
Cross-Site Scripting Attack

(XSS)

The Cross-Site Scripting Attack
● In XSS, an attacker injects

his/her malicious code to the

victim’s browser via the

target website.

● When code comes from a

website, it is considered as

trusted with respect to the

website, so it can access and

change the content on the

pages, read cookies

belonging to the website and

sending out requests on

behalf of the user.

● Basically, code can do whatever the user

can do inside the session.

Types of XSS Attacks

● Non-persistent (Reflected) XSS Attack

● Persistent (Stored) XSS Attack

Non-persistent (Reflected) XSS Attack

If a website with a reflective behavior

takes user inputs, then :

● Attackers can put JavaScript

code in the input, so when the

input is reflected back, the

JavaScript code will be injected

into the web page from the

website.

Non-persistent (Reflected) XSS Attack

● Assume a vulnerable service on website :

http://www.example.com/search?input=word, where word is provided by the

users.

● Now the attacker sends the following URL to the victim and tricks him to click

the link:

http://www.example.com/search?input=<script>alert(“attack”);</script>

● Once the victim clicks on this link, an HTTP GET request will be sent to the

www.example.com web server, which returns a page containing the search

result, with the original input in the page. The input here is a JavaScript code

which runs and gives a pop-up message on the victim’s browser.

http://www.exame.com/search?input=word
http://www.example.com/search?input=
http://www.example.com

Persistent (Stored) XSS Attack

● Attackers directly send their

data to a target website/server

which stores the data in a

persistent storage.

● If the website later sends the

stored data to other users, it

creates a channel between the

users and the attackers.

Example : User profile in a social

network is a channel as it is set by

one user and viewed by another.

Persistent (Stored) XSS Attack

● These channels are supposed to be data channels.

● But data provided by users can contain HTML markups and JavaScript code.

● If the input is not sanitized properly by the website, it is sent to other users’

browsers through the channel and gets executed by the browsers.

● Browsers consider it like any other code coming from the website. Therefore,

the code is given the same privileges as that from the website.

Damage Caused by XSS

Web defacing: JavaScript code can use DOM APIs to access the DOM nodes

inside the hosting page. Therefore, the injected JavaScript code can make

arbitrary changes to the page. Example: JavaScript code can change a news

article page to something fake or change some pictures on the page.

Spoofing requests: The injected JavaScript code can send HTTP requests to the

server on behalf of the user. (Discussed in later slides)

Stealing information: The injected JavaScript code can also steal victim’s private

data including the session cookies, personal data displayed on the web page, data

stored locally by the web application.

Environment Setup

● Elgg: open-source web application for social networking with disabled

countermeasures for XSS.

● Elgg website : http://www.xsslabelgg.com

● The website is hosted on localhost via Apache’s Virtual Hosting

http://www.csrflabelgg.com

Attack Surfaces for XSS attack

● To launch an attack, we need to find places where we can inject JavaScript

code.

● These input fields are potential attack surfaces wherein attackers can put

JavaScript code.

● If the web application doesn’t remove the code, the code can be triggered on

the browser and cause damage.

● In our task, we will insert our code in the “Brief Description” field, so that when

Alice views Samy’s profile, the code gets executed with a simple message.

XSS Attacks to Befriend with Others

Goal: Add Samy to other people’s friend list without their consent.

Investigation taken by attacker Samy:

● Samy clicks “add-friend” button from Charlie’s account (discussed in

CSRF) to add himself to Charlie’s friend list.

● Using Firefox’s LiveHTTPHeader extension, he captures the add-friend

request.

XSS Attacks to Befriend with Others

Line ①: URL of Elgg’s

add-friend request.

UserID of the user to

be added to the friend

list is used. Here,

Samy’s UserID (GUID)

is 47.

Line ②: Elgg’s

countermeasure

against CSRF attacks

(this is now enabled).

Line ③: Session cookie which is unique for each user. It

is automatically sent by browsers. Here, if the attacker

wants to access the cookies, it will be allowed as the

JavaScript code is from Elgg website and not a third-

party page like in CSRF.

XSS Attacks to Befriend with Others

The main challenge is to find the values of CSRF countermeasures parameters :

_elgg_ts and _elgg_token.

Line ① and ②: The secret values are assigned to two JavaScript variables, which

make our attack easier as we can load the values from these variables.

Our JavaScript code is injected inside the page, so it can access the JavaScript

variables inside the page.

Construct an Add-friend Request

Line ① and ②: Get

timestamp and secret

token from the JavaScript

variables.

Line ③ and ④: Construct

the URL with the data

attached.

The rest of the code is to

create a GET request

using Ajax.

Inject the Code Into a Profile

● Samy puts the script in the

“About Me” section of his

profile.

● After that, let’s login as

“Alice” and visit Samy’s

profile.

● JavaScript code will be run

and not displayed to Alice.

● The code sends an add-

friend request to the server.

● If we check Alice’s friends

list, Samy is added.

XSS Attacks to Change Other People’s Profiles

Goal: Putting a statement “SAMY is MY HERO” in other people’s profile

without their consent.

Investigation taken by attacker Samy :

● Samy captured an edit-profile request using LiveHTTPHeader.

Captured HTTP Request

Line ①: URL of the

edit-profile service.

Line ②: Session

cookie (unique for

each user). It is

automatically set by

browsers.

Line ③: CSRF

countermeasures,

which are now

enabled.

Captured HTTP Request (continued)

• Line ④: Description field with our text “Samy is my hero”

• Line ⑤: Access level of each field: 2 means the field is viewable to everyone.

• Line ⑥: User ID (GUID) of the victim. This can be obtained by visiting victim’s

profile page source. In XSS, as this value can be obtained from the page. As

we don’t want to limit our attack to one victim, we can just add the GUID from
JavaScript variable called elgg.session.user.guid.

Construct the Malicious Ajax Request

Construct the Malicious Ajax Request

To ensure that it does not modify Samy’s

own profile or it will overwrite the malicious

content in Samy’s profile.

Inject the into Attacker’s Profile

● Samy can place the malicious code into his profile and then wait for others to

visit his profile page.

● Login to Alice’s account and view Samy’s profile. As soon as Samy’s profile is

loaded, malicious code will get executed.

● On checking Alice profile, we can see that “SAMY IS MY HERO” is added to

the “About me” field of her profile.

Self-Propagation XSS Worm

Using Samy’s worm, not only will the visitors of Samy’s profile be modified, their

profiles can also be made to carry a copy of Samy’s JavaScript code. So, when an

infected profile was viewed by others, the code can further spread.

Challenges: How can JavaScript code produce a copy of itself?

Two typical approaches:

● DOM approach: JavaScript code can get a copy of itself directly from DOM

via DOM APIs

● Link approach: JavaScript code can be included in a web page via a link

using the src attribute of the script tag.

Self -Propagation XSS Worm

Self-Propagation XSS Worm

Document Object Model (DOM) Approach :

● DOM organizes the contents of the page into a tree of objects (DOM nodes).

● Using DOM APIs, we can access each node on the tree.

● If a page contains JavaScript code, it will be stored as an object in the tree.

● So, if we know the DOM node that contains the code, we can use DOM APIs

to get the code from the node.

● Every JavaScript node can be given a name and then use the

document.getElementByID() API to find the node.

Self-Propagation XSS Worm

● Use “document.getElementById(“worm”) to get the reference of the node

● innerHTML gives the inside part of the node, not including the script tag.

● So, in our attack code, we can put the message in the description field along

with a copy of the entire code.

Self-Propagation XSS Worm

Line ① and ②: Construct a copy of the worm code, including the script tags.

Line ②: We split the string into two parts and use “+” to concatenate them

together. If we directly put the entire string, Firefox’s HTML parser will consider the

string as a closing tag of the script block and the rest of the code will be ignored.

Self-Propagation XSS Worm

Line ③: In HTTP POST requests, data is sent with Content-Type as

“application/x-www-form-urlencoded”. We use encodeURIComponent() function

to encode the string.

Line ④: Access level of each field: 2 means public.

After Samy places this self-propagating code in his profile, when Alice visits

Samy’s profile, the worm gets executed and modifies Alice’s profile, inside

which, a copy of the worm code is also placed. So, any user visiting Alice’s

profile will too get infected in the same way.

Self-Propagation XSS Worm: The Link Approach

● The JavaScript code

xssworm.js will be

fetched from the URL.

● Hence, we do not need

to include all the worm

code in the profile.

● Inside the code, we need

to achieve damage and

self-propagation.

Countermeasures: the Filter Approach

● Removes code from user inputs.

● It is difficult to implement as there are many ways to embed code other than

<script> tag.

● Use of open-source libraries that can filter out JavaScript code.

● Example : jsoup

Countermeasures: The Encoding Approach

● Replaces HTML markups with alternate representations.

● If data containing JavaScript code is encoded before being sent to the

browsers, the embedded JavaScript code will be displayed by browsers, not

executed by them.

● Converts <script> alert(‘XSS’) </script> to <script>alert(‘XSS’)

Countermeasures: Elgg’s Approach

PHP module HTMLawed:

Highly customizable PHP script to sanitize HTML against XSS attacks.

PHP function htmlspecialchars:

Encode data provided by users, s.t., JavaScript code in user’s inputs will be

interpreted by browsers only as strings and not as code.

Defeating XSS using Content Security Policy

● Fundamental Problem: mixing data and code (code is inlined)

● Solution: Force data and code to be separated: (1) Don’t allow the inline

approach. (2) Only allow the link approach.

CSP Example

● Policy based on the origin of the code

Code from self, example.com, and google will be allowed.

How to Securely Allow Inlined Code

● Using nonce

● Using hash of the code

Allowed

Not allowed

Setting CSP Rules

Discussion Questions

Question 1: What are the main differences of CSRF and XSS attacks? They both

have “cross site” in their names.

Question 2: Can we use the countermeasures against CSRF attacks to defend

against XSS attacks, including the secret token and same-site cookie

approaches?

Summary

● Two types of XSS attacks

● How to launch XSS attacks

● Create a self-propagating XSS worm

● Countermeasures against XSS attacks

