
Software Quality Assurance and Testing
Lecture - 04

ABDUS SATTER

LECTURER

INSTITUTE OF INFORMATION TECHNOLOGY

UNIVERSITY OF DHAKA

BLACK BOX TESTING TECHNIQUES

Dynamic Testing

Boundary Value Analysis (BVA)

⚫ An effective test case design requires test cases to be designed such
that they maximize the probability of finding errors. BVA
technique addresses this issue. With the experience of testing team,
it has been observed that test cases designed with boundary input
values have a high chance to find errors. It means that most of the
failures crop up due to boundary values.

⚫ BVA is considered a technique that uncovers the bugs at the
boundary of input values. Here, boundary means the maximum or
minimum value taken by the input domain. For example, if A is an
integer between 10 and 255, then boundary checking can be on
10(9,10,11) and on 255(256,255,254). Similarly, B is another integer
variable between 10 and 100, then boundary checking can be on
10(9,10,11) and 100(99,100,101)

Boundary Value Checking (BVC)

⚫In this method, the test cases are designed by
holding one variable at its extreme value and other
variables at their nominal values in the input
domain.

⚫The variable at its extreme value can be selected at:
⚪ Minimum value (Min)

⚪ Value just above the minimum value (Min+)

⚪ Maximum value (Max)

⚪ Value just below the maximum value (Max−)

Boundary Value Checking (BVC)

⚫Let us take the example of two variables, A and B. If
we consider all the above combinations with
nominal values, then following test can be designed:
1. Anom, Bmin

2. Anom, Bmin+

3. Anom, Bmax

4. Anom, Bmax–

5. Amin, Bnom

6. Amin+, Bnom

7. Amax, Bnom

8. Amax–, Bnom

9. Anom, Bnom

Robustness Testing Method

⚫The idea of BVC can be extended such that boundary
values are exceeded as:
⚪ value just greater than the Maximum value (Max+)

⚪ value just less than Minimum value (Min−)

⚫When test cases are designed considering the above
points in addition to BVC, it is called robustness
testing.

Robustness Testing Method

1. Anom, Bmin

2. Anom, Bmin+

3. Anom, Bmax

4. Anom, Bmax–

5. Amin, Bnom

6. Amin+, Bnom

7. Amax, Bnom

8. Amax–, Bnom

9. Anom, Bnom

10. Amax+, Bnom

11. Amin–, Bnom

12. Anom, Bmax+

13. Anom, Bmin–

Worst-Case Testing Method

1. Anom, Bmin

2. Anom, Bmin+

3. Anom, Bmax

4. Anom, Bmax–

5. Amin, Bnom

6. Amin+, Bnom

7. Amax, Bnom

8. Amax–, Bnom

9. Anom, Bnom

⚫We can again extend the concept of BVC by assuming
more than one variable on the boundary. It is called
worst-case testing method.

10. Amin, Bmin

11. Amin+, Bmin

12. Amin, Bmin+

13. Amin+, Bmin+

14. Amax, Bmin

15. Amax–, Bmin

16. Amax, Bmin+

17. Amax–, Bmin+

18. Amin, Bmax

19. Amin+,Bmax

20. Amin, Bmax–

21. Amin+, Bmax–

22. Amax, Bmax

23. Amax–, Bmax

24. Amax, Bmax–

25. Amax–, Bmax–

Example

⚫A program computes a^b where a lies in the range
[1,10] and b within [1,5]. Design test cases for this
program using BVC, robust testing, and worst-case
testing methods.

BVC

Robust Testing

Robust Testing

Worst Testing

Worst Testing

Equivalence Class Testing

⚫We know that the input domain for testing is too
large to test every input. So we can divide or
partition the input domain based on a common
feature or a class of data. Equivalence partitioning is
a method for deriving test cases where in classes of
input conditions called equivalence classes are
identified such that each member of the class causes
the same kind of processing and output to occur.

Equivalence Class Testing

⚫Equivalence partitioning method for designing test
cases has the following goals:
⚪ Completeness: Without executing all the test cases, we strive

to touch the completeness of testing domain.

⚪ Non-redundancy: When the test cases are executed having
inputs from the same class, then there is redundancy in
executing the test cases. Time and resources are wasted in
executing these redundant test cases, as they explore the same
type of bug. Thus, the goal of equivalence partitioning method
is to reduce these redundant test cases.

Identification Of Equivalent Classes

⚫Two types of classes can always be identified :
⚪ Valid equivalence classes: These classes consider valid

inputs to the program.

⚪ Invalid equivalence classes: One must not be restricted to
valid inputs only. We should also consider invalid inputs that
will generate error conditions or unexpected behavior of the
program

Guidelines for Forming Equivalence Classes

⚫ If there is no reason to believe that the entire range of an
input will be treated in the same manner, then the range
should be split into two or more equivalence classes.

⚫ If a program handles each valid input differently, then
define one valid equivalence class per valid input.

⚫Boundary value analysis can help in identifying the
classes. For example, for an input condition, say 0 ≤ a
≤100, one valid equivalent class can be formed from the
valid range of a. And with BVA, two invalid classes that
cross the minimum and maximum values can be
identified, i.e. a <0 and a >100.

Guidelines for Forming Equivalence Classes

⚫If an input variable can identify more than one
category, then for each category, we can make
equivalent classes. For example, if the input is a
character, then it can be an alphabet, a number, or a
special character. So we can make three valid classes
for this input and one invalid class.

⚫If an input condition specifies a ‘must be’ situation
(e.g., ‘first character of the identifier must be a
letter’), identify a valid equivalence class (it is a
letter) and an invalid equivalence class (it is not a
letter).

Guidelines for Forming Equivalence Classes

⚫Equivalence classes can be of the output desired in
the program. For an output equivalence class, the
goal is to generate test cases such that the output for
that test case lies in the output equivalence class.
Determining test cases for output classes may be
more difficult, but output classes have been found to
reveal errors that are not revealed by just
considering the input classes.

Guidelines for Forming Equivalence Classes

⚫Look for membership of an input condition in a set
or group and identify valid (within the set) and
invalid (outside the set) classes. For example, if the
requirements state that a valid province code is ON,
QU, and NB, then identify: the valid class (code is
one of ON, QU, NB) and the invalid class (code is not
one of ON, QU, NB).

Guidelines for Forming Equivalence Classes

⚫If the requirements state that a particular input item
match a set of values and each case will be dealt with
differently, identify a valid equivalence class for each
element and only one invalid class for values outside
the set. For example, if a discount code must be
input as P for a preferred customer, R for a standard
reduced rate, or N for none, and if each case is
treated differently, identify: the valid class code = P,
the valid class code = R, the valid class code = N, the
invalid class code is not one of P, R, N.

Guidelines for Forming Equivalence Classes

⚫ If an element of an equivalence class will be handled
differently than the others, divide the equivalence class
to create an equivalence class with only these elements
and an equivalence class with none of these elements.
For example, a bank account balance may be from 0 to
Rs 10 lakh and balances of Rs 1,000 or more are not
subject to service charges. Identify: the valid class: (0
≤balance <Rs 1,000), i.e. balance is between 0 and Rs
1,000 – not including Rs 1,000; the valid class: (Rs 1,000
≤ balance ≤Rs 10 lakh, i.e. balance is between Rs 1,000
and Rs 10 lakh inclusive the invalid class: (balance <0)
the invalid class: (balance >Rs 10 lakh).

Example

⚫A program reads three numbers, A, B, and C, with a
range [1, 50] and prints the largest number. Design
test cases for this program using equivalence class
testing technique.

Example

State Table-based Testing

⚫A system or its components may have a number of
states depending on its input and time. For example,
a task in an operating system can have the following
states:
⚪ New State: When a task is newly created.

⚪ Ready: When the task is waiting in the ready queue for its turn.

⚪ Running: When instructions of the task are being executed by
CPU.

⚪ Waiting: When the task is waiting for an I/O event or
reception of a signal.

⚪ Terminated: The task has finished execution.

State Graph

The Resulting Output From A State

⚫T0 = Task is in new state and waiting for admission
to ready queue

⚫T1 = A new task admitted to ready queue

⚫T2 = A ready task has started running

⚫T3 = Running task has been interrupted

⚫T4 = Running task is waiting for I/O or event

⚫T5 = Wait period of waiting task is over

⚫T6 = Task has completed execution

State Table

State Table-based Testing

⚫Identify the states

⚫Prepare state transition diagram after understanding
transitions between states

⚫Convert the state graph into the state table as
discussed earlier

⚫Analyze the state table for its completeness

⚫Create the corresponding test cases from the state
table

State Table-based Testing

Decision Table-based Testing

⚫Boundary value analysis and equivalence class
partitioning methods do not consider combinations of
input conditions. These consider each input separately.
There may be some critical behavior to be tested when
some combinations of input conditions are considered.

⚫Decision table is another useful method to represent the
information in a tabular method. It has the specialty to
consider complex combinations of input conditions and
resulting actions. Decision tables obtain their power from
logical expressions. Each operand or variable in a logical
expression takes on the value, TRUE or FALSE.

Decision Table Structure

Test Case Design Using Decision Table

⚫For designing test cases from a decision table,
following interpretations should be done:
⚪ Interpret condition stubs as the inputs for the test case.

⚪ Interpret action stubs as the expected output for the test case.

⚪ Rule, which is the combination of input conditions, becomes
the test case itself.

Example

⚫A program calculates the total salary of an employee
with the conditions that if the working hours are less
than or equal to 48, then give normal salary. The
hours over 48 on normal working days are calculated
at the rate of 1.25 of the salary. However, on holidays
or Sundays, the hours are calculated at the rate of
2.00 times of the salary. Design test cases using
decision table testing.

Example

Example

Cause-effect Graphing Based Testing

⚫The Cause and Effect Graph is a dynamic test case
writing technique. Here causes are the input conditions
and effects are the results of those input conditions.

⚫Cause-Effect Graph is a technique that starts with a set of
requirements and determines the minimum possible test
cases for maximum test coverage which reduces test
execution time and cost. The goal is to reduce the total
number of test cases, still achieving the desired
application quality by covering the necessary test cases
for maximum coverage.

Basic Notation for Cause-Effect Graph

Identity

Not

OR

Basic Notation for Cause-Effect Graph

AND
^

Exclusive

Inclusive

Basic Notation for Cause-Effect Graph

One and Only One

Requires

Example

⚫The “Print message” is software that reads two
characters and, depending on their values,
messages is printed.
• The first character must be an “A” or a “B”.
• The second character must be a digit.
• If the first character is an “A” or “B” and the second

character is a digit, then the file must be updated.
• If the first character is incorrect (not an “A” or “B”), the

message X must be printed.
• If the second character is incorrect (not a digit), the

message Y must be printed.

Identify The Causes and Effects

⚫The Causes of this situation are:
C1 – First character is A
C2 – First character is B
C3 – the Second character is a digit

⚫The Effects (results) for this situation are:
E1 – Update the file
E2 – Print message “X”
E3 – Print message “Y”

Nodes for Causes And Effects

Understand The Constraints for E1

⚫Effect E1 is for updating the file. The file is
updated when
– The first character is “A” and the second
character is a digit
– The first character is “B” and the second
character is a digit
– The first character can either be “A” or “B” and
cannot be both.

⚫Now let’s put these 3 points in symbolic form:
⚫For E1 to be true – the following are the causes:

– C1 and C3 should be true
– C2 and C3 should be true
– C1 and C2 cannot be true together. This means
C1 and C2 are mutually exclusive.

Represent The Constraints in The Graph

Draw Edges for E2

⚫E2 states print message “X”. Message X will be
printed when the First character is neither A
nor B.
This means Effect E2 will hold true when
either C1 OR C2 is invalid. So the graph for
Effect E2 is shown as (In blue line)

Draw Edges for E3

⚫E3 states print message “Y”. Message Y will be
printed when the Second character is
incorrect.
This means Effect E3 will hold true when C3 is
invalid. So the graph for Effect E3 is shown as
(In Green line)

Decision Table

Decision Table

Now for E1 to be “1” (true), we have the below two
conditions –
C1 AND C3 will be true
C2 AND C3 will be true

Decision Table

END OF CHAPTER

Thank You

