensive coding

Detection

- Signature based
- Anomaly based
- Code analysis

• Check queries at runtime to see if they conform to a model of expected queries

Run-time prevention

Database Access Control

Database access control system determines:

If the user has access to the entire database or just portions of it

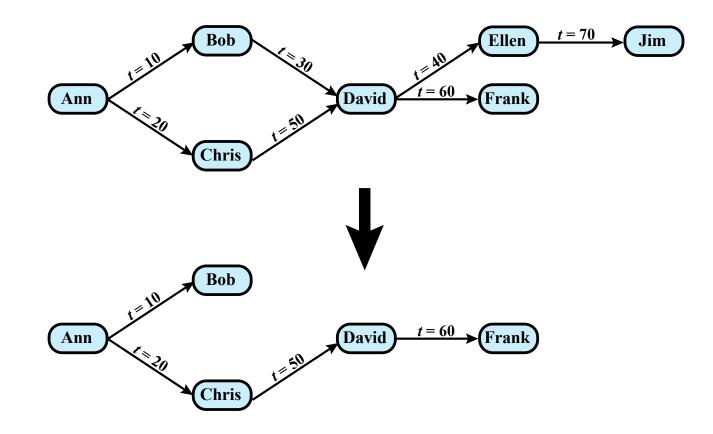
What access rights the user has (create, insert, delete, update, read, write)

Can support a range of administrative policies

Centralized administration

• Small number of privileged users may grant and revoke access rights

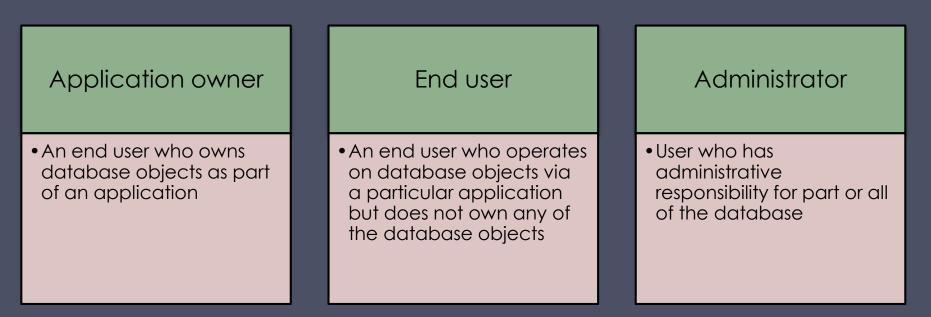
Ownership-based administration

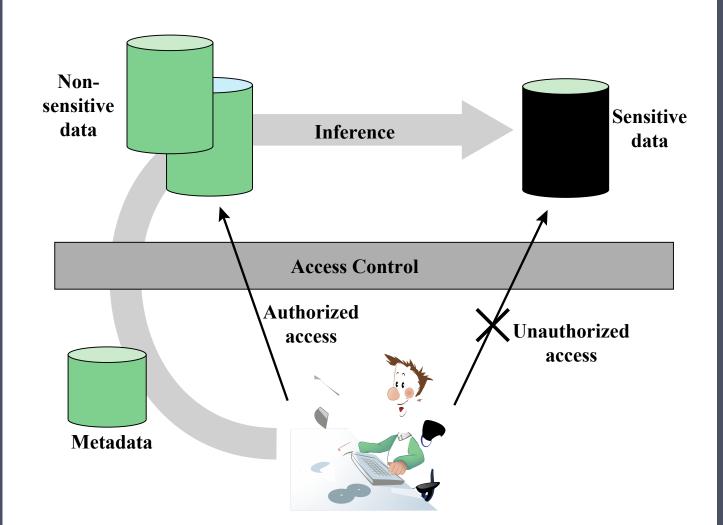

• The creator of a table may grant and revoke access rights to the table

Decentralized administration

• The owner of the table may grant and revoke authorization rights to other users, allowing them to grant and revoke access rights to the table

SQL Access Controls


- Two commands for managing access rights:
 - Grant
 - Used to grant one or more access rights or can be used to assign a user to a role
 - Revoke
 - o Revokes the access rights
- Typical access rights are:
 - Select
 - Insert
 - Update
 - Delete
 - References


Figure 5.6 Bob Revokes Privilege from David

Role-Based Access Control (RBAC)

- Role-based access control eases administrative burden and improves security
- A database RBAC needs to provide the following capabilities:
 - Create and delete roles
 - Define permissions for a role
 - Assign and cancel assignment of users to roles
- Categories of database users:

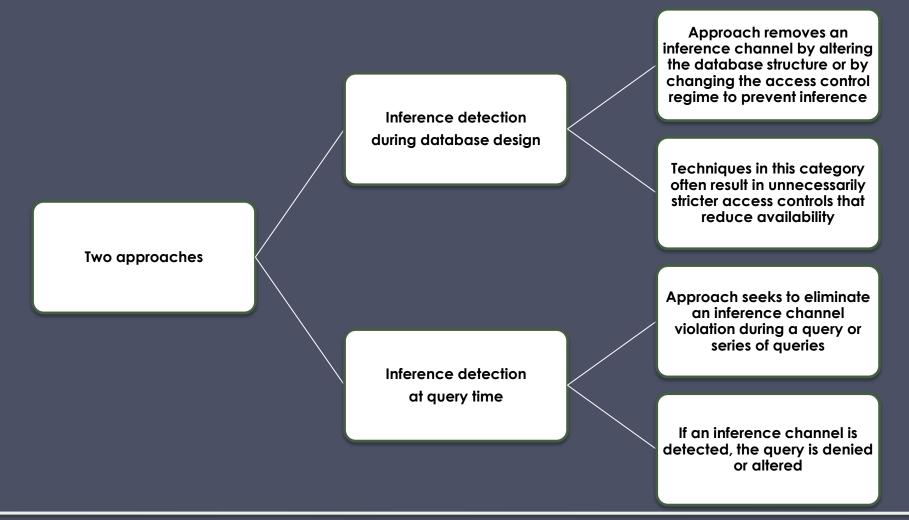
	Role	Permissions			
	Fixed Server Roles				
	sysadmin	Can perform any activity in SQL Server and have complete control over all database functions			
	serveradmin	Can set server-wide configuration options, shut down the server			
Table 5.2	setupadmin	Can manage linked servers and startup procedures			
	securityadmin	Can manage logins and CREATE DATABASE permissions, also read error logs and change passwords			
Eived	processadmin	Can manage processes running in SQL Server			
Fixed	dbcreator	Can create, alter, and drop databases			
Roles	diskadmin	Can manage disk files			
117	bulkadmin Can execute BULK INSERT statements				
in		Fixed Database Roles			
Microsoft	db_owner	Has all permissions in the database			
SOI	db_accessadmin	Can add or remove user IDs			
SQL Server	db_datareader	Can select all data from any user table in the database			
Server	db_datawriter	Can modify any data in any user table in the database			
	db_ddladmin	Can issue all Data Definition Language (DDL) statements			
	db_securityadmin	Can manage all permissions, object ownerships, roles and role memberships			
	db_backupoperator	Can issue DBCC, CHECKPOINT, and BACKUP statements			
(Tabla is on page 105 is	db_denydatareader	Can deny permission to select data in the database			
(Table is on page 165 in the textbook)	db_denydatawriter	Can deny permission to change data in the database			

Item	Availability	Cost (\$)	Department
Shelf support	in-store/online	7.99	hardware
Lid support	online only	5.49	hardware
Decorative chain	in-store/online	104.99	hardware
Cake pan	online only	12.99	housewares
Shower/tub cleaner	in-store/online	11.99	housewares
Rolling pin	in-store/online	10.99	housewares

(a) Inventory table

Availability	Cost (\$)
in-store/online	7.99
online only	5.49
in-store/online	104.99

Item	Department	
Shelf support	hardware	
Lid support	hardware	
Decorative chain	hardware	

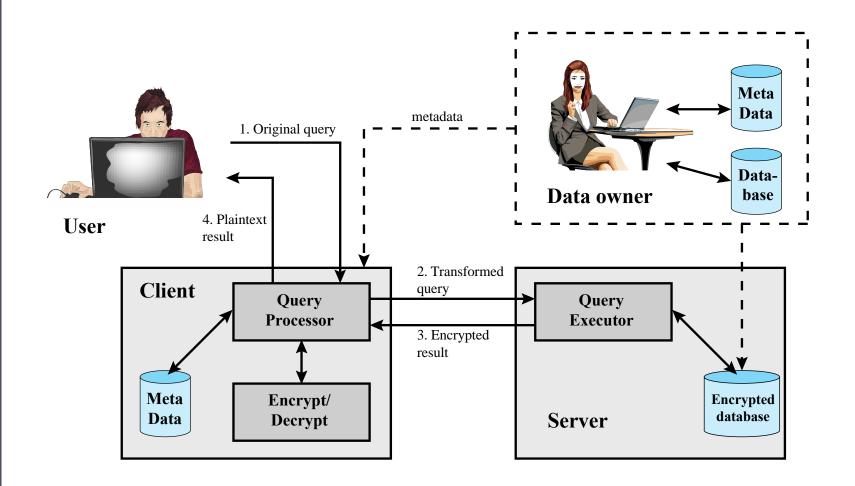

(b) Two views

Item	Availability	Cost (\$)	Department
Shelf support	in-store/online	7.99	hardware
Lid support	online only	5.49	hardware
Decorative chain	in-store/online	104.99	hardware

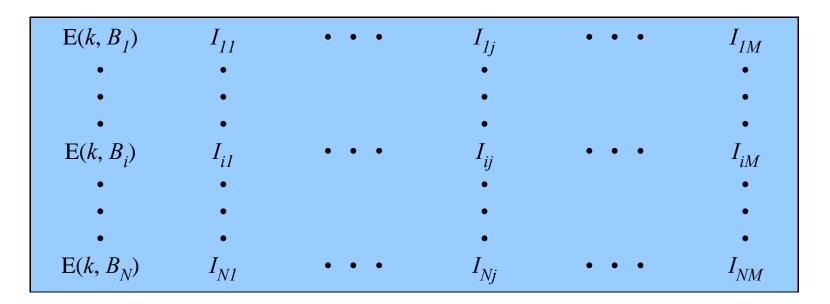
(c) Table derived from combining query answers

Figure 5.8 Inference Example

Inference Detection


- Some inference detection algorithm is needed for either of these approaches
- Progress has been made in devising specific inference detection techniques for multilevel secure databases and statistical databases

Database Encryption


- The database is typically the most valuable information resource for any organization
 - Protected by multiple layers of security
 - Firewalls, authentication, general access control systems, DB access control systems, database encryption
 - Encryption becomes the last line of defense in database security
 - Can be applied to the entire database, at the record level, the attribute level, or level of the individual field

• Disadvantages to encryption:

- Key management
 - Authorized users must have access to the decryption key for the data for which they have access
- Inflexibility
 - When part or all of the database is encrypted it becomes more difficult to perform record searching

Figure 5.9 A Database Encryption Scheme

 $B_i = (x_{i1} || x_{i2} || \dots || x_{iM})$

Figure 5.10 Encryption Scheme for Database of Figure 5.3

Table 5.3 Encrypted Database Example

eid	ename	salary	addr	did
23	Tom	70K	Maple	45
860	Mary	60K	Main	83
320	John	50K	River	50
875	Jerry	55K	Hopewell	92

(a) Employee Table

(b) Encrypted Employee Table with Indexes

E(k, B)	I(eid)	I(ename)	I(salary)	I(addr)	I(did)
1100110011001011	1	10	3	7	4
0111000111001010	5	7	2	7	8
1100010010001101	2	5	1	9	5
0011010011111101	5	5	2	4	9

Data Center Security

• Data center:

- An enterprise facility that houses a large number of servers, storage devices, and network switches and equipment
- The number of servers and storage devices can run into the tens of thousands in one facility
- Generally includes redundant or backup power supplies, redundant network connections, environmental controls, and various security devices
- Can occupy one room of a building, one or more floors, or an entire building
- Examples of uses include:
 - Cloud service providers
 - Search engines
 - Large scientific research facilities
 - IT facilities for large enterprises

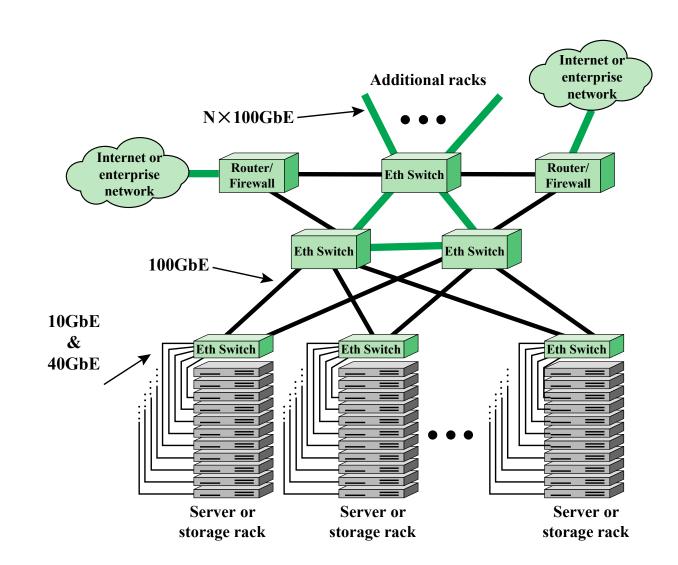


Figure 5.11 Key Data Center Elements

Data Security	Encryption, Password policiy, secure IDs, Data Protection (ISO 27002), Data masking, Data retention, etc.
Network Security	Firewalls, Anti-virus, Intrusion detection/prevention, authentication, etc.
Physical Security	Surveillance, Mantraps, Two/three factor authentication, Security zones, ISO 27001/27002, etc.
Site Security	Setbacks, Redundant utilities Landscaping, Buffer zones, Crash barriers, Entry points, etc.

Figure 5.12 Data Center Security Model

TIA-492

- The Telecommunications Industry Association (TIA)
- TIA-492 (Telecommunications Infrastructure Standard for Data Centers) specifies the minimum requirements for telecommunications infrastructure of data centers

• Includes topics such as:

- Network architecture
- Electrical design
- File storage, backup, and archiving
- System redundancy
- Network access control and security
- Database management
- Web hosting
- Application hosting
- Content distribution
- Environmental control
- Protection against physical hazards
- Power management

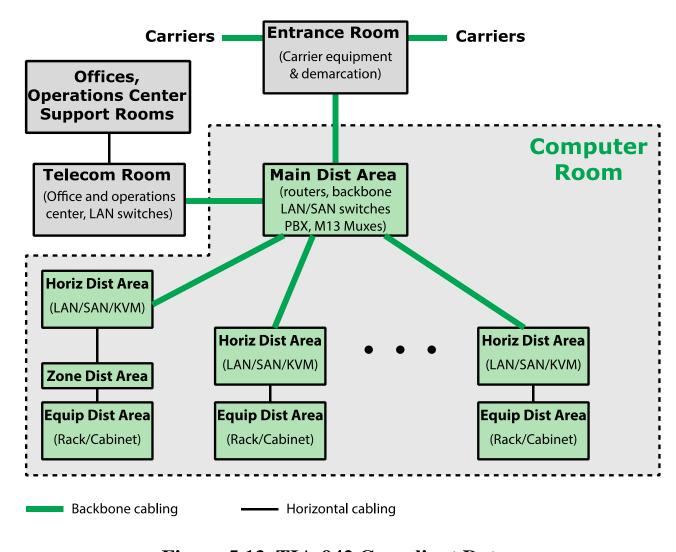


Figure 5.13 TIA-942 Compliant Data Center Showing Key Functional Areas

Tier	System design	Availability /Annual Downtime
1	 Susceptible to disruptions from both planned and unplanned activity Single path for power and cooling distribution, no redundant components May or may not have raised floor, UPS, or generator Takes 3 months to implement Must be shut down completely to perform preventive maintenance 	99.671%/ 28.8 hours
2	 Less susceptible to disruptions from both planned and unplanned activity Single path for power and cooling distribution, includes redundant components Includes raised floor, UPS, and generator Takes 3 to 6 months to implement Maintenance of power path and other parts of the infrastructure require a processing shutdown 	99.741%/ 22.0 hours
3	 Enables planned activity without disrupting computer hardware operation but unplanned events will still cause disruption Multiple power and cooling distribution paths but with only one path active, includes redundant components Takes 15 to 20 months to implement Includes raised floor and sufficient capacity and distribution to carry load on one path while performing maintenance on the other 	99.982%/ 1.6 hours
4	 Planned activity does not disrupt critical load and data center can sustain at least one worst-case unplanned event with no critical load impact Multiple active power and cooling distribution paths, includes redundant components Takes 15 to 20 months to implement 	99.995%/ 0.4 hours

Table 5.4

Data Center Tiers Defined in TIA-942

Summary

- The need for database security
- Database management systems
- Relational databases
 - Elements of a relational database system
 - Structured Query Language
- SQL injection attacks
 - A typical SQLi attack
 - The injection technique
 - SQLi attack avenues and types
 - SQLi countermeasures

- Database access
 control
 - SQL-based access definition
 - Cascading authorizations
 - Role-based access control
- Inference
- Database encryption
- Data center security
 - Data center elements
 - Data center security considerations
 - TIA-492