
SOFTWARE
TESTING

Principles and Practices

Naresh Chauhan

OXFORD
UNIVERSITY PRESS

© Oxford University Press 2010

ISBN: 978-0-1980618-47

To
 my parents

 who have made me capable
 to struggle in this world

There is no life without struggles and no software without bugs. Just as one needs to sort out the prob-
lems in one’s life, it is equally important to check and weed out the bugs in software. Bugs cripple the
software in a way problems in life unsettle one. In our life, both joys and sorrows are fl eeting. But a
person is best tested in times of crises. One who cultivates an optimistic outlook by displaying an equi-
poise taking prosperity as well as adversity in his stride and steadily ventures forth on a constructive
course is called a sthir pragna. We should follow the same philosophy while testing software too. We
need to develop an understanding that unless these bugs appear in our software and until we weed out
all of them, our software will not be robust and of superior quality. So, a software test engineer should
be an optimist who welcomes the struggles in life and similarly bugs in software, and takes them head-
on.

Software engineering as a discipline emerged in the late 1960s to guide software development
activities in producing quality software. Quality here is not a single-dimensional entity. It has several
factors including rigorous software testing. In fact, testing is the critical element of quality and consumes
almost half the total development effort. However, it is unfortunate that the quality and testing process
does not get its due credit. In software engineering, testing is considered to be a single phase operation
performed only after the development of code wherein bugs or errors are removed. However, this is
not the case. Testing is not just an intuitive method to remove the bugs, rather it is a systematic process
such as software development life cycle (SDLC). The testing process starts as soon as the fi rst phase
of SDLC starts. Therefore, even after learning many things about software engineering, there are still
some questions and misconceptions regarding the testing process which need to be known, such as the
following:
 ∑ When should testing begin?
 ∑ How much testing is practically possible?
 ∑ What are the various techniques to design a good test case (as our knowledge is only limited to

black-box and white-box techniques)?

Moreover, the role of software testing as a systematic process to produce quality software is
not recognized on a full scale. Many well-proven methods are largely unused in industries today.
Companies rely only on the automated testing tools rather than a proper testing methodology. What
they need to realize is that Computer-Aided Software Engineering (CASE) environments or tools are
there only to assist in the development effort and not meant to serve as silver bullets! Similarly, there
are many myths that both students and professionals believe in, which need to be exploded. The
present scenario requires software testing to be acknowledged as a separate discipline from software
engineering. Some universities have already started this course. Therefore, there is a need for a book
that explains all these issues for the benefi t of students who will learn software testing and become
knowledgeable test engineers as also for the benefi t of test engineers who are already working in the
industries and want to hone their testing skills.

Preface

 Prefacevi

ABOUT THE BOOK

This book treats software testing as a separate discipline to teach the importance of testing process both
in academia as well as in the industry. The book stresses on software testing as a systematic process and
explains software testing life cycle similar to SDLC and gives insight into the practical importance of
software testing. It also describes all the methods/techniques for test case design which is a prime issue
in software testing. Moreover, the book advocates the notion of effective software testing in place of
exhaustive testing (which is impossible).

The book has been written in a lucid manner and is packed with practical approach of designing
the test cases targeting undergraduate and postgraduate students of computer science and engineer-
ing (B.Tech., M.Tech., MCA), and test engineers. It discusses all the software testing issues and gives
insight into their practical importance. Each chapter starts with the learning objectives and ends with
a summary containing a quick review of important concepts discussed in the chapter. Some chapters
provide solved examples in between the theory to understand the method or technique practically at
the same moment. End-chapter exercises and multiple-choice questions are provided to assist instruc-
tors in classroom teaching and students in preparing better for their exams.

The key feature of the book is a fully devoted case study on Income Tax Calculator which shows
how to perform verifi cation and validation at various phases of SDLC. The case study includes ready-
to-use software and designing of test cases using the techniques described in the book. This material
will help both students and testers understand the test design techniques and use them practically.

Apart from the above-mentioned features, the book follows the following methodology in defi ning
key concepts in software testing:

 ∑ Emphasis on software testing as a systematic process

 ∑ Effective testing concepts rather than exhaustive complete testing

 ∑ A testing strategy with a complete roadmap has been developed that shows which software test-
ing technique with how much risk assessment should be adopted at which phase of SDLC

 ∑ Testing models

 ∑ Verifi cation and validation as the major components of software testing process. These have
been discussed widely expanding in separate chapters.

 ∑ Software testing life cycle along with bug classifi cation and bug life cycle

 ∑ Complete categorization of software testing techniques such as static testing and dynamic testing
expanding in different chapters

 ∑ Testing techniques with solved examples to illustrate how to design test cases using these tech-
niques

 ∑ Extensive coverage of regression testing, software testing metrics, and test management

 ∑ Effi cient test suite management to prioritize test cases suitable for a project

 ∑ The appropriate use of testing tools

 ∑ Software quality management and test maturity model (TMM)

 ∑ Testing techniques for two specialized environments: object-oriented software and Web-based
software

viiPreface l

ABOUT THE CD
The CD accompanying the book contains the following:

 ∑ Executable fi les for the examples given in Chapter 5 so that a user can directly implement white-
box testing on the codes without any extra effort.

 ∑ Checklists for verifi cation of parameters, such as general software design document (SDD), generic
code, high level design (HLD), low level design (LLD), and software requirement specifi cation
(SRS) document.

 ∑ A program on Income Tax Calculator along with its description in the form of a case study that
illustrates all the steps of the software testing process.

CONTENT AND COVERAGE

The book has been divided into seven different parts. Each part further consists of various chapters.

Part I (Testing Methodology) introduces concepts such as effective software testing, testing terminology,
testing as a process, and development of testing methodology.

Chapter 1 introduces the concept of effective testing versus complete testing, explains the psychology
for performing effective testing, and establishes that software testing is a complete
process.

Chapter 2 discusses the commonly used testing terminology such as error, bug, and failure, explains
life cycle of a bug with its various states, phases of software testing life cycle and V testing
model, and development of a testing methodology.

Chapter 3 explains how verifi cation and validation, a part of testing strategy, are performed at various
phases of SDLC.

Part II (Testing Techniques) deals with various test case design techniques based on static testing and
dynamic testing and verifi cation and validation concepts.

Chapter 4 covers test case design techniques using black-box testing including boundary value
analysis, equivalence class partitioning method, state table based testing, decision table
based testing, and cause-effect graphing technique.

Chapter 5 discusses test case design techniques using white-box testing, including basis path testing,
loop testing, data fl ow testing, and mutation testing.

Chapter 6 deals with the techniques, namely inspection, walkthrough, and reviews, largely used for
verifi cation of various intermediate work products resulting at different stages of SDLC.

Chapter 7 discusses various techniques used in validation testing such as unit testing, integration
testing, function testing, system testing, and acceptance testing.

Chapter 8 describes regression testing that is used to check the effect of modifi cations on other parts
of software.

Part III (Managing the Testing Process) discusses how to manage the testing process, various per-
sons involved in test organization hierarchy, testing metrics to monitor and control the testing process,
and how to reduce the number of test cases.

Chapter 9 covers the concept of introduction of management for test process for its effectiveness.
Various persons involved in test management hierarchy are discussed. The test planning

 Prefaceviii

for various verifi cation and validation activities are also discussed along with the test result
specifi cations.

Chapter 10 provides an introductory material to understand that measurement is a necessary part of
software engineering, known as software metrics.

Chapter 11 explains how software metrics assist in monitoring and controlling different testing
activities.

Chapter 12 explains the fact that test cases, specially designed for system testing and regression testing,
become unmanageable in a way that we cannot test all of them. The problem is how to
select or reduce the test cases out of a big test suite. This chapter discusses many such
techniques to resolve the problem.

Part IV (Quality Management) covers software quality issues with some standards along with testing
process maturity models.

Chapter 13 discusses various terminologies, issues, and standards related to software quality
management to produce high quality software.

Chapter 14 discusses various test process maturity models, namely test improvement model (TIM),
test organization model (TOM), test process improvement (TPI), and test maturity model
(TMM).

Part V (Test Automation) discusses the need of testing and provides an introduction to testing tools.

Chapter 15 explains the need for automation, categories of testing tools, and how to select a testing
tool.

Part VI (Testing for Specialized Environment) introduces the testing environment and the issues
related to two specialized environments, namely object-oriented software and Web-based software.

Chapters 16 and 17 discuss the issues, challenges, and techniques related to object-oriented and Web-
based software, respectively.

Part VII (Tracking the Bug) explains the process and techniques of debugging.

Chapter 18 covers the debugging process and discusses various methods to debug a software
product.

The book concludes with a case study of Income Tax Calculator illustrating the testing of software
using verifi cation and validation techniques. In addition, the book contains useful appendices that pro-
vide various ready-to-use checklists which can be used at the time of verifi cation of an item at various
stages of SDLC.

Do send your valuable suggestions, comments, and constructive criticism for further improvement
of the book.

Naresh Chauhan

 Prefacex

Preface v

PART 1: Testing Methodology

1. Introduction to Software Testing 3

 1.1 Introduction 3
 1.2 Evolution of Software Testing 5
 1.3 Software Testing—Myths and Facts 8
 1.4 Goals of Software Testing 10
 1.5 Psychology for Software Testing 13
 1.6 Software Testing Defi nitions 14
 1.7 Model for Software Testing 15
 1.8 Effective Software Testing vs.

Exhaustive Software Testing 16
 1.9 Effective Testing is Hard 21
 1.10 Software Testing as a Process 22
 1.11 Schools of Software Testing 23
 1.12 Software Failure Case Studies 25

2. Software Testing Terminology and
Methdology 32

 2.1 Software Testing Terminology 33
 2.2 Software Testing Life Cycle (STLC) 46
 2.3 Software Testing Methodology 51

3. Verifi cation and Validation 65

 3.1 Verifi cation and Validation (V&V)
Activities 66

 3.2 Verifi cation 69
 3.3 Verifi cation of Requirements 70
 3.4 Verifi cation of High-level Design 74
 3.5 Verifi cation of Low-level Design 76
 3.6 How to Verify Code? 77
 3.7 Validation 79

Contents

PART 2: Testing Techniques

4. Dynamic Testing: Black-Box Testing
Techniques 89

 4.1 Boundary Value Analysis (BVA) 90
 4.2 Equivalence Class Testing 107
 4.3 State Table-Based Testing 114
 4.4 Decision Table-Based Testing 119
 4.5 Cause-Effect Graphing Based

Testing 125
 4.6 Error Guessing 129

5. Dynamic Testing: White-Box Testing
Techniques 135

 5.1 Need of White-Box Testing 135
 5.2 Logic Coverage Criteria 136
 5.3 Basis Path Testing 138
 5.4 Graph Matrices 156
 5.5 Loop Testing 161
 5.6 Data Flow Testing 164
 5.7 Mutation Testing 174

6. Static Testing 188

 6.1 Inspections 190
 6.2 Structured Walkthroughs 205
 6.3 Technical Reviews 206

7. Validation Activites 212

 7.1 Unit Validation Testing 213
 7.2 Integration Testing 218
 7.3 Function Testing 231
 7.4 System Testing 233
 7.5 Acceptance Testing 244

xiPreface lContents l

8. Regression Testing 255

 8.1 Progressive vs. Regressive Testing 255
 8.2 Regression Testing Produces Quality

Software 256
 8.3 Regression Testability 257
 8.4 Objectives of Regression Testing 258
 8.5 When is Regression Testing Done? 258
 8.6 Regression Testing Types 259
 8.7 Defi ning Regression Test Problem 259
 8.8 Regression Testing Techniques 260

PART 3: Managing the Testing Process

9. Test Management 273

 9.1 Test Organization 274
 9.2 Structure of Testing Group 275
 9.3 Test Planning 276
 9.4 Detailed Test Design and Test

Specifi cations 292

10. Software Metrics 304

 10.1 Need of Software Measurement 305
 10.2 Defi nition of Software Metrics 306
 10.3 Classifi cation of Software Metrics 306
 10.4 Entities to be Measured 307
 10.5 Size Metrics 308

11. Testing Metrics for Monitoring and
Controlling the Testing Process 317

 11.1 Measurement Objectives for
Testing 318

 11.2 Attributes and Corresponding Metrics
in Software Testing 319

 11.3 Attributes 320
 11.4 Estimation Models for Estimating

Testing Efforts 327
 11.5 Architectural Design Metric Used for

Testing 331
 11.6 Information Flow Metrics Used for

Testing 332
 11.7 Cyclomatic Complexity Measures for

Testing 333
 11.8 Function Point Metrics for Testing 333

 11.9 Test Point Analysis (TPA) 335
 11.10 Some Testing Metrics 341

12. Effi cient Test Suit Management 352

 12.1 Why Does a Test Suite Grow? 352
 12.2 Minimizing the Test Suite and its

Benefi ts 353
 12.3 Defi ning Test Suite Minimization

Problem 354
 12.4 Test Suite Prioritization 354
 12.5 Types of Test Case Prioritization 355
 12.6 Prioritization Techniques 356
 12.7 Measuring the Effectiveness of a

Prioritized Test Suite 365

PART 4: Quality Management

13. Software Quality Management 373

 13.1 Software Quality 374
 13.2 Broadening the Concept of Quality 374
 13.3 Quality Cost 375
 13.4 Benefi ts of Investment on Quality 376
 13.5 Quality Control and Quality

Assurance 377
 13.6 Quality Management (QM) 378
 13.7 QM and Project Management 379
 13.8 Quality Factors 379
 13.9 Methods of Quality Management 380
 13.10 Software Quality Metrics 387
 13.11 SQA Models 390

14. Testing Process Maturity Models 404

 14.1 Need for Test Process Maturity 405
 14.2 Measurement and Improvement of a

Test Process 406
 14.3 Test Process Maturity Models 406

 PART 5: Test Automation

15. Automation and Testing Tools 429

 15.1 Need for Automation 430
 15.2 Categorization of Testing Tools 431
 15.3 Selection of Testing Tools 434

 Prefacexii

 15.4 Costs Incurred in Testing Tools 435
 15.5 Guidelines for Automated Testing 436
 15.6 Overview of Some Commercial

Testing Tools 437

PART 6: Testing for Specialized Environment

16. Testing Object-Oriented Software 445

 16.1 OOT Basics 446
 16.2 Object-oriented Testing 450

17. Testing Web-based Systems 474

 17.1 Web-based System 474
 17.2 Web Technology Evolution 475
 17.3 Traditional Software and Web-based

Software 476
 17.4 Challenges in Testing for Web-based

Software 477
 17.5 Quality Aspects 478
 17.6 Web Engineering (Webe) 480
 17.7 Testing of Web-based Systems 484

PART 7: Tracking the Bug

18. Debugging 503

 18.1 Debugging: an Art or Technique? 503
 18.2 Debugging Process 504
 18.3 Debugging Is Diffi cult 505
 18.4 Debugging Techniques 506
 18.5 Correcting the Bugs 509
 18.6 Debuggers 510

Income Tax Calculator: A Case Study

Step 1 Introduction to Case Study 513
Step 2 Income Tax Calculator SRS ver 1.0 515
Step 3 Verifi cation on Income Tax Calculator SRS

ver 1.0 517
Step 4 Income Tax Calculator SRS ver 2.0 520
Step 5 Verifi cation on Income Tax Calculator SRS

ver 2.0 525
Step 6 Income Tax Calculator SRS ver 3.0 531
Step 7 Black-Box Testing on Units/Modules of

Income Tax Calculator SRS ver 3.0 538
Step 8 White-Box Testing on Units/Modules of

Income Tax Calculator 552

Appendices

Appendix A Answers to Multiple Choice
Questions 587

Appendix B Software Requirement Specifi cation
(SRS) Verifi cation Checklist 589

Appendix C High Level Design (HLD)
Verifi cation Checklist 592

Appendix D Low Level Design (LLD)
Verifi cation Checklist 594

Appendix E General Software Design Document
(SDD) Verifi cation Checklist 595

Appendix F Generic Code Verifi cation
Checklist 596

References 600
Index 606

 Contents

Software testing has always been considered a single
phase performed after coding. But time has proved
that our failures in software projects are mainly due
to the fact that we have not realized the role of soft-
ware testing as a process. Thus, its role is not limited
to only a single phase in the software development
life cycle (SDLC), but it starts as soon as the require-
ments in a project have been gathered.

Complete software testing has also been perceived
for a long time. Again, it has been proved that ex-
haustive testing is not possible and we should shift

our attention to effective testing. Thus, effective and early testing concepts build our testing
methodology. Testing methodology shows the path for successful testing. This is the reason
that parallel to SDLC, software testing life cycle (STLC) has also been established now.

The testing methodology is related to many issues. All these issues have been addressed
in this part. The goals of software testing, the mindset required to perform testing, clear-cut
defi nitions of testing terminology, phases of STLC, development of testing methodology,
verifi cation and validation, etc. have been discussed in this part.
This part will make ground for the following concepts:

 ∑ Effective testing, not exhaustive testing.
 ∑ Software testing is an established process.
 ∑ Testing should be done with the intention of fi nding more and more bugs, not hiding

them.
 ∑ Difference between error, fault, and failure.
 ∑ Bug classifi cation.
 ∑ Development of software testing methodology.
 ∑ Testing life cycle models.
 ∑ Difference between verifi cation and validation.
 ∑ How to perform verifi cation and validation at various stages of SDLC.

Testing Methodology

Part

1
CHAPTERS

Chapter 1:
Introduction to Software Testing

Chapter 2:
Software Testing Terminology and
Methodology

Chapter 3:
Verifi cation and Validation

1.1 INTRODUCTION

Software has pervaded our society, from modern
households to spacecrafts. It has become an essen-
tial component of any electronic device or system.
This is why software development has turned out to
be an exciting career for computer engineers in the
last 10–15 years. However, software development
faces many challenges. Software is becoming com-
plex, but the demand for quality in software prod-
ucts has increased. This rise in customer awareness
for quality increases the workload and responsibil-
ity of the software development team. That is why
software testing has gained so much popularity in
the last decade. Job trends have shifted from devel-
opment to software testing. Today, software quality
assurance and software testing courses are offered
by many institutions. Organizations have separate testing groups with proper
hierarchy. Software development is driven with testing outputs. If the testing
team claims the presence of bugs in the software, then the development team
cannot release the product.

However, there still is a gap between academia and the demand of indus-
tries. The practical demand is that passing graduates must be aware of testing
terminologies, standards, and techniques. But students are not aware in most
cases, as our universities and colleges do not offer separate software quality
and testing courses. They study only software engineering. It can be said that
software engineering is a mature discipline today in industry as well as in
academia. On the other hand, software testing is mature in industry but not in
academia. Thus, this gap must be bridged with separate courses on software
quality and testing so that students do not face problems when they go for
testing in industries. Today, the ideas and techniques of software testing have
become essential knowledge for software developers, testers, and students as
well. This book is a step forward to bridge this gap.

Chapter

1
Introduction to

Software Testing

OBJECTIVES
After reading this chapter, you should be able
to understand:

 � How software testing has evolved over the
years

 � Myths and facts of software testing
 � Software testing is a separate discipline
 � Testing is a complete process
 � Goals of software testing
 � Testing is based on a negative/destructive

view
 � Model for testing process
 � Complete testing is not possible
 � Various schools of software testing

 Software Testing: Principles and Practices4

We cannot say that the industry is working smoothly, as far as software test-
ing is concerned. While many industries have adopted effective software test-
ing techniques and the development is driven by testing efforts, there are still
some loopholes. Industries are dependent on automation of test execution.
Therefore, testers also rely on effi cient tools. But there may be an instance
where automation will not help, which is why they also need to design test
cases and execute them manually. Are the testers prepared for this case? This
requires testing teams to have a knowledge of testing tactics and procedures
of how to design test cases. This book discusses various techniques and dem-
onstrates how to design test cases.

How do industries measure their testing process? Since software testing is
a complete process today, it must be measured to check whether the process
is suitable for projects. CMM (Capability Maturity Model) has measured the
development process on a scale of 1–5 and companies are running for the
highest scale. On the same pattern, there should be a measurement program for
testing processes. Fortunately, the measurement technique for testing processes
has also been developed. But how many managers, developers, testers, and
of course students, know that we have a Testing Maturity Model (TMM) for
measuring the maturity status of a testing process? This book gives an overview
of various test process maturity models and emphasizes the need for these.

Summarizing the above discussion, it is evident that industry and academia
should go parallel. Industries constantly aspire for high standards. Our
university courses will have no value if their syllabi are not revised vis-à-vis
industry requirements. Therefore, software testing should be included as a
separate course in our curricula. On the other side, organizations cannot run
with the development team looking after every stage, right from requirement
gathering to implementation. Testing is an important segment of software
development and it has to be thoroughly done. Therefore, there should be a
separate testing group with divided responsibilities among the members.

In this chapter, we will trace the evolution of software testing. Once con-
sidered as a debugging process, it has now evolved into a complete process.
Now we have software testing goals in place to have a clear picture as to why
we want to study testing and execute test cases. There has been a misconcep-
tion right from the evolution of software testing that it can be performed com-
pletely. But with time, we have grown out of this view and started focusing
on effective testing rather than exhaustive testing. The psychology of a tester
plays an important role in software testing. It matters whether one wants to
show the absence of errors or their presence in the software. All these issues
along with the model of testing, testing process, development of schools of
testing, etc. have been discussed. This chapter presents an overview of effec-
tive software testing and its related concepts.

5Introduction to Software Testing l

1.2 EVOLUTION OF SOFTWARE TESTING

In the early days of software development, software testing was considered
only a debugging process for removing errors after the development of soft-
ware. By 1970, the term ‘software engineering’ was in common use. But soft-
ware testing was just a beginning at that time. In 1978, G. J. Myers realized
the need to discuss the techniques of software testing in a separate subject. He
wrote the book The Art of Software Testing [2] which is a classic work on soft-
ware testing. He emphasized that there is a requirement that undergraduate
students must learn software testing techniques so that they pass out with the
basic knowledge of software testing and do not face problems in the industry.
Moreover, Myers discussed the psychology of testing and emphasized that
testing should be done with a mindset of fi nding errors and not to demon-
strate that errors are not present.

By 1980, software professionals and organizations started emphasizing on
quality. Organizations realized the importance of having quality assurance
teams to take care of all testing activities for the project right from the begin-
ning. In the 1990s, testing tools fi nally came into their own. There was a fl ood
of various tools, which are absolutely vital to adequate testing of software
systems. However, they do not solve all problems and cannot replace a test-
ing process.

Gelperin and Hetzel [79] have characterized the growth of software testing
with time. Based on this, we can divide the evolution of software testing into
the following phases [80] (see Fig. 1.1).

19961988198319791957

Debugging-
oriented
phase

Checkout
getting the
system to
run

Debugging

Demonstration-
oriented phase

Checkout of a
program
increased from
program runs to
program
correctness

Destruction-
oriented
phase

Separated
debugging
from testing

Testing is to
show the
absence of
errors

Effective
testing

Evaluation-
oriented
phase

Quality of the
software

Verification and
validation
techniques

Prevention-
oriented phase

Bug-prevention
rather than bug-
detection

Process-
oriented
phase

Process
rather
than a
single
phase

Figure 1.1 Evolution phases of software testing

 Software Testing: Principles and Practices6

Debugging-oriented Phase (Before 1957)
This phase is the early period of testing. At that time, testing basics were
unknown. Programs were written and then tested by the programmers until
they were sure that all the bugs were removed. The term used for testing was
checkout, focused on getting the system to run. Debugging was a more general
term at that time and it was not distinguishable from software testing. Till
1956, there was no clear distinction between software development, testing,
and debugging.

Demonstration-oriented Phase (1957–78)
The term ‘debugging’ continued in this phase. However, in 1957, Charles
Baker pointed out that the purpose of checkout is not only to run the software
but also to demonstrate the correctness according to the mentioned require-
ments. Thus, the scope of checkout of a program increased from program runs
to program correctness. Moreover, the purpose of checkout was to show the
absence of errors. There was no stress on the test case design. In this phase,
there was a misconception that the software could be tested exhaustively.

Destruction-oriented Phase (1979–82)
This phase can be described as the revolutionary turning point in the his-
tory of software testing. Myers changed the view of testing from ‘testing is to
show the absence of errors’ to ‘testing is to fi nd more and more errors.’ He
separated debugging from testing and stressed on the valuable test cases if
they explore more bugs. This phase has given importance to effective testing
in comparison to exhaustive testing. The importance of early testing was also
realized in this phase.

Evaluation-oriented Phase (1983–87)
With the concept of early testing, it was realized that if the bugs were
identifi ed at an early stage of development, it was cheaper to debug them
as compared to the bugs found in implementation or post-implementation
phases. This phase stresses on the quality of software products such that it
can be evaluated at every stage of development. In fact, the early testing
concept was established in the form of verifi cation and validation activities
which help in producing better quality software. In 1983, guidelines by the
National Bureau of Standards were released to choose a set of verifi cation
and validation techniques and evaluate the software at each step of software
development.

7Introduction to Software Testing l

Prevention-oriented Phase (1988–95)
The evaluation model stressed on the concept of bug-prevention as compared
to the earlier concept of bug-detection. With the idea of early detection of
bugs in earlier phases, we can prevent the bugs in implementation or fur-
ther phases. Beyond this, bugs can also be prevented in other projects with
the experience gained in similar software projects. The prevention model in-
cludes test planning, test analysis, and test design activities playing a major
role, while the evaluation model mainly relies on analysis and reviewing tech-
niques other than testing.

Process-oriented Phase (1996 onwards)
In this phase, testing was established as a complete process rather than a single
phase (performed after coding) in the software development life cycle (SDLC).
The testing process starts as soon as the requirements for a project are specifi ed
and it runs parallel to SDLC. Moreover, the model for measuring the perfor-
mance of a testing process has also been developed like CMM. The model
for measuring the testing process is known as Testing Maturity Model (TMM).
Thus, the emphasis in this phase is also on quantifi cation of various parameters
which decide the performance of a testing process.

The evolution of software testing was also discussed by Hung Q. Nguyen
and Rob Pirozzi in a white paper [81], in three phases, namely Software Test-
ing 1.0, Software Testing 2.0, and Software Testing 3.0. These three phases
discuss the evolution in the earlier phases that we described. According to
this classifi cation, the current state-of-practice is Software Testing 3.0. These
phases are discussed below.

Software Testing 1.0
In this phase, software testing was just considered a single phase to be per-
formed after coding of the software in SDLC. No test organization was there.
A few testing tools were present but their use was limited due to high cost.
Management was not concerned with testing, as there was no quality goal.

Software Testing 2.0
In this phase, software testing gained importance in SDLC and the concept of
early testing also started. Testing was evolving in the direction of planning the
test resources. Many testing tools were also available in this phase.

 Software Testing: Principles and Practices8

Software Testing 3.0
In this phase, software testing is being evolved in the form of a process which
is based on strategic effort. It means that there should be a process which
gives us a roadmap of the overall testing process. Moreover, it should be
driven by quality goals so that all controlling and monitoring activities can
be performed by the managers. Thus, the management is actively involved
in this phase.

1.3 SOFTWARE TESTING— MYTHS AND FACTS

Before getting into the details of software testing, let us discuss some myths
surrounding it. These myths are there, as this fi eld is in its growing phase.

Myth Testing is a single phase in SDLC .

Truth It is a myth, at least in the academia, that software testing is just a
phase in SDLC and we perform testing only when the running code of the
module is ready. But in reality, testing starts as soon as we get the requirement
specifi cations for the software. And the testing work continues throughout the
SDLC, even post-implementation of the software.

Myth Testing is easy.

Truth This myth is more in the minds of students who have just passed out
or are going to pass out of college and want to start a career in testing. So the
general perception is that, software testing is an easy job, wherein test cases are
executed with testing tools only. But in reality, tools are there to automate the
tasks and not to carry out all testing activities. Testers’ job is not easy, as they
have to plan and develop the test cases manually and it requires a thorough
understanding of the project being developed with its overall design. Overall,
testers have to shoulder a lot of responsibility which sometimes make their job
even harder than that of a developer.

Myth Software development is worth more than testing.

Truth This myth prevails in the minds of every team member and even in
freshers who are seeking jobs. As a fresher, we dream of a job as a developer.
We get into the organization as a developer and feel superior to other team
members. At the managerial level also, we feel happy about the achievements
of the developers but not of the testers who work towards the quality of the
product being developed. Thus, we have this myth right from the beginning
of our career, and testing is considered a secondary job. But testing has now

9Introduction to Software Testing l

become an established path for job-seekers. Testing is a complete process like
development, so the testing team enjoys equal status and importance as the
development team.

Myth Complete testing is possible.

Truth This myth also exists at various levels of the development team. Almost
every person who has not experienced the process of designing and executing
the test cases manually feels that complete testing is possible. Complete testing
at the surface level assumes that if we are giving all the inputs to the software,
then it must be tested for all of them. But in reality, it is not possible to provide
all the possible inputs to test the software, as the input domain of even a small
program is too large to test. Moreover, there are many things which cannot
be tested completely, as it may take years to do so. This will be demonstrated
soon in this chapter. This is the reason why the term ‘complete testing’ has
been replaced with ‘effective testing.’ Effective testing is to select and run some
select test cases such that severe bugs are uncovered fi rst.

Myth Testing starts after program development.

Truth Most of the team members, who are not aware of testing as a process,
still feel that testing cannot commence before coding. But this is not true. As
mentioned earlier, the work of a tester begins as soon as we get the specifi cations.
The tester performs testing at the end of every phase of SDLC in the form of
verifi cation (discussed later) and plans for the validation testing (discussed later).
He writes detailed test cases, executes the test cases, reports the test results, etc.
Testing after coding is just a part of all the testing activities.

Myth The purpose of testing is to check the functionality of the software.

Truth Today, all the testing activities are driven by quality goals. Ultimately,
the goal of testing is also to ensure quality of the software. But quality does not
imply checking only the functionalities of all the modules. There are various
things related to quality of the software, for which test cases must be executed.

Myth Anyone can be a tester.

Truth This is the extension of the myth that ‘testing is easy.’ Most of us think
that testing is an intuitive process and it can be performed easily without any
training. And therefore, anyone can be a tester. As an established process,
software testing as a career also needs training for various purposes, such as to
understand (i) various phases of software testing life cycle, (ii) recent techniques
to design test cases, (iii) various tools and how to work on them, etc. This is the
reason that various testing courses for certifi ed testers are being run.

 Software Testing: Principles and Practices10

After having discussed the myths, we will now identify the requirements for
software testing. Owing to the importance of software testing, let us fi rst iden-
tify the concerns related to it. The next section discusses the goals of software
testing.

1.4 GOALS OF SOFTWARE TESTING

To understand the new concepts of software testing and to defi ne it thoroughly,
let us fi rst discuss the goals that we want to achieve from testing. The goals
of software testing may be classifi ed into three major categories, as shown in
Fig. 1.2.

�

�

Reduced maintenance cost
Improved testing process

Post-implementation Goals

�

�

�

�

Reliability

Risk management

Quality
Customer satisfaction

Long-term Goals

� Bug discovery
Bug prevention�

Immediate Goals

Software testing

Figure 1.2 Software testing goals

Short-term or immediate goals These goals are the immediate results after
performing testing. These goals may be set in the individual phases of SDLC.
Some of them are discussed below.

Bug discovery The immediate goal of testing is to fi nd errors at any stage of
software development. More the bugs discovered at an early stage, better will
be the success rate of software testing.

Bug prevention It is the consequent action of bug discovery. From the behaviour
and interpretation of bugs discovered, everyone in the software development
team gets to learn how to code safely such that the bugs discovered should
not be repeated in later stages or future projects. Though errors cannot be
prevented to zero, they can be minimized. In this sense, bug prevention is a
superior goal of testing.

11Introduction to Software Testing l

Long-term goals These goals affect the product quality in the long run, when
one cycle of the SDLC is over. Some of them are discussed here.

Quality Since software is also a product, its quality is primary from the users’
point of view. Thorough testing ensures superior quality. Therefore, the fi rst
goal of understanding and performing the testing process is to enhance the
quality of the software product. Though quality depends on various factors,
such as correctness, integrity, effi ciency, etc., reliability is the major factor to
achieve quality. The software should be passed through a rigorous reliability
analysis to attain high quality standards. Reliability is a matter of confi dence
that the software will not fail, and this level of confi dence increases with
rigorous testing. The confi dence in reliability, in turn, increases the quality, as
shown in Fig. 1.3.

Software testing Reliability Quality

Figure 1.3 Testing produces reliability and quality

Customer satisfaction From the users’ perspective, the prime concern of test-
ing is customer satisfaction only. If we want the customer to be satisfi ed with
the software product, then testing should be complete and thorough. Testing
should be complete in the sense that it must satisfy the user for all the speci-
fi ed requirements mentioned in the user manual, as well as for the unspeci-
fi ed requirements which are otherwise understood. A complete testing process
achieves reliability, reliability enhances the quality, and quality in turn, in-
creases the customer satisfaction, as shown in Fig. 1.4.

Software testing Reliability Quality

Customer
satisfaction

Provides

Figure 1.4 Quality leads to customer satisfaction

Risk management Risk is the probability that undesirable events will occur in a
system. These undesirable events will prevent the organization from successfully
implementing its business initiatives. Thus, risk is basically concerned with the
business perspective of an organization.

Risks must be controlled to manage them with ease. Software testing may
act as a control, which can help in eliminating or minimizing risks (see Fig. 1.5).

 Software Testing: Principles and Practices12

Thus, managers depend on software testing to assist them in controlling their
business goals. The purpose of software testing as a control is to provide infor-
mation to management so that they can better react to risk situations [4]. For ex-
ample, testing may indicate that the software being developed cannot be deliv-
ered on time, or there is a probability that high priority bugs will not be resolved
by the specifi ed time. With this advance information, decisions can be made to
minimize risk situation.

Hence, it is the testers’ responsibility to evaluate business risks (such as
cost, time, resources, and critical features of the system being developed) and
make the same a basis for testing choices. Testers should also categorize the
levels of risks after their assessment (like high-risk, moderate-risk, low-risk)
and this analysis becomes the basis for testing activities. Thus, risk manage-
ment becomes the long-term goal for software testing.

Software testing Reliability Quality

Customer
satisfaction

ProvidesControlled by

Risk factors
� Cost
� Time
� Resources
� Critical features

Figure 1.5 Testing controlled by risk factors

Post-implementation goals These goals are important after the product is
released. Some of them are discussed here.

Reduced maintenance cost The maintenance cost of any software product is
not its physical cost, as the software does not wear out. The only maintenance
cost in a software product is its failure due to errors. Post-release errors are
costlier to fi x, as they are diffi cult to detect. Thus, if testing has been done
rigorously and effectively, then the chances of failure are minimized and in
turn, the maintenance cost is reduced.

Improved software testing process A testing process for one project may not
be successful and there may be scope for improvement. Therefore, the bug
history and post-implementation results can be analysed to fi nd out snags in
the present testing process, which can be rectifi ed in future projects. Thus,
the long-term post-implementation goal is to improve the testing process for
future projects.

13Introduction to Software Testing l

1.5 PSYCHOLOGY FOR SOFTWARE TESTING

Software testing is directly related to human psychology. Though software
testing has not been defi ned till now, but most frequently, it is defi ned as,

Testing is the process of demonstrating that there are no errors.

The purpose of testing is to show that the software performs its intended
functions correctly. This defi nition is correct, but partially. If testing is per-
formed keeping this goal in mind, then we cannot achieve the desired goals
(described above in the previous section), as we will not be able to test the
software as a whole. Myers fi rst identifi ed this approach of testing the software.
This approach is based on the human psychology that human beings tend to
work according to the goals fi xed in their minds. If we have a preconceived
assumption that the software is error-free, then consequently, we will design
the test cases to show that all the modules run smoothly. But it may hide some
bugs. On the other hand, if our goal is to demonstrate that a program has
errors, then we will design test cases having a higher probability to uncover
bugs.

Thus, if the process of testing is reversed, such that we always presume the
presence of bugs in the software, then this psychology of being always suspi-
cious of bugs widens the domain of testing. It means, now we don’t think of
testing only those features or specifi cations which have been mentioned in
documents like SRS (software requirement specifi cation), but we also think in
terms of fi nding bugs in the domain or features which are understood but not
specifi ed. You can argue that, being suspicious about bugs in the software is a
negative approach. But, this negative approach is for the benefi t of construc-
tive and effective testing. Thus, software testing may be defi ned as,

Testing is the process of executing a program with the intent of fi nding errors.

This defi nition has implications on the psychology of developers. It is very
common that they feel embarrassed or guilty when someone fi nds errors in
their software. However, we should not forget that humans are prone to er-
ror. We should not feel guilty for our errors. This psychology factor brings the
concept that we should concentrate on discovering and preventing the errors
and not feel guilt about them. Therefore, testing cannot be a joyous event
unless you cast out your guilt.

According to this psychology of testing, a successful test is that which fi nds
errors. This can be understood with the analogy of medical diagnostics of a
patient. If the laboratory tests do not locate the problem, then it cannot be
regarded as a successful test. On the other hand, if the laboratory test deter-
mines the disease, then the doctor can start an appropriate treatment. Thus, in

 Software Testing: Principles and Practices14

the destructive approach of software testing, the defi nitions of successful and
unsuccessful testing should also be modifi ed.

1.6 SOFTWARE TESTING DEFINITIONS

Many practitioners and researchers have defi ned software testing in their own
way. Some are given below.

Testing is the process of executing a program with the intent of fi nding errors.
 Myers [2]

A successful test is one that uncovers an as-yet-undiscovered error.
Myers [2]

Testing can show the presence of bugs but never their absence.
W. Dijkstra [125]

Program testing is a rapidly maturing area within software engineering that is re-
ceiving increasing notice both by computer science theoreticians and practitioners. Its
general aim is to affi rm the quality of software systems by systematically exercising the
software in carefully controlled circumstances.

E. Miller[84]

Testing is a support function that helps developers look good by fi nding their mistakes
before anyone else does.
 James Bach [83]

Software testing is an empirical investigation conducted to provide stakeholders with
information about the quality of the product or service under test, with respect to the
context in which it is intended to operate.
 Cem Kaner [85]

The underlying motivation of program testing is to affi rm software quality with meth-
ods that can be economically and effectively applied to both large-scale and small-scale
systems.

Miller [126]

Testing is a concurrent lifecycle process of engineering, using and maintaining testware
(i.e. testing artifacts) in order to measure and improve the quality of the software being
tested.

 Craig [117]

Since quality is the prime goal of testing and it is necessary to meet the
defi ned quality standards, software testing should be defi ned keeping in view
the quality assurance terms. Here, it should not be misunderstood that the
testing team is responsible for quality assurance. But the testing team must

15Introduction to Software Testing l

be well aware of the quality goals of the software so that they work towards
achieving them.

Moreover, testers these days are aware of the defi nition that testing is to
fi nd more and more bugs. But the problem is that there are too many bugs
to fi x. Therefore, the recent emphasis is on categorizing the more important
bugs fi rst. Thus, software testing can be defi ned as,

Software testing is a process that detects important bugs with the objective of having
better quality software.

1.7 MODEL FOR SOFTWARE TESTING

Testing is not an intuitive activity, rather it should be learnt as a process.
Therefore, testing should be performed in a planned way. For the planned
execution of a testing process, we need to consider every element and every
aspect related to software testing. Thus, in the testing model, we consider the
related elements and team members involved (see Fig. 1.6).

Testing
methodology

Testing

Bug model

Tester

Software

Results

System

Developer

Expected
results

Nature of bugs and
psychology of testing

Unexpected
results

Figure 1.6 Software testing model

The software is basically a part of a system for which it is being developed.
Systems consist of hardware and software to make the product run. The
developer develops the software in the prescribed system environment
considering the testability of the software. Testability is a major issue for the
developer while developing the software, as a badly written software may be
diffi cult to test. Testers are supposed to get on with their tasks as soon as the
requirements are specifi ed. Testers work on the basis of a bug model which
classifi es the bugs based on the criticality or the SDLC phase in which the
testing is to be performed. Based on the software type and the bug model, testers
decide a testing methodology which guides how the testing will be performed.
With suitable testing techniques decided in the testing methodology, testing
is performed on the software with a particular goal. If the testing results are

 Software Testing: Principles and Practices16

in line with the desired goals, then the testing is successful; otherwise, the
software or the bug model or the testing methodology has to be modifi ed
so that the desired results are achieved. The following describe the testing
model.

Software and Software Model
Software is built after analysing the system in the environment. It is a complex
entity which deals with environment, logic, programmer psychology, etc.
But a complex software makes it very diffi cult to test. Since in this model of
testing, our aim is to concentrate on the testing process, therefore the software
under consideration should not be so complex such that it would not be
tested. In fact, this is the point of consideration for developers who design the
software. They should design and code the software such that it is testable at
every point. Thus, the software to be tested may be modeled such that it is
testable, avoiding unnecessary complexities.

Bug Model
Bug model provides a perception of the kind of bugs expected. Considering
the nature of all types of bugs, a bug model can be prepared that may help in
deciding a testing strategy. However, every type of bug cannot be predicted.
Therefore, if we get incorrect results, the bug model needs to be modifi ed.

Testing methodology and Testing
Based on the inputs from the software model and the bug model, testers can
develop a testing methodology that incorporates both testing strategy and testing
tactics. Testing strategy is the roadmap that gives us well-defi ned steps for the
overall testing process. It prepares the planned steps based on the risk factors
and the testing phase. Once the planned steps of the testing process are prepared,
software testing techniques and testing tools can be applied within these steps.
Thus, testing is performed on this methodology. However, if we don’t get the
required results, the testing plans must be checked and modifi ed accordingly.

All the components described above will be discussed in detail in subse-
quent chapters.

1.8 EFFECTIVE SOFTWARE TESTING VS. EXHAUSTIVE SOFTWARE TESTING

Exhaustive or complete software testing means that every statement in the
program and every possible path combination with every possible combina-
tion of data must be executed. But soon, we will realize that exhaustive testing
is out of scope. That is why the questions arise: (i) When are we done with
testing? or (ii) How do we know that we have tested enough? There may be

17Introduction to Software Testing l

many answers for these questions with respect to time, cost, customer, qual-
ity, etc. This section will explore that exhaustive or complete testing is not
possible. Therefore, we should concentrate on effective testing which empha-
sizes effi cient techniques to test the software so that important features will be
tested within the constrained resources.

The testing process should be understood as a domain of possible tests (see
Fig. 1.7). There are subsets of these possible tests. But the domain of possible
tests becomes infi nite, as we cannot test every possible combination.

Domain of
testing

Subsets of
testing

Figure 1.7 Testing domain

This combination of possible tests is infi nite in the sense that the process-
ing resources and time are not suffi cient for performing these tests. Computer
speed and time constraints limit the possibility of performing all the tests.
Complete testing requires the organization to invest a long time which is not
cost-effective. Therefore, testing must be performed on selected subsets that
can be performed within the constrained resources. This selected group of
subsets, but not the whole domain of testing, makes effective software testing.
Effective testing can be enhanced if subsets are selected based on the factors
which are required in a particular environment.

Now, let us see in detail why complete testing is not possible.

The Domain of Possible Inputs to the Software is too Large to Test
If we consider the input data as the only part of the domain of testing, even
then, we are not able to test the complete input data combination. The do-
main of input data has four sub-parts: (a) valid inputs, (b) invalid inputs, (c)
edited inputs, and (d) race condition inputs (See Fig. 1.8)

Valid inputs It seems that we can test every valid input on the software. But
look at a very simple example of adding two-digit two numbers. Their range
is from –99 to 99 (total 199). So the total number of test case combinations
will be 199 × 199 = 39601. Further, if we increase the range from two digits to
four-digits, then the number of test cases will be 399,960,001. Most addition
programs accept 8 or 10 digit numbers or more. How can we test all these
combinations of valid inputs?

Invalid inputs Testing the software with valid inputs is only one part of
the input sub-domain. There is another part, invalid inputs, which must be

 Software Testing: Principles and Practices18

tested for testing the software effectively. The important thing in this case is
the behaviour of the program as to how it responds when a user feeds invalid
inputs. The set of invalid inputs is also too large to test. If we consider again the
example of adding two numbers, then the following possibilities may occur
from invalid inputs:

 (i) Numbers out of range

 (ii) Combination of alphabets and digits

 (iii) Combination of all alphabets

 (iv) Combination of control characters

 (v) Combination of any other key on the keyboard

Domain of
testing

Input
domain

Race condition
inputs

Valid inputs

Edited
inputs

Invalid
inputs

Figure 1.8 Input domain for testing

Edited inputs If we can edit inputs at the time of providing inputs to the
program, then many unexpected input events may occur. For example, you
can add many spaces in the input, which are not visible to the user. It can be
a reason for non-functioning of the program. In another example, it may be
possible that a user is pressing a number key, then Backspace key continuously
and fi nally after sometime, he presses another number key and Enter. Its input
buffer overfl ows and the system crashes.

The behaviour of users cannot be judged. They can behave in a number of
ways, causing defect in testing a program. That is why edited inputs are also
not tested completely.

Race condition inputs The timing variation between two or more inputs is also
one of the issues that limit the testing. For example, there are two input events,

19Introduction to Software Testing l

A and B. According to the design, A precedes B in most of the cases. But, B
can also come fi rst in rare and restricted conditions. This is the race condition,
whenever B precedes A. Usually the program fails due to race conditions,
as the possibility of preceding B in restricted condition has not been taken
care, resulting in a race condition bug. In this way, there may be many race
conditions in the system, especially in multiprocessing systems and interactive
systems. Race conditions are among the least tested.

There are too Many Possible Paths Through the Program to Test
A program path can be traced through the code from the start of a program to
its termination. Two paths differ if the program executes different statements
in each, or executes the same statements but in different order. A testing per-
son thinks that if all the possible paths of control fl ow through the program
are executed, then possibly the program can be said to be completely tested.
However, there are two fl aws in this statement.

 (i) The number of unique logic paths through a program is too large. This
was demonstrated by Myers[2] with an example shown in Fig. 1.9. It
depicts a 10–20 statements program consisting of a DO loop that iter-
ates up to 20 times. Within the body of the DO loop is a set of nested IF
statements. The number of all the paths from point A to B is approxi-
mately 1014. Thus, all these paths cannot be tested, as it may take years
of time.

Figure 1.9 Sample fl ow graph 1

 Software Testing: Principles and Practices20

 See another example for the code fragment shown in Fig. 1.10 and its
corresponding fl ow graph in Fig. 1.11 (We will learn how to convert the
program into a fl ow graph in Chapter 5).

for (int i = 0; i < n; ++i)
{
if (m >=0)
 x[i] = x[i] + 10;
else
 x[i] = x[i] − 2;
}

Figure 1.10 Sample code fragment

2, 3

1

7

4 5, 6

Figure 1.11 Example fl ow graph 2

 Now calculate the number of paths in this fragment. For calculating the
number of paths, we must know how many paths are possible in one it-
eration. Here in our example, there are two paths in one iteration. Now
the total number of paths will be 2n + 1, where n is the number of times
the loop will be carried out, and 1 is added, as the for loop will exit after
its looping ends and it terminates. Thus, if n is 20, then the number of
paths will be 220 + 1, i.e. 1048577. Therefore, all these paths cannot be
tested, as it may take years.

 (ii) The complete path testing, if performed somehow, does not guarantee
that there will not be errors. For example, it does not claim that a pro-
gram matches its specifi cation. If one were asked to write an ascending
order sorting program but the developer mistakenly produces a descend-
ing order program, then exhaustive path testing will be of little value. In
another case, a program may be incorrect because of missing paths. In
this case, exhaustive path testing would not detect the missing path.

21Introduction to Software Testing l

Every Design Error Cannot be Found
Manna and Waldinger [15] have mentioned the following fact: ‘We can never
be sure that the specifi cations are correct.’ How do we know that the specifi ca-
tions are achievable? Its consistency and completeness must be proved, and
in general, that is a provably unsolvable problem [9]. Therefore, specifi cation
errors are one of the major reasons that make the design of the software faulty.
If the user requirement is to have measurement units in inches and the speci-
fi cation says that these are in meters, then the design will also be in meters.
Secondly, many user interface failures are also design errors.

The study of these limitations of testing shows that the domain of testing
is infi nite and testing the whole domain is just impractical. When we leave a
single test case, the concept of complete testing is abandoned. But it does not
mean that we should not focus on testing. Rather, we should shift our atten-
tion from exhaustive testing to effective testing. Effective testing provides the
fl exibility to select only the subsets of the domain of testing based on project
priority such that the chances of failure in a particular environment is mini-
mized.

1.9 EFFECTIVE TESTING IS HARD

We have seen the limitations of exhaustive software testing which makes it
nearly impossible to achieve. Effective testing, though not impossible, is hard
to implement. But if there is careful planning, keeping in view all the factors
which can affect it, then it is implementable as well as effective. To achieve
that planning, we must understand the factors which make effective testing
diffi cult. At the same time, these factors must be resolved. These are described
as follows.

Defects are hard to fi nd The major factor in implementing effective software
testing is that many defects go undetected due to many reasons, e.g. certain test
conditions are never tested. Secondly, developers become so familiar with their
developed system that they overlook details and leave some parts untested. So a
proper planning for testing all the conditions should be done and independent
testing, other than that done by developers, should be encouraged.

When are we done with testing This factor actually searches for the defi nition
of effective software testing. Since exhaustive testing is not possible, we don’t
know what should be the criteria to stop the testing process. A software
engineer needs more rigorous criteria for determining when suffi cient testing
has been performed. Moreover, effective testing has the limiting factor of cost,
time, and personnel. In a nutshell, the criteria should be developed for enough

 Software Testing: Principles and Practices22

testing. For example, features can be prioritized which must be tested within
the boundary of cost, time, and personnel of the project.

1.10 SOFTWARE TESTING AS A PROCESS

Since software development is an engineering activity for a quality product,
it consists of many processes. As it was seen in testing goals, software quality
is the major driving force behind testing. Software testing has also emerged
as a complete process in software engineering (see Fig. 1.12). Therefore, our
major concern in this text is to show that testing is not just a phase in SDLC
normally performed after coding, rather software testing is a process which
runs parallel to SDLC. In Fig. 1.13, you can see that software testing starts as
soon as the requirements are specifi ed. Once the SRS document is prepared,
testing process starts. Some examples of test processes, such as test plan, test
design, etc. are given. All the phases of testing life cycle will be discussed in
detail in the next chapter.

Software development
process

Software
testing

Figure 1.12 Testing process emerged out of development process

Software development process
Requirements gathering
Requirement specification

Design
code
........

Software testing

Test plan
Test case design
Test execution

.......

Figure 1.13 Testing process runs parallel to software process

Software testing process must be planned, specifi ed, designed, implemented,
and quantifi ed. Testing must be governed by the quality attributes of the
software product. Thus, testing is a dual-purpose process, as it is used to detect
bugs as well as to establish confi dence in the quality of software.

An organization, to ensure better quality software, must adopt a testing
process and consider the following points:

 � Testing process should be organized such that there is enough time for
important and critical features of the software.

23Introduction to Software Testing l

 � Testing techniques should be adopted such that these techniques detect
maximum bugs.

 � Quality factors should be quantifi ed so that there is a clear understand-
ing in running the testing process. In other words, the process should
be driven by quantifi ed quality goals. In this way, the process can be
monitored and measured.

 � Testing procedures and steps must be defi ned and documented.

 � There must be scope for continuous process improvement.

All the issues related to testing process will be discussed in succeeding chapters.

1.11 SCHOOLS OF SOFTWARE TESTING

Software testing has also been classifi ed into some views according to some
practitioners. They call these views or ideas as schools of testing. The idea of
schools of testing was given by Bret Pettichord [82]. He has proposed the fol-
lowing schools:

Analytical School of Testing
In this school of testing, software is considered as a logical artifact. There-
fore, software testing techniques must have a logico-mathematical form. This
school requires that there must be precise and detailed specifi cations for test-
ing the software. Moreover, it provides an objective measure of testing. After
this, testers are able to verify whether the software conforms to its specifi ca-
tions. Structural testing is one example for this school of testing. Thus, the
emphasis is on testing techniques which should be adopted.

This school defi nes software testing as a branch of computer science and mathematics.

Standard School of Testing
The core beliefs of this school of testing are:

 1. Testing must be managed (for example, through traceability matrix. It
will be discussed in detail in succeeding chapters). It means the testing
process should be predictable, repeatable, and planned.

 2. Testing must be cost-effective.

 3. Low-skilled workers require direction.

 4. Testing validates the product.

 5. Testing measures development progress.

 Software Testing: Principles and Practices24

Thus, the emphasis is on measurement of testing activities to track the
development progress.

This school defi nes software testing as a managed process.

The implications of this school are:

 1. There must be clear boundaries between testing and other activities.

 2. Plans should not be changed as it complicates progress tracking.

 3. Software testing is a complete process.

 4. There must be some test standards, best practices, and certifi cation.

Quality School of Testing
The core beliefs of this school of testing are:

 1. Software quality requires discipline.

 2. Testing determines whether development processes are being followed.

 3. Testers may need to police developers to follow the rules.

 4. Testers have to protect the users from bad software.

Thus, the emphasis is to follow a good process.

 This school defi nes software testing as a branch of software quality assurance.

The implications of this school are:

 1. It prefers the term ‘quality assurance’ over ‘testing.’

 2. Testing is a stepping stone to ‘process improvement.’

Context-driven School of Testing
This school is based on the concept that testing should be performed accord-
ing to the context of the environment and project. Testing solutions cannot
be the same for every context. For example, if there is a high-cost real-time
defense project, then its testing plans must be different as compared to any
daily-life low-cost project. Test plan issues will be different for both projects.
Therefore, testing activities should be planned, designed, and executed keep-
ing in view the context of environment in which testing is to be performed.
The emphasis is to select a testing type that is valuable. Thus, context-driven
testing can be defi ned as the testing driven by environment, type of project,
and the intended use of software.

The implications of this school are:

 1. Expect changes. Adapt testing plans based on test results.

 2. Effectiveness of test strategies can only be determined with fi eld research.

25Introduction to Software Testing l

 3. Testing research requires empirical and psychological study.

 4. Focus on skill over practice.

Agile School of Testing
This type of school is based on testing the software which is being developed
by iterative method of development and delivery. In this type of process model,
the software is delivered in a short span of time; and based on the feedback,
more features and capabilities are added. The focus is on satisfying the customer
by delivering a working software quickly with minimum features and then
improvising on it based on the feedback. The customer is closely related to the
design and development of the software. Since the delivery timelines are short
and new versions are built by modifying the previous one, chances of introducing
bugs are high during the changes done to one version. Thus, regression testing
becomes important for this software. Moreover, test automation also assumes
importance to ensure the coverage of testing in a short span of time.

It can be seen that agile software development faces various challenges.
This school emphasizes on all the issues related to agile testing.

1.12 SOFTWARE FAILURE CASE STUDIES

At the end of this chapter, let us discuss a few case studies that highlight the
failures of some expensive and critical software projects. These case studies
show the importance of software testing. Many big projects have failed in the
past due to lack of proper software testing. In some instances, the product
was replaced without question. The concerned parties had to bear huge losses
in every case. It goes on to establish the fact that the project cost increases
manifold if a product is launched without proper tests being performed on it.
These case studies emphasize the importance of planning the tests, designing,
and executing the test cases in a highly prioritized way, which is the central
theme of this book.

Air Traffi c Control System Failure (September 2004)
In September 2004, air traffi c controllers in the Los Angeles area lost voice
contact with 800 planes allowing 10 to fl y too close together, after a radio
system shut down. The planes were supposed to be separated by fi ve nautical
miles laterally, or 2,000 feet in altitude. But the system shut down while 800
planes were in the air, and forced delays for 400 fl ights and the cancellations
of 600 more. The system had voice switching and control system, which gives
controllers a touch-screen to connect with planes in fl ight and with controllers
across the room or in distant cities.

 Software Testing: Principles and Practices26

The reason for failure was partly due to a ‘design anomaly’ in the way
Microsoft Windows servers were integrated into the system. The servers were
timed to shut down after 49.7 days of use in order to prevent a data overload.
To avoid this automatic shutdown, technicians are required to restart the sys-
tem manually every 30 days. An improperly trained employee failed to reset
the system, leading it to shut down without warning.

Welfare Management System Failure (July 2004)
It was a new government system in Canada costing several hundred million
dollars. It failed due to the inability to handle a simple benefi ts rate increase
after being put into live operation. The system was not given adequate time
for system and acceptance testing and never tested for its ability to handle a
rate increase.

Northeast Blackout (August 2003)
It was the worst power system failure in North American history. The failure
involved loss of electrical power to 50 million customers, forced shutdown of
100 power plants and economic losses estimated at $6 billion. The bug was
reportedly in one utility company’s vendor-supplied power monitoring and
management system. The failures occurred when multiple systems trying to
access the same information at once got the equivalent of busy signals. The
software should have given one system precedent. The error was found and
corrected after examining millions of lines of code.

Tax System Failure (March 2002)
This system was Britain’s national tax system which failed in 2002 and resulted
in more than 100,000 erroneous tax overcharges. It was suggested in the error
report that the integration testing of multiple parts could not be done.

Mars Polar Lander Failure (December 1999)
NASA’s Mars Polar Lander was to explore a unique region of the red planet;
the main focus was on climate and water. The spacecraft was outfi tted with a
robot arm which was capable of digging into Mars in search for near-surface
ice. It was supposed to gently set itself down near the border of Mars’ southern
polar cap. But it couldn’t be successful to touch the surface of Mars. The com-
munication was lost when it was 1800 meters away from the surface of Mars.

When the Lander’s legs started opening for landing on Martian surface,
there were vibrations which were identifi ed by the software. This resulted in
the vehicle’s descent engines being cut off while it was still 40 meters above
the surface, rather than on touchdown as planned. The software design failed
to take into account that a touchdown signal could be detected before the

27Introduction to Software Testing l

Lander actually touched down. The error was in design. It should have been
confi gured to disregard touchdown signals during the deployment of the
Lander’s legs.

Mars Climate Orbiter Failure (September 1999)
Mars Climate Orbiter was one of a series of missions in a long-term program
of Mars exploration managed by the Jet Propulsion Laboratory for NASA’s
Offi ce of Space Science, Washington, DC. Mars Climate Orbiter was to serve
as a communications relay for the Mars Polar Lander mission. But it disap-
peared as it began to orbit Mars. Its cost was about $125 million. The failure
was due to an error in transfer of information between a team in Colorado and
a team in California. This information was critical to the maneuvers required
to place the spacecraft in the proper Mars orbit. One team used English units
(e.g. inches, feet, and pounds), while the other team used metric units for a
key spacecraft operation.

Stock Trading Service Failure (February 1999)
This was an online US stock trading service which failed during trading hours
several times over a period of days in February 1999. The problem found was
due to bugs in a software upgrade intended to speed online trade confi rma-
tions.

Intel Pentium Bug (April 1997)
Intel Pentium was also observed with a bug that is known as Dan-0411 or
Flag Erratum. The bug is related to the operation where conversion of fl oat-
ing point numbers is done into integer numbers. All fl oating-point numbers
are stored inside the microprocessor in an 80-bit format. Integer numbers are
stored externally in two different sizes, i.e. 16 bits for short integers and 32 bits
for long integers. It is often desirable to store the fl oating-point numbers as in-
teger numbers. When the converted numbers won’t fi t the integer size range,
a specifi c error fl ag is supposed to be set in a fl oating point status register. But
the Pentium II and Pentium Pro fail to set this error fl ag in many cases.

The Explosion of Ariane 5 (June 1996)
Ariane 5 was a rocket launched by the European Space Agency. On 4 June
1996, it exploded at an altitude of about 3700 meters just 40 seconds after its
lift-off from Kourou, French Guiana. The launcher turned off its fl ight path,
broke up and exploded. The rocket took a decade of development time with
a cost of $7 billion. The destroyed rocket and its cargo were valued at $500
million. The failure of Ariane was caused due to the complete loss of guidance
and altitude information, 37 seconds after the start of main engine ignition
sequence (30 seconds after lift-off).

 Software Testing: Principles and Practices28

A board of inquiry investigated the causes of the explosion and in two
weeks issued a report. It was found that the cause of the failure was a soft-
ware error in the inertial reference system (SRI). The internal SRI software
exception was caused during the execution of a data conversion from 64-bit
fl oating point to 16-bit signed integer value. A 64-bit fl oating point number
relating to the horizontal velocity of the rocket with respect to the platform
was converted to a 16-bit signed integer. The number was larger than 32,767,
the largest integer stored in a 16-bit signed integer; and thus the conversion
failed. The error was due to specifi cation and design errors in the software of
the inertial reference system.

SUMMARY

This chapter emphasizes that software testing has emerged as a separate discipline. Software
testing is now an established process. It is driven largely by the quality goals of the software.
Thus, testing is the critical element of software quality. This chapter shows that testing cannot
be performed with an optimistic view that the software does not contain errors. Rather, testing
should be performed keeping in mind that the software always contains errors.

A misconception has prevailed through the evolution of software testing that complete test-
ing is possible, but it is not true. Here, it has been demonstrated that complete testing is not
possible. Thus, the term ‘effective software testing’ is becoming more popular as compared to
‘exhaustive’ or ‘complete testing’. The chapter gives an overview of software testing discipline
along with defi nitions of testing, model for testing, and different schools of testing. To realize the
importance of effective software testing as a separate discipline, some case studies showing the
software failures in systems have also been discussed.

Let us quickly review the important concepts described in this chapter.

 � Software testing has evolved through many phases, namely (i) debugging-oriented
phase, (ii) demonstration-oriented phase, (iii) destruction-oriented phase, (iv) evaluation-
oriented phase, (v) prevention-oriented phase, and (vi) process-oriented phase.

 � There is another classifi cation for evolution of software testing, namely Software testing
1.0, Software testing 2.0, and Software testing 3.0.

 � Software testing goals can be partitioned into following categories:

 1. Immediate goals

 ∑ Bug discovery

 ∑ Bug prevention

 2. Long-term goals

 ∑ Reliability

 ∑ Quality

 ∑ Customer satisfaction

 ∑ Risk management

29Introduction to Software Testing l

 3. Post-implementation goals

 ∑ Reduced maintenance cost

 ∑ Improved testing process

 � Testing should be performed with a mindset of fi nding bugs. This suspicious strategy
(destructive approach) helps in fi nding more and more bugs.

 � Software testing is a process that detects important bugs with the objective of having
better quality software.

 � Exhaustive testing is not possible due to the following reasons:

 ∑ It is not possible to test every possible input, as the input domain is too large.

 ∑ There are too many possible paths through the program to test.

 ∑ It is diffi cult to locate every design error.

 � Effective software testing, instead of complete or exhaustive testing, is adopted such that
critical test cases are covered fi rst.

 � There are different views on how to perform testing which have been categorized as
schools of software testing, namely (i) analytical school, (ii) standard school, (iii) quality
school, (iv) context school, and (v) agile school.

 � Software testing is a complete process like software development.

EXERCISES

MULTIPLE CHOICE QUESTIONS
 1. Bug discovery is a _______ goal of software testing.
 (a) Long-term
 (b) Short-term
 (c) Post-implementation
 (d) All

 2. Customer satisfaction and risk management are _______ goals of software testing.
 (a) Long-term
 (b) Short-term
 (c) Post-implementation
 (d) All

 3. Reduced maintenance is a _______ goal of software testing.
 (a) Long-term
 (b) Short-term
 (c) Post-implementation
 (d) All

 Software Testing: Principles and Practices30

 4. Software testing produces ______.
 (a) Reliability
 (b) Quality
 (c) Customer Satisfaction
 (d) All

 5. Testing is the process of ______ errors.
 (a) Hiding
 (b) Finding
 (c) Removing
 (d) None

 6. Complete testing is ______.
 (a) Possible
 (b) Impossible
 (c) None

 7. The domain of possible inputs to the software is too ______ to test.
 (a) Large
 (b) Short
 (c) none

 8. The set of invalid inputs is too ______ to test.
 (a) Large
 (b) Short
 (c) none

 9. Race conditions are among the ______ tested.
 (a) Most
 (b) Least
 (c) None

 10. Every design error ______ be found.
 (a) Can
 (b) Can defi nitely
 (c) Cannot
 (d) None

REVIEW QUESTIONS

 1. How does testing help in producing quality software?

 2. ‘Testing is the process of executing a program with the intent of fi nding errors.’ Comment
on this statement.

 3. Differentiate between effective and exhaustive software testing.

31Introduction to Software Testing l

 4. Find out some myths related to software testing, other than those described in this chap-
ter.

 5. ‘Every design error cannot be found.’ Discuss this problem in reference to some proj-
ect.

 6. ‘The domain of possible inputs to the software is too large to test.’ Demonstrate using
some example programs.

 7. ‘There are too many possible paths through the program to test.’ Demonstrate using
some example programs.

 8. What are the factors for determining the limit of testing?

 9. Explore some more software failure case studies other than those discussed in this
chapter.

 Software Testing: Principles and Practices32

Since software testing or rather effective software
testing is an emerging fi eld, many related terms are
either undefi ned or yet to be known. We tend to use
the terms ‘error’, ‘bug’, ‘defect’, ‘fault’, ‘failure’, etc.
interchangeably. But they don’t mean the same.

Bugs in general, are more important during soft-
ware testing. All the bugs do not have the same
level of severity. Some bugs are less important, as
they are not going to affect the product badly. On
the other hand, bugs with high severity level will
affect the product such that the product may not
be released. Therefore, bugs need to be classifi ed
according to their severity.

A bug has a complete cycle from its initiation to
death. Moreover, these bugs also affect a project
cost at various levels of development. If there is a
bug at the specifi cation level and it is caught, then it
is more economical to debug it as compared to the

case if it is found in the implementation stage. If the bug propagates further
into later stages of software development life cycle (SDLC), it would become
more costly to debug.

As we have discussed in the previous chapter, software testing today is
recognized as a complete process, and we need to identify various stages of
software testing life cycle. These stages, like SDLC stages, defi ne various tasks
to be done during the testing of software in a hierarchy. Besides this, what
should be our complete methodology to test the software? How should we go
for testing a complete project? What will be the techniques used during test-
ing? Should we use testing tools during testing? This chapter defi nes all the
terms related to software testing, some concepts related to these terms, and
then discusses the development of a testing methodology.

Chapter

2
Software Testing Terminology

and Methodology

OBJECTIVES
After reading this chapter, you should be able
to understand:
 � Difference between error, fault, and

failure
 � Life cycle of a bug
 � How a bug affects the economics of

software testing
 � How the bugs are classifi ed
 � Testing principles
 � Software Testing Life Cycle (STLC) and

its models
 � Difference between verifi cation and

validation
 � Development of software testing

methodology

33Software Testing Terminology and Methodology l

2.1 SOFTWARE TESTING TERMINOLOGY

2.1.1 DEFINITIONS

As mentioned earlier, terms like error, bug, failure, defect, etc. are not synon-
ymous and hence these should not be used interchangeably. All these terms
are defi ned below.

 Failure When the software is tested, failure is the fi rst term being used. It
means the inability of a system or component to perform a required function
according to its specifi cation. In other words, when results or behaviour of the
system under test are different as compared to specifi ed expectations, then
failure exists.

 Fault/Defect/Bug Failure is the term which is used to describe the problems
in a system on the output side, as shown in Fig. 2.1. Fault is a condition that in
actual causes a system to produce failure. Fault is synonymous with the words
defect or bug. Therefore, fault is the reason embedded in any phase of SDLC
and results in failures. It can be said that failures are manifestation of bugs.
One failure may be due to one or more bugs and one bug may cause one or
more failures. Thus, when a bug is executed, then failures are generated. But
this is not always true. Some bugs are hidden in the sense that these are not
executed, as they do not get the required conditions in the system. So, hidden
bugs may not always produce failures. They may execute only in certain rare
conditions.

Bug

.
.

. Failure
Inputs

Software system

Figure 2.1 Testing terminology

 Error Whenever a development team member makes a mistake in any phase
of SDLC, errors are produced. It might be a typographical error, a misleading
of a specifi cation, a misunderstanding of what a subroutine does, and so on.
Error is a very general term used for human mistakes. Thus, an error causes a
bug and the bug in turn causes failures, as shown in Fig. 2.2.

FailuresError Bug

Figure 2.2 Flow of faults

 Software Testing: Principles and Practices34

Example 2.1

Consider the following module in a software:

Module A()
{
 ….

 while(a > n+1);
 {
 …
 print(“The value of x is”, x);
 }

 ….

}

Suppose the module shown above is expected to print the value of x which
is critical for the use of software. But when this module will be executed, the
value of x will not be printed. It is a failure of the program. When we try to
look for the reason of the failure, we fi nd that in Module A(), the while loop is
not being executed. A condition is preventing the body of while loop to be
executed. This is known as bug/defect/fault. On close observation, we fi nd a
semicolon being misplaced after the while loop which is not its correct syntax
and it is not allowing the loop to execute. This mistake is known as an error.

 Test case Test case is a well-documented procedure designed to test the
functionality of a feature in the system. A test case has an identity and is
associated with a program behaviour. The primary purpose of designing a
test case is to fi nd errors in the system. For designing the test case, it needs to
provide a set of inputs and its corresponding expected outputs. The sample for
a test case is shown in Fig. 2.3.

Test Case ID
Purpose
Preconditions
Inputs
Expected Outputs

Figure 2.3 Test case template

Test case ID is the identifi cation number given to each test case.

Purpose defi nes why the case is being designed.

Preconditions for running the inputs in a system can be defi ned, if required,
in a test case.

35Software Testing Terminology and Methodology l

Inputs should not be hypothetical. Actual inputs must be provided, instead of
general inputs. For example, if two integer numbers have to be provided as
input, then specifi cally mention them as 23 and 56.

Expected outputs are the outputs which should be produced when there is no
failure.

Test cases are designed based on the chosen testing techniques. They provide
inputs when the system is executed. After execution, observed results are
compared with expected outputs mentioned in the test case.

 Testware The documents created during testing activities are known as
testware. Taking the analogy from software and hardware as a product, testware
are the documents that a test engineer produces. It may include test plans, test
specifi cations, test case design, test reports, etc. Testware documents should
also be managed and updated like a software product.

 Incident When a failure occurs, it may or may not be readily apparent to the
user. An incident is the symptom(s) associated with a failure that alerts the user
about the occurrence of a failure.

 Test oracle An oracle is the means to judge the success or failure of a test, i.e.
to judge the correctness of the system for some test. The simplest oracle is
comparing actual results with expected results by hand. This can be very time-
consuming, so automated oracles are sought.

2.1.2 LIFE CYCLE OF A BUG
It should be clear that any member of the development team can make an
error in any phase of SDLC. If an error has been produced in the requirement
specifi cation phase and not detected in the same phase, then it results in a
bug in the next phase, i.e. the design phase. In the design phase, a bug has
come from the previous stage, but an error can also be produced in this stage.
Again, if the error in this phase is not detected and it passes on to the next
stage, i.e. coding phase, then it becomes a bug. In this way, errors and bugs
appear and travel through various stages of SDLC, as shown in Fig. 2.4. It
means, one stage may contain errors as well as bugs and the bugs which come
from the previous stage are harder to detect and debug.

In the testing phase, we analyse the incidents when the failure occurs. On
the basis of symptoms derived from the incidents, a bug can be classifi ed into
certain categories. After this, the bug can be isolated in the corresponding
phase of SDLC and resolved by fi nding its exact location.

The whole life cycle of a bug can be classifi ed into two phases: (i) bugs-in
phase and (ii) bugs-out phase.

 Software Testing: Principles and Practices36

CodingDesign
Requirement
Gathering &
Specification

Error

Bug

Error

Bug

Error

Bug

Resolve the
bug

Isolate the
bug Incident

Classify the
bug Failure

Testing

Bugs-out phase

Bugs-in phase

Figure 2.4 Life cycle of a bug

Bugs-In Phase
This phase is where the errors and bugs are introduced in the software.
Whenever we commit a mistake, it creates errors on a specifi c location of the
software and consequently, when this error goes unnoticed, it causes some
conditions to fail, leading to a bug in the software. This bug is carried out to
the subsequent phases of SDLC, if not detected. Thus, a phase may have its
own errors as well as bugs received from the previous phase. If you are not
performing verifi cation (discussed later in this chapter) on earlier phases, then
there is no chance of detecting these bugs.

Bugs-Out Phase
If failures occur while testing a software product, we come to the conclu-
sion that it is affected by bugs. However, there are situations when bugs are
present, even though we don’t observe any failures. That is another issue of
discussion. In this phase, when we observe failures, the following activities are
performed to get rid of the bugs.

Bug classifi cation In this part, we observe the failure and classify the bugs
according to its nature. A bug can be critical or catastrophic in nature or it may
have no adverse effect on the output behaviour of the software. In this way, we
classify all the failures. This is necessary, because there may be many bugs to be
resolved. But a tester may not have suffi cient time. Thus, categorization of bugs
may help by handling high criticality bugs fi rst and considering other trivial
bugs on the list later, if time permits. We have taken various considerations to
classify different bugs (discussed later in this chapter).

37Software Testing Terminology and Methodology l

Bug isolation Bug isolation is the activity by which we locate the module in
which the bug appears. Incidents observed in failures help in this activity. We
observe the symptoms and back-trace the design of the software and reach
the module/fi les and the condition inside it which has caused the bug. This is
known as bug isolation.

Bug resolution Once we have isolated the bug, we back-trace the design to
pinpoint the location of the error. In this way, a bug is resolved when we have
found the exact location of its occurrence.

2.1.3 STATES OF A BUG

Based on the above discussion, a bug attains the following different states in
its life cycle (see Fig. 2.5).

New The state is new when the bug is reported fi rst time by a tester.

Open The new state does not verify that the bug is genuine. When the test
leader (test organization hierarchy will be discussed in Chapter 9) approves
that the bug is genuine, its state becomes open.

Assign An open bug comes to the development team where the development
team verifi es its validity. If the bug is valid, a developer is assigned the job to
fi x it and the state of the bug now is ‘ASSIGN’.

Deferred The developer who has been assigned to fi x the bug will check its
validity and priority. If the priority of the reported bug is not high or there is
not suffi cient time to test it or the bug does not have any adverse effect on the
software, then the bug is changed to deferred state which implies the bug is
expected to be fi xed in next releases.

Rejected It may be possible that the developer rejects the bug after checking
its validity, as it is not a genuine one.

Test After fi xing the valid bug, the developer sends it back to the testing team
for next round of checking. Before releasing to the testing team, the developer
changes the bug’s state to ‘TEST’. It specifi es that the bug has been fi xed by the
development team but not tested and is released to the testing team.

Verifi ed/fi xed The tester tests the software and verifi es whether the reported
bug is fi xed or not. After verifying, the developer approves that the bug is fi xed
and changes the status to ‘VERIFIED’.

Reopened If the bug is still there even after fi xing it, the tester changes its status
to ‘REOPENED’. The bug traverses the life cycle once again. In another case,
a bug which has been closed earlier may be reopened if it appears again. In
this case, the status will be REOPENED instead of OPEN.

 Software Testing: Principles and Practices38

Closed Once the tester and other team members are confi rmed that the bug is
completely eliminated, they change its status to ‘CLOSED’.

Reopened

Closed

Verified

Assign

Deferred

Rejected

New

Open

Test

Figure 2.5 States of a bug

The states of a bug, as shown in Fig. 2.5, are in general and the terminology
or sequence of hierarchy may differ in organizations.

2.1.4 WHY DO BUGS OCCUR?
This is a very basic question for testers. The following points can answer this
best:

To Err is Human
As discussed earlier, errors are produced when developers commit mistakes.
Sample this. The phone rang while coding and the developer got distracted,
he pressed a wrong key and the results of that mistake produced a bug in the
system. But this is not the only reason for bugs. Consider the second point.

Bugs in Earlier Stages go Undetected and Propagate
The phases of SDLC are connected to each other and the output of one phase
becomes the input to the next. Therefore, an undetected bug easily propagates
into subsequent phases. These propagated bugs, in later phases, are harder to
detect and if found, are costlier to debug. It is a proven fact that requirement
specifi cation and design phases contain the largest percentage of bugs.

39Software Testing Terminology and Methodology l

This point also establishes the fact that testing should be performed at each
level of SDLC. Errors are inevitable; however, we can prevent critical bugs
from propagating into later stages by checking minute details at each level of
SDLC.

How do bugs get into a software product? There may be various reasons:
unclear or constantly changing requirements, software complexity, program-
ming errors, timelines, errors in bug tracking, communication gap, docu-
mentation errors, deviation from standards, etc. Some examples are given
below:

 � Miscommunication in gathering requirements from the customer is a
big source of bugs.

 � If the requirements keep changing from time to time, it creates a lot of
confusion and pressure, both on the development as well as the testing
team. Often, a new feature added or an existing feature removed can be
linked to other modules or components in the software.

 � If the effect of changes in one module to another module is overlooked,
it causes bugs.

 � Rescheduling of resources, re-doing or discarding an already completed
work, and changes in hardware/software requirements can affect the
software. Assigning a new developer to the project midway can cause
bugs. If proper coding standards have not been followed, then the new
developer might not get all the relevant details of the project. Improper
code documentation and ineffective knowledge transfer can limit the
developer’s ability to produce error-free codes. Discarding a portion of
the existing code might just leave its trail behind in other parts of the
software. Overlooking or not eliminating such code can cause bugs.
Serious bugs can especially occur with larger projects, as it gets tougher
to identify the problem area.

 � Complexity in keeping a track of all the bugs can in turn cause more
bugs. This gets harder when a bug has a very complex life cycle, i.e.
when the number of times it has been closed, re-opened, not accepted,
ignored, etc. goes on increasing.

2.1.5 BUGS AFFECT ECONOMICS OF SOFTWARE TESTING

Studies have demonstrated that testing prior to coding is 50% effective in
detecting errors and after coding, it is 80% effective. Moreover, it is at least
10 times as costly to correct an error after coding as before, and 100 times as

 Software Testing: Principles and Practices40

costly to correct a production error (post-release error). This is how the bugs
affect the economics of testing.

There is no guarantee that all the errors will be recognized after testing and
that the testing phase will remove all of them. This is not possible practically.
If the bugs embedded in earlier stages go undetected, it is more diffi cult to de-
tect them in later stages. So the cost to remove bugs from a system increases,
as the cost of a bug is equal to Detection Cost + Correction Cost.

A bug found and fi xed during early stages when the specifi cation is being
written, cost next to nothing. The same bug, if not found until the software
is coded and tested, might cost ten times the cost in early stages. Moreover,
after the release of the product, if a customer fi nds the same bug, the cost will
be 100 times more. Figure 2.6 outlines the relative cost to correct a defect
depending on the SDLC in which it is discovered. Therefore, cost increase is
logarithmic.

0
20

40

60

80
100

120

Spe
cif

ica
tio

n

HLL LL
D

Cod
e

Unit
tes

t
Int

eg
rat

ion
tes

t
Sys

tem
tes

t
Pos

t d
eli

ev
ery

SDLC phases

C
os

to
f D

eb
ug

gi
ng

Figure 2.6 Cost of debugging increases if bug propagates

2.1.6 BUG CLASSIFICATION BASED ON CRITICALITY

Bugs can be classifi ed based on the impact they have on the software under
test. This classifi cation can be used for the prioritization of bugs, as all bugs
cannot be resolved in one release. Since all bugs are not of the same critical-
ity, prioritization will put high criticality bugs on top of the list. We have di-
vided bugs based on their criticality in the following broad categories:

Critical Bugs
This type of bugs has the worst effect such that it stops or hangs the normal
functioning of the software. The person using the software becomes helpless
when this type of bug appears. For example, in a sorting program, after pro-
viding the input numbers, the system hangs and needs to be reset.

41Software Testing Terminology and Methodology l

Major Bug
This type of bug does not stop the functioning of the software but it causes a
functionality to fail to meet its requirements as expected. For example, in a
sorting program, the output is being displayed but not the correct one.

Medium Bugs
Medium bugs are less critical in nature as compared to critical and major
bugs. If the outputs are not according to the standards or conventions, e.g.
redundant or truncated output, then the bug is a medium bug.

Minor Bugs
These types of bugs do not affect the functionality of the software. These are
just mild bugs which occur without any effect on the expected behaviour or
continuity of the software. For example, typographical error or misaligned
printout.

2.1.7 BUG CLASSIFICATION BASED ON SDLC
Since bugs can appear in any phase of SDLC, they can be classifi ed based on
SDLC phases which are described below [9, 48].

Requirements and Specifi cations Bugs
The fi rst type of bug in SDLC is in the requirement gathering and specifi cation
phase. It has been observed that most of the bugs appear in this phase only. If
these bugs go undetected, they propagate into subsequent phases. Requirement
gathering and specifi cation is a diffi cult phase in the sense that requirements
gathered from the customer are to be converted into a requirement specifi cation
which will become the base for design. There may be a possibility that
requirements specifi ed are not exactly what the customers want. Moreover,
specifi ed requirements may be incomplete, ambiguous, or inconsistent.
Specifi cation problems lead to wrong missing, or superfl uous features.

Design Bugs
Design bugs may be the bugs from the previous phase and in addition those
errors which are introduced in the present phase. The following design errors
may be there.

Control fl ow bugs If we look at the control fl ow of a program (through
control fl ow graph—discussed in Chapter 5), then there may be many errors.
For example, some paths through the fl ow may be missing; there may be
unreachable paths, etc.

 Software Testing: Principles and Practices42

Logic bugs Any type of logical mistakes made in the design is a logical bug.
For example, improper layout of cases, missing cases, improper combination
of cases, misunderstanding of the semantics of the order in which a Boolean
expression is evaluated.

Processing bugs Any type of computation mistakes result in processing
bugs. Examples include arithmetic error, incorrect conversion from one
data representation to another, ignoring overfl ow, improper use of logical
operators, etc.

Data fl ow bugs Control fl ow cannot identify data errors. For this, we use data
fl ow (through data fl ow graph—discussed in Chapter 5). There may be data
fl ow anomaly errors like un-initialized data, initialized in wrong format, data
initialized but not used, data used but not initialized, redefi ned without any
intermediate use, etc.

Error handling bugs There may be errors about error handling in the software.
There are situations in the system when exception handling mechanisms must
be adopted. If the system fails, then there must be an error message or the
system should handle the error in an appropriate way. If you forget to do all
this, then error handling bugs appear.

Race condition bugs Race conditions (discussed in Chapter 1) also lead to
bugs. Sometimes these bugs are irreproducible.

Boundary-related bugs Most of the time, the designers forget to take into
consideration what will happen if any aspect of a program goes beyond its
minimum and maximum values. For example, there is one integer whose
range is between 1 to 100. What will happen if a user enters a value as 1 or
101? When the software fails at the boundary values, then these are known as
boundary-related bugs. There may be boundaries in loop, time, memory, etc.

User interface bugs There may be some design bugs that are related to users.
If the user does not feel good while using the software, then there are user
interface bugs. Examples include inappropriate functionality of some features;
not doing what the user expects; missing, misleading, or confusing information;
wrong content in the help text; inappropriate error messages, etc.

Coding Bugs
There may be a long list of coding bugs. If you are a programmer, then you
are aware of some common mistakes made. For example, undeclared data,
undeclared routines, dangling code, typographical errors, documentation
bugs, i.e. erroneous comments lead to bugs in maintenance.

43Software Testing Terminology and Methodology l

Interface and Integration Bugs
External interface bugs include invalid timing or sequence assumptions related
to external signals, misunderstanding external input and output formats, and
user interface bugs. Internal interface bugs include input and output format
bugs, inadequate protection against corrupted data, wrong subroutine call
sequence, call parameter bugs, and misunderstood entry or exit parameter
values. Integration bugs result from inconsistencies or incompatibilities
between modules discussed in the form of interface bugs. There may be bugs
in data transfer and data sharing between the modules.

System Bugs
There may be bugs while testing the system as a whole based on various
parameters like performance, stress, compatibility, usability, etc. For example,
in a real-time system, stress testing is very important, as the system must work
under maximum load. If the system is put under maximum load at every
factor like maximum number of users, maximum memory limit, etc. and if it
fails, then there are system bugs.

Testing Bugs
One can question the presence of bugs in the testing phase because this phase
is dedicated to fi nding bugs. But the fact is that bugs are present in testing
phase also. After all, testing is also performed by testers – humans. Some
testing mistakes are: failure to notice/report a problem, failure to use the most
promising test case, failure to make it clear how to reproduce the problem,
failure to check for unresolved problems just before the release, failure to
verify fi xes, failure to provide summary report.

2.1.8 TESTING PRINCIPLES

Now it is time to learn the testing principles that are largely based on the dis-
cussion covered in the fi rst chapter and the present one. These principles can
be seen as guidelines for a tester.

Effective testing, not exhaustive testing All possible combinations of tests
become so large that it is impractical to test them all. So considering the domain
of testing as infi nite, exhaustive testing is not possible. Therefore, the tester’s
approach should be based on effective testing to adequately cover program
logic and all conditions in the component level design.

Testing is not a single phase performed in SDLC Testing is not just an activity
performed after the coding in SDLC. As discussed, the testing phase after
coding is just a part of the whole testing process. Testing process starts as soon

 Software Testing: Principles and Practices44

as the specifi cations for the system are prepared and it continues till the release
of the product.

Destructive approach for constructive testing Testers must have the psychol-
ogy that bugs are always present in the program and they must think about
the technique of how to uncover them (this is their art of creativity). This
psychology of being always suspicious about bugs is a negative/destructive
approach. However, it has been proved that such a destructive approach helps
in performing constructive and effective testing. Thus, the criterion to have a
successful testing is to discover more and more bugs, and not to show that the
system does not contain any bugs.

Early testing is the best policy When is the right time to start the testing process?
As discussed earlier and we will explore later that testing process is not a phase
after coding, rather it starts as soon as requirement specifi cations are prepared.
Moreover, the cost of bugs can be reduced tenfold, as bugs are harder to detect
in later stages if they go undetected. Thus, the policy in testing is to start as
early as possible.

Probability of existence of an error in a section of a program is proportional
to the number of errors already found in that section Suppose the history of a
software is that you found 50 errors in Module X, 12 in Module Y, and 3 in
Module Z. The software was debugged but after a span of time, we fi nd some
errors again and the software is given to a tester for testing. Where should the
tester concentrate to fi nd the bugs? This principle says that the tester should
start with Module X which has the history of maximum errors. Another way
of stating it is that errors seem to come in clusters. The principle provides us
the insight that if some sections are found error-prone in testing, then our next
testing effort should give priority to these error-prone sections.

Testing strategy should start at the smallest module level and expand towards
the whole program This principle supports the idea of incremental testing.
Testing must begin at the unit or module level, gradually progressing towards
integrated modules and fi nally the whole system. Testing cannot be performed
directly on the whole system. It must start with the individual modules and
slowly integrate the modules and test them. After this, the whole system should
be tested.

Testing should also be performed by an independent team When programmers
develop the software, they test it at their individual modules. However, these
programmers are not good testers of their own software. They are basically
constructors of the software, but testing needs a destructive approach.

45Software Testing Terminology and Methodology l

Programmers always think positively that their code does not contain bugs.
Moreover, they are biased towards the correct functioning of the specifi ed
requirements and not towards detecting bugs. Therefore, it is always
recommended to have the software tested by an independent testing team.
Testers associated with the same project can also help in this direction, but this
is not effective. For effective testing, the software may also be sent outside the
organization for testing.

Everything must be recorded in software testing As mentioned earlier, testing
is not an intuitive process; rather it is a planned process. It demands that every
detail be recorded and documented. We must have the record of every test
case run and the bugs reported. Even the inputs provided during testing and
the corresponding outputs are to be recorded. Executing the test cases in a
recorded and documented way can greatly help while observing the bugs.
Moreover, observations can be a lesson for other projects. So the experience
with the test cases in one project can be helpful in other projects.

Invalid inputs and unexpected behaviour have a high probability of fi nding
an error Whenever the software is tested, we test for valid inputs and for the
functionality that the software is supposed to do. But thinking in a negative
way, we must test the software with invalid inputs and the behaviour which is
not expected in general. This is also a part of effective testing.

Testers must participate in specifi cation and design reviews Testers’ role is
not only to get the software and documents and test them. If they are not
participating in other reviews like specifi cation and design, it may be possible
that either some specifi cations are not tested or some test cases are built for no
specifi cations.

Let us consider a program. Let S be the set of specifi ed behaviours of the
program, P be the implementation of the program, and T be the set of test
cases. Now consider the following cases (see Fig. 2.7):

 (i) There may be specifi ed behaviours that are not tested (regions 2 and 5).

 (ii) Test cases that correspond to unspecifi ed behaviours (regions 3 and 7).

 (iii) Program behaviours that are not tested (regions 2 and 6).

The good view of testing is to enlarge the area of region 1. Ideally, all three
sets S, P, and T must overlap each other such that all specifi cations are imple-
mented and all implemented specifi cations are tested. This is possible only
when the test team members participate in all discussions regarding specifi ca-
tions and design.

 Software Testing: Principles and Practices46

S P

5

4

1

3

7

T

6
2

Figure 2.7 Venn diagram for S, P, T

2.2 SOFTWARE TESTING LIFE CYCLE (STLC)
Since we have recognized software testing as a process, like SDLC, there
is need for a well-defi ned series of steps to ensure successful and effective
software testing. This systematic execution of each step will result in saving
time and effort. Moreover, the chances are that more number of bugs will be
uncovered.

The testing process divided into a well-defi ned sequence of steps is termed
as software testing life cycle (STLC). The major contribution of STLC is to in-
volve the testers at early stages of development. This has a signifi cant benefi t
in the project schedule and cost. The STLC also helps the management in
measuring specifi c milestones.

 STLC consists of the following phases (see Fig. 2.8):

Feedback

Test design

Test planning

Test execution

Post-Execution/
test review

Bug reports
and metrics

Test cases
and

procedures

Test strategy, size of test
cases, duration, cost, risk

responsibilities

 Figure 2.8 Software testing life cycle

47Software Testing Terminology and Methodology l

 Test Planning
The goal of test planning is to take into account the important issues of testing
strategy, viz. resources, schedules, responsibilities, risks, and priorities, as a
roadmap. Test planning issues are in tune with the overall project planning.
Broadly, following are the activities during test planning:

 � Defi ning the test strategy.

 � Estimate the number of test cases, their duration, and cost.

 � Plan the resources like the manpower to test, tools required, documents
required.

 � Identifying areas of risks.

 � Defi ning the test completion criteria.

 � Identifi cation of methodologies, techniques, and tools for various test
cases.

 � Identifying reporting procedures, bug classifi cation, databases for test-
ing, bug severity levels, and project metrics.

Based on the planning issues as discussed above, analysis is done for vari-
ous testing activities. The major output of test planning is the test plan docu-
ment. Test plans are developed for each level of testing. After analysing the
issues, the following activities are performed:

 � Develop a test case format.

 � Develop test case plans according to every phase of SDLC.

 � Identify test cases to be automated (if applicable).

 � Prioritize the test cases according to their importance and criticality.

 � Defi ne areas of stress and performance testing.

 � Plan the test cycles required for regression testing.

Test Design
One of the major activities in testing is the design of test cases. However, this
activity is not an intuitional process; rather it is a well-planned process.

The test design is an important phase after test planning. It includes the
following critical activities.

Determining the test objectives and their prioritization This activity decides the
broad categories of things to test. The test objectives refl ect the fundamental
elements that need to be tested to satisfy an objective. For this purpose, you
need to gather reference materials like software requirements specifi cation
and design documentation. Then on the basis of reference materials, a team

 Software Testing: Principles and Practices48

of experts compile a list of test objectives. This list should also be prioritized
depending upon the scope and risk.

Preparing list of items to be tested The objectives thus obtained are now
converted into lists of items that are to be tested under an objective.

Mapping items to test cases After making a list of items to be tested, there
is a need to identify the test cases. A matrix can be created for this purpose,
identifying which test case will be covered by which item. The existing test
cases can also be used for this mapping. Thus it permits reusing the test cases.
This matrix will help in:

 (a) Identifying the major test scenarios.

 (b) Identifying and reducing the redundant test cases.

 (c) Identifying the absence of a test case for a particular objective and as a
result, creating them.

Designing the test cases demands a prior analysis of the program at func-
tional or structural level. Thus, the tester who is designing the test cases must
understand the cause-and-effect connections within the system intricacies. But
look at the rule quoted by Tsuneo Yamaura—There is only one rule in designing
test cases: Cover all features, but do not make too many test cases.

Some attributes of a good test case are given below:

 (a) A good test case is one that has been designed keeping in view the
criticality and high-risk requirements in order to place a greater priority
upon, and provide added depth for testing the most important functions
[12].

 (b) A good test case should be designed such that there is a high probability
of fi nding an error.

 (c) Test cases should not overlap or be redundant. Each test case should
address a unique functionality, thereby not wasting time and resources.

 (c) Although it is sometimes possible to combine a series of tests into one
test case, a good test case should be designed with a modular approach
so that there is no complexity and it can be reused and recombined to
execute various functional paths. It also avoids masking of errors and
duplication of test-creation efforts [7, 12].

 (d) A successful test case is one that has the highest probability of detecting
an as-yet-undiscovered error [2].

Selection of test case design techniques While designing test cases, there are
two broad categories, namely black-box testing and white-box testing. Black-

49Software Testing Terminology and Methodology l

box test case design techniques generate test cases without knowing the
internal working of a system. These will be discussed later in this chapter. The
techniques to design test cases are selected such that there is more coverage
and the system detects more bugs.

Creating test cases and test data The next step is to create test cases based on
the testing objectives identifi ed. The test cases mention the objective under
which a test case is being designed, the inputs required, and the expected
outputs. While giving input specifi cations, test data must also be chosen and
specifi ed with care, as this may lead to incorrect execution of test cases.

Setting up the test environment and supporting tools The test created above
needs some environment settings and tools, if applicable. So details like
hardware confi gurations, testers, interfaces, operating systems, and manuals
must be specifi ed during this phase.

Creating test procedure specifi cation This is a description of how the test case
will be run. It is in the form of sequenced steps. This procedure is actually used
by the tester at the time of execution of test cases.

Thus, the hierarchy for test design phase includes: developing test objec-
tives, identifying test cases and creating their specifi cations, and then devel-
oping test case procedure specifi cations as shown in Fig. 2.9. All the details
specifi ed in the test design phase are documented in the test design specifi ca-
tion. This document provides the details of the input specifi cations, output
specifi cations, environmental needs, and other procedural requirements for
the test case.

Test
objectives

Test cases
and their

specification

Test case
procedure

specification

Test data

Figure 2.9 Test case design steps

Test Execution
In this phase, all test cases are executed including verifi cation and validation.
Verifi cation test cases are started at the end of each phase of SDLC. Valida-
tion test cases are started after the completion of a module. It is the deci-
sion of the test team to opt for automation or manual execution. Test results
are documented in the test incident reports, test logs, testing status, and test
summary reports, as shown in Fig. 2.10. These will be discussed in detail in
Chapter 9.

 Software Testing: Principles and Practices50

Test incident
report

Test summary
report

Test logTest
execution

Figure 2.10 Documents in test execution

Responsibilities at various levels for execution of the test cases are outlined
in Table 2.1.

Table 2.1 Testing level vs responsibility

Test Execution Level Person Responsible

Unit Developer of the module

Integration Testers and Developers

System Testers, Developers, End-users

Acceptance Testers, End-users

Post-Execution/Test Review
As we know, after successful test execution, bugs will be reported to the con-
cerned developers. This phase is to analyse bug-related issues and get feed-
back so that maximum number of bugs can be removed. This is the primary
goal of all test activities done earlier.

As soon as the developer gets the bug report, he performs the following
activities:

Understanding the bug The developer analyses the bug reported and builds
an understanding of its whereabouts.

Reproducing the bug Next, he confi rms the bug by reproducing the bug and
the failure that exists. This is necessary to cross-check failures. However, some
bugs are not reproducible which increases the problems of developers.

Analysing the nature and cause of the bug After examining the failures of
the bug, the developer starts debugging its symptoms and tracks back to the
actual location of the error in the design. The process of debugging has been
discussed in detail in Chapter 17.

After fi xing the bug, the developer reports to the testing team and the mod-
ifi ed portion of the software is tested once again.

51Software Testing Terminology and Methodology l

After this, the results from manual and automated testing can be collected.
The fi nal bug report and associated metrics are reviewed and analysed for
overall testing process. The following activities can be done:

 � Reliability analysis can be performed to establish whether the software
meets the predefi ned reliability goals or not. If so, the product can be
released and the decision on a release date can be taken. If not, then the
time and resources required to reach the reliability goals are outlined.

 � Coverage analysis can be used as an alternative criterion to stop testing.

 � Overall defect analysis can identify risk areas and help focus our efforts on
quality improvement.

2.3 SOFTWARE TESTING METHODOLOGY

Software testing methodology is the organization of software testing by means
of which the test strategy and test tactics are achieved, as shown in Fig. 2.11.
All the terms related to software testing methodology and a complete testing
strategy is discussed in this section.

Static

Black-box

Dynamic

White-box

Testing techniques Testing tools

Testing tactics

Verification Validation

Test
phase

Test
factor

Testing strategy

Unit

Integration

System

Figure 2.11 Testing methodology

 Software Testing: Principles and Practices52

2.3.1 SOFTWARE TESTING STRATEGY

Testing strategy is the planning of the whole testing process into a well-planned
series of steps. In other words, strategy provides a roadmap that includes very
specifi c activities that must be performed by the test team in order to achieve
a specifi c goal.

In Chapter 1, risk reduction was described as one of the goals of testing. In
fact, when a test strategy is being developed, risk reduction is addressed fi rst.
The components of a testing strategy are discussed below:

Test Factors
Test factors are risk factors or issues related to the system under development.
Risk factors need to be selected and ranked according to a specifi c system
under development. The testing process should reduce these test factors to a
prescribed level.

Test Phase
This is another component on which the testing strategy is based. It refers to
the phases of SDLC where testing will be performed. Testing strategy may
be different for different models of SDLC, e.g. strategies will be different for
waterfall and spiral models.

2.3.2 TEST STRATEGY MATRIX

A test strategy matrix identifi es the concerns that will become the focus of test
planning and execution. In this way, this matrix becomes an input to develop
the testing strategy. The matrix is prepared using test factors and test phase
(Table 2.2). The steps to prepare this matrix are discussed below.

Select and rank test factors Based on the test factors list, the most appropriate
factors according to specifi c systems are selected and ranked from the most
signifi cant to the least. These are the rows of the matrix.

Identify system development phases Different phases according to the adopted
development model are listed as columns of the matrix. These are called test
phases.

Identify risks associated with the system under development In the horizontal
column under each of the test phases, the test concern with the strategy used
to address this concern is entered. The purpose is to identify the concerns
that need to be addressed under a test phase. The risks may include any
events, actions, or circumstances that may prevent the test program from
being implemented or executed according to a schedule, such as late budget

53Software Testing Terminology and Methodology l

approvals, delayed arrival of test equipment, or late availability of the software
application. As risks are identifi ed, they must be assessed for impact and then
mitigated with strategies for overcoming them, because risks may be realized
despite all precautions having been taken. The test team must carefully
examine risks in order to derive effective test and mitigation strategies for a
particular application. Concerns should be expressed as questions so that the
test strategy becomes a high-level focus for testers when they reach the phase
where it’s most appropriate to address a concern.

Table 2.2 Test strategy matrix

Test Factors Test Phase
Requirements Design Code Unit test Integration test System test

Example 2.1

Creating a test strategy Let’s take a project as an example. Suppose a new
operating system has to be designed, which needs a test strategy. The following
steps are used (Table 2.3).

Table 2.3 Example test strategy matrix

Test Factors Test Phase

Requirements Design Code Unit
test

Integration
test

System test

Portability Is portability feature
mentioned in specifi -
cations according to
different hardware?

Is system testing
performed on
MIPS and INTEL
platforms?

Service Level Is time frame for boot-
ing mentioned?

Is time frame incor-
porated in design
of the module?

Select and rank test factors A critical factor to be considered for the develop-
ment of an operating system is portability. This is the effort required to transfer
a program from one hardware confi guration to another. This factor matters
the most, as the operating system has to be compatible with most hardware
confi gurations.

 Software Testing: Principles and Practices54

Identify the test phases In this step, all test phases affected by the selected test
factors are identifi ed. All the affected test phases can be seen according to the
test factors in Table 2.3.

Identify the risks associated with each test factor and its corresponding test
phase All the risks are basic concerns associated with each factor in a phase,
and are expressed in the form of a question. For example, ‘Is testing performed
successfully on INTEL, MIPS H/W platforms?’

Plan the test strategy for every risk identifi ed After identifying the risks, it is
required to plan a strategy to tackle them. It helps testers to start working on
testing so that risks are mitigated.

Test strategies generally must concentrate on risks associated with cost
overruns, schedule slippage, critical software errors, and other failures. Thus
test-strategy design is developed with risks, constrained resources, time limits,
and budget restrictions.

2.3.3 DEVELOPMENT OF TEST STRATEGY

When the project under consideration starts and progresses, testing too starts
from the fi rst step of SDLC. Therefore, the test strategy should be such that
the testing process continues till the implementation of project. Moreover, the
rule for development of a test strategy is that testing ‘begins from the smallest
unit and progresses to enlarge’. This means the testing strategy should start at
the component level and fi nish at the integration of the entire system. Thus,
a test strategy includes testing the components being built for the system, and
slowly shifts towards testing the whole system. This gives rise to two basic
terms—Verifi cation and Validation—the basis for any type of testing. It can also
be said that the testing process is a combination of verifi cation and valida-
tion.

The purpose of verifi cation is to check the software with its specifi cation
at every development phase such that any defect can be detected at an early
stage of testing and will not be allowed to propagate further. That is why
verifi cation can be applied to all stages of SDLC. So verifi cation refers to the
set of activities that ensures correct implementation of functions in a software.
However, as we progress down to the completion of one module or system
development, the scope of verifi cation decreases. The validation process
starts replacing the verifi cation in the later stages of SDLC. Validation is a very
general term to test the software as a whole in conformance with customer
expectations. According to Boehm [5]—

Verifi cation is ‘Are we building the product right?’

Validation is ‘Are we building the right product?’

55Software Testing Terminology and Methodology l

You can relate verifi cation and validation to every complex task of daily life.
You divide a complex task into many sub-tasks. In this case, every sub-task is
developed and accomplished towards achieving the complex task. Here, you
check every sub-task to ensure that you are working in the right direction.
This is verifi cation. After the sub-tasks have been completed and merged, the
entire task is checked to ensure the required task goals have been achieved.
This is validation.

Verifi cation is checking the work at intermediate stages to confi rm that the
project is moving in the right direction, towards the set goal.

When a module is prepared with various stages of SDLC like plan, design
and code, it is verifi ed at every stage. But there may be various modules in
the project. These need to be integrated, after which the full system is built.
However, if we simply integrate the modules and build the system for the
customer, then we are leaving open spaces for the bugs to intrude. Therefore,
after building individual modules, the following stages need to be tested: the
module as a whole, integration of modules, and the system built after integra-
tion. This is validation testing.

2.3.4 TESTING LIFE CYCLE MODEL

Verifi cation and validation (V&V) are the building blocks of a testing process.
The formation of test strategy is based on these two terms only. V&V can be
best understood when these are modeled in the testing process. This model is
known as the Testing Life Cycle Model. Life cycle involves continuous testing
of the system during the development process. At predetermined points, the
results of the development process are inspected to determine the correctness
of implementation. These inspections identify defects as early as possible.
But, life cycle testing is dependent upon the completion of predetermined
deliverables at a specifi ed point in the development life cycle. It also shows
the paths for various types of testing.

V-Testing Life Cycle Model
In V-testing concept [4], as the development team attempts to implement the
software, the testing team concurrently starts checking the software. When
the project starts, both the system development and the system test process
begin. The team that is developing the system begins the system development
process and the team that is conducting the system test begins planning the
system test process, as shown in Fig. 2.12. Both teams start at the same point
using the same information. If there are risks, the tester develops a process to
minimize or eliminate them.

 Software Testing: Principles and Practices56

Testing

Start test
Start

development

Implementation

Tested system

Verification

Validation

Figure 2.12 V-testing model

Figure 2.12 shown above can also be expanded. In Fig. 2.13, on the left
arm of the V, the development cycle is progressing and on the right arm, the
corresponding testing stages are moving. As said earlier, in the early stages
of SDLC, testing comprises more verifi cation activities and towards the later
stages, the emphasis is on validation.

Start test
Start

development

Tested system

Testing
Unit test

Check specifications

Check design

Integration/system
test

Define specifications

Design

Coding

Integrate

Implementation

Validation

Verification

Figure 2.13 Expanded V-testing model

The V&V process, in a nutshell, involves (i) verifi cation of every step of
SDLC (all verifi cation activities are explained in the next chapter) and (ii)
validation of the verifi ed system at the end.

57Software Testing Terminology and Methodology l

2.3.5 VALIDATION ACTIVITIES

Validation has the following three activities which are also known as the three
levels of validation testing.

 Unit Testing
It is a major validation effort performed on the smallest module of the system.
If avoided, many bugs become latent bugs and are released to the customer.
Unit testing is a basic level of testing which cannot be overlooked, and confi rms
the behaviour of a single module according to its functional specifi cations.

 Integration Testing
It is a validation technique which combines all unit-tested modules and performs
a test on their aggregation. One may ask, when we have tested all modules
in unit testing, where is the need to test them on aggregation? The answer is
interfacing. Unit modules are not independent, and are related to each other
by interface specifi cations between them. When we unit test a module, its
interfacing with other modules remain untested. When one module is combined
with another in an integrated environment, interfacing between units must be
tested. If some data structures, messages, or other things are common between
some modules, then the standard format of these interfaces must be checked during
integration testing, otherwise these will not be able to interface with each other.

But how do we integrate the units together? Is it a random process? It is
actually a systematic technique for combining modules. In fact, interfacing
among modules is represented by the system design. We integrate the units
according to the design and availability of units. Therefore, the tester must be
aware of the system design.

 System Testing
This testing level focuses on testing the entire integrated system. It incorpo-
rates many types of testing, as the full system can have various users in dif-
ferent environments. The purpose is to test the validity for specifi c users and
environments. The validity of the whole system is checked against the require-
ment specifi cations.

2.3.6 TESTING TACTICS

The ways to perform various types of testing under a specifi c test strategy are
discussed below.

Software Testing Techniques
In the previous sections, it has been observed that complete or exhaustive
testing is not possible. Instead, our effort should be on effective testing. How-

 Software Testing: Principles and Practices58

ever, effective testing is a real challenge in the domain of testing. At this stage,
testing can be defi ned as the design of effective test cases such that most of the
testing domains will be covered detecting the maximum number of bugs. As
Myers [2] said—

Given constraints on time, cost, computer time, etc., the key issue of testing be-
comes — What subset of all possible test cases has the highest probability of detect-
ing the most errors?

Therefore, the next objective is to fi nd the technique which will meet both
the objectives of effective test case design, i.e. coverage of testing domain and
detection of maximum number of bugs. The technique used to design effec-
tive test case is called Software Testing Technique.

Till now, we have discussed the overall strategy for testing methodology. V&V
and the levels of testing under this process describe only the organization and
planning of software testing. Actual methods for designing test cases, i.e. software
testing techniques, implement the test cases on the software. These techniques
can be categorized into two parts: (a) static testing and (b) dynamic testing.

 Static Testing
It is a technique for assessing the structural characteristics of source code,
design specifi cations or any notational representation that conforms to well-
defi ned syntactic rules [16]. It is called as static because we never execute the
code in this technique. For example, the structure of code is examined by the
teams but the code is not executed.

 Dynamic Testing
All the methods that execute the code to test a software are known as dynamic
testing techniques. In this technique, the code is run on a number of inputs
provided by the user and the corresponding results are checked. This type of
testing is further divided into two parts: (a) black-box testing and (b) white-box
testing.

 Black-box testing This technique takes care of the inputs given to a system and
the output is received after processing in the system. What is being processed
in the system? How does the system perform these operations? Black-box
testing is not concerned with these questions. It checks the functionality of
the system only. That is why the term black-box is used. It is also known as
functional testing. It is used for system testing under validation.

 White-box testing This technique complements black-box testing. Here, the
system is not a black box. Every design feature and its corresponding code is
checked logically with every possible path execution. So, it takes care of the
structural paths instead of just outputs. It is also known as structural testing and
is used for unit testing under verifi cation.

59Software Testing Terminology and Methodology l

 Testing Tools
Testing tools provide the option to automate the selected testing technique
with the help of tools. A tool is a resource for performing a test process. The
combination of tools and testing techniques enables the test process to be per-
formed. The tester should fi rst understand the testing techniques and then go
for the tools that can be used with each of the techniques.

2.3.7 CONSIDERATIONS IN DEVELOPING TESTING METHODOLOGIES

The considerations in developing a testing methodology are described below [4].

Determine Project Risks
A test strategy is developed with the help of another team familiar with the
business risks associated with the software. The major issue in determining
the strategy is to identify the risks associated with the project. What are the
high priority risks? What are the consequences, if risks are not handled?

Determine the Type of Development Project
The environment or methodology to develop the software also affects the
testing risks. The risks associated with a new development project will be dif-
ferent from a maintenance project or a purchased software.

Identify Test Activities According to SDLC Phase
After identifying all the risk factors in an SDLC phase, testing can be started
in that phase. However, all the testing activities must be recognized at all the
SDLC phases.

Build the Test Plan
A tactical test plan is required to start testing. This test plan provides:
 � Environment and pre-test background
 � Overall objectives
 � Test team
 � Schedule and budget showing detailed dates for the testing
 � Resource requirements including equipment, software, and personnel
 � Testing materials including system documentation, software to be tested,

test inputs, test documentation, test tools
 � Specifi ed business functional requirements and structural functions to

be tested
 � Type of testing technique to be adopted in a particular SDLC phase or

what are the specifi c tests to be conducted in a particular phase

 Software Testing: Principles and Practices60

Since the internal design of a software may be composed of many compo-
nents, each of these components or units must also have its own test plan. The
idea is that units should not be submitted without testing. So an extra effort
must be put in preparing unit test plans also.

SUMMARY

Software testing fundamentals have been discussed in this chapter. There is a lot of confusion
about using the testing terms. Some terms are used interchangeably, while they imply differ-
ent meanings. This chapter makes all the related defi nitions clear. Since the basis for software
testing are bugs, their complete life cycle, right from initiation to post-execution, has been de-
scribed.

The testing principles have been elaborated which will guide the reader in performing every
activity related to testing and help in understanding the subsequent chapters. Software testing
has matured as a process, thus testing life cycle and its models have been described. Finally, a
testing methodology that consists of a roadmap for performing tests has been provided. It will
help the reader understand the hierarchy in the test strategy and what is to be done at every
phase of testing.

Let us review the important concepts described in this chapter:

 � Failure of a program is the mismatch between expected and actual results.

 � Fault is a condition in the program that causes failures. This is also known as bug or
defect.

 � Error is the actual location in the program where a mistake has been made that produced
the bug.

 � Test case is a well-documented procedure designed to test the functionality of a feature
in the system.

 � The documents created during testing activities are known as Testware.

 � An incident is the symptom(s) associated with a failure that alerts the user to the occur-
rence of a failure.

 � An oracle is the means to judge the success or failure of a test.

 � A bug propagates to all the stages of SDLC, if not detected.

 � An undetected bug is harder and costlier to detect and debug at a later stage. The earlier
you detect, the better.

 � Bugs can be classifi ed based on their criticality as: (a) critical, (b) major, (c) medium, and
(d) minor.

 � Bugs can be classifi ed based on their SDLC phase in which they have been introduced
as: (a) requirement and specifi cation bugs, (b) design bugs, (c) coding bugs, (d) interface
& integration bugs, (e) system bugs, and (f) testing bugs.

 � Software testing life cycle consists of the following phases: (a) test planning, (b) test
design, (c) test execution, and (d) post-implementation/test review.

61Software Testing Terminology and Methodology l

 � Software testing methodology is the organization of software testing by means of which
the test strategy and test tactics are achieved.

 � Testing strategy is planning the whole testing process into a well-planned series of
steps.

 � A test strategy matrix identifi es the concerns that will become the focus of test planning
and execution. The matrix is prepared using the test factors and test phase.

 � The test strategy has two parts: Verifi cation and Validation

 � Verifi cation is to check the software with its specifi cation at every development phase
such that any defect can be detected at an early stage of testing.

 � Validation is to test the software as a whole in conformance with customer expecta-
tions.

 � V-testing model emphasizes the concept of early testing. In this model, the scope of
verifi cation is more in the early phases and decreases slowly as one module is ready.
After this, the scope of validation increases.

 � There are three validation activities, generally known as levels of testing: Unit testing,
Integration testing, and System testing.

 � There are two types of testing techniques: Static and Dynamic testing.

 � Static testing is to test the software and its documents without executing the software.

 � Dynamic testing is to test the software by executing it.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. Fault is synonymous with the word __________.
 (a) Failure
 (b) Defect
 (c) Error
 (d) All of the above

 2. The inability of a system or component to perform a required function according to its
specifi cation is called as __________.

 (a) Failure
 (b) Bug
 (c) Error
 (d) None of the above

 3. Testware includes __________.
 (a) test planning document
 (b) test data
 (c) test specifi cations
 (d) All of the above

 Software Testing: Principles and Practices62

 4. Symptom(s) associated with a failure that alerts the user to the occurrence of a failure is
called __________.

 (a) Bug
 (b) Error
 (c) Defect
 (d) Incident

 5. Testing process starts as soon as the __________ for the system are prepared.
 (a) Design
 (b) Coding
 (c) Specifi cations
 (d) None of the above

 6. Testing strategy should start at the __________ module level and expand towards the
whole program.

 (a) Smallest
 (b) Largest
 (c) None of the above

 7. Testing is a ______ process.
 (a) Intuitive
 (b) Random
 (c) Planned
 (d) None of the above

 8. Planning the whole testing process into a well-planned series of steps is called
_________.

 (a) Test strategy matrix
 (b) Test factor
 (c) Test phase
 (d) Test strategy

 9. The test strategy matrix is prepared using the __________.
 (a) test planning and execution
 (b) test factor and test phase
 (c) test factor
 (d) test phase

 10. The process of evaluating a system or component to determine whether the products of
a given development phase satisfy the conditions imposed at the start of that phase is
called __________.

 (a) Verifi cation
 (b) Validation
 (c) SDLC
 (d) None of the above

63Software Testing Terminology and Methodology l

 11. The process of evaluating a system or component during or at the end of the devel-
opment process to determine whether it satisfi es the specifi ed requirements is called
__________.

 (a) Verifi cation
 (b) Validation
 (c) SDLC
 (d) None of the above

 12. In the early stages of SDLC, testing comprises more __________ activities and towards
the later stages, the emphasis is on the __________ activities.

 (a) verifi cation, validation
 (b) validation, verifi cation
 (c) integration, coding
 (d) None

 13. Technique for assessing the structural characteristics of source code, design specifi ca-
tions, or any notational representation that conforms to well-defi ned syntactic rules is
called __________.

 (a) Dynamic testing

 (b) Static Testing

 (c) Black-Box Testing

 (d) None of the above

 14. Every design feature and its corresponding code is checked logically with every possible
path execution in __________.

 (a) Black-box testing
 (b) White-box testing
 (c) Testing tool
 (d) None of the above

REVIEW QUESTIONS

 1. Differentiate error, bug, defect, fault, failure, testware, and incident, giving examples of
each.

 2. How many states does a bug have?

 3. Take a live project and demonstrate the fact that ‘Bugs in earlier stages go undetected
and propagate’.

 4. Collect examples of some commercial products that prove the statement ‘Bug affects the
economics of Software Testing’

 5. Give examples of each category of bug classifi ed based on criticality.

 6. Give examples of each category of bug classifi ed based on SDLC.

 7. How do you support destructive approach for software testing?

 Software Testing: Principles and Practices64

 8. What are the benefi ts of early testing?

 9. Demonstrate the fact that in a live project—‘The probability of existence of an error in a
section of a program is proportional to the number of errors already found in that sec-
tion.’

 10. What will happen if we test the whole system directly?

 11. What is the psychology behind testing by an independent team?

 12. ‘Invalid inputs and unexpected behaviour have a high probability of fi nding an error.’
Prove it in a live project.

 13. What is the signifi cance of enlarging the area of region 1 in Fig. 2.7?

 14. Explain the different stages of STLC?

 15. What is the use of test strategy matrix? Explain with an example other than provided in
this chapter.

 16. What is the difference between
 (a) Verifi cation and Validation
 (b) Static and Dynamic testing
 (c) Black-box and White-box testing

 Explain with examples.

 17. Take a project and identify the Test Activities according to SDLC phases.

 18. What are the features of V-testing model? Explain in detail.

65Verifi cation and Validation l

In the last chapter, it has been seen that a testing
strategy may be developed in the form of verifi ca-
tion and validation, as shown in the V-diagram (see
Fig. 3.1).

A V-diagram provides the following insights
about software testing:

 � Testing can be implemented in the same fl ow
as for the SDLC.

 � Testing can be broadly planned in two activi-
ties, namely verifi cation and validation.

 � Testing must be performed at every step of
SDLC.

 � V-diagram supports the concept of early testing.

 � V-diagram supports parallelism in the activities of developers and testers.

Start testing
Start

development

Tested system

TESTINGUnit Test

Check specifications

Check
design

Define specifications

Integrate

IMPLEMENTATION

Coding

Design

Integration/system
test

Verification

Validation

Figure 3.1 V-Testing

Chapter

3
Verifi cation and Validation

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � V-diagram provides the basis for every

type of software testing
 � Various verifi cation activities
 � Various validation activities
 � How to perform verifi cation at each stage

of SDLC
 � Various validation test plans

 Software Testing: Principles and Practices66

 � The more you concentrate on the V&V process, more will be the cost-
effectiveness of the software.

 � Testers should be involved in the development process.

Since testing is a critical element of quality, verifi cation and validation also
relate to the quality of the software. So it can be said that all testing activities
can be seen in the form of verifi cation and validation.

In this chapter, the V-diagram has been expanded to get a clear vision
of verifi cation and validation activities in SDLC. This expanded V-diagram
called the V&V activities diagram gives us some more insights.

3.1 VERIFICATION AND VALIDATION (V&V) ACTIVITIES

V&V activities can be understood in the form of a diagram which is described
here. To understand this diagram, we fi rst need to understand SDLC phases.
After this, verifi cation and validation activities in those SDLC phases will be
described. The following SDLC phases [2] (see Fig. 3.2) are considered:

End-user

Requirement
gathering

Coding

Internal design /
low-level design

(LLD)

Functional design
high-level design

(HLD)

Requirement
specification/

objectives

Figure 3.2 SDLC Phases

67Verifi cation and Validation l

 Requirements gathering The needs of the user are gathered and translated
into a written set of requirements. These requirements are prepared from the
user’s viewpoint only and do not include any technicalities according to the
developer.

Requirement specifi cation or objectives In this phase, all the user requirements
are specifi ed in developer’s terminology. The specifi ed objectives from the full
system which is going to be developed, are prepared in the form of a document
known as software requirement specifi cation (SRS).

 Functional design or high-level design Functional design is the process of
translating user requirements into a set of external interfaces. The output of
the process is the functional design specifi cation, which describes the product’s
behaviour as seen by an observer external to the product. The high-level design
is prepared with SRS and software analysts convert the requirements into a
usable product. In HLD, the software system architecture is prepared and
broken into independent modules. Thus, an HLD document will contain the
following items at a macro level:

 1. Overall architecture diagrams along with technology details

 2. Functionalities of the overall system with the set of external interfaces

 3. List of modules

 4. Brief functionality of each module

 5. Interface relationship among modules including dependencies between
modules, database tables identifi ed along with key elements

 Internal design or low-level design Since HLD provides the macro-level details
of a system, an HLD document cannot be given to programmers for coding.
So the analysts prepare a micro-level design document called internal design
or low-level design (LLD). This document describes each and every module in
an elaborate manner, so that the programmer can directly code the program
based on this. There may be at least one separate document for each module.

 Coding If an LLD document is prepared for every module, then it is easy to
code the module. Thus in this phase, using design document for a module, its
coding is done.

After understanding all the SDLC phases, we need to put together all the
verifi cation activities. As described earlier, verifi cation activities are performed

 Software Testing: Principles and Practices68

almost at every phase, therefore all the phases described above will be veri-
fi ed, as shown in Fig. 3.3. Along with these verifi cation activities performed at
every step, the tester needs to prepare some test plans which will be used in
validation activities performed after coding the system. These test plans are
prepared at every SDLC phase (see Fig. 3.3).

Requirement
gathering

Build
acceptance

test plan

Build
system

test plan

Requirement
specification/

objectives

Build
function and
integration
test plan

Functional
design/

high-level
design (HLD)

Build unit
test plan

Internal
design/

low-level
design (LLD)

Coding

Verification

Verification

End-user

Verification

Verification

Verification

Figure 3.3 Tester performs verifi cation and prepares test plan during every SDLC phase

When the coding is over for a unit or a system, and parallel verifi cation
activities have been performed, then the system can be validated. It means
validation activities can be performed now. These are executed with the help
of test plans prepared by the testers at every phase of SDLC. This makes the
complete V&V activities diagram (see Fig. 3.4) which is discussed in detail in
the following sections.

69Verifi cation and Validation l

Requirement
gathering

Build
acceptance

test plan

Build
system

test plan

Requirement
specification/

objectives

Build
function and
integration
test plan

Functional
design/

high-level
design (HLD)

Build unit
test plan

Internal
design

low-level
design (LLD)

Coding

Verification

Verification

Installation
testing

Acceptance
testing

System
testing

Function
testing and
integration

testing

Unit
validation

testing

V
A
L
I
D
A
T
I
O
N

End-user

Verification

Verification

Verification

Figure 3.4 V&V diagram

3.2 VERIFICATION
We have seen that verifi cation is a set of activities that ensures correct imple-
mentation of specifi c functions in a software. What is the need of verifi ca-
tion? Can’t we test the software in the fi nal phase of SDLC? Under the V&V
process, it is mandatory that verifi cation is performed at every step of SDLC.
Verifi cation is needed for the following:

 � If verifi cation is not performed at early stages, there are always a chance
of mismatch between the required product and the delivered product.
Suppose, if requirements are not verifi ed, then it leads to situations
where requirements and commitments are not clear. These things be-
come important in case of non-functional requirements and they in-
crease the probability of bugs.

 Software Testing: Principles and Practices70

 � Verifi cation exposes more errors.

 � Early verifi cation decreases the cost of fi xing bugs.

 � Early verifi cation enhances the quality of software.

After understanding the need of verifi cation, the goals of verifi cation can
be formalized which are discussed below [17].

Everything Must be Verifi ed
In principle, all the SDLC phases and all the products of these processes must
be verifi ed.

Results of Verifi cation May Not be Binary
Verifi cation may not just be the acceptance or rejection of a product. There
are many verifi cation activities whose results cannot be reduced to a binary
answer. Often, one has to accept approximations. For example, sometimes
correctness of a requirement cannot be rejected or accepted outright, but can
be accepted with a degree of satisfaction or rejected with a certain degree of
modifi cation.

Even Implicit Qualities Must be Verifi ed
The qualities desired in the software are explicitly stated in the SRS. But those
requirements which are implicit and not mentioned anywhere must also be
verifi ed.

3.2.1 VERIFICATION ACTIVITIES
All the verifi cation activities are performed in connection with the different
phases of SDLC. The following verifi cation activities have been identifi ed:

 � Verifi cation of Requirements and Objectives

 � Verifi cation of High-Level Design

 � Verifi cation of Low-Level Design

 � Verifi cation of Coding (Unit Verifi cation)

3.3 VERIFICATION OF REQUIREMENTS

In this type of verifi cation, all the requirements gathered from the user’s
viewpoint are verifi ed. For this purpose, an acceptance criterion is prepared.
An acceptance criterion defi nes the goals and requirements of the proposed
system and acceptance limits for each of the goals and requirements. The
acceptance criteria matter the most in case of real-time systems where perfor-

71Verifi cation and Validation l

mance is a critical issue in certain events. For example, if a real-time system
has to process and take decision for a weapon within x seconds, then any per-
formance below this would lead to rejection of the system. Therefore, it can
be concluded that acceptance criteria for a requirement must be defi ned by
the designers of the system and should not be overlooked, as they can create
problems while testing the system.

The tester works in parallel by performing the following two tasks:

 1. The tester reviews the acceptance criteria in terms of its completeness,
clarity, and testability. Moreover, the tester understands the proposed
system well in advance so that necessary resources can be planned for
the project [13].

 2. The tester prepares the Acceptance Test Plan which is referred at the time
of Acceptance Testing (discussed later).

3.3.1 VERIFICATION OF OBJECTIVES

After gathering requirements, specifi c objectives are prepared considering
every specifi cation. These objectives are prepared in a document called
software requirement specifi cation (SRS). In this activity also, two parallel
activities are performed by the tester:

 1. The tester verifi es all the objectives mentioned in SRS. The purpose of
this verifi cation is to ensure that the user’s needs are properly under-
stood before proceeding with the project.

 2. The tester also prepares the System Test Plan which is based on SRS. This
plan will be referenced at the time of System Testing (discussed later).

In verifying the requirements and objectives, the tester must consider both
functional and non-functional requirements. Functional requirements may be
easy to comprehend. But non-functional requirements pose a challenge to tes-
ters in terms of understanding, quantifying, test planning, and test execution.

3.3.2 HOW TO VERIFY REQUIREMENTS AND OBJECTIVES?
Requirement and objectives verifi cation has a high potential of detecting bugs.
Therefore, requirements must be verifi ed. As stated above, the testers use the
SRS for verifi cation of objectives. One characteristic of a good SRS is that it
can be verifi ed. An SRS [18] can be verifi ed, if and only if, every requirement
stated herein can be verifi ed. A requirement can be verifi ed, if, and only if,
there is some procedure to check that the software meets its requirement. It is
a good idea to specify the requirements in a quantifi cation manner. It means
that ambiguous statements or language like ‘good quality’, ‘usually’, ‘may

 Software Testing: Principles and Practices72

happen’ should be avoided. Instead of this, quantifi ed specifi cations should
be provided. An example of a verifi able statement is

‘Module x will produce output within 15 sec of its execution.’
OR

‘The output should be displayed like this: TRACK A’s speed is x’.

It is clear now that verifi cation starts from the requirement phase and every
requirement specifi ed in the SRS must be verifi ed. But what are the points
against which verifi cation of requirement will be done? Following are the
points against which every requirement in SRS should be verifi ed:

Correctness
There are no tools or procedures to measure the correctness of a specifi cation.
The tester uses his or her intelligence to verify the correctness of require-
ments. Following are some points which can be adopted (these points can
change according to situation):

 (a) Testers should refer to other documentations or applicable standards
and compare the specifi ed requirement with them.

 (b) Testers can interact with customers or users, if requirements are not
well-understood.

 (c) Testers should check the correctness in the sense of realistic requirement.
If the tester feels that a requirement cannot be realized using existing
hardware and software technology, it means that it is unrealistic. In that
case, the requirement should either be updated or removed from SRS.

Unambiguous
A requirement should be verifi ed such that it does not provide too many
meanings or interpretations. It should not create redundancy in specifi ca-
tions. Each characteristic should be described using a single term, otherwise
ambiguity or redundancy may cause bugs in the design phase. The following
must be verifi ed:

 (a) Every requirement has only one interpretation.

 (b) Each characteristic of the fi nal product is described using a single unique
term.

Consistent
No specifi cation should contradict or confl ict with another. Confl icts produce
bugs in the next stages, therefore they must be checked for the following:

 (a) Real-world objects confl ict, for example, one specifi cation recommends
mouse for input, another recommends joystick.

73Verifi cation and Validation l

 (b) Logical confl ict between two specifi ed actions, e.g. one specifi cation re-
quires the function to perform square root, while another specifi cation
requires the same function to perform square operation.

 (c) Confl icts in terminology should also be verifi ed. For example, at one
place, the term process is used while at another place, it has been termed
as task or module.

Completeness
The requirements specifi ed in the SRS must be verifi ed for completeness. We
must

 (a) Verify that all signifi cant requirements such as functionality, perfor-
mance, design constraints, attribute, or external interfaces are complete.

 (b) Check whether responses of every possible input (valid & invalid) to the
software have been defi ned.

 (c) Check whether fi gures and tables have been labeled and referenced
completely.

Updation
Requirement specifi cations are not stable, they may be modifi ed or another
requirement may be added later. Therefore, if any updation is there in the
SRS, then the updated specifi cations must be verifi ed.

 (a) If the specifi cation is a new one, then all the above mentioned steps and
their feasibility should be verifi ed.

 (b) If the specifi cation is a change in an already mentioned specifi cation,
then we must verify that this change can be implemented in the current
design.

Traceability
The traceability of requirements must also be verifi ed such that the origin of
each requirement is clear and also whether it facilitates referencing in future
development or enhancement documentation. The following two types of
traceability must be verifi ed:

 Backward traceability Check that each requirement references its source in
previous documents.

 Forward traceability Check that each requirement has a unique name or
reference number in all the documents. Forward traceability assumes more
meaning than this, but for the sake of clarity, here it should be understood in
the sense that every requirement has been recognized in other documents.

 Software Testing: Principles and Practices74

3.4 VERIFICATION OF HIGH-LEVEL DESIGN

All the requirements mentioned in the SRS document are addressed in this
phase and work in the direction of designing the solution. The architecture
and design is documented in another document called the software design docu-
ment (SDD).

Like the verifi cation of requirements, the tester is responsible for two paral-
lel activities in this phase as well:

 1. The tester verifi es the high-level design. Since the system has been de-
composed in a number of sub-systems or components, the tester should
verify the functionality of these components. Since the system is consid-
ered a black box with no low-level details considered here, the stress is
also on how the system will interface with the outside world. So all the
interfaces and interactions of user/customer (or any person who is in-
terfacing with system) are specifi ed in this phase. The tester verifi es that
all the components and their interfaces are in tune with requirements of
the user. Every requirement in SRS should map the design.

 2. The tester also prepares a Function Test Plan which is based on the SRS.
This plan will be referenced at the time of Function Testing (discussed
later).

The tester also prepares an Integration Test Plan which will be referred at the
time of integration testing (discussed later).

3.4.1 HOW TO VERIFY HIGH-LEVEL DESIGN?
High-level design takes the second place in SDLC, wherein there is a high
probability of fi nding bugs. Therefore, high-level design must be verifi ed as
a next step in early testing. Unless the design is specifi ed in a formal way, de-
sign cannot be verifi ed. So SDD is referred for design verifi cation. IEEE [19]
has provided the standard way of documenting the design in an SDD.

If a bug goes undetected in the high-level design phase, then its cost of fi x-
ing increases with every phase. Therefore, verifi cation for high-level design
must be done very carefully. This design is divided in three parts (as described
by Pressman [7]).

 Data Design
It creates a model of data and/or information that is represented at a high level
of abstraction (the customer/user’s view of data). The structure of data has
always been an important part of software design. At the program component
level, the design of data structures and the associated algorithms required to
manipulate them is essential to create high-quality applications.

75Verifi cation and Validation l

 Architectural Design
It focuses on the representation of the structure of software components, their
properties, and interactions.

 Interface Design
It creates an effective communication medium between the interfaces of dif-
ferent software modules, interfaces between the software system and any
other external entity, and interfaces between a user and the software system.
Following a set of interface design principles, the design identifi es interface
objects and actions and then creates a screen layout that forms the basis for a
user interface prototype.

Verifi cation of high-level design will consider all the three designs men-
tioned above and this will become the basis for effective verifi cation.

Verifi cation of Data Design
The points considered for verifi cation of data design are as follows:

 � Check whether the sizes of data structure have been estimated appropri-
ately.

 � Check the provisions of overfl ow in a data structure.

 � Check the consistency of data formats with the requirements.

 � Check whether data usage is consistent with its declaration.

 � Check the relationships among data objects in data dictionary.

 � Check the consistency of databases and data warehouses with the
requirements specifi ed in SRS.

Verifi cation of Architectural Design
The points considered for the verifi cation of architectural design are:

 � Check that every functional requirement in the SRS has been take care
of in this design.

 � Check whether all exceptions handling conditions have been taken care of.

 � Verify the process of transform mapping and transaction mapping, used
for the transition from requirement model to architectural design.

 � Since architectural design deals with the classifi cation of a system into
sub-systems or modules, check the functionality of each module accord-
ing to the requirements specifi ed.

 � Check the inter-dependence and interface between the modules.

 Software Testing: Principles and Practices76

 � In the modular approach of architectural design, there are two issues
with modularity— Module Coupling and Module Cohesion. A good design
will have low coupling and high cohesion. Testers should verify these
factors, otherwise they will affect the reliability and maintainability of
the system which are non-functional requirements of the system.

Verifi cation of User-Interface Design
The points to be considered for the verifi cation of user-interface design are:

 � Check all the interfaces between modules according to the architecture
design.

 � Check all the interfaces between software and other non-human pro-
ducer and consumer of information.

 � Check all the interfaces between human and computer.

 � Check all the above interfaces for their consistency.

 � Check the response time for all the interfaces are within required rang-
es. It is very essential for the projects related to real-time systems where
response time is very crucial.

 � For a Help Facility, verify the following:

 (i) The representation of Help in its desired manner

 (ii) The user returns to the normal interaction from Help

 � For error messages and warnings, verify the following:

 (i) Whether the message clarifi es the problem

 (ii) Whether the message provides constructive advice for recovering
from the error

 � For typed command interaction, check the mapping between every
menu option and their corresponding commands.

3.5 VERIFICATION OF LOW-LEVEL DESIGN

In this verifi cation, low-level design phase is considered. The abstraction level
in this phase is low as compared to high-level design. In LLD, a detailed de-
sign of modules and data are prepared such that an operational software is
ready. For this, SDD is preferred where all the modules and their interfaces
are defi ned. Every operational detail of each module is prepared. The details
of each module or unit is prepared in their separate SRS and SDD.

77Verifi cation and Validation l

Testers also perform the following parallel activities in this phase:

 1. The tester verifi es the LLD. The details and logic of each module is veri-
fi ed such that the high-level and low-level abstractions are consistent.

 2. The tester also prepares the Unit Test Plan which will be referred at the
time of Unit Testing (discussed later).

3.5.1 HOW TO VERIFY LOW-LEVEL DESIGN?
This is the last pre-coding phase where internal details of each design entity
are described. For verifi cation, the SRS and SDD of individual modules are
referred to. Some points to be considered are listed below:

 � Verify the SRS of each module.

 � Verify the SDD of each module.

 � In LLD, data structures, interfaces, and algorithms are represented by design
notations; verify the consistency of every item with their design notations.

Organizations can build a two-way traceability matrix between the SRS
and design (both HLD and LLD) such that at the time of verifi cation of de-
sign, each requirement mentioned in the SRS is verifi ed. In other words, the
traceability matrix provides a one-to-one mapping between the SRS and the
SDD.

3.6 HOW TO VERIFY CODE?
Coding is the process of converting LLD specifi cations into a specifi c lan-
guage. This is the last phase when we get the operational software with the
source code. People have the impression that testing starts only after this
phase. However, it has been observed in the last chapter that testing starts as
soon as the requirement specifi cations are given and testers perform parallel
activities during every phase of SDLC. If we start testing after coding, then
there is a possibility that requirement specifi cations may have bugs and these
might have been passed into the design and consequently into the source
code. Therefore, the operational software which is ready now, is not reliable
and when bugs appear after this phase, they are very expensive to fi x.

Since low-level design is converted into source code using some language,
there is a possibility of deviation from the LLD. Therefore, the code must also
be verifi ed. The points against which the code must be verifi ed are:

 � Check that every design specifi cation in HLD and LLD has been coded
using traceability matrix.

 � Examine the code against a language specifi cation checklist.

 Software Testing: Principles and Practices78

 � Code verifi cation can be done most effi ciently by the developer, as he
has prepared the code. He can verify every statement, control structure,
loop, and logic such that every possible method of execution is tested.
In this way, he verifi es the whole module which he has developed. Some
points against which the code can be verifi ed are:

 (a) Misunderstood or incorrect arithmetic precedence
 (b) Mixed mode operations
 (c) Incorrect initialization
 (d) Precision inaccuracy
 (e) Incorrect symbolic representation of an expression
 (f) Different data types
 (g) Improper or non-existent loop termination
 (h) Failure to exit

Two kinds of techniques are used to verify the coding: (a) static testing, and
(b) dynamic testing.

Static testing techniques As discussed in the previous chapter, this technique
does not involve actual execution. It considers only static analysis of the code
or some form of conceptual execution of the code.

Dynamic testing techniques It is complementary to the static testing technique.
It executes the code on some test data. The developer is the key person in this
process who can verify the code of his module by using the dynamic testing
technique.

3.6.1 UNIT VERIFICATION

Verifi cation of coding cannot be done for the whole system. Moreover, the
system is divided into modules. Therefore, verifi cation of coding means the
verifi cation of code of modules by their developers. This is also known as unit
verifi cation testing. Listed below are the points to be considered while perform-
ing unit verifi cation [7]:
 � Interfaces are verifi ed to ensure that information properly fl ows in and

out of the program unit under test.
 � The local data structure is verifi ed to maintain data integrity.
 � Boundary conditions are checked to verify that the module is working

fi ne on boundaries also.
 � All independent paths through the control structure are exercised to en-

sure that all statements in a module have been executed at least once.
 � All error handling paths are tested.

Unit verifi cation is largely white-box oriented.

79Verifi cation and Validation l

3.7 VALIDATION

As described earlier, validation is a set of activities that ensures the software
under consideration has been built right and is traceable to customer require-
ments. Validation testing is performed after the coding is over.

What is the need for validation? When every step of SDLC has been veri-
fi ed, why do we want to test the product at the end? The reasons are:

 � To determine whether the product satisfi es the users’ requirements, as
stated in the requirement specifi cation.

 � To determine whether the product’s actual behaviour matches the de-
sired behaviour, as described in the functional design specifi cation.

 � It is not always certain that all the stages till coding are bug-free. The
bugs that are still present in the software after the coding phase need to
be uncovered.

 � Validation testing provides the last chance to discover bugs, otherwise
these bugs will move to the fi nal product released to the customer.

 � Validation enhances the quality of software.

3.7.1 VALIDATION ACTIVITIES

The validation activities are divided into Validation Test Plan and Validation Test
Execution which are described as follows:

Validation Test Plan
It starts as soon as the fi rst output of SDLC, i.e. the SRS, is prepared. In every
phase, the tester performs two parallel activities—verifi cation at that phase
and the corresponding validation test plan. For preparing a validation test
plan, testers must follow the points described below.

 � Testers must understand the current SDLC phase.

 � Testers must study the relevant documents in the corresponding SDLC
phase.

 � On the basis of the understanding of SDLC phase and related documents,
testers must prepare the related test plans which are used at the time of
validation testing. Under test plans, they must prepare a sequence of test
cases for validation testing.

The following test plans have been recognized which the testers have
already prepared with the incremental progress of SDLC phases:

 Software Testing: Principles and Practices80

 Acceptance test plan This plan is prepared in the requirement phase according
to the acceptance criteria prepared from the user feedback. This plan is used at
the time of Acceptance Testing.

 System test plan This plan is prepared to verify the objectives specifi ed in the
SRS. Here, test cases are designed keeping in view how a complete integrated
system will work or behave in different conditions. The plan is used at the time
of System Testing.

 Function test plan This plan is prepared in the HLD phase. In this plan, test
cases are designed such that all the interfaces and every type of functionality
can be tested. The plan is used at the time of Function Testing.

 Integration test plan This plan is prepared to validate the integration of all the
modules such that all their interdependencies are checked. It also validates
whether the integration is in conformance to the whole system design. This
plan is used at the time of Integration Testing.

 Unit test plan This plan is prepared in the LLD phase. It consists of a test plan
of every module in the system separately. Unit test plan of every unit or module
is designed such that every functionality related to individual unit can be tested.
This plan is used at the time of Unit Testing.

 Validation Test Execution
Validation test execution can be divided in the following testing activities:

Unit validation testing The testing strategy is to fi rst focus on the smaller
building blocks of the full system. One unit or module is the basic building block
of the whole software that can be tested for all its interfaces and functionality.
Thus, unit testing is a process of testing the individual components of a system.
A unit or module must be validated before integrating it with other modules.
Unit validation is the fi rst validation activity after the coding of one module is
over. The motivation for unit validation as compared to the whole system are
as follows:

 (a) Since the developer has his attention focused on a smaller building
block of the software, i.e. unit or module, it is quite natural to test the
unit fi rst.

 (b) If the whole software is tested at once, then it is very diffi cult to trace the
bug. Thus, debugging becomes easy with unit testing.

 (c) In large-scale projects, a number of modules may be there and each
module may be composed of tens of thousands of lines of code. In such
a case, it is not possible for a single developer to develop all the modules.
There is a team of developers working on separate modules. Sometimes,

81Verifi cation and Validation l

some modules are sent to other organizations for development. This
requires parallelism in software development. If we did not have the
concept of module, this type of parallelism would not have existed.
Thus, every module can be developed and tested independently.

 Integration testing It is the process of combining and testing multiple compo-
nents or modules together. The individual tested modules, when combined
with other modules, are not tested for their interfaces. Therefore, they may
contain bugs in integrated environment. Thus, the intention here is to uncover
the bugs that are present when unit tested modules are integrated.

 Function testing When the integrated system has been tested, all the specifi ed
functions and their external interfaces are tested on the software. Every
functionality of the system specifi ed in the functions is tested according to its
external specifi cations. An external specifi cation is a precise description of the
software behaviour from the viewpoint of the outside world (e.g. user). Thus,
function testing is to explore the bugs related to discrepancies between the
actual system behaviour and its functional specifi cations.

The objective of function test is to measure the quality of the functional (business)
components of the system. Tests verify that the system behaves correctly from
the user/business perspective and functions according to the requirements,
models, or any other design paradigm used to specify the application. The
function test must determine if each component or business event:

 1. performs in accordance to the specifi cations,

 2. responds correctly to all the conditions that may be presented by in-
coming events/data,

 3. moves the data correctly from one business event to the next (including
data stores), and

 4. is initiated in the order required to meet the business objectives of the
system.

 System testing It is different from function testing, as it does not test every
function. System testing is actually a series of different tests whose primary
purpose is to fully exercise a computer-based system [7]. System testing does
not aim to test the specifi ed function, but its intention is to test the whole
system on various grounds where bugs may occur. For example, if the software
fails in some conditions, how does it recover? Another example is protection
from improper penetration, i.e. how secure the whole system is.

 Acceptance testing As explained earlier, in the requirement phase of SDLC,
acceptance criteria for the system to be developed are mentioned in one
contract by the customer. When the system is ready, it can be tested against

 Software Testing: Principles and Practices82

the acceptance criteria contracted with the customer. This is called acceptance
testing. Thus, acceptance testing can be defi ned as the process of comparing the
fi nal system with the needs of customer as agreed on the acceptance criteria.

 Installation testing Once the testing team has given the green signal for
producing the software, the software is placed into an operational status where
it is installed. The installation testing does not test the system, but it tests the
process of making the software system operational.

The installation process must identify the steps required to install the sys-
tem. For example, it may be required that some fi les may have to be converted
into another format. Or it may be possible that some operating software may
be required. Thus, installation testing tests the interface to operating software,
related software, and any operating procedures.

All these validation testing activities will be discussed in detail in Chapter 7.

SUMMARY

This chapter illustrates the verifi cation and validation activities through the expanded V-diagram.
As a part of the strategy of early testing, verifi cation is an important activity for a software tester.
This is why verifi cation activity is performed at every stage of SDLC. It reduces the chances of
propagation of bugs to the later stages of SDLC.

At the same time, a software tester plans for validation testing while performing verifi cation.
These test plans are used when we start validation after a module coding is over. Validation
testing activities are performed till the software is installed in an operational status. In this way,
both activities assume their importance as a part of early testing as well as a fully tested software
product. Thus, verifi cation and validation become the basis for any type of software testing.

Let us review the important concepts described in this chapter:
 � Verifi cation is performed at every stage of SDLC to uncover more and more bugs during

the earlier stages
 � Verifi cation activities are: Verifi cation of requirements and objectives, Verifi cation of high-

level design, Verifi cation of low-level design, Verifi cation of coding (Unit Verifi cation)
 � After the completion of every SDLC phase, the tester prepares a test plan correspond-

ing to a particular validation testing. This means, the tester does two tasks in parallel: i)
Verifi cation of every stage ii) Planning for Validation

 � The test plans and corresponding validation testing are shown below:

SDLC Phase Test Plan Validation Testing

Requirement Gathering Acceptance Test Plan Acceptance Testing

Requirement Specifi cation/
Objectives

System Test Plan System Testing

Functional Design/ High-Level
Design

Function and Integration
Test Plan

Function and Integration
Testing

Internal Design/Low-level Design Unit Test Plan Unit Testing

83Verifi cation and Validation l

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. Which of the following is true?
 (a) Testing is performed after coding.
 (b) Testing is performed after the integration of modules.
 (c) Testing starts as soon as the SRS is prepared.
 (d) None of the above

 2. V&V diagram includes
 (a) Verifi cation only
 (b) Validation only
 (c) Both verifi cation and validation
 (d) None of the above

 3. Which test plan is made corresponding to requirement gathering?
 (a) Acceptance test plan
 (b) System test plan
 (c) Function & Integration test plan
 (d) Unit test plan

 4. Which test plan is made corresponding to requirement specifi cations?
 (a) Acceptance test plan
 (b) System test plan
 (c) Function & Integration test plan
 (d) Unit test plan

 5. Which test plan is made corresponding to HLD?
 (a) Acceptance test plan
 (b) System test plan
 (c) Function & Integration test plan
 (d) Unit test plan

 6. Which test plan is made corresponding to LLD?
 (a) Acceptance test plan
 (b) System test plan
 (c) Function & Integration test plan
 (d) Unit test plan

 7. In the V model of testing, the scope of verifi cation from top to bottom
 (a) Increases
 (b) Decreases
 (c) Remains the same
 (d) None of the above

 Software Testing: Principles and Practices84

 8. For the verifi cation of requirements, you must check for
 (a) Correctness
 (b) Ambiguity
 (c) Completeness
 (d) All of the above

 9. For the verifi cation of high-level design, you must check
 (a) Data design
 (b) Architectural design
 (c) User interface design
 (d) All of the above

 10. For verifying architectural design, which is true?
 (a) Check that every functional requirement in the SRS has been take care of in this

design.
 (b) Check whether all exceptions handling conditions have been taken care of.
 (c) Check the inter-dependence and interface between the modules.
 (d) All of the above

 11. For verifying data design, you must check
 (a) Sizes of data structure
 (b) Size of module
 (c) Overfl ow in a data structure
 (d) All of the above

 12. What is the relation between static and dynamic testing technique?
 (a) Mutually exclusive
 (b) Complementary
 (c) Independent
 (d) None

 13. What is the proper sequence of various testing?
 (a) Function testing, integration testing, system testing, acceptance testing, unit testing
 (b) Unit testing, integration testing, function testing, system testing, acceptance testing
 (c) Unit testing, integration testing, system testing, function testing, acceptance testing
 (d) None

REVIEW QUESTIONS

 1. What are the activities performed by a tester at the time of development of a project?
 2. What is a V-diagram? What are its benefi ts?
 3. What is the need for verifi cation?
 4. What is the need for validation?
 5. What is the role of test plans in a V&V diagram?

85Verifi cation and Validation l

 6. What are the adverse effects on a project, if verifi cation is not performed?
 7. Discuss the goals of verifi cation in a project.
 8. In a project, only the SRS and SDD are prepared. Can you start testing at this stage?
 9. How would you verify the ambiguous requirements in a project and in which stage of

SDLC?
 10. What do you mean by backward and forward traceability?
 11. Develop a checklist of the common coding errors for the language in which you develop

your programs.
 12. Develop a table describing each phase and corresponding test plan documents related

to the project on which you are working.
 13. Evaluate the benefi ts of verifi cation (early testing) in a project.
 14. Evaluate the benefi ts of validation in a project.
 15. Suppose you are a member of development team of a Database maintenance project.

How would you verify transform mapping and transaction mapping in this project?
 16. What is the difference between unit verifi cation and unit validation?
 17. What is the difference between function testing and system testing?
 18. What is the difference between system testing and acceptance testing?
 19. ‘V&V diagram is basis for every type of testing?’ Comment on this statement.
 20. Take a project and perform verifi cation and validation activities as described in this

chapter.

In Part I, we have discussed the fundamentals of
effective software testing and how to develop a test-
ing methodology. After devising a testing strategy,
we need various testing techniques so that we can
design test cases in order to perform testing. There
are two views of testing techniques: one view is to cat-
egorize based on verifi cation and validation; another
is based on static and dynamic testing. We have seen
the general strategy of performing verifi cation and
validation in Part I. The techniques for verifi cation
and validation have been discussed in this part.

Static testing largely maps to verifi cation and dy-
namic testing to validation. Static testing is performed
without executing the code, and dynamic testing
is performed with the execution of code. Dynamic
testing techniques, namely black-box and white-box
techniques, are very popular. We have tried to in-
clude every possible method under these categories.

Regression testing is a big problem in software testing. Whenever we make some modi-
fi cations, we need to execute all the test cases designed earlier as well as some new cases to
check the modifi cations and whether these changes have affected other parts of the software.
It becomes a problem as the test suite becomes too large to test. Regression testing is a hot
topic for researchers. We have included this testing in techniques so as to defi ne it properly
and seek some techniques to deal with it.

This part will make ground for the following concepts:

 ∑ Dynamic testing techniques
 ∑ Static testing techniques
 ∑ Validation testing techniques
 ∑ Regression testing and techniques

CHAPTERS

Chapter 4:
Dynamic Testing: Black-Box
Testing Techniques

Chapter 5:
Dynamic Testing: White-Box
Testing Techniques

Chapter 6:
Static Testing

Chapter 7:
Validation Activities

Chapter 8:
Regression Testing

Testing Techniques

Part

2

 Software Testing: Principles and Practices88

The following table lists the techniques grouped under their respective categories.

Testing Category Techniques

Dynamic testing:
Black-Box

Boundary value analysis, Equivalence class partitioning, State table-based testing, Decision
table-based testing, Cause-effect graphing technique, Error guessing.

Dynamic testing:
White-Box

Basis path testing, Graph matrices, Loop testing, Data fl ow testing, Mutation testing.

Static testing Inspection, Walkthrough, Reviews.

Validation testing Unit testing, Integration testing, Function testing, System testing, Acceptance testing, Installa-
tion testing.

Regression testing Selective retest technique, Test prioritization.

89Dynamic Testing: Black-Box Testing Techniques l

Black-box technique is one of the major techniques
in dynamic testing for designing effective test
cases. This technique considers only the functional
requirements of the software or module. In other
words, the structure or logic of the software is not
considered. Therefore, this is also known as func-
tional testing. The software system is considered as a
black box, taking no notice of its internal structure,
so it is also called as black-box testing technique.

It is obvious that in black-box technique, test
cases are designed based on functional specifi ca-
tions. Input test data is given to the system, which
is a black box to the tester, and results are checked
against expected outputs after executing the soft-
ware, as shown in Fig. 4.1.

Software system
as black box

.
.

.

.
.

.

Input test
data

Output
results

Figure 4.1 Black-box testing

Black-box testing attempts to fi nd errors in the following categories:

 � To test the modules independently

 � To test the functional validity of the software so that incorrect or missing
functions can be recognized

 � To look for interface errors

 � To test the system behaviour and check its performance

 � To test the maximum load or stress on the system

 � To test the software such that the user/customer accepts the system with-
in defi ned acceptable limits

Chapter

4
Dynamic Testing: Black-Box

Testing Techniques

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Black-box testing ignores the structural

details of the software
 � Test case designing using black-box

techniques
 � Boundary value analysis method
 � Equivalence class testing method
 � State table-based testing method
 � Decision table-based testing method
 � Cause-effect graphing method
 � Error guessing

 Software Testing: Principles and Practices90

There are various methods to test a software product using black-box tech-
niques. One method chooses the boundary values of the variables, another
makes equivalence classes so that only one test case in that class is chosen
and executed. Some methods use the state diagrams of the system to form the
black-box test cases, while a few other methods use table structure to organize
the test cases. It does not mean that one can pick any of these methods for
testing the software. Sometimes a combination of methods is employed for
rigorous testing. The objective of any test case is to have maximum coverage
and capability to discover more and more errors.

4.1 BOUNDARY VALUE ANALYSIS (BVA)
An effective test case design requires test cases to be designed such that they
maximize the probability of fi nding errors. BVA technique addresses this
issue. With the experience of testing team, it has been observed that test cases
designed with boundary input values have a high chance to fi nd errors. It
means that most of the failures crop up due to boundary values.

BVA is considered a technique that uncovers the bugs at the boundary of
input values. Here, boundary means the maximum or minimum value taken
by the input domain. For example, if A is an integer between 10 and 255, then
boundary checking can be on 10(9,10,11) and on 255(256,255,254). Similarly,
B is another integer variable between 10 and 100, then boundary checking
can be on 10(9,10,11) and 100(99,100,101), as shown in Fig. 4.2.

100

10

0 10 255
A

B

Figure 4.2 Boundary value analysis

BVA offers several methods to design test cases as discussed in the follow-
ing sections.

4.1.1 BOUNDARY VALUE CHECKING (BVC)
In this method, the test cases are designed by holding one variable at its
extreme value and other variables at their nominal values in the input
domain.

91Dynamic Testing: Black-Box Testing Techniques l

The variable at its extreme value can be selected at:

 (a) Minimum value (Min)

 (b) Value just above the minimum value (Min+)

 (c) Maximum value (Max)

 (d) Value just below the maximum value (Max−)

Let us take the example of two variables, A and B. If we consider all the
above combinations with nominal values, then following test cases (see Fig.
4.3) can be designed:

 1. Anom, Bmin 2. Anom, Bmin+

 3. Anom, Bmax 4. Anom, Bmax–

 5. Amin, Bnom 6. Amin+, Bnom

 7. Amax, Bnom 8. Amax–, Bnom

 9. Anom, Bnom

a b0 A

B

d

c

Figure 4.3 Boundary value checking

It can be generalized that for n variables in a module, 4n + 1 test cases can
be designed with boundary value checking method.

4.1.2 ROBUSTNESS TESTING METHOD

The idea of BVC can be extended such that boundary values are exceeded
as:

 � A value just greater than the Maximum value (Max+)

 � A value just less than Minimum value (Min−)

When test cases are designed considering the above points in addition to
BVC, it is called robustness testing.

 Software Testing: Principles and Practices92

Let us take the previous example again. Add the following test cases to the
list of 9 test cases designed in BVC:

 10. Amax+, Bnom 11. Amin–, Bnom

 12. Anom, Bmax+ 13. Anom, Bmin–

It can be generalized that for n input variables in a module, 6n + 1 test cases
can be designed with robustness testing.

4.1.3 WORST-CASE TESTING METHOD

We can again extend the concept of BVC by assuming more than one vari-
able on the boundary. It is called worst-case testing method.

Again, take the previous example of two variables, A and B. We can add
the following test cases to the list of 9 test cases designed in BVC as:

 10. Amin, Bmin 11. Amin+, Bmin

 12. Amin, Bmin+ 13. Amin+, Bmin+

 14. Amax, Bmin 15. Amax–, Bmin

 16. Amax, Bmin+ 17. Amax–, Bmin+

 18. Amin, Bmax 19. Amin+, Bmax

 20. Amin, Bmax– 21. Amin+, Bmax–

 22. Amax, Bmax 23. Amax–, Bmax

 24. Amax, Bmax– 25. Amax–, Bmax–

It can be generalized that for n input variables in a module, 5n test cases can
be designed with worst-case testing.

BVA is applicable when the module to be tested is a function of several in-
dependent variables. This method becomes important for physical quantities
where boundary condition checking is crucial. For example, systems having
requirements of minimum and maximum temperature, pressure or speed, etc.
However, it is not useful for Boolean variables.

Example 4.1

A program reads an integer number within the range [1,100] and determines
whether it is a prime number or not. Design test cases for this program using
BVC, robust testing, and worst-case testing methods.

Solution

 (a) Test cases using BVC Since there is one variable, the total number of
test cases will be 4n + 1 = 5.

93Dynamic Testing: Black-Box Testing Techniques l

 In our example, the set of minimum and maximum values is shown
below:

Min value = 1

Min+ value = 2

Max value = 100

Max– value = 99

Nominal value = 50–55

 Using these values, test cases can be designed as shown below:

Test Case ID Integer Variable Expected Output

1 1 Not a prime number

2 2 Prime number

3 100 Not a prime number

4 99 Not a prime number

5 53 Prime number

 (b) Test cases using robust testing Since there is one variable, the total
number of test cases will be 6n + 1 = 7. The set of boundary values is
shown below:

Min value = 1

Min– value = 0

Min+ value = 2

Max value = 100

Max− value = 99

Max+ value = 101

Nominal value = 50–55

 Using these values, test cases can be designed as shown below:

Test Case ID Integer Variable Expected Output

1 0 Invalid input

2 1 Not a prime number

3 2 Prime number

4 100 Not a prime number

5 99 Not a prime number

6 101 Invalid input

7 53 Prime number

 Software Testing: Principles and Practices94

 (c) Test cases using worst-case testing Since there is one variable, the
total number of test cases will be 5n = 5. Therefore, the number of test
cases will be same as BVC.

Example 4.2

A program computes ab where a lies in the range [1,10] and b within [1,5].
Design test cases for this program using BVC, robust testing, and worst-case
testing methods.

Solution

 (a) Test cases using BVC Since there are two variables, a and b, the total
number of test cases will be 4n + 1 = 9. The set of boundary values is
shown below:

a b

Min value 1 1

Min+ value 2 2

Max value 10 5

Max− value 9 4

Nominal value 5 3

 Using these values, test cases can be designed as shown below:

Test Case ID a b Expected Output

1 1 3 1

2 2 3 8

3 10 3 1000

4 9 3 729

5 5 1 5

6 5 2 25

7 5 4 625

8 5 5 3125

9 5 3 125

95Dynamic Testing: Black-Box Testing Techniques l

 (b) Test cases using robust testing Since there are two variables, a and b,
the total number of test cases will be 6n + 1 = 13. The set of boundary
values is shown below:

a b

Min value 1 1

Min– value 0 0

Min+ value 2 2

Max value 10 5

Max+ value 11 6

Max− value 9 4

Nominal value 5 3

 Using these values, test cases can be designed as shown below:

Test Case ID a b Expected output

1 0 3 Invalid input

2 1 3 1

3 2 3 8

4 10 3 1000

5 11 3 Invalid input

6 9 3 729

7 5 0 Invalid input

8 5 1 5

9 5 2 25

10 5 4 625

11 5 5 3125

12 5 6 Invalid input

13 5 3 125

 (c) Test cases using worst-case testing Since there are two variables, a
and b, the total number of test cases will be 5n = 25.

 Software Testing: Principles and Practices96

 The set of boundary values is shown below:

a b

Min value 1 1

Min+ value 2 2

Max value 10 5

Max− value 9 4

Nominal value 5 3

 There may be more than one variable at extreme values in this case.
Therefore, test cases can be designed as shown below:

Test Case ID a b Expected Output

1 1 1 1

2 1 2 1

3 1 3 3

4 1 4 1

5 1 5 1

6 2 1 2

7 2 2 4

8 2 3 8

9 2 4 16

10 2 5 32

11 5 1 5

12 5 2 25

13 5 3 125

14 5 4 625

15 5 5 3125

16 9 1 9

17 9 2 81

18 9 3 729

19 9 4 6561

20 9 5 59049

21 10 1 10

22 10 2 100

23 10 3 1000

24 10 4 10000

25 10 5 100000

97Dynamic Testing: Black-Box Testing Techniques l

Example 4.3

A program reads three numbers, A, B, and C, within the range [1, 50] and
prints the largest number. Design test cases for this program using BVC,
robust testing, and worst-case testing methods.

Solution

 (a) Test cases using BVC Since there are three variables, A, B, and C,
the total number of test cases will be 4n + 1 = 13. The set of boundary
values is shown below:

Min value = 1

Min+ value = 2

Max value = 50

Max− value = 49

Nominal value = 25–30

 Using these values, test cases can be designed as shown below:

Test Case ID A B C Expected Output

1 1 25 27 C is largest

2 2 25 28 C is largest

3 49 25 25 B and C are largest

4 50 25 29 A is largest

5 25 1 30 C is largest

6 25 2 26 C is largest

7 25 49 27 B is largest

8 25 50 28 B is largest

9 25 28 1 B is largest

10 25 27 2 B is largest

11 25 26 49 C is largest

12 25 26 50 C is largest

13 25 25 25 Three are equal

 (b) Test cases using robust testing Since there are three variables, A, B,
and C, the total number of test cases will be 6n + 1 = 19.

 Software Testing: Principles and Practices98

 The set of boundary values is shown below:

Min value = 1

Min– value = 0

Min+ value = 2

Max value = 50

Max+ value = 51

Max− value = 49

Nominal value = 25–30

 Using these values, test cases can be designed as shown below:

Test Case ID A B C Expected Output

1 0 25 27 Invalid input

2 1 25 27 C is largest

3 2 25 28 C is largest

4 49 25 25 B and C are largest

5 50 25 29 A is largest

6 51 27 25 Invalid input

7 25 0 26 Invalid input

8 25 1 30 C is largest

9 25 2 26 C is largest

10 25 49 27 B is largest

11 25 50 28 B is largest

12 26 51 25 Invalid input

13 25 25 0 Invalid input

14 25 28 1 B is largest

15 25 27 2 B is largest

16 25 26 49 C is largest

17 25 26 50 C is largest

18 25 29 51 Invalid input

19 25 25 25 Three are equal

 (c) Test cases using worst-case testing Since there are three variables, A,
B, and C, the total number of test cases will be 5n = 125.

99Dynamic Testing: Black-Box Testing Techniques l

 The set of boundary values is shown below:

Min value = 1

Min+ value = 2

Max value = 50

Max− value = 49

Nominal value = 25–30

 There may be more than one variable at extreme values in this case.
Therefore, test cases can be design as shown below:

Test Case ID A B C Expected Output

1 1 1 1 All three are equal

2 1 1 2 C is greatest

3 1 1 25 C is greatest

4 1 1 49 C is greatest

5 1 1 50 C is greatest

6 1 2 1 B is greatest

7 1 2 2 B and C

8 1 2 25 C is greatest

9 1 2 49 C is greatest

10 1 2 50 C is greatest

11 1 25 1 B is greatest

12 1 27 2 B is greatest

13 1 26 25 B is greatest

14 1 25 49 B is greatest

15 1 27 50 C is greatest

16 1 49 1 B is greatest

17 1 49 2 B is greatest

18 1 49 25 B is greatest

19 1 49 49 B and C

20 1 49 50 C is greatest

21 1 50 1 B is greatest

22 1 50 2 B is greatest

23 1 50 25 B is greatest

24 1 50 49 B is greatest

25 1 50 50 B and C

26 2 1 1 A is largest

27 2 1 2 A and C

28 2 1 25 C is greatest

 Software Testing: Principles and Practices100

29 2 1 49 C is greatest

30 2 1 50 C is greatest

31 2 2 1 A and B

32 2 2 2 All three are equal

33 2 2 25 C is greatest

34 2 2 49 C is greatest

35 2 2 50 C is greatest

36 2 25 1 B is greatest

37 2 27 2 B is greatest

38 2 28 25 B is greatest

39 2 26 49 C is greatest

40 2 28 50 C is greatest

41 2 49 1 B is greatest

42 2 49 2 B is greatest

43 2 49 25 B is greatest

44 2 49 49 B and C

45 2 49 50 C is greatest

46 2 50 1 B is greatest

47 2 50 2 B is greatest

48 2 50 25 B is greatest

49 2 50 49 B is greatest

50 2 50 50 B and C

51 25 1 1 A is greatest

52 25 1 2 A is greatest

53 25 1 25 A and C

54 25 1 49 C is greatest

55 25 1 50 C is greatest

56 25 2 1 A is greatest

57 25 2 2 A is greatest

58 25 2 25 A and C

59 25 2 49 C is greatest

60 25 2 50 C is greatest

61 25 27 1 B is greatest

62 25 26 2 B is greatest

63 25 25 25 All three are equal

64 25 28 49 C is greatest

65 25 29 50 C is greatest

66 25 49 1 B is greatest

67 25 49 2 B is greatest

68 25 49 25 B is greatest

101Dynamic Testing: Black-Box Testing Techniques l

69 25 49 49 B is greatest

70 25 49 50 C is greatest

71 25 50 1 B is greatest

72 25 50 2 B is greatest

73 25 50 25 B is greatest

74 25 50 49 B is greatest

75 25 50 50 B is greatest

76 49 1 1 A is greatest

77 49 1 2 A is greatest

78 49 1 25 A is greatest

79 49 1 49 A and C

80 49 1 50 C is greatest

81 49 2 1 A is greatest

82 49 2 2 A is greatest

83 49 2 25 A is greatest

84 49 2 49 A and C

85 49 2 50 C is greatest

86 49 25 1 A is greatest

87 49 29 2 A is greatest

88 49 25 25 A is greatest

89 49 27 49 A and C

90 49 28 50 C is greatest

91 49 49 1 A and B

92 49 49 2 A and B

93 49 49 25 A and B

94 49 49 49 All three are equal

95 49 49 50 C is greatest

96 49 50 1 B is greatest

97 49 50 2 B is greatest

98 49 50 25 B is greatest

99 49 50 49 B is greatest

100 49 50 50 B and C

101 50 1 1 A is greatest

102 50 1 2 A is greatest

103 50 1 25 A is greatest

104 50 1 49 A is greatest

105 50 1 50 A and C

106 50 2 1 A is greatest

107 50 2 2 A is greatest

108 50 2 25 A is greatest

 Software Testing: Principles and Practices102

109 50 2 49 A is greatest

110 50 2 50 A and C

111 50 26 1 A is greatest

112 50 25 2 A is greatest

113 50 27 25 A is greatest

114 50 29 49 A is greatest

115 50 30 50 A and C

116 50 49 1 A is greatest

117 50 49 2 A is greatest

118 50 49 26 A is greatest

119 50 49 49 A is greatest

120 50 49 50 A and C

121 50 50 1 A and B

122 50 50 2 A and B

123 50 50 26 A and B

124 50 50 49 A and B

125 50 50 50 All three are equal

Example 4.4

A program determines the next date in the calendar. Its input is entered in the
form of <ddmmyyyy> with the following range:

1 £ mm £ 12

1 £ dd £ 31

1900 £ yyyy £ 2025

Its output would be the next date or it will display ‘invalid date.’ Design
test cases for this program using BVC, robust testing, and worst-case testing
methods.

Solution

 (a) Test cases using BVC Since there are three variables, month, day,
and year, the total number of test cases will be 4n + 1 = 13. The set of
boundary values is shown below:

Month Day Year
Min value 1 1 1900
Min+ value 2 2 1901
Max value 12 31 2025
Max− value 11 30 2024
Nominal value 6 15 1962

103Dynamic Testing: Black-Box Testing Techniques l

 Using these values, test cases can be designed as shown below:

Test Case ID Month Day Year Expected Output

1 1 15 1962 16-1-1962

2 2 15 1962 16-2-1962

3 11 15 1962 16-11-1962

4 12 15 1962 16-12-1962

5 6 1 1962 2-6-1962

6 6 2 1962 3-6-1962

7 6 30 1962 1-7-1962

8 6 31 1962 Invalid input

9 6 15 1900 16-6-1900

10 6 15 1901 16-6-1901

11 6 15 2024 16-6-2024

12 6 15 2025 16-6-2025

13 6 15 1962 16-6-1962

 (b) Test cases using robust testing The total number of test cases will be
6n + 1 = 19. The set of boundary values is shown below:

Month Day Year

Min– value 0 0 1899

Min value 1 1 1900

Min+ value 2 2 1901

Max value 12 31 2025

Max− value 11 30 2024

Max+ value 13 32 2026

Nominal value 6 15 1962

 Using these values, test cases can be designed as shown below:

Test Case ID Month Day Year Expected Output

1 0 15 1962 Invalid date

2 1 15 1962 16-1-1962

3 2 15 1962 16-2-1962

4 11 15 1962 16-11-1962

5 12 15 1962 16-12-1962

6 13 15 1962 Invalid date

7 6 0 1962 Invalid date

8 6 1 1962 2-6-1962

9 6 2 1962 3-6-1962

10 6 30 1962 1-7-1962

 Software Testing: Principles and Practices104

11 6 31 1962 Invalid input

12 6 32 1962 Invalid date

13 6 15 1899 Invalid date

14 6 15 1900 16-6-1900

15 6 15 1901 16-6-1901

16 6 15 2024 16-6-2024

17 6 15 2025 16-6-2025

18 6 15 2026 Invalid date

19 6 15 1962 16-6-1962

 (c) Test cases using worst-case testing The total number of test cases
will be 5n = 125. The set of boundary values is shown below:

Month Day Year

Min value 1 1 1900

Min+ value 2 2 1901

Max value 12 31 2025

Max− value 11 30 2024

Nominal value 6 15 1962

 Using these values, test cases can be designed as shown below:

Test Case ID Month Day Year Expected Output

1 1 1 1900 2-1-1900

2 1 1 1901 2-1-1901

3 1 1 1962 2-1-1962

4 1 1 2024 2-1-2024

5 1 1 2025 2-1-2025

6 1 2 1900 3-1-1900

7 1 2 1901 3-1-1901

8 1 2 1962 3-1-1962

9 1 2 2024 3-1-2024

10 1 2 2025 3-1-2025

11 1 15 1900 16-1-1900

12 1 15 1901 16-1-1901

13 1 15 1962 16-1-1962

14 1 15 2024 16-1-2024

15 1 15 2025 16-1-2025

16 1 30 1900 31-1-1900

105Dynamic Testing: Black-Box Testing Techniques l

17 1 30 1901 31-1-1901

18 1 30 1962 31-1-1962

19 1 30 2024 31-1-2024

20 1 30 2025 31-1-2025

21 1 31 1900 1-2-1900

22 1 31 1901 1-2-1901

23 1 31 1962 1-2-1962

24 1 31 2024 1-2-2024

25 1 31 2025 1-2-2025

26 2 1 1900 2-2-1900

27 2 1 1901 2-2-1901

28 2 1 1962 2-2-1962

29 2 1 2024 2-1-2024

30 2 1 2025 2-2-2025

31 2 2 1900 3-2-1900

32 2 2 1901 3-2-1901

33 2 2 1962 3-2-1962

34 2 2 2024 3-2-2024

35 2 2 2025 3-2-2025

36 2 15 1900 16-2-1900

37 2 15 1901 16-2-1901

38 2 15 1962 16-2-1962

39 2 15 2024 16-2-2024

40 2 15 2025 16-2-2025

41 2 30 1900 Invalid date

42 2 30 1901 Invalid date

43 2 30 1962 Invalid date

44 2 30 2024 Invalid date

45 2 30 2025 Invalid date

46 2 31 1900 Invalid date

47 2 31 1901 Invalid date

48 2 31 1962 Invalid date

49 2 31 2024 Invalid date

50 2 31 2025 Invalid date

51 6 1 1900 2-6-1900

52 6 1 1901 2-6-1901

53 6 1 1962 2-6-1962

54 6 1 2024 2-6-2024

 Software Testing: Principles and Practices106

55 6 1 2025 2-6-2025

56 6 2 1900 3-6-1900

57 6 2 1901 3-6-1901

58 6 2 1962 3-6-1962

59 6 2 2024 3-6-2024

60 6 2 2025 3-6-2025

61 6 15 1900 16-6-1900

62 6 15 1901 16-6-1901

63 6 15 1962 16-6-1962

64 6 15 2024 16-6-2024

65 6 15 2025 16-6-2025

66 6 30 1900 1-7-1900

67 6 30 1901 1-7-1901

68 6 30 1962 1-7-1962

69 6 30 2024 1-7-2024

70 6 30 2025 1-7-2025

71 6 31 1900 Invalid date

72 6 31 1901 Invalid date

73 6 31 1962 Invalid date

74 6 31 2024 Invalid date

75 6 31 2025 Invalid date

76 11 1 1900 2-11-1900

77 11 1 1901 2-11-1901

78 11 1 1962 2-11-1962

79 11 1 2024 2-11-2024

80 11 1 2025 2-11-2025

81 11 2 1900 3-11-1900

82 11 2 1901 3-11-1901

83 11 2 1962 3-11-1962

84 11 2 2024 3-11-2024

85 11 2 2025 3-11-2025

86 11 15 1900 16-11-1900

87 11 15 1901 16-11-1901

88 11 15 1962 16-11-1962

89 11 15 2024 16-11-2024

90 11 15 2025 16-11-2025

91 11 30 1900 1-12-1900

92 11 30 1901 1-12-1901

107Dynamic Testing: Black-Box Testing Techniques l

93 11 30 1962 1-12-1962

94 11 30 2024 1-12-2024

95 11 30 2025 1-12-2025

96 11 31 1900 Invalid date

97 11 31 1901 Invalid date

98 11 31 1962 Invalid date

99 11 31 2024 Invalid date

100 11 31 2025 Invalid date

101 12 1 1900 2-12-1900

102 12 1 1901 2-12-1901

103 12 1 1962 2-12-1962

104 12 1 2024 2-12-2024

105 12 1 2025 2-12-2025

106 12 2 1900 3-12-1900

107 12 2 1901 3-12-1901

108 12 2 1962 3-12-1962

109 12 2 2024 3-12-2024

110 12 2 2025 3-12-2025

111 12 15 1900 16-12-1900

112 12 15 1901 16-12-1901

113 12 15 1962 16-12-1962

114 12 15 2024 16-12-2024

115 12 15 2025 16-12-2025

116 12 30 1900 31-12-1900

117 12 30 1901 31-12-1901

118 12 30 1962 31-12-1962

119 12 30 2024 31-12-2024

120 12 30 2025 31-12-2025

121 12 31 1900 1-1-1901

122 12 31 1901 1-1-1902

123 12 31 1962 1-1-1963

124 12 31 2024 1-1-2025

125 12 31 2025 1-1-2026

4.2 EQUIVALENCE CLASS TESTING

We know that the input domain for testing is too large to test every input. So
we can divide or partition the input domain based on a common feature or

 Software Testing: Principles and Practices108

a class of data. Equivalence partitioning is a method for deriving test cases
wherein classes of input conditions called equivalence classes are identifi ed such
that each member of the class causes the same kind of processing and output
to occur. Thus, instead of testing every input, only one test case from each par-
titioned class can be executed. It means only one test case in the equivalence
class will be suffi cient to fi nd errors. This test case will have a representative
value of a class which is equivalent to a test case containing any other value in
the same class. If one test case in an equivalence class detects a bug, all other
test cases in that class have the same probability of fi nding bugs. Therefore,
instead of taking every value in one domain, only one test case is chosen from
one class. In this way, testing covers the whole input domain, thereby reduces
the total number of test cases. In fact, it is an attempt to get a good hit rate to
fi nd maximum errors with the smallest number of test cases.

Equivalence partitioning method for designing test cases has the following
goals:

Completeness Without executing all the test cases, we strive to touch the
completeness of testing domain.

Non-redundancy When the test cases are executed having inputs from the
same class, then there is redundancy in executing the test cases. Time and
resources are wasted in executing these redundant test cases, as they explore
the same type of bug. Thus, the goal of equivalence partitioning method is to
reduce these redundant test cases.

To use equivalence partitioning, one needs to perform two steps:

 1. Identify equivalence classes

 2. Design test cases

4.2.1 IDENTIFICATION OF EQUIVALENT CLASSES

How do we partition the whole input domain? Different equivalence classes
are formed by grouping inputs for which the behaviour pattern of the mod-
ule is similar. The rationale of forming equivalence classes like this is the
assumption that if the specifi cations require exactly the same behaviour for
each element in a class of values, then the program is likely to be constructed
such that it either succeeds or fails for each value in that class. For example,
the specifi cations of a module that determines the absolute value for integers
specify different behaviour patterns for positive and negative integers. In this
case, we will form two classes: one consisting of positive integers and another
consisting of negative integers [14].

109Dynamic Testing: Black-Box Testing Techniques l

Two types of classes can always be identifi ed as discussed below:

 Valid equivalence classes These classes consider valid inputs to the program.

Invalid equivalence classes One must not be restricted to valid inputs only.
We should also consider invalid inputs that will generate error conditions or
unexpected behaviour of the program, as shown in Fig. 4.4.

Software system
as black box

Input Output

Valid input classes

Invalid input classes

Figure 4.4 Equivalence classes

There are no well-defi ned rules for identifying equivalence classes, as it is a
heuristic process. However, some guidelines are defi ned for forming equiva-
lence classes:

 � If there is no reason to believe that the entire range of an input will be
treated in the same manner, then the range should be split into two or
more equivalence classes.

 � If a program handles each valid input differently, then defi ne one valid
equivalence class per valid input.

 � Boundary value analysis can help in identifying the classes. For exam-
ple, for an input condition, say 0 £ a £ 100, one valid equivalent class
can be formed from the valid range of a. And with BVA, two invalid
classes that cross the minimum and maximum values can be identifi ed,
i.e. a < 0 and a > 100.

 � If an input variable can identify more than one category, then for each
category, we can make equivalent classes. For example, if the input is a
character, then it can be an alphabet, a number, or a special character.
So we can make three valid classes for this input and one invalid class.

 � If the requirements state that the number of items input by the system
at some point must lie within a certain range, specify one valid class
where the number of inputs is within the valid range, one invalid class
where there are very few inputs, and one invalid class where there are
too many inputs. For example, specifi cations state that a maximum of
4 purchase orders can be registered against a product. The equivalence
classes are: the valid equivalence class (1 ≤ no. of purchase orders ≤ 4),
the invalid class (no. of purchase orders > 4), and the invalid class (no.
of purchase orders < 1).

 Software Testing: Principles and Practices110

 � If an input condition specifi es a ‘must be’ situation (e.g., ‘fi rst character
of the identifi er must be a letter’), identify a valid equivalence class (it is
a letter) and an invalid equivalence class (it is not a letter).

 � Equivalence classes can be of the output desired in the program. For an
output equivalence class, the goal is to generate test cases such that the
output for that test case lies in the output equivalence class. Determin-
ing test cases for output classes may be more diffi cult, but output classes
have been found to reveal errors that are not revealed by just consider-
ing the input classes.

 � Look for membership of an input condition in a set or group and iden-
tify valid (within the set) and invalid (outside the set) classes. For ex-
ample, if the requirements state that a valid province code is ON, QU,
and NB, then identify: the valid class (code is one of ON, QU, NB) and
the invalid class (code is not one of ON, QU, NB).

 � If the requirements state that a particular input item match a set of values
and each case will be dealt with differently, identify a valid equivalence
class for each element and only one invalid class for values outside the
set. For example, if a discount code must be input as P for a preferred
customer, R for a standard reduced rate, or N for none, and if each case is
treated differently, identify: the valid class code = P, the valid class code =
R, the valid class code = N, the invalid class code is not one of P, R, N.

 � If an element of an equivalence class will be handled differently than
the others, divide the equivalence class to create an equivalence class
with only these elements and an equivalence class with none of these
elements. For example, a bank account balance may be from 0 to Rs 10
lakh and balances of Rs 1,000 or more are not subject to service charges.
Identify: the valid class: (0 ≤ balance < Rs 1,000), i.e. balance is between
0 and Rs 1,000 – not including Rs 1,000; the valid class: (Rs 1,000 ≤
balance ≤ Rs 10 lakh, i.e. balance is between Rs 1,000 and Rs 10 lakh
inclusive the invalid class: (balance < 0) the invalid class: (balance > Rs
10 lakh).

4.2.2 IDENTIFYING THE TEST CASES

A few guidelines are given below to identify test cases through generated
equivalence classes:

 � Assign a unique identifi cation number to each equivalence class.

 � Write a new test case covering as many of the uncovered valid equiva-
lence classes as possible, until all valid equivalence classes have been
covered by test cases.

111Dynamic Testing: Black-Box Testing Techniques l

 � Write a test case that covers one, and only one, of the uncovered
invalid equivalence classes, until all invalid equivalence classes have
been covered by test cases. The reason that invalid cases are covered
by individual test cases is that certain erroneous-input checks mask or
supersede other erroneous-input checks. For instance, if the specifi cation
states ‘Enter type of toys (Automatic, Mechanical, Soft toy) and amount
(1–10000)’, the test case [ABC 0] expresses two error (invalid inputs)
conditions (invalid toy type and invalid amount) will not demonstrate
the invalid amount test case, hence the program may produce an output
‘ABC is unknown toy type’ and not bother to examine the remainder of
the input.

Remember that there may be many possible solutions for one problem
in this technique, depending on the criteria chosen for partitioning the test
domain.

Example 4.5

A program reads three numbers, A, B, and C, with a range [1, 50] and prints
the largest number. Design test cases for this program using equivalence class
testing technique.

Solution

 1. First we partition the domain of input as valid input values and invalid
values, getting the following classes:

 I1 = {<A,B,C> : 1 ≤ A ≤ 50}

 I2 = {<A,B,C> : 1 ≤ B ≤ 50}

 I3 = {<A,B,C> : 1 ≤ C ≤ 50}

 I4 = {<A,B,C> : A < 1}

 I5 = {<A,B,C> : A > 50}

 I6 = {<A,B,C> : B < 1}

 I7 = {<A,B,C> : B > 50}

 I8 = {<A,B,C> : C < 1}

 I9 = {<A,B,C> : C > 50}

 Now the test cases can be designed from the above derived classes, tak-
ing one test case from each class such that the test case covers maximum
valid input classes, and separate test cases for each invalid class.

 Software Testing: Principles and Practices112

 The test cases are shown below:

Test case
ID

A B C Expected
result

Classes covered
by the test case

1 13 25 36 C is greatest I1, I2, I3
2 0 13 45 Invalid input I4
3 51 34 17 Invalid input I5
4 29 0 18 Invalid input I6
5 36 53 32 Invalid input I7
6 27 42 0 Invalid input I8
7 33 21 51 Invalid input I9

 2. We can derive another set of equivalence classes based on some pos-
sibilities for three integers, A, B, and C. These are given below:

 I1 = {<A,B,C> : A > B, A > C}

 I2 = {<A,B,C> : B > A, B > C}

 I3 = {<A,B,C> : C > A, C > B}

 I4 = {<A,B,C> : A = B, A ≠ C}

 I5 = {<A,B,C> : B = C, A ≠ B}

 I6 = {<A,B,C> : A = C, C ≠ B}

 I7 = {<A,B,C> : A = B = C}

Test case
ID

A B C Expected
Result

Classes Covered
by the test case

1 25 13 13 A is greatest I1, I5
2 25 40 25 B is greatest I2, I6
3 24 24 37 C is greatest I3, I4
4 25 25 25 All three are equal I7

Example 4.6

A program determines the next date in the calendar. Its input is entered in the
form of <ddmmyyyy> with the following range:

 1 ≤ mm ≤ 12

 1 ≤ dd ≤ 31

 1900 ≤ yyyy ≤ 2025

Its output would be the next date or an error message ‘invalid date.’ Design
test cases using equivalence class partitioning method.

113Dynamic Testing: Black-Box Testing Techniques l

Solution
First we partition the domain of input in terms of valid input values and
invalid values, getting the following classes:

 I1 = {<m, d, y> : 1 ≤ m ≤ 12}

 I2 = {<m, d, y> : 1 ≤ d ≤ 31}

 I3 = {<m, d, y> : 1900 ≤ y ≤ 2025}

 I4 = {<m, d, y> : m < 1}

 I5 = {<m, d, y> : m > 12}

 I6 = {<m, d, y> : d < 1}

 I7 = {<m, d, y> : d > 31}

 I8 = {<m, d, y> : y < 1900}

 I9 = {<m, d, y> : y > 2025}

The test cases can be designed from the above derived classes, taking one
test case from each class such that the test case covers maximum valid input
classes, and separate test cases for each invalid class. The test cases are shown
below:

Test case
ID

mm dd yyyy Expected
result

Classes covered
by the test case

1 5 20 1996 21-5-1996 I1, I2, I3
2 0 13 2000 Invalid input I4
3 13 13 1950 Invalid input I5
4 12 0 2007 Invalid input I6
5 6 32 1956 Invalid input I7
6 11 15 1899 Invalid input I8
7 10 19 2026 Invalid input I9

Example 4.7

A program takes an angle as input within the range [0, 360] and determines
in which quadrant the angle lies. Design test cases using equivalence class
partitioning method.

Solution
 1. First we partition the domain of input as valid and invalid values, get-

ting the following classes:
 I1 = {<Angle> : 0 ≤ Angle ≤ 360}
 I2 = {<A,B,C> : Angle < 0}
 I3 = {<A,B,C> : Angle > 0}

 Software Testing: Principles and Practices114

 The test cases designed from these classes are shown below:

Test Case
ID

Angle Expected
results

Classes covered
by the test case

1 50 I Quadrant I1
2 −1 Invalid input I2
3 361 Invalid input I3

 2. The classes can also be prepared based on the output criteria as shown
below:

 O1 = {<Angle>: First Quadrant, if 0 ≤ Angle ≤ 90}

 O2 = {<Angle>: Second Quadrant, if 91 ≤ Angle ≤ 180}

 O3 = {<Angle>: Third Quadrant, if 181 ≤ Angle ≤ 270}

 O4 = {<Angle>: Fourth Quadrant, if 271 ≤ Angle ≤ 360}

 O5 = {<Angle>: Invalid Angle};

 However, O5 is not suffi cient to cover all invalid conditions this way.
Therefore, it must be further divided into equivalence classes as shown
below:

 O51 = {<Angle>: Invalid Angle, if Angle < 0}

 O52 = {<Angle>: Invalid Angle, if Angle > 360}

 Now the test cases can be designed from the above derived classes as
shown below:

Test Case
ID

Angle Expected
results

Classes covered
by the test case

1 50 I Quadrant O1

2 135 II Quadrant O2

3 250 III Quadrant O3

4 320 IV Quadrant O4

5 370 Invalid angle O51

6 –1 Invalid angle O52

4.3 STATE TABLE-BASED TESTING

Tables are useful tools for representing and documenting many types of infor-
mation relating to test case design. These are benefi cial for the applications
which can be described using state transition diagrams and state tables. First
we defi ne some basic terms related to state tables which are discussed below.

115Dynamic Testing: Black-Box Testing Techniques l

4.3.1 FINITE STATE MACHINE (FSM)
An FSM is a behavioural model whose outcome depends upon both previous
and current inputs. FSM models can be prepared for software structure or
software behaviour. And it can be used as a tool for functional testing. Many
testers prefer to use FSM model as a guide to design functional tests.

4.3.2 STATE TRANSITION DIAGRAMS OR STATE GRAPH

A system or its components may have a number of states depending on its
input and time. For example, a task in an operating system can have the fol-
lowing states:
 1. New State: When a task is newly created.
 2. Ready: When the task is waiting in the ready queue for its turn.
 3. Running: When instructions of the task are being executed by CPU.
 4. Waiting: When the task is waiting for an I/O event or reception of a

signal.
 5. Terminated: The task has fi nished execution.

States are represented by nodes. Now with the help of nodes and transition
links between the nodes, a state transition diagram or state graph is prepared.
A state graph is the pictorial representation of an FSM. Its purpose is to depict
the states that a system or its components can assume. It shows the events or cir-
cumstances that cause or result from a change from one state to another [21].

Whatever is being modeled is subjected to inputs. As a result of these inputs,
when one state is changed to another, it is called a transition. Transitions are
represented by links that join the nodes. The state graph of task states is shown
in Fig. 4.5.

TerminatedNew

Ready Running

Waiting

Interrupt, T3

I/O or event
completion, T5

I/O or event
wait, T4

Dispatch, T2

Admitted, T1 Exit, T6

Figure 4.5 State graph

Each arrow link provides two types of information:

 1. Transition events like admitted, dispatch, interrupt, etc.

 Software Testing: Principles and Practices116

 2. The resulting output from a state like T1, T2, T3, etc.

 T0 = Task is in new state and waiting for admission to ready queue

 T1 = A new task admitted to ready queue

 T2 = A ready task has started running

T3 = Running task has been interrupted

T4 = Running task is waiting for I/O or event

T5 = Wait period of waiting task is over

T6 = Task has completed execution

4.3.3 STATE TABLE

State graphs of larger systems may not be easy to understand. Therefore,
state graphs are converted into tabular form for convenience sake, which are
known as state tables. State tables also specify states, inputs, transitions, and
outputs. The following conventions are used for state table [9]:

 � Each row of the table corresponds to a state.

 � Each column corresponds to an input condition.

 � The box at the intersection of a row and a column specifi es the next
state (transition) and the output, if any.

The state table for task states is given in Table 4.1.

Table 4.1 State table

State\Input
Event

Admit Dispatch Interrupt I/O or Event
Wait

I/O or Event
Wait Over

Exit

New Ready/ T1 New / T0 New / T0 New / T0 New / T0 New / T0

Ready Ready/ T1 Running/ T2 Ready / T1 Ready / T1 Ready / T1 Ready / T1

Running Running/T2 Running/ T2 Ready / T3 Waiting/ T4 Running/ T2 Terminated/T6

Waiting Waiting/T4 Waiting / T4 Waiting/T4 Waiting / T4 Ready / T5 Waiting / T4

The highlighted cells of the table are valid inputs causing a change of state.
Other cells are invalid inputs which do not cause any transition in the state
of a task.

4.3.4 STATE TABLE-BASED TESTING

After reviewing the basics, we can start functional testing with state tables.
A state graph and its companion state table contain information that is con-
verted into test cases.

117Dynamic Testing: Black-Box Testing Techniques l

The procedure for converting state graphs and state tables into test cases is
discussed below.

 1. Identify the states The number of states in a state graph is the num-
ber of states we choose to recognize or model. In practice, the state is
directly or indirectly recorded as a combination of values of variables
that appear in the database. As an example, the state could be com-
posed of the values of a counter whose possible values ranged from 0 to
9, combined with the setting of two bit fl ags, leading to a total of 2 × 2
× 10 = 40 states. When the state graph represents an explicit state table
implementation, this value is encoded so that bugs in the number of
states are less likely; but the encoding can be wrong. Failing to account
for all the states is one of the more common bugs in the software that
can be modeled by state graphs. As an explicit state table mechaniza-
tion is not typical, the opportunities for missing states abound. Find the
number of states as follows [9]:

 � Identify all the component factors of the state.

 � Identify all the allowable values for each factor.

 � The number of states is the product of the number of allowable
values of all the factors.

 2. Prepare state transition diagram after understanding transitions
between states After having all the states, identify the inputs on each
state and transitions between states and prepare the state graph. Every
input state combination must have a specifi ed transition. If the transi-
tion is impossible, then there must be a mechanism that prevents that
input from occurring in that state.

 A program cannot have contradictions or ambiguities. Ambiguities
are impossible because the program will do something for every input.
Even if the state does not change, by defi nition, this is a transition to the
same state. A seeming contradiction could come about in a model if all
the factors that constitute the state and all the inputs are not taken care
of. If someone as a designer says while debugging, ‘sometimes it works
and sometimes it doesn’t’, it means there is a state factor about which
he is not aware—a factor probably caused by a bug. Exploring the real
state graph and recording the transitions and outputs for each combina-
tion of input and state may lead to discovering the bug.

 3. Convert the state graph into the state table as discussed earlier

 4. Analyse the state table for its completeness

 5. Create the corresponding test cases from the state table

 Test cases are produced in a tabular form known as the test case table
which contains six columns as shown below [22]:

 Software Testing: Principles and Practices118

 Test case ID : a unique identifi er for each test case

 Test Source : a trace back to the corresponding cell in the state table

 Current State : the initial condition to run the test

 Event : the input triggered by the user

 Output : the current value returned

 Next State : the new state achieved

The test cases derived from the state table (Table 4.1) are shown below in
Table 4.2.

Table 4.2 Deriving test cases from state table

Test Case ID Test Source Input Expected Results

Current State Event Output Next State

TC1 Cell 1 New Admit T1 Ready

TC2 Cell 2 New Dispatch T0 New

TC3 Cell 3 New Interrupt T0 New

TC4 Cell 4 New I/O wait T0 New

TC5 Cell 5 New I/O wait over T0 New

TC6 Cell 6 New exit T0 New

TC7 Cell 7 Ready Admit T1 Ready

TC8 Cell 8 Ready Dispatch T2 Running

TC9 Cell 9 Ready Interrupt T1 Ready

TC10 Cell 10 Ready I/O wait T1 Ready

TC11 Cell 11 Ready I/O wait T1 Ready

TC12 Cell 12 Ready Exit T1 Ready

TC13 Cell 13 Running Admit T2 Running

TC14 Cell 14 Running Dispatch T2 Running

TC15 Cell 15 Running Interrupt T3 Ready

TC16 Cell 16 Running I/O wait T4 Waiting

TC17 Cell 17 Running I/O wait over T2 Running

TC18 Cell 18 Running Exit T6 Terminated

TC19 Cell 19 Waiting Admit T4 Waiting

TC20 Cell 20 Waiting Dispatch T4 Waiting

TC21 Cell 21 Waiting Interrupt T4 Waiting

TC22 Cell 22 Waiting I/O wait T4 Waiting

TC23 Cell 23 Waiting I/O wait over T5 Ready

TC24 Cell 24 Waiting Exit T4 Waiting

119Dynamic Testing: Black-Box Testing Techniques l

Test case TC1 gets information from Cell 1 and indicates that one task is cre-
ated New in the system. This new task is getting the input event Admit and tran-
sitions to the new state Ready and the output is T1 (i.e. task is present in Ready
queue). Similarly other test cases can be derived. From the state graph, we can
recognize all input sequences and can form some detailed test cases also.

4.4 DECISION TABLE-BASED TESTING

Boundary value analysis and equivalence class partitioning methods do not
consider combinations of input conditions. These consider each input sepa-
rately. There may be some critical behaviour to be tested when some combi-
nations of input conditions are considered.

Decision table is another useful method to represent the information in a
tabular method. It has the specialty to consider complex combinations of in-
put conditions and resulting actions. Decision tables obtain their power from
logical expressions. Each operand or variable in a logical expression takes on
the value, TRUE or FALSE.

4.4.1 FORMATION OF DECISION TABLE
A decision table is formed with the following components (see Table 4.3):

Table 4.3 Decision table structure

ENTRY

Rule 1 Rule 2 Rule 3 Rule 4 …

C1 True True False I

C2 False True False True

C3 True True True I

A1 X

A2 X X

A3 X

Condition stub It is a list of input conditions for which the complex combination
is made.

Action stub It is a list of resulting actions which will be performed if a combination
of input condition is satisfi ed.

Condition entry It is a specifi c entry in the table corresponding to input
conditions mentioned in the condition stub. When we enter TRUE or FALSE

Co
nd

iti
on

St

ub
Ac

tio
n

St
ub

 Software Testing: Principles and Practices120

for all input conditions for a particular combination, then it is called a Rule.
Thus, a rule defi nes which combination of conditions produces the resulting
action. When the condition entry takes only two values—TRUE or FALSE,
then it is called Limited Entry Decision Table. When the condition entry takes
several values, then it is called Extended Entry Decision Table. In limited entry
decision table, condition entry, which has no effect whether it is True or False,
is called a Don’t-Care state or immaterial state (represented by I). The state of a
don’t-care condition does not affect the resulting action.

Action entry It is the entry in the table for the resulting action to be performed
when one rule (which is a combination of input condition) is satisfi ed. ‘X’
denotes the action entry in the table.

The guidelines to develop a decision table for a problem are discussed
below [7]:

 � List all actions that can be associated with a specifi c procedure (or module).

 � List all conditions (or decision made) during execution of the procedure.

 � Associate specifi c sets of conditions with specifi c actions, eliminating
impossible combinations of conditions; alternatively, develop every
possible permutation of conditions.

 � Defi ne rules by indicating what action occurs for a set of conditions.

4.4.2 TEST CASE DESIGN USING DECISION TABLE

For designing test cases from a decision table, following interpretations should
be done:

 � Interpret condition stubs as the inputs for the test case.

 � Interpret action stubs as the expected output for the test case.

 � Rule, which is the combination of input conditions, becomes the test
case itself.

 � If there are k rules over n binary conditions, there are at least k test cases
and at the most 2n test cases.

Example 4.8

A program calculates the total salary of an employee with the conditions that
if the working hours are less than or equal to 48, then give normal salary. The
hours over 48 on normal working days are calculated at the rate of 1.25 of the
salary. However, on holidays or Sundays, the hours are calculated at the rate
of 2.00 times of the salary. Design test cases using decision table testing.

121Dynamic Testing: Black-Box Testing Techniques l

Solution
The decision table for the program is shown below:

ENTRY

Rule 1 Rule 2 Rule3

Condition Stub C1: Working hours > 48 I F T

C2: Holidays or Sundays T F F

Action Stub A1: Normal salary X

A2: 1.25 of salary X

A3: 2.00 of salary X

The test cases derived from the decision table are given below:

Test Case ID Working Hour Day Expected Result

1 48 Monday Normal Salary

2 50 Tuesday 1.25 of salary

3 52 Sunday 2.00 of salary

Example 4.9

A wholesaler has three commodities to sell and has three types of customers.
Discount is given as per the following procedure:

 (i) For DGS & D orders, 10% discount is given irrespective of the value of
the order.

 (ii) For orders of more than Rs 50,000, agents get a discount of 15% and the
retailer gets a discount of 10%.

 (iii) For orders of Rs 20,000 or more and up to Rs 50,000, agents get 12%
and the retailer gets 8% discount.

 (iv) For orders of less than Rs 20,000, agents get 8% and the retailer gets 5%
discount.

The above rules do not apply to the furniture items wherein a fl at rate of
10% discount is admissible to all customers irrespective of the value of the
order.

Design test cases for this system using decision table testing.

 Software Testing: Principles and Practices122

Solution

ENTRY

R1 R2 R3 R4 R5 R6 R7 R8

C1: DGS & D T F F F F F F F

C2: Agent F T F T F T F I

C3: Retailer F F T F T F T I

C4: Order > 50,000 I T T F F F F I

C5: Order ≥ 20000 to < 50,000 I F F T T F F I

C6: Order < 20,000 I F F F F T T I

C7: Furniture F F F F F F F T

A1: Discount of 5% X

A2: Discount of 8% X X

A3: Discount of 10% X X X

A4: Discount of 12% X

A5: Discount of 15% X

The test cases derived from the decision table are given below:

Test Case ID Type of Customer Product Furniture? Order Value (Rs) Expected Result

1 DGS & D No 51,000 10% Discount

2 Agent No 52,000 15% Discount

3 Retailer No 53,000 10% Discount

4 Agent No 23,000 12% Discount

5 Retailer No 27,000 8% Discount

6 Agent No 15,000 8% Discount

7 Retailer No 18,000 5% Discount

8 Agent Yes 34,000 10% Discount

Example 4.10

A university is admitting students in a professional course subject to the fol-
lowing conditions:

 (a) Marks in Java ≥ 70

 (b) Marks in C++ ≥ 60

Co
nd

iti
on

 S
tu

b
Ac

tio
n

St
ub

123Dynamic Testing: Black-Box Testing Techniques l

 (c) Marks in OOAD ≥ 60

 (d) Total in all three subjects ≥ 220 OR Total in Java and C++ ≥ 150

If the aggregate mark of an eligible candidate is more than 240, he will be
eligible for scholarship course, otherwise he will be eligible for normal course.
The program reads the marks in the three subjects and generates the follow-
ing outputs:
 (i) Not eligible
 (ii) Eligible for scholarship course
 (iii) Eligible for normal course

Design test cases for this program using decision table testing.

Solution

ENTRY

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

C1: marks in Java ≥ 70 T T T T F I I I T T

C2: marks in C++ ≥ 60 T T T T I F I I T T

C3: marks in OOAD ≥ 60 T T T T I I F I T T

C4:Total in three subjects ≥ 220 T F T T I I I F T T

C5:Total in Java & C++ ≥ 150 F T F T I I I F T T

C6:Aggregate marks > 240 F F T T I I I I F T

A1: Eligible for normal course X X X

A2: Eligible for scholarship course X X X

A3: Not eligible X X X X

Test Case ID Java C++ OOAD Aggregate Marks Expected Output

1 70 75 60 224 Eligible for normal course

2 75 75 70 220 Eligible for normal course

3 75 74 91 242 Eligible for scholarship course

4 76 77 89 242 Eligible for scholarship course

5 68 78 80 226 Not eligible

6 78 45 78 201 Not eligible

7 80 80 50 210 Not eligible

8 70 72 70 212 Not eligible

9 75 75 70 220 Eligible for normal course

10 76 80 85 241 Eligible for scholarship course

 Software Testing: Principles and Practices124

4.4.3 EXPANDING THE IMMATERIAL CASES IN DECISION TABLE

Immaterial cases (I) have been shown in the decision table which are don’t-
care conditions. These conditions mean that the value of a particular condition
in the specifi c rule does not make a difference whether it is TRUE or FALSE.
However, we should always test both the values of a don’t-care condition. So
the rules in the table can be expanded. Sometimes expanding the decision
table to spell out don’t-care conditions can reveal hidden problems. Original
decision table shown till now in the examples above and the expanded table
are logically equivalent, implying that the combinations of conditions result
in tests that exercise the same circumstances.

Example 4.11

Consider Example 4.8 once again whose decision table is shown below with
immaterial cases.

ENTRY

Rule 1 Rule 2 Rule 3

Condition Stub
C1: Working hours > 48 I F T

C2: Holidays or Sundays T F F

Action Stub

A1: Normal salary X

A2: 1.25 of salary X

A3: 2.00 of salary X

The immaterial test case in Rule 1 of the above table can be expanded
by taking both T and F values of C1. The expanded decision table is shown
below:

ENTRY
Rule 1-1 Rule 1-2 Rule 2 Rule 3

Condition Stub
C1: Working hours > 48 F T F T
C2: Holidays or Sundays T T F F

Action Stub
A1: Normal salary X
A2: 1.25 of salary X
A3: 2.00 of salary X X

The test cases derived from the expanded decision table are given below:

Test Case ID Working Hour Day Expected Result

1 48 Monday Normal salary
2 50 Tuesday 1.25 of salary
3 52 Sunday 2.00 of salary
4 30 Sunday 2.00 of salary

125Dynamic Testing: Black-Box Testing Techniques l

4.5 CAUSE-EFFECT GRAPHING BASED TESTING
As said earlier, boundary value analysis and equivalence class partitioning
methods do not consider combinations of input conditions. Like decision
tables, cause-effect graphing is another technique for combinations of input
conditions. But cause-effect graphing takes the help of decision table to design
a test case. Therefore, cause-effect graphing is the technique to represent the
situations of combinations of input conditions and then we convert the cause-
effect graph into decision table for the test cases.

One way to consider all valid combinations of input conditions is to consider
all valid combinations of the equivalence classes of input conditions. This
simple approach will result in an unusually large number of test cases, many
of which will not be useful for revealing any new errors. For example, if there
are n different input conditions, such that a combination is valid, we will have
2n test cases. Cause-effect graphing techniques help in selecting combinations
of input conditions in a systematic way, such that the number of test cases
does not become unmanageably large [14].

The following process is used to derive the test cases [2].

Division of specifi cation The specifi cation is divided into workable pieces, as
cause-effect graphing becomes complex when used on large specifi cations.

Identifi cation of causes and effects The next step is to identify causes and effects
in the specifi cations. A cause is a distinct input condition identifi ed in the
problem. It may also be an equivalence class of input conditions. Similarly, an
effect is an output condition.

Transformation of specifi cation into a cause-effect graph Based on the analysis
of the specifi cation, it is transformed into a Boolean graph linking the causes
and effects. This is the cause-effect graph. Complete the graph by adding the
constraints, if any, between causes and effects.

Conversion into decision table The cause-effect graph obtained is converted
into a limited-entry decision table by verifying state conditions in the graph.
Each column in the table represents a test case.

Deriving test cases The columns in the decision table are converted into test
cases.

 Software Testing: Principles and Practices126

4.5.1 BASIC NOTATIONS FOR CAUSE-EFFECT GRAPH

Identity
According to the identity function, if x is 1, y is 1; else y is 0.

x y
Identity

NOT
This function states that if x is 1, y is 0; else y is 1.

x y

NOT

OR
The OR function states that if x or y or z is 1, A is 1; else A is 0.

y

x

z

Av

AND
This function states that if both x and y are 1, z is 1; else z is 0.

x

y

z

Exclusive
Sometimes, the specifi cation contains an impossible combination of causes
such that two causes cannot be set to 1 simultaneously. For this, Exclusive
function is used. According to this function, it always holds that either x or y
can be 1, i.e. x and y cannot be 1 simultaneously.

x

y

E

127Dynamic Testing: Black-Box Testing Techniques l

Inclusive
It states that at least one of x, y, and z must always be 1 (x, y, and z cannot be
0 simultaneously).

z

I y

x

One and Only One
It states that one and only one of x and y must be 1.

x

y

O

Requires
It states that for x to be 1, y must be 1, i.e. it is impossible for x to be 1 and y
to be 0.

y

x

R

Mask
It states that if x is 1, y is forced to 0.

y

x

M

Example 4.12

A program has been designed to determine the nature of roots of a quadratic
equation. The quadratic equation takes three input values from the range [0,
100]. Design the test cases using cause-effect graphing technique.

 Software Testing: Principles and Practices128

Solution
First we identify the causes and effects in this problem as given below:
 C1: a ≠ 0
 C2: b = 0
 C3: c = 0
 C4: D > 0 where D is b2 – 4ac
 C5: D < 0
 C6: D = 0
 C7: a = b = c
 C8: a = c = b/2
 E1: Not a quadratic equation
 E2: Real roots
 E3: Imaginary roots
 E4: Equal roots

Based on these causes and effects and analysing the constraints, the cause-
effect graph is prepared, as shown in Fig. 4.6.

C8

C7

C6

C5

C4

C3

C2

C1

E3

E2

E4

E1

E

R

R

Figure 4.6 Cause-effect graph for Example 4.12

129Dynamic Testing: Black-Box Testing Techniques l

Now this graph is converted into a limited entry decision table as shown
below.

R1 R2 R3 R4 R5 R6 R7

C1: a ≠ 0 T T T T T T F

C2: b = 0 F I I T F F I

C3: c = 0 I F I T F F I

C4: D > 0 T F F F F F I

C5: D < 0 F T F F T F I

C6: D = 0 F F T T F T I

C7: a = b = c F I F F T F I

C8: a = c = b/2 F F I F F T I

A1: Not a quadratic equation X

A2: Real roots X

A3: Imaginary roots X X

A4: Equal roots X X X

The test cases designed based on this table are given below.

Test Case ID a b c Expected Output

1 1 50 50 Real roots

2 100 50 50 Imaginary roots

3 1 6 9 Equal

4 100 0 0 Equal

5 99 99 99 Imaginary

6 50 100 50 Equal

7 0 50 30 Not a quadratic equation

4.6 ERROR GUESSING

Error guessing is the preferred method used when all other methods fail.
Sometimes it is used to test some special cases. According to this method,
errors or bugs can be guessed which do not fi t in any of the earlier defi ned
situations. So test cases are generated for these special cases.

It is a very practical case wherein the tester uses his intuition and makes a
guess about where the bug can be. The tester does not have to use any particu-
lar testing technique. However, this capability comes with years of experience
in a particular fi eld of testing. This is the reason that experienced managers
can easily smell out errors as compared to a novice tester.

 Software Testing: Principles and Practices130

As discussed earlier, every testing activity is recorded. The history of bugs
can help in identifying some special cases in the project. There is a high prob-
ability that errors made in a previous project is repeated again. In these situ-
ations, error guessing is an ad hoc approach, based on intuition, experience,
knowledge of project, and bug history. Any of these can help to expose the
errors. The basic idea is to make a list of possible errors in error-prone situa-
tions and then develop the test cases. Thus, there is no general procedure for
this technique, as it is largely an intuitive and ad hoc process.

For example, consider the system for calculating the roots of a quadratic
equation. Some special cases in this system are as follows:

 � What will happen when a = 0? Though, we do consider this case, there
are chances that we overlook it while testing, as it has two cases:

 (i) If a = 0 then the equation is no longer quadratic.

 (ii) For calculation of roots, division is by zero.

 � What will happen when all the inputs are negative?

 � What will happen when the input list is empty?

SUMMARY

Black-box testing is a dynamic testing technique, wherein the software is tested using a set of
inputs and expected outputs. It does not consider the logics of the program and how it has been
developed. It considers only the functionality of the program and how it behaves under test. This
chapter discusses black-box testing techniques. All the methods have been discussed taking
suffi cient number of examples such that a new method can be learnt easily and the reader can
design the test cases using a particular method.

Let us review the important concepts described in this chapter:
 � Black-box testing is a technique, wherein the structure of program is overlooked. The

internal logic of the program is unknown to the tester.
 � Boundary value analysis is the method to uncover the bugs by looking at the boundary

of the inputs used in the program. The idea is that the programmer tests the program
by having nominal values of the inputs but does not check its boundary values and thus
leaves the bugs.

 � Equivalence class partitioning is a method for deriving test cases, wherein classes of
input conditions called equivalence classes are identifi ed such that each member of
the class causes the same kind of processing and output to occur. It reduces the input
domain space and thereby the testing effort.

 � State table-based testing is a convenient method for testing systems where states and
transitions are specifi ed.

 � Decision table is another useful method to represent the information in a tabular method.
It has the speciality to consider complex combinations of input conditions and resulting
actions.

131Dynamic Testing: Black-Box Testing Techniques l

 � Decision table consists of: condition stub, action stub, condition entry, and action entry.

 � In a decision table, when we enter TRUE or FALSE for all input conditions for a particular
combination, then it is called a Rule.

 � In a decision table, when the condition entry takes only two values – TRUE or FALSE,
then it is called a Limited Entry Decision Table. When the condition entry takes several
values, then it is called an Extended Entry Decision Table.

 � Cause-effect graphing is the technique to represent combinations of input conditions.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. Black-box testing is a _______.
 (a) Static testing
 (b) Dynamic testing
 (c) None of the above

 2. It has been observed that test cases, which are designed with boundary input values,
have a _______ chance of fi nding errors.

 (a) High
 (b) Low
 (c) Medium
 (d) Zero

 3. How many test cases are there in BVC if there are 5 variables in a module?
 (a) 23
 (b) 13
 (c) 10
 (d) 21

 4. How many test cases are there in robustness testing if there are 5 variables in a mod-
ule?

 (a) 23
 (b) 31
 (c) 10
 (d) 21

 5. How many test cases are there in worst-case testing if there are 4 variables in a mod-
ule?

 (a) 623
 (b) 513
 (c) 625
 (d) 521

 Software Testing: Principles and Practices132

 6. Each row of state table corresponds to _______.
 (a) Input
 (b) State
 (c) Transition
 (d) None of the above

 7. Each column of state table corresponds to _______.
 (a) Input
 (b) State
 (c) Transition
 (d) None of the above

 8. Intersection of a row and a column specifi es _______.
 (a) Input
 (b) State
 (c) Transition and output
 (d) None of the above

 9. What are the components of a decision table?
 (a) Condition stub
 (b) Condition entry
 (c) Action stub
 (d) All

 10. If there are k rules over n binary conditions, there are at least _______ test cases and at
the most _______ test cases.

 (a) k+2, 2n+2
 (b) k+3, 2n+3
 (c) k, 2n
 (d) None of the above

 11. Boundary value analysis and equivalence class partitioning methods do not consider
_______.

 (a) Combinations of input conditions
 (b) Inputs
 (c) Outputs
 (d) None

REVIEW QUESTIONS

 1. What are the types of errors detected by black-box testing?

 2. Which type of testing is possible with BVA?

 3. Which type of testing is possible with equivalence class partitioning?

133Dynamic Testing: Black-Box Testing Techniques l

 4. A program calculates the GCD of three numbers in the range [1, 50]. Design test cases
for this program using BVC, robust testing, and worst-case testing methods.

 5. A program takes as input a string (5–20 characters) and a single character and checks
whether that single character is present in the string or not. Design test cases for this
program using BVC, robust testing, and worst-case testing methods.

 6. A program reads the data of employees in a company by taking the following inputs and
prints them:

 Name of Employee (Max. 15 valid characters A–Z, a–z, space)

 Employee ID (10 characters)

 Designation (up to 20 characters)

 Design test cases for this program using BVC, robust testing, and worst-case testing
methods.

 7. A mobile phone service provider uses a program that computes the monthly bill of cus-
tomers as follows:

 Minimum Rs 300 for up to 120 calls

 Plus Re 1 per call for the next 70 calls

 Plus Rs 0.80 per call for the next 50 calls

 Plus Rs 0.40 per call for any call beyond 220 calls.

 Design test cases for this program using equivalence class testing technique.

 8. A program reads players’ records with the following detail and prints a team-wise list
containing player name with their batting average:

 Player name (max. 30 characters)

 Team name (max. 20 characters)

 Batting average

 Design test cases for this program using BVC, robust testing, and worst-case testing
methods.

 9. Consider Example 4.10 and design test cases for this program using equivalence class
testing technique.

 10. Consider a system having an FSM for a stack having the following states and transi-
tions:

 States

 Initial: Before creation

 Empty: Number of elements = 0

 Holding: Number of elements > 0, but less than the maximum capacity

 Full: Number elements = maximum

 Final: After destruction

 Software Testing: Principles and Practices134

 Transitions

 Initial to Empty: Create

 Empty to Holding, Empty to Full, Holding to Holding, Holding to Full: Add

 Empty to Final, Full to Final, Holding to Final: Destroy

 Holding to Empty, Full to Holding, Full to Empty: Delete

 Design test cases for this FSM using state table-based testing.

 11. Passengers who travel more than 50,000 km. per calendar year and in addition, pay
cash for tickets or have been traveling regularly for more than eight years are to receive
a free round trip ticket around India. Passengers who travel less than 50,000 km. per cal-
endar year and have been availing railway services regularly for more than eight years
also get a free round ticket around India.

 Design test cases for this system using decision table testing.

 12. Consider Problem 6 and design test cases using cause-effect graphing technique.

 13. How do you expand immaterial test cases in decision table testing? Expand the immate-
rial test cases in Problem 11.

 14. ‘Error guessing is an ad hoc approach for testing.’ Comment on this statement.

 15. A program takes as input three angles and determines the type of triangle. If all the three
angles are less than 90, it is an acute angled triangle. If one angle is greater than 90, it
is an obtuse angled triangle. If one angle is equal to 90, it is a right angled triangle.

 Design test cases for this program using equivalence class testing technique.

135Dynamic Testing: White-Box Testing Technique l

White-box testing is another effective testing tech-
nique in dynamic testing. It is also known as glass-box
testing, as everything that is required to implement
the software is visible. The entire design, structure,
and code of the software have to be studied for this
type of testing. It is obvious that the developer is
very close to this type of testing. Often, developers
use white-box testing techniques to test their own
design and code. This testing is also known as struc-
tural or development testing.

In white-box testing, structure means the logic of
the program which has been implemented in the
language code. The intention is to test this logic
so that required results or functionalities can be
achieved. Thus, white-box testing ensures that the
internal parts of the software are adequately tested.

5.1 NEED OF WHITE-BOX TESTING

Is white-box testing really necessary? Can’t we write the code and simply test
the software using black-box testing techniques? The supporting reasons for
white-box testing are given below:

 1. In fact, white-box testing techniques are used for testing the module for
initial stage testing. Black-box testing is the second stage for testing the
software. Though test cases for black box can be designed earlier than
white-box test cases, they cannot be executed until the code is produced
and checked using white-box testing techniques. Thus, white-box test-
ing is not an alternative but an essential stage.

 2. Since white-box testing is complementary to black-box testing, there
are categories of bugs which can be revealed by white-box testing, but

Chapter

5
Dynamic Testing: White-Box

Testing Techniques

OBJECTIVES
After reading this chapter, you should be able
to understand:

 � White-box testing demands complete
understanding of the program logic/
structure

 � Test case designing using white-box
testing techniques

 � Basis path testing method
 � Building a path testing tool using graph

matrices
 � Loop testing
 � Data fl ow testing method
 � Mutation testing method

 Software Testing: Principles and Practices136

not through black-box testing. There may be portions in the code which
are not checked when executing functional test cases, but these will be
executed and tested by white-box testing.

 3. Errors which have come from the design phase will also be refl ected in
the code, therefore we must execute white-box test cases for verifi cation
of code (unit verifi cation).

 4. We often believe that a logical path is not likely to be executed when, in
fact, it may be executed on a regular basis. White-box testing explores
these paths too.

 5. Some typographical errors are not observed and go undetected and are
not covered by black-box testing techniques. White-box testing tech-
niques help detect these errors.

5.2 LOGIC COVERAGE CRITERIA

Structural testing considers the program code, and test cases are designed
based on the logic of the program such that every element of the logic is cov-
ered. Therefore the intention in white-box testing is to cover the whole logic.
Discussed below are the basic forms of logic coverage.

 Statement Coverage
The fi rst kind of logic coverage can be identifi ed in the form of statements. It is
assumed that if all the statements of the module are executed once, every bug
will be notifi ed.
 Consider the following code segment shown in Fig. 5.1.

scanf (“%d”, &x);
scanf (“%d”, &y);
while (x != y)
{
 if (x > y)
 x = x – y;
 else
 y = y – x;
 }
 printf (“x = ’’, x);
 printf (“y = ’’, y);

Figure 5.1 Sample code

 If we want to cover every statement in the above code, then the following
test cases must be designed:

137Dynamic Testing: White-Box Testing Technique l

 Test case 1: x = y = n, where n is any number
 Test case 2: x = n, y = n¢, where n and n¢ are different numbers.
 Test case 1 just skips the while loop and all loop statements are not
executed. Considering test case 2, the loop is also executed. However, every
statement inside the loop is not executed. So two more cases are designed:

 Test case 3: x > y
 Test case 4: x < y
 These test cases will cover every statement in the code segment, however
statement coverage is a poor criteria for logic coverage. We can see that test
case 3 and 4 are suffi cient to execute all the statements in the code. But, if
we execute only test case 3 and 4, then conditions and paths in test case 1
will never be tested and errors will go undetected. Thus, statement coverage is a
necessary but not a suffi cient criteria for logic coverage.

 Decision or Branch Coverage
Branch coverage states that each decision takes on all possible outcomes (True
or False) at least once. In other words, each branch direction must be traversed
at least once. In the previous sample code shown in Figure 5.1, while and if
statements have two outcomes: True and False. So test cases must be designed
such that both outcomes for while and if statements are tested. The test cases
are designed as:
 Test case 1: x = y
 Test case 2: x != y
 Test case 3: x < y
 Test case 4: x > y

 Condition Coverage
Condition coverage states that each condition in a decision takes on all pos-
sible outcomes at least once. For example, consider the following statement:
 while ((I £5) && (J < COUNT))
 In this loop statement, two conditions are there. So test cases should be de-
signed such that both the conditions are tested for True and False outcomes.
The following test cases are designed:

 Test case 1: I £ 5, J < COUNT
 Test case 2: I < 5, J > COUNT

 Decision/condition Coverage
Condition coverage in a decision does not mean that the decision has been
covered. If the decision

 Software Testing: Principles and Practices138

 if (A && B)
is being tested, the condition coverage would allow one to write two test cases:
 Test case 1: A is True, B is False.
 Test case 2: A is False, B is True.

But these test cases would not cause the THEN clause of the IF to execute
(i.e. execution of decision). The obvious way out of this dilemma is a criterion
called decision/condition coverage. It requires suffi cient test cases such that
each condition in a decision takes on all possible outcomes at least once, each
decision takes on all possible outcomes at least once, and each point of entry
is invoked at least once [2].

 Multiple condition coverage In case of multiple conditions, even decision/
condition coverage fails to exercise all outcomes of all conditions. The reason
is that we have considered all possible outcomes of each condition in the deci-
sion, but we have not taken all combinations of different multiple conditions.
Certain conditions mask other conditions. For example, if an AND condition
is False, none of the subsequent conditions in the expression will be evaluated.
Similarly, if an OR condition is True, none of the subsequent conditions will
be evaluated. Thus, condition coverage and decision/condition coverage need
not necessarily uncover all the errors.

Therefore, multiple condition coverage requires that we should write suf-
fi cient test cases such that all possible combinations of condition outcomes
in each decision and all points of entry are invoked at least once. Thus, as in
decision/condition coverage, all possible combinations of multiple conditions
should be considered. The following test cases can be there:

 Test case 1: A = True, B = True
 Test case 2: A = True, B = False
 Test case 3: A = False, B = True
 Test case 4: A = False, B = False

5.3 BASIS PATH TESTING
Basis path testing is the oldest structural testing technique. The technique is
based on the control structure of the program. Based on the control structure,
a fl ow graph is prepared and all the possible paths can be covered and ex-
ecuted during testing. Path coverage is a more general criterion as compared
to other coverage criteria and useful for detecting more errors. But the prob-
lem with path criteria is that programs that contain loops may have an infi nite
number of possible paths and it is not practical to test all the paths. Some
criteria should be devised such that selected paths are executed for maximum

139Dynamic Testing: White-Box Testing Technique l

coverage of logic. Basis path testing is the technique of selecting the paths that
provide a basis set of execution paths through the program.

The guidelines for effectiveness of path testing are discussed below:

 1. Path testing is based on control structure of the program for which fl ow
graph is prepared.

 2. Path testing requires complete knowledge of the program’s structure.
 3. Path testing is closer to the developer and used by him to test his

module.
 4. The effectiveness of path testing gets reduced with the increase in size

of software under test [9].
 5. Choose enough paths in a program such that maximum logic coverage

is achieved.

5.3.1 CONTROL FLOW GRAPH

The control fl ow graph is a graphical representation of control structure of a
program. Flow graphs can be prepared as a directed graph. A directed graph
(V, E) consists of a set of vertices V and a set of edges E that are ordered pairs
of elements of V. Based on the concepts of directed graph, following notations
are used for a fl ow graph:

 � Node It represents one or more procedural statements. The nodes are
denoted by a circle. These are numbered or labeled.

 � Edges or links They represent the fl ow of control in a program. This is
denoted by an arrow on the edge. An edge must terminate at a node.

 � Decision node A node with more than one arrow leaving it is called a
decision node.

 � Junction node A node with more than one arrow entering it is called a
junction.

 � Regions Areas bounded by edges and nodes are called regions. When
counting the regions, the area outside the graph is also considered a region.

5.3.2 FLOW GRAPH NOTATIONS FOR DIFFERENT PROGRAMMING CONSTRUCTS

Since a fl ow graph is prepared on the basis of control structure of a program,
some fundamental graphical notations are shown here (see Fig. 5.2) for basic
programming constructs.

Using the above notations, a fl ow graph can be constructed. Sequential state-
ments having no conditions or loops can be merged in a single node. That is
why, the fl ow graph is also known as decision-to-decision-graph or DD graph.

 Software Testing: Principles and Practices140

. . .

(a) Sequence

(b) If-Then-Else (c) Do-While (d) While-Do (e) Switch-Case

Figure 5.2

5.3.3 PATH TESTING TERMINOLOGY

Path A path through a program is a sequence of instructions or statements
that starts at an entry, junction, or decision and ends at another, or possibly
the same, junction, decision, or exit. A path may go through several junctions,
processes, or decisions, one or more times.

Segment Paths consist of segments. The smallest segment is a link, that is, a single
process that lies between two nodes (e.g., junction-process-junction, junction-
process-decision, decision-process-junction, decision-process-decision). A direct
connection between two nodes, as in an unconditional GOTO, is also called a
process by convention, even though no actual processing takes place.

Path segment A path segment is a succession of consecutive links that belongs
to some path.

Length of a path The length of a path is measured by the number of links
in it and not by the number of instructions or statements executed along the
path. An alternative way to measure the length of a path is by the number of
nodes traversed. This method has some analytical and theoretical benefi ts. If
programs are assumed to have an entry and an exit node, then the number of
links traversed is just one less than the number of nodes traversed.

 Independent path An independent path is any path through the graph that
introduces at least one new set of processing statements or new conditions.
An independent path must move along at least one edge that has not been
traversed before the path is defi ned [9,28].

141Dynamic Testing: White-Box Testing Technique l

5.3.4 CYCLOMATIC COMPLEXITY

McCabe [24] has given a measure for the logical complexity of a program
by considering its control fl ow graph. His idea is to measure the complexity
by considering the number of paths in the control graph of the program. But
even for simple programs, if they contain at least one cycle, the number of
paths is infi nite. Therefore, he considers only independent paths.

a

i j

e fg

h

dc

b

Figure 5.3 Sample graph

In the graph shown in Figure 5.3, there are six possible paths: acei, acgh,
acfh, bdei, bdgh, bdfj.

In this case, we would see that, of the six possible paths, only four are
independent, as the other two are always a linear combination of the other
four paths. Therefore, the number of independent paths is 4. In graph theory,
it can be demonstrated that in a strongly connected graph (in which each
node can be reached from any other node), the number of independent paths
is given by

V(G) = e – n + 1
where n is the number of nodes and e is the number of arcs/edges.

However, it may be possible that the graph is not strongly connected.
In that case, the above formula does not fi t. Therefore, to make the graph
strongly connected, we add an arc from the last node to the fi rst node of the
graph. In this way, the fl ow graph becomes a strongly connected graph. But
by doing this, we increase the number of arcs by 1 and therefore, the number
of independent paths (as a function of the original graph) is given by

V(G) = e – n + 2
This is called the cyclomatic number of a program. We can calculate the

cyclomatic number only by knowing the number of choice points (decision
nodes) d in the program. It is given by

V(G) = d + 1

 Software Testing: Principles and Practices142

This is also known as Miller’s theorem. We assume that a k-way decision
point contributes for k − 1 choice points.

The program may contain several procedures also. These procedures can
be represented as separate fl ow graphs. These procedures can be called from
any point but the connections for calling are not shown explicitly. The cyclo-
matic number of the whole graph is then given by the sum of the numbers of
each graph. It is easy to demonstrate that, if p is the number of graphs and e
and n are referred to as the whole graph, the cyclomatic number is given by

V(G) = e – n + 2p

And Miller’s theorem becomes
V(G) = d + p

 Formulae Based on Cyclomatic Complexity
Based on the cyclomatic complexity, the following formulae are being sum-
marized.

Cyclomatic complexity number can be derived through any of the following
three formulae

 1. V(G) = e – n + 2p
 where e is number of edges, n is the number of nodes in the graph, and

p is number of components in the whole graph.

 2. V(G) = d + p
 where d is the number of decision nodes in the graph.

 3. V(G) = number of regions in the graph

Calculating the number of decision nodes for Switch-Case/Multiple If-Else
When a decision node has exactly two arrows leaving it, then we count it as
a single decision node. However, switch-case and multiple if-else statements
have more than two arrows leaving a decision node, and in these cases, the
formula to calculate the number of nodes is

d = k – 1, where k is the number of arrows leaving the node.

Calculating the cyclomatic complexity number of the program having many
connected components Let us say that a program P has three components: X,
Y, and Z. Then we prepare the fl ow graph for P and for components, X, Y, and
Z. The complexity number of the whole program is

V (G) = V (P) + V (X) + V (Y) + V (Z)

We can also calculate the cyclomatic complexity number of the full pro-
gram with the fi rst formula by counting the number of nodes and edges in all
the components of the program collectively and then applying the formula

V(G) = e – n + 2P

143Dynamic Testing: White-Box Testing Technique l

The complexity number derived collectively will be same as calculated
above. Thus,

V (P » X » Y »Z) = V (P) + V (X) + V (Y) + V (Z)

 Guidelines for Basis Path Testing
We can use the cyclomatic complexity number in basis path testing. Cyclomatic
number, which defi nes the number of independent paths, can be utilized as
an upper bound for the number of tests that must be conducted to ensure that
all the statements have been executed at least once. Thus, independent paths
are prepared according to the upper limit of the cyclomatic number. The set
of independent paths becomes the basis set for the fl ow graph of the program.
Then test cases can be designed according to this basis set.

The following steps should be followed for designing test cases using path
testing:

 � Draw the fl ow graph using the code provided for which we have to
write test cases.

 � Determine the cyclomatic complexity of the fl ow graph.

 � Cyclomatic complexity provides the number of independent paths.
Determine a basis set of independent paths through the program control
structure.

 � The basis set is in fact the base for designing the test cases. Based on every
independent path, choose the data such that this path is executed.

 Example 5.1

Consider the following program segment:

 main()
 {
 int number, index;
 1. printf(“Enter a number”);
 2. scanf(“%d, &number);
 3. index = 2;
 4. while(index <= number – 1)
 5. {
 6. if (number % index == 0)
 7. {
 8. printf(“Not a prime number”);
 9. break;
 10. }
 11. index++;
 12. }

 Software Testing: Principles and Practices144

 13. if(index == number)
 14. printf(“Prime number”);
 15. } //end main

 (a) Draw the DD graph for the program.
 (b) Calculate the cyclomatic complexity of the program using all the methods.
 (c) List all independent paths.
 (d) Design test cases from independent paths.

Solution
 (a) DD graph
 For a DD graph, the following actions must be done:

 � Put the line numbers on the execution statements of the program,
as shown in Fig. 5.4. Start numbering the statements after declar-
ing the variables, if no variables have been initialized. Otherwise,
start from the statement where a variable has been initialized.

1, 2, 3

4

5, 6

7, 8 ,9

11, 12

13

14

15

A

B

C

D

E

F

G

H

Figure 5.4 DD graph for Example 5.1

145Dynamic Testing: White-Box Testing Technique l

 � Put the sequential statements in one node. For example, statements
1, 2, and 3 have been put inside one node.

 � Put the edges between the nodes according to their fl ow of execution.

 � Put alphabetical numbering on each node like A, B, etc.

 The DD graph of the program is shown in Figure 5.4.

 (b) Cyclomatic complexity

 (i) V(G) = e – n + 2 * p

 = 10 – 8 + 2

 = 4

1, 2, 3

4

5, 6

7, 8 ,9

11, 12

13

14

15

A

B

C

D

E

F

G

H

R1

R2

R3

R4

Figure 5.5 DD graph for Example 5.1 showing regions

 (ii) V(G) = Number of predicate nodes + 1

 = 3 (Nodes B, C, and F) + 1

 = 4

 Software Testing: Principles and Practices146

 (iii) V (G) = Number of regions

 = 4(R1, R2, R3, R4)

 (c) Independent paths
Since the cyclomatic complexity of the graph is 4, there will be 4 inde-
pendent paths in the graph as shown below:

 (i) A-B-F-H

 (ii) A-B-F-G-H

 (iii) A-B-C-E-B-F-G-H

 (iv) A-B-C-D-F-H

 (d) Test case design from the list of independent paths

Test case ID Input num Expected result Independent paths covered
by test case

1 1 No output is displayed A-B-F-H

2 2 Prime number A-B-F-G-H

3 4 Not a prime number A-B-C-D-F-H

4 3 Prime number A-B-C-E-B-F-G-H

 Example 5.2

Consider the following program that reads in a string and then checks the
type of each character.

 main()
 {
 char string [80];
 int index;
 1. printf(“Enter the string for checking its characters”);
 2. scanf(“%s”, string);
 3. for(index = 0; string[index] != ‘\0’; ++index) {
 4. if((string[index] >= ‘0’ && (string[index] <=‘9’
 5. printf(“%c is a digit”, string[index]);
 6. else if ((string[index] >= ‘A’ && string[index] <‘Z’)) ||
 ((string[index] >= ‘a’ && (string[index] <‘z’)))
 7. printf(“%c is an alphabet”, string[index]);
 8. else
 9. printf(“%c is a special character”, string[index]);
 10. }

 11. }

147Dynamic Testing: White-Box Testing Technique l

 (a) Draw the DD graph for the program.

 (b) Calculate the cyclomatic complexity of the program using all the methods.

 (c) List all independent paths.

 (d) Design test cases from independent paths.

Solution

 (a) DD graph
 The DD graph of the program is shown in Fig. 5.6.

1, 2 A

3
B

4 C

F

10 G

11
H

8, 96, 75

ED

Figure 5.6 DD graph for Example 5.2

 (b) Cyclomatic complexity

 (i) V(G) = e – n + 2 * P
 = 10 – 8 + 2
 = 4

 (ii) V(G) = Number of predicate nodes + 1
 = 3 (Nodes B, C) + 1
 = 4

 Node C is a multiple IF-THEN-ELSE, so for fi nding out the number
of predicate nodes for this case, follow the following formula:

 Software Testing: Principles and Practices148

 Number of predicated nodes
 = Number of links out of main node − 1
 = 3 – 1 = 2 (For node C)
 (iii) V(G) = Number of regions
 = 4

 (c) Independent paths
Since the cyclomatic complexity of the graph is 4, there will be 4 inde-
pendent paths in the graph as shown below:

 (i) A-B-H
 (ii) A-B-C-D-G-B-H
 (iii) A-B-C-E-G-B-H
 (iv) A-B-C-F-G-B-H

 (d) Test case design from the list of independent paths

Test Case ID Input Line Expected Output Independent paths covered
by Test case

1 0987 0 is a digit
9 is a digit
8 is a digit
7 is a digit

A-B-C-D-G-B-H
A-B-H

2 AzxG A is a alphabet
z is a alphabet
x is a alphabet
G is a alphabet

A-B-C-E-G-B-H
A-B-H

3 @# @ is a special character
is a special character

A-B-C-F- G-B-H
A-B-H

 Example 5.3

Consider the following program:

 main()
 {
 char chr;
1. printf (“Enter the special character\n”);
2. scanf (%c”, &chr);
3. if (chr != 48) && (chr != 49) && (chr != 50) && (chr != 51) &&

(chr != 52) && (chr != 53) && (chr != 54) && (chr != 55) &&
(chr != 56) && (chr != 57)

4. {
5. switch(chr)

149Dynamic Testing: White-Box Testing Technique l

6. {
7. Case ‘*’: printf(“It is a special character”);
8. break;
9. Case ‘#’: printf(“It is a special character”);
10. break;
11. Case ‘@’: printf(“It is a special character”);
12. break;
13. Case ‘!’: printf(“It is a special character”);
14. break;
15. Case ‘%’: printf(“It is a special character”);
16. break;
17. default : printf(“You have not entered a special character”);
18. break;
19. }// end of switch
20. } // end of If
21. else
22. printf(“You have not entered a character”);

23. } // end of main()

 (a) Draw the DD graph for the program.

 (b) Calculate the cyclomatic complexity of the program using all the
methods.

 (c) List all independent paths.

 (d) Design test cases from independent paths.

Solution
 (a) DD graph
 The DD graph of the program is shown in Fig. 5.7.

7, 8 9, 10 11, 12 13, 14 15, 16 17, 18

19, 20 23

4, 5, 6 21, 22

3

1, 2 A

B

C D

J

IHGF

E

K

L

Figure 5.7 DD graph for Example 5.3

 Software Testing: Principles and Practices150

 (b) Cyclomatic complexity

 (i) V(G) = e – n + 2p
 = 17 – 12 + 2
 = 7

 (ii) V(G) = Number of predicate nodes + 1
 = 2 (Nodes B, C) + 1
 = 7

 Node C is a switch-case, so for fi nding out the number of predicate
nodes for this case, follow the following formula:

 Number of predicated nodes

 = Number of links out of main node –1
 = 6 – 1 = 5 (For node C)

 (iii) V(G) = Number of regions = 7

 (c) Independent paths
Since the cyclomatic complexity of the graph is 7, there will be 7 inde-
pendent paths in the graph as shown below:

 1. A-B-D-L
 2. A-B-C-E-K-L
 3. A-B-C-F-K-L
 4. A-B-C-G-K-L
 5. A-B-C-H-K-L
 6. A-B-C-I-K-L
 7. A-B-C-J-K-L

 (d) Test Case Design from the list of Independent Paths

Test Case ID Input Character Expected Output Independent path
covered by Test Case

1 (You have not entered a character A-B-D-L

2 * It is a special character A-B-C-E-K-L

3 # It is a special character A-B-C-F-K-L

4 @ It is a special character A-B-C-G-K-L

5 ! It is a special character A-B-C-H-K-L

6 % It is a special character A-B-C-I-K-L

7 $ You have not entered a special character A-B-C-J-K-L

151Dynamic Testing: White-Box Testing Technique l

 Example 5.4

Consider a program to arrange numbers in ascending order from a given list
of N numbers.

 main()
 {
 int num,small;
 int i,j,sizelist,list[10],pos,temp;

1.

 clrscr();
 printf(“\nEnter the size of list :\n ”);
 scanf(“%d”,&sizelist);

 2. for(i=0;i<sizelist;i++)

 {

 printf(“\nEnter the number”);

3.
 scanf (“%d”,&list[i]);

 }

 4. for(i=0;i<sizelist;i++)

 {
 5. small=list[i];
 pos=i;

 6. for(j=i+1;j<sizelist;j++)
 {

 7. if(small>list[j])

 {
 small=list[j];
 8.

 pos=j;
 }

 9. }

 temp=list[i];
 10.

 list[i]=list[pos];

 list[pos]=temp;

 11. }
 12. printf(“\nList of the numbers in ascending order : ”);
 13. for(i=0;i<sizelist;i++)
 14. printf(“\n%d”,list[i]);

 getch();
 15. }

 Software Testing: Principles and Practices152

 (a) Draw the DD graph for the program.
 (b) Calculate the cyclomatic complexity of the program using all the methods.
 (c) List all independent paths.
 (d) Design test cases from independent paths.

Solution

 (a) DD graph

 The DD graph of the program is shown in Fig. 5.8.

3

2

1

4

5

6

7

10

11

12

141315
R5

8 9
R4

R3

R6

R1

R2

Figure 5.8 DD graph for Example 5.4

 (b) Cyclomatic complexity

 1. V (G) = e – n + 2p

 = 19 – 15 +2

 = 6

153Dynamic Testing: White-Box Testing Technique l

 2. V (G) = Number of predicate nodes + 1

 = 5 + 1

 = 6

 3. V (G) = Number of regions

 = 6

 (c) Independent paths
Since the cyclomatic complexity of the graph is 6, there will be 6 inde-
pendent paths in the graph as shown below:

 1. 1-2-3-2-4-5-6-7-8-9-6-10-11-4-12-13-14-13-15

 2. 1-2-3-2-4-5-6-7-9-6-10-11-4-12-13-14-13-15

 3. 1-2-3-2-4-5-6-10-11-4-12-13-14-13-15

 4. 1-2-3-2-4-12-13-14-13-15 (path not feasible)

 5. 1-2-4-12-13-15

 6. 1-2-3-2-4-12-13-15 (path not feasible)

 (d) Test case design from the list of independent paths

Test Case
ID

Input Expected Output Independent path covered by
Test Case

1
Sizelist = 5
List[] = {17,6,7,9,1}

1,6,7,9,17 1

2
Sizelist = 5
List[] = {1,3,9,10,18}

1,3,9,10,18 2

3
Sizelist = 1
List[] = {1}

1 3

4 Sizelist = 0 blank blank

 Example 5.5

Consider the program for calculating the factorial of a number. It consists of
main() program and the module fact(). Calculate the individual cyclomatic
complexity number for main() and fact() and then, the cyclomatic complexity
for the whole program.

 main()
 {
 int number;
 int fact();
 1. clrscr();
 2. printf(“Enter the number whose factorial is to be found out”);

 Software Testing: Principles and Practices154

 3. scanf(“%d”, &number);
 4. if(number <0)
 5. printf(“Facorial cannot be defi ned for this number);
 6. else
 7. printf(“Factorial is %d”, fact(number));
 8. }

 int fact(int number)
 {
 int index;
 1. int product =1;
 2. for(index=1; index<=number; index++)
 3. product = product * index;
 4. return(product);

 5. }

Solution

 DD graph
The DD graph of the program is shown in Fig. 5.9

1, 2, 3

4

8

5 6, 7

1

2

3

4, 5

(a) Flow graph for main () (b) Flow graph for fact ()

Figure 5.9

Cyclomatic complexity of main()

 (a) V (M) = e − n + 2p

 = 5 – 5 + 2

 = 2

 (b) V (M) = d + p

 = 1 + 1

 = 2

 (c) V (M) = Number of regions = 2

155Dynamic Testing: White-Box Testing Technique l

Cyclomatic complexity of fact()

 (a) V (R) = e – n + 2p

 = 4 − 4 + 2

 = 2

 (b) V (R) = Number of predicate nodes + 1

 = 1 + 1

 = 2

 (c) V (R) = Number of regions = 2

Cyclomatic complexity of the whole graph considering the full program

 (a) V (G) = e – n + 2p

 = 9 − 9 + 2 ¥ 2

 = 4

 = V (M) + V (R)

 (b) V (G) = d + p

 = 2 + 2

 = 4

 = V (M) + V (R)

 (c) V (G) = Number of regions

 = 4

 = V (M) + V (R)

5.3.5 APPLICATIONS OF PATH TESTING

Path testing has been found better suitable as compared to other testing meth-
ods. Some of its applications are discussed below.

Thorough testing / More coverage Path testing provides us the best code cov-
erage, leading to a thorough testing. Path coverage is considered better as
compared to statement or branch coverage methods because the basis path
set provides us the number of test cases to be covered which ascertains the
number of test cases that must be executed for full coverage. Generally, branch
coverage or other criteria gives us less number of test cases as compared to
path testing. Cyclomatic complexity along with basis path analysis employs
more comprehensive scrutiny of code structure and control fl ow, providing a
far superior coverage technique.

 Software Testing: Principles and Practices156

 Unit testing Path testing is mainly used for structural testing of a module. In
unit testing, there are chances of errors due to interaction of decision out-
comes or control fl ow problems which are hidden with branch testing. Since
each decision outcome is tested independently, path testing uncovers these
errors in module testing and prepares them for integration.

 Integration testing Since modules in a program may call other modules or be
called by some other module, there may be chances of interface errors during
calling of the modules. Path testing analyses all the paths on the interface and
explores all the errors.

 Maintenance testing Path testing is also necessary with the modifi ed version
of the software. If you have earlier prepared a unit test suite, it should be run
on the modifi ed software or a selected path testing can be done as a part of
regression testing. In any case, path testing is still able to detect any security
threats on the interface with the called modules.

Testing effort is proportional to complexity of the software Cyclomatic com-
plexity number in basis path testing provides the number of tests to be ex-
ecuted on the software based on the complexity of the software. It means the
number of tests derived in this way is directly proportional to the complexity
of the software. Thus, path testing takes care of the complexity of the software
and then derives the number of tests to be carried out.

Basis path testing effort is concentrated on error-prone software Since basis path
testing provides us the number of tests to be executed as a measure of software
cyclomatic complexity, the cyclomatic number signifi es that the testing effort is
only on the error-prone part of the software, thus minimizing the testing effort.

5.4 GRAPH MATRICES

Flow graph is an effective aid in path testing as seen in the previous section.
However, path tracing with the use of fl ow graphs may be a cumbersome and
time-consuming activity. Moreover, as the size of graph increases, manual
path tracing becomes diffi cult and leads to errors. A link can be missed or
covered twice. So the idea is to develop a software tool which will help in
basis path testing.

Graph matrix, a data structure, is the solution which can assist in develop-
ing a tool for automation of path tracing. The reason being the properties of
graph matrices are fundamental to test tool building. Moreover, testing theory

157Dynamic Testing: White-Box Testing Technique l

can be explained on the basis of graphs. Graph theorems can be proved
easily with the help of graph matrices. So graph matrices are very useful for
understanding the testing theory.

5.4.1 GRAPH MATRIX

A graph matrix is a square matrix whose rows and columns are equal to the
number of nodes in the fl ow graph. Each row and column identifi es a particu-
lar node and matrix entries represent a connection between the nodes.

The following points describe a graph matrix:
 � Each cell in the matrix can be a direct connection or link between one

node to another node.
 � If there is a connection from node ‘a’ to node ‘b’, then it does not mean

that there is connection from node ‘b’ to node ‘a’.
 � Conventionally, to represent a graph matrix, digits are used for nodes

and letter symbols for edges or connections.

 Example 5.6

2 3

1

4

d e

cb

a

Consider the above graph and represent it in the form of a graph matrix.

Solution

The graph matrix is shown below.

1 2 3 4

1 a b c

2 d

3 e

4

 Software Testing: Principles and Practices158

 Example 5.7

Consider the graph and represent it in the form of a graph matrix.

3 2

1

4

d

c

b

a

Solution

The graph matrix is shown below.

1 2 3 4

1 a+b c

2

3 d

4

5.4.2 CONNECTION MATRIX

Till now, we have learnt how to represent a fl ow graph into a matrix repre-
sentation. But this matrix is just a tabular representation and does not provide
any useful information. If we add link weights to each cell entry, then graph
matrix can be used as a powerful tool in testing. The links between two nodes
are assigned a link weight which becomes the entry in the cell of matrix. The
link weight provides information about control fl ow.

In the simplest form, when the connection exists, then the link weight is
1, otherwise 0 (But 0 is not entered in the cell entry of matrix to reduce the
complexity). A matrix defi ned with link weights is called a connection matrix.
The connection matrix for Example 5.6 is shown below.

1 2 3 4

1 1 1 1

2 1

3 1

4

159Dynamic Testing: White-Box Testing Technique l

The connection matrix for Example 5.7 is shown below.

1 2 3 4

1 1 1

2

3 1

4

5.4.3 USE OF CONNECTION MATRIX IN FINDING CYCLOMATIC
 COMPLEXITY NUMBER

Connection matrix is used to see the control fl ow of the program. Further, it
is used to fi nd the cyclomatic complexity number of the fl ow graph. Given
below is the procedure to fi nd the cyclomatic number from the connection
matrix:

Step 1: For each row, count the number of 1s and write it in front of that
row.

Step 2: Subtract 1 from that count. Ignore the blank rows, if any.
Step 3: Add the fi nal count of each row.
Step 4: Add 1 to the sum calculated in Step 3.
Step 5: The fi nal sum in Step 4 is the cyclomatic number of the graph.

The cyclomatic number calculated from the connection matrix of Example
5.6 is shown below.

1 2 3 4

1 1 1 1 3 – 1 = 2

2 1 1 – 1 = 0

3 1 1 – 1 = 0

4

Cyclomatic number = 2+1 = 3

The cyclomatic number calculated from the connection matrix of Example
5.7 is shown below.

1 2 3 4

1 1 1 2 – 1 = 1

2

3 1 1 – 1 = 0

4

Cyclomatic number = 1+1 = 2

 Software Testing: Principles and Practices160

5.4.4 USE OF GRAPH MATRIX FOR FINDING SET OF ALL PATHS

Another purpose of developing graph matrices is to produce a set of all paths
between all nodes. It may be of interest in path tracing to fi nd k-link paths
from one node. For example, how many 2-link paths are there from one node
to another node? This process is done for every node resulting in the set of all
paths. This set can be obtained with the help of matrix operations. The main
objective is to use matrix operations to obtain the set of all paths between all
nodes. The set of all paths between all nodes is easily expressed in terms of
matrix operations.

The power operation on matrix expresses the relation between each pair of
nodes via intermediate nodes under the assumption that the relation is transi-
tive (mostly, relations used in testing are transitive). For example, the square
of matrix represents path segments that are 2-links long. Similarly, the cube
power of matrix represents path segments that are 3-links long.

Generalizing, we can say that mth power of the matrix represents path seg-
ments that are m-links long.

 Example 5.8

Consider the graph matrix in Example 5.6 and fi nd 2-link paths for each
node.

Solution

For fi nding 2-link paths, we should square the matrix. Squaring the matrix
yields a new matrix having 2-link paths.

20 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

a b c a b c a ab ac bd ce
d d
e e

Ê ˆ+Ê ˆ Ê ˆ
Á ˜Á ˜ Á ˜
Á ˜Á ˜ Á ˜ =
Á ˜Á ˜ Á ˜
Á ˜Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

The resulting matrix shows all the 2-link paths from one node to another.
For example, from node 1 to node 2, there is one 2-link, i.e., ab.

 Example 5.9

Consider the following graph. Derive its graph matrix and fi nd 2-link and
3-link set of paths.

161Dynamic Testing: White-Box Testing Technique l

2 3

1

4

d

f

c

ba

e

Solution

The graph matrix of the graph is shown below.

0 0
0 0
0 0
0 0 0 0

a b
c e

d f

Ê ˆ
Á ˜
Á ˜
Á ˜
Á ˜Ë ¯

First we fi nd 2-link set of paths by squaring this matrix as shown below:

0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

a b a b bd ac ae bf
c e c e cd cf

d f d f dc de

+Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜=
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

Next, we fi nd 3-link set of paths by taking the cube of matrix as shown below:

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

bd ac ae bf a b acd bdc bde acf
cd cf c e cdc cde

dc de d f dcd dcf

+ +Ê ˆ Ê ˆ Ê ˆ
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜=
Á ˜ Á ˜ Á ˜
Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

It can be generalized that for n number of nodes, we can get the set of all
paths of (n − 1) links length with the use of matrix operations. These opera-
tions can be programmed and can be utilized as a software testing tool.

5.5 LOOP TESTING

Loop testing can be viewed as an extension to branch coverage. Loops are
important in the software from the testing viewpoint. If loops are not tested

 Software Testing: Principles and Practices162

properly, bugs can go undetected. This is the reason that loops are covered in
this section exclusively. Loop testing can be done effectively while perform-
ing development testing (unit testing by the developer) on a module. Suffi -
cient test cases should be designed to test every loop thoroughly.

There are four different kinds of loops. How each kind of loop is tested, is
discussed below.

 Simple loops Simple loops mean, we have a single loop in the fl ow, as shown
in Fig. 5.9.

 Figure 5.9 (a) Figure 5.9 (b)

The following test cases should be considered for simple loops while testing
them [9]:

 � Check whether you can bypass the loop or not. If the test case for by-
passing the loop is executed and, still you enter inside the loop, it means
there is a bug.

 � Check whether the loop control variable is negative.

 � Write one test case that executes the statements inside the loop.

 � Write test cases for a typical number of iterations through the loop.

 � Write test cases for checking the boundary values of the maximum and
minimum number of iterations defi ned (say min and max) in the loop. It
means we should test for min, min+1, min−1, max−1, max, and max+1
number of iterations through the loop.

 Nested loops When two or more loops are embedded, it is called a nested
loop, as shown in Fig. 5.10. If we have nested loops in the program, it becomes
diffi cult to test. If we adopt the approach of simple tests to test the nested
loops, then the number of possible test cases grows geometrically. Thus, the
strategy is to start with the innermost loops while holding outer loops to their

163Dynamic Testing: White-Box Testing Technique l

minimum values. Continue this outward in this manner until all loops have
been covered [9].

Figure 5.10 Nested loops

 Concatenated loops The loops in a program may be concatenated (Fig. 5.11).
Two loops are concatenated if it is possible to reach one after exiting the other,
while still on a path from entry to exit. If the two loops are not on the same
path, then they are not concatenated. The two loops on the same path may or
may not be independent. If the loop control variable for one loop is used for
another loop, then they are concatenated, but nested loops should be treated
like nested only.

Figure 5.11 Concatenated loops

 Unstructured loops This type of loops is really impractical to test and they
must be redesigned or at least converted into simple or concatenated loops.

 Software Testing: Principles and Practices164

5.6 DATA FLOW TESTING

In path coverage, the stress was to cover a path using statement or branch
coverage. However, data and data integrity is as important as code and code
integrity of a module. We have checked every possibility of the control fl ow
of a module. But what about the data fl ow in the module? Has every data
object been initialized prior to use? Have all defi ned data objects been used
for something? These questions can be answered if we consider data objects
in the control fl ow of a module.

Data fl ow testing is a white-box testing technique that can be used to detect
improper use of data values due to coding errors. Errors may be unintention-
ally introduced in a program by programmers. For instance, a programmer
might use a variable without defi ning it. Moreover, he may defi ne a variable,
but not initialize it and then use that variable in a predicate. For example,
 int a;
 if(a == 67) { }

In this way, data fl ow testing gives a chance to look out for inappropriate
data defi nition, its use in predicates, computations, and termination. It identi-
fi es potential bugs by examining the patterns in which that piece of data is
used. For example, if an out-of-scope data is being used in a computation,
then it is a bug. There may be several patterns like this which indicate data
anomalies.

To examine the patterns, the control fl ow graph of a program is used. This
test strategy selects the paths in the module’s control fl ow such that various
sequences of data objects can be chosen. The major focus is on the points at
which the data receives values and the places at which the data initialized has
been referenced. Thus, we have to choose enough paths in the control fl ow to
ensure that every data is initialized before use and all the defi ned data have
been used somewhere. Data fl ow testing closely examines the state of the data
in the control fl ow graph, resulting in a richer test suite than the one obtained
from control fl ow graph based path testing strategies like branch coverage, all
statement coverage, etc.

5.6.1 STATE OF A DATA OBJECT

A data object can be in the following states:

 � Defi ned (d) A data object is called defi ned when it is initialized, i.e. when
it is on the left side of an assignment statement. Defi ned state can also
be used to mean that a fi le has been opened, a dynamically allocated
object has been allocated, something is pushed onto the stack, a record
written, and so on [9].

165Dynamic Testing: White-Box Testing Technique l

 � Killed/Undefi ned/Released (k) When the data has been reinitialized
or the scope of a loop control variable fi nishes, i.e. exiting the loop or
memory is released dynamically or a fi le has been closed.

 � Usage (u) When the data object is on the right side of assignment or
used as a control variable in a loop, or in an expression used to evaluate
the control fl ow of a case statement, or as a pointer to an object, etc.
In general, we say that the usage is either computational use (c-use) or
predicate use (p-use).

5.6.2 DATA-FLOW ANOMALIES

Data-fl ow anomalies represent the patterns of data usage which may lead to
an incorrect execution of the code. An anomaly is denoted by a two-character
sequence of actions. For example, ‘dk’ means a variable is defi ned and killed
without any use, which is a potential bug. There are nine possible two-char-
acter combinations out of which only four are data anomalies, as shown in
Table 5.1.

Table 5.1 Two-character data-fl ow anomalies

Anomaly Explanation Effect of Anomaly

du Defi ne-use Allowed. Normal case.

dk Defi ne-kill Potential bug. Data is killed without use after defi nition.

ud Use-defi ne Data is used and then redefi ned. Allowed. Usually not a bug because
the language permits reassignment at almost any time.

uk Use-kill Allowed. Normal situation.

ku Kill-use Serious bug because the data is used after being killed.

kd Kill-defi ne Data is killed and then redefi ned. Allowed.

dd Defi ne-defi ne Redefi ning a variable without using it. Harmless bug, but not
allowed.

uu Use-use Allowed. Normal case.

kk Kill-kill Harmless bug, but not allowed.

It can be observed that not all data-fl ow anomalies are harmful, but most
of them are suspicious and indicate that an error can occur. In addition to
the above two-character data anomalies, there may be single-character data
anomalies also. To represent these types of anomalies, we take the following
conventions:

 ~x : indicates all prior actions are not of interest to x.

 x~ : indicates all post actions are not of interest to x.

All single-character data anomalies are listed in Table 5.2.

 Software Testing: Principles and Practices166

Table 5.2 Single-character data-fl ow anomalies

Anomaly Explanation Effect of Anomaly

~d First defi nition Normal situation. Allowed.

~u First Use Data is used without defi ning it. Potential bug.

~k First Kill Data is killed before defi ning it. Potential bug.

D~ Defi ne last Potential bug.

U~ Use last Normal case. Allowed.

K~ Kill last Normal case. Allowed.

5.6.3 TERMINOLOGY USED IN DATA FLOW TESTING

In this section, some terminology [9,20], which will help in understanding all
the concepts related to data-fl ow testing, is being discussed. Suppose P is a
program that has a graph G(P) and a set of variables V. The graph has a single
entry and exit node.

 Defi nition node Defi ning a variable means assigning value to a variable for
the very fi rst time in a program. For example, input statements, assignment
statements, loop control statements, procedure calls, etc.

 Usage node It means the variable has been used in some statement of the
program. Node n that belongs to G(P) is a usage node of variable v, if the value
of variable v is used at the statement corresponding to node n. For example,
output statements, assignment statements (right), conditional statements, loop
control statements, etc.
A usage node can be of the following two types:

 (i) Predicate Usage Node: If usage node n is a predicate node, then n is a
predicate usage node.

 (ii) Computation Usage Node: If usage node n corresponds to a compu-
tation statement in a program other than predicate, then it is called a
computation usage node.

Loop-free path segment It is a path segment for which every node is visited
once at most.

Simple path segment It is a path segment in which at most one node is visited
twice. A simple path segment is either loop-free or if there is a loop, only one
node is involved.

 Defi nition-use path (du-path) A du-path with respect to a variable v is a path
between the defi nition node and the usage node of that variable. Usage node
can either be a p-usage or a c-usage node.

167Dynamic Testing: White-Box Testing Technique l

 Defi nition-clear path(dc-path) A dc-path with respect to a variable v is a path
between the defi nition node and the usage node such that no other node in the
path is a defi ning node of variable v.

The du-paths which are not dc-paths are important from testing viewpoint,
as these are potential problematic spots for testing persons. Those du-paths
which are defi nition-clear are easy to test in comparison to du-paths which are
not dc-paths. The application of data fl ow testing can be extended to debug-
ging where a testing person fi nds the problematic areas in code to trace the
bug. So the du-paths which are not dc-paths need more attention.

5.6.4 STATIC DATA FLOW TESTING

With static analysis, the source code is analysed without executing it. Let us
consider an example of an application given below.

 Example 5.10

Consider the program given below for calculating the gross salary of an
employee in an organization. If his basic salary is less than Rs 1500, then
HRA = 10% of basic salary and DA = 90% of the basic. If his salary is either
equal to or above Rs 1500, then HRA = Rs 500 and DA = 98% of the basic
salary. Calculate his gross salary.

 main()
 {
 1. fl oat bs, gs, da, hra = 0;
 2. printf(“Enter basic salary”);
 3. scanf(“%f”, &bs);
 4. if(bs < 1500)
 5. {
 6. hra = bs * 10/100;
 7. da = bs * 90/100;
 8. }
 9. else
 10. {
 11. hra = 500;
 12. da = bs * 98/100;
 13. }
 14. gs = bs + hra + da;
 15. printf(“Gross Salary = Rs. %f”, gs);

 16. }

Find out the defi ne-use-kill patterns for all the variables in the source code
of this application.

 Software Testing: Principles and Practices168

Solution

For variable ‘bs’, the defi ne-use-kill patterns are given below.

Pattern Line Number Explanation

~d 3 Normal case. Allowed

du 3-4 Normal case. Allowed

uu 4-6, 6-7, 7-12, 12-14 Normal case. Allowed

uk 14-16 Normal case. Allowed

K~ 16 Normal case. Allowed

For variable ‘gs’, the defi ne-use-kill patterns are given below.

Pattern Line Number Explanation

~d 14 Normal case. Allowed

du 14-15 Normal case. Allowed

uk 15-16 Normal case. Allowed

K~ 16 Normal case. Allowed

For variable ‘da’, the defi ne-use-kill patterns are given below.

Pattern Line Number Explanation

~d 7 Normal case. Allowed

du 7-14 Normal case. Allowed

uk 14-16 Normal case. Allowed

K~ 16 Normal case. Allowed

For variable ‘hra’, the defi ne-use-kill patterns are given below.

Pattern Line Number Explanation

~d 1 Normal case. Allowed

dd 1-6 or 1-11
Double defi nition. Not allowed.
Harmless bug.

du 6-14 or 11-14 Normal case. Allowed

uk 14-16 Normal case. Allowed

K~ 16 Normal case. Allowed

169Dynamic Testing: White-Box Testing Technique l

From the above static analysis, it was observed that static data fl ow testing for
the variable ‘hra’ discovered one bug of double defi nition in line number 1.

Static Analysis is not Enough

It is not always possible to determine the state of a data variable by just static
analysis of the code. For example, if the data variable in an array is used as an
index for a collection of data elements, we cannot determine its state by static
analysis. Or it may be the case that the index is generated dynamically dur-
ing execution, therefore we cannot guarantee what the state of the array ele-
ment is referenced by that index. Moreover, the static data-fl ow testing might
denote a certain piece of code to be anomalous which is never executed and
hence, not completely anomalous. Thus, all anomalies using static analysis
cannot be determined and this problem is provably unsolvable.

5.6.5 DYNAMIC DATA FLOW TESTING
Dynamic data fl ow testing is performed with the intention to uncover pos-
sible bugs in data usage during the execution of the code. The test cases are
designed in such a way that every defi nition of data variable to each of its use
is traced and every use is traced to each of its defi nition. Various strategies
are employed for the creation of test cases. All these strategies are defi ned
below.

All-du Paths (ADUP) It states that every du-path from every defi nition of
every variable to every use of that defi nition should be exercised under some
test. It is the strongest data fl ow testing strategy, since it is a superset of all other
data fl ow testing strategies. Moreover, this strategy requires the maximum
number of paths for testing.

All-uses (AU) This states that for every use of the variable, there is a path from
the defi nition of that variable (nearest to the use in backward direction) to the
use.

All-p-uses/Some-c-uses (APU + C) This strategy states that for every variable
and every defi nition of that variable, include at least one dc-path from the
defi nition to every predicate use. If there are defi nitions of the variable with
no p-use following it, then add computational use (c-use) test cases as required
to cover every defi nition.

All-c-uses/Some-p-uses (ACU + P) This strategy states that for every variable
and every defi nition of that variable, include at least one dc-path from the

 Software Testing: Principles and Practices170

defi nition to every computational use. If there are defi nitions of the variable
with no c-use following it, then add predicate use (c-use) test cases as required
to cover every defi nition.

All-Predicate-Uses (APU) It is derived from the APU+C strategy and states
that for every variable, there is a path from every defi nition to every p-use
of that defi nition. If there is a defi nition with no p-use following it, then it is
dropped from contention.

All-Computational-Uses (ACU) It is derived from the strategy ACU+P strategy
and states that for every variable, there is a path from every defi nition to every
c-use of that defi nition. If there is a defi nition with no c-use following it, then it
is dropped from contention.

All-Defi nition (AD) It states that every defi nition of every variable should be
covered by at least one use of that variable, be that a computational use or a
predicate use.

 Example 5.11

Consider the program given below. Draw its control fl ow graph and data fl ow
graph for each variable used in the program, and derive data fl ow testing
paths with all the strategies discussed above.

 main()
 {
 int work;
 0. double payment =0;
 1. scanf(“%d”, work);
 2. if (work > 0) {
 3. payment = 40;
 4. if (work > 20)
 5. {
 6. if(work <= 30)
 7. payment = payment + (work – 25) * 0.5;
 8. else
 9. {
 10. payment = payment + 50 + (work –30) * 0.1;
 11. if (payment >= 3000)
 12. payment = payment * 0.9;
 13. }
 14. }
 15. }
 16. printf(“Final payment”, payment);

171Dynamic Testing: White-Box Testing Technique l

Solution
Figure 5.12 shows the control fl ow graph for the given program.

8, 9, 10

11

1213

14

15

7

16, 17

5 6

4

3

2

0, 1

Figure 5.12 DD graph for Example 5.11

Figure 5.13 shows the data fl ow graph for the variable ‘payment’.

7: Define & c-use

14

1516 : c-use
17

13 12: Define & c-use

11: p-use

8, 9,
10: Define & c-use

5, 6

4

2

3: Define

0: Define
1

Figure 5.13 Data fl ow graph for ‘payment’

 Software Testing: Principles and Practices172

Figure 5.14 shows the data fl ow graph for the variable ‘work’.

16, 17 15

14

13 12

11

7: c-use
8, 9,
10: c-use

5,
6: p-use

4: p-use

3

2: p-use

0
1: Define

Figure 5.14 Data fl ow graph for variable ‘work’

Prepare a list of all the defi nition nodes and usage nodes for all the vari-
ables in the program.

Variable Defi ned At Used At

Payment 0,3,7,10,12 7,10,11,12,16

Work 1 2,4,6,7,10

Data fl ow testing paths for each variable are shown in Table 5.3.

Table 5.3 Data fl ow testing paths

Strategy Payment Work

All Uses(AU) 3-4-5-6-7
10-11
10-11-12
12-13-14-15-16
3-4-5-6-8-9-10

1-2
1-2-3-4
1-2-3-4-5-6
1-2-3-4-5-6-7
1-2-3-4-5-6-8-9-10

All p-uses
(APU)

0-1-2-3-4-5-6-8-9-10-11 1-2
1-2-3-4
1-2-3-4-5-6

173Dynamic Testing: White-Box Testing Technique l

All c-uses
(ACU)

0-1-2-16
3-4-5-6-7
3-4-5-6-8-9-10
3-4-15-16
7-14-15-16
10-11-12
10-11-13-14-15-16
12-13-14-15-16

1-2-3-4-5-6-7
1-2-3-4-5-6-8-9-10

All-p-uses /
Some-c-uses
(APU + C)

0-1-2-3-4-5-6-8-9-10-11
10-11-12
12-13-14-15-16

1-2
1-2-3-4
1-2-3-4-5-6
1-2-3-4-5-6-8-9-10

All-c-uses /
Some-p-uses
(ACU + P)

0-1-2-16
3-4-5-6-7
3-4-5-6-8-9-10
3-4-15-16
7-14-15-16
10-11-12
10-11-13-14-15-16
12-13-14-15-16
0-1-2-3-4-5-6-8-9-10-11

1-2-3-4-5-6-7
1-2-3-4-5-6-8-9-10
1-2-3-4-5-6

All-du-paths
(ADUP)

0-1-2-3-4-5-6-8-9-10-11
0-1-2-16
3-4-5-6-7
3-4-5-6-8-9-10
3-4-15-16
7-14-15-16
10-11-12
10-11-13-14-15-16
12-13-14-15-16

1-2
1-2-3-4
1-2-3-4-5-6
1-2-3-4-5-6-7
1-2-3-4-5-6-8-9-10

All Defi nitions
(AD)

0-1-2-16
3-4-5-6-7
7-14-15-16
10-11
12-13-14-15-16

1-2

5.6.6 ORDERING OF DATA FLOW TESTING STRATEGIES
While selecting a test case, we need to analyse the relative strengths of various
data fl ow testing strategies. Figure 5.15 depicts the relative strength of the data
fl ow strategies. In this fi gure, the relative strength of testing strategies reduces

 Software Testing: Principles and Practices174

along the direction of the arrow. It means that all-du-paths (ADPU) is the
strongest criterion for selecting the test cases.

ACU

APU + C

APU

AU

ADPU

AD

ACU + P

Figure 5.15 Data-fl ow testing strategies

5.7 MUTATION TESTING

Mutation testing is the process of mutating some segment of code (putting
some error in the code) and then, testing this mutated code with some test
data. If the test data is able to detect the mutations in the code, then the test
data is quite good, otherwise we must focus on the quality of test data. There-
fore, mutation testing helps a user create test data by interacting with the user
to iteratively strengthen the quality of test data.

During mutation testing, faults are introduced into a program by creating
many versions of the program, each of which contains one fault. Test data are
used to execute these faulty programs with the goal of causing each faulty
program to fail. Faulty programs are called mutants of the original program
and a mutant is said to be killed when a test case causes it to fail. When this
happens, the mutant is considered dead and no longer needs to remain in
the testing process, since the faults represented by that mutant have been
detected, and more importantly, it has satisfi ed its requirement of identifying
a useful test case. Thus, the main objective is to select effi cient test data which
have error-detection power. The criterion for this test data is to differentiate
the initial program from the mutant. This distinguish-ability between the ini-
tial program and its mutant will be based on test results.

5.7.1 PRIMARY MUTANTS

Let us take an example of a C program to understand primary mutants.

175Dynamic Testing: White-Box Testing Technique l

 ...
 if (a > b)
 x = x + y;
 else
 x = y;
 printf(“%d”, x);

 ...

We can consider the following mutants for the above example:

 M1: x = x – y;
 M2: x = x / y;
 M3: x = x + 1;
 M4: printf(“%d”, y);

When the mutants are single modifi cations of the initial program using
some operators as shown above, they are called primary mutants. Mutation
operators are dependent on programming languages. Note that each of the
mutated statements represents a separate program. The results of the initial
program and its mutants are shown below.

Test Data x y Initial Program Result Mutant Result

TD1 2 2 4 0 (M1)

TD2(x and y # 0) 4 3 7 1.4 (M2)

TD3 (y #1) 3 2 5 4 (M3)

TD4(y #0) 5 2 7 2 (M4)

5.7.2 SECONDARY MUTANTS

Let us take another example program as shown below:
 if (a < b)
 c = a;

Now, mutants for this code may be as follows:

 M1 : if (a <= b-1)
 c = a;

 M2: if (a+1 <= b)
 c = a;

 M3: if (a == b)
 c = a+1;

 Software Testing: Principles and Practices176

This class of mutants is called secondary mutants when multiple levels of
mutation are applied on the initial program. In this case, it is very diffi cult to
identify the initial program from its mutants.

 Example 5.12

Consider the program P shown below.
 r = 1;

 for (i = 2; i<=3; ++i) {

 if (a[i] > a[r]

 r = i;

 }

The mutants for P are:
M1:

 r = 1;

 for (i = 1; i<=3; ++i) {

 if (a[i] > a[r])

 r = i;

 }

M2:

 r = 1;

 for (i = 2; i<=3; ++i) {

 if (i > a[r])

 r = i;

 }

M3:

 r = 1;
 for (i = 2; i<=3; ++i) {
 if (a[i] >= a[r])
 r = i;
 }

M4:

 r = 1;
 for (i = 1; i<=3; ++i) {
 if (a[r] > a[r])
 r = i;
 }

177Dynamic Testing: White-Box Testing Technique l

Let us consider the following test data selection:

a[1] a[2] a[3]

TD1 1 2 3

TD2 1 2 1

TD3 3 1 2

We apply these test data to mutants, M1, M2, M3, and M4.

P M1 M2 M3 M4 Killed Mutants

TD1 3 3 3 3 1 M4

TD2 2 2 3 2 1 M2 and M4

TD3 1 1 1 1 1 none

We need to look at the effi ciency of the proposed test data. It can be seen
that M1 and M3 are not killed by the test data selection. Therefore, the test
data is incomplete. Therefore, we need to add a new test data, TD4 = {2,2,1},
then this test data kills M3.

5.7.3 MUTATION TESTING PROCESS

The mutation testing process is discussed below:

 � Construct the mutants of a test program.

 � Add test cases to the mutation system and check the output of the pro-
gram on each test case to see if it is correct.

 � If the output is incorrect, a fault has been found and the program must
be modifi ed and the process restarted.

 � If the output is correct, that test case is executed against each live
mutant.

 � If the output of a mutant differs from that of the original program on the
same test case, the mutant is assumed to be incorrect and is killed.

 � After each test case has been executed against each live mutant, each
remaining mutant falls into one of the following two categories.

 ∑ One, the mutant is functionally equivalent to the original program.
An equivalent mutant always produces the same output as the
original program, so no test case can kill it.

 ∑ Two, the mutant is killable, but the set of test cases is insuffi cient to
kill it. In this case, new test cases need to be created, and the pro-
cess iterates until the test set is strong enough to satisfy the tester.

 Software Testing: Principles and Practices178

 � The mutation score for a set of test data is the percentage of non-equiv-
alent mutants killed by that data. If the mutation score is 100%, then the
test data is called mutation-adequate.

SUMMARY

White-box testing is a dynamic testing category under which the software is tested using the
structure or logic of the program under test. This technique is closer to a developer who needs
to test his module while developing it. The developer cannot design and code the module in one
go and therefore he is supposed to verify his logic using various test case design methods.

White-box testing is necessary, as it is one of the steps to verify the correctness of the pro-
gram and consequently in enhancing the quality of the program. All the methods of white-box
testing have been discussed in this chapter, taking suffi cient number of examples such that
a new method can be learnt easily and the reader is ready to design the test cases using a
particular method.

Let us review the important concepts described in this chapter:
 � White-box testing is the technique wherein it is required to understand the structure and

logic of the program to test the software.
 � White-box testing is largely done by the developer of the software.
 � White-box testing covers the logic of the program. The forms of logic coverage are:

statement coverage, decision/branch coverage, condition coverage, decision-condition
coverage, and multiple condition.

 � Basis path testing is the technique of selecting the paths that provide a basis set of ex-
ecution paths through the program.

 � The basis set is derived by calculating the cyclomatic complexity number. Having the
knowledge of this number, independent paths are derived from the fl ow graph of the
program. Corresponding to independent paths, test cases are prepared which form the
basis set.

 � An independent path is any path through the graph that introduces at least one new set
of processing statements or new conditions.

 � Cyclomatic complexity is the number which tells us about the complexity of the design of
a module. It should be less than 10, otherwise the module should be redesigned.

 � Cyclomatic complexity of a module can be calculated by the following methods:

 ∑ V(G) = e − n+2P
 where e is number of edges, n is the number of nodes in the graph, and P is the

number of components in the whole graph
 ∑ V(G) = d + P
 where d is the number of decision nodes in the graph.
 ∑ V(G) = number of regions in the graph
 ∑ Using graph matrices

 � Graph matrix, a data structure, can assist in developing a tool for automation of path trac-
ing.

179Dynamic Testing: White-Box Testing Technique l

 � A graph matrix is a square matrix whose rows and columns are equal to the number of
nodes in the fl ow graph.

 � A matrix defi ned with link weights is called a connection matrix.
 � The connection matrix is used to fi nd the cyclomatic complexity number of the fl ow

graph.
 � Graph matrices are also used to produce a set of all paths between all nodes. An mth

power of the matrix represents all path segments m links long.
 � Data fl ow testing is a white-box testing technique that can be used to detect improper use

of data values due to coding errors.
 � Data fl ow anomalies represent the patterns of data usage which may lead to an incorrect

execution of the code.
 � Defi nition node in a data fl ow graph is the node wherein a variable is assigned a value

for the very fi rst time in the program.
 � Usage node in a data fl ow graph is the node wherein the variable has already been used

in some statement of the program.
 � A du-path with respect to a variable v is a path between the defi nition node and the usage

node of that variable.
 � A dc-path with respect to a variable v is a path between the defi nition node and the usage

node such that no other node in the path is a defi ning node of variable v.
 � du-paths which are not defi nition-clear paths are important from testing viewpoint, as

these are potential problematic spots for testing persons. du-paths which are defi nition-
clear are easy to test in comparison to those which are not dc-paths.

 � The application of data fl ow testing can be extended to debugging where a testing per-
son fi nds the problematic areas in the code to trace the bug. So the du-paths which are
not defi nition-clear need more attention of the tester.

 � During mutation testing, faults are introduced into a program by creating many versions
of the program, each of which contains a fault. Test data are used to execute these faulty
programs with the goal of causing each faulty program to fail. Faulty programs are called
mutants of the original program and a mutant is said to be killed when a test case causes
it to fail.

 � When the mutants are single modifi cations of the initial program using some operators,
they are called primary mutants.

 � When multiple levels of mutation are applied on the initial program, they are called sec-
ondary mutants.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. White-box testing is _______ to black-box testing.
 (a) mutually exclusive
 (b) complementary
 (c) not related

 Software Testing: Principles and Practices180

 2. The effectiveness of path testing rapidly _______ as the size of software under test.
 (a) decreases
 (b) increases
 (c) does not change
 (d) none of the above

 3. A node with more than one arrow leaving it is called a _______
 (a) decision node
 (b) junction node
 (c) region
 (d) all of the above

 4. A node with more than one arrow entering it is called a _______
 (a) decision node
 (b) junction node
 (c) region
 (d) all of the above

 5. Areas bounded by edges and nodes are called _______
 (a) decision node
 (b) junction node
 (c) region
 (d) all of the above

 6. The length of a path is measured by the number of _______
 (a) instructions
 (b) junction nodes
 (c) decision nodes
 (d) links

 7. An independent path is any path through the graph that introduces at least _______ new
set of processing statements or new conditions.

 (a) 4
 (b) 3
 (c) 1
 (d) 2

 8. The number of independent paths is given by _______.
 (a) V(G) = e – n + 1
 (b) V(G) = 2e – n + 1
 (c) V(G) = e – n + 2
 (d) none of the above

 9. According to Mill’s Theorem, _______
 (a) V(G) = d + 2P

181Dynamic Testing: White-Box Testing Technique l

 (b) V(G) = d + P
 (c) V(G) = 2d + P
 (d) None of the above

 10. In data fl ow anomalies, dd is a _______
 (a) serious bug
 (b) normal case
 (c) harmless bug
 (d) none of the above

 11. In data fl ow anomalies, du is a _______
 (a) serious bug
 (b) normal case
 (c) harmless bug
 (d) none of the above

 12. In data fl ow anomalies, ku is a _______
 (a) serious bug
 (b) normal case
 (c) harmless bug
 (d) none of the above

 13. In single-character data anomalies, ~d is _______
 (a) potential bug
 (b) normal situation
 (c) none of the above

 15. In single-character data anomalies, ~k is _______
 (a) potential bug
 (b) normal situation
 (c) none of the above

 16. _______ is the strongest criterion for selecting test cases.
 (a) AD
 (b) APU
 (c) AU
 (d) ADPU

REVIEW QUESTIONS

 1. What is the need of white-box testing?

 2. What are the different criteria for logic coverage?

 3. What is basis path testing?

 Software Testing: Principles and Practices182

 4. Distinguish between decision node and junction node?

 5. What is an independent path?

 6. What is the signifi cance of cyclomatic complexity?

 7. How do you calculate the number of decision nodes for switch-case?

 8. How do you calculate the cyclomatic complexity number of the program having many
connected components?

 9. Consider the program.

 #include <stdio.h>
 main()
 {
 int a,b, c,d;
 clrscr();
 printf(“enter the two variables a,b”);
 scanf(“%d %d”,&a,&b);
 printf(“enter the option 1:Addition,
 2:subtraction,3:multiplication,4:division”);
 scanf(“%d”,&c);
 switch(c)
 {
 case 1:d = a+b;
 printf(“Addition of two no.=%d”, d);
 break;
 case 2:d = a-b;
 printf(“Subtraction of two no.=%d”, d);
 break;
 case 3:d = a*b;
 printf(“Multiplication of two no.=%d”, d);
 break;
 case 4:d = a/b;
 printf(“division of two no.=%d”,d);
 break;
 }
 }

 (a) Draw the DD graph for the program.
 (b) Calculate the cyclomatic complexity of the program using all four methods.
 (c) List all independent paths.
 (d) Design all test cases from independent paths.
 (e) Derive all du-paths and dc-paths using data fl ow testing.

183Dynamic Testing: White-Box Testing Technique l

 10. Consider the program to fi nd the greatest number:

 #include <stdio.h>
 main()
 {
 fl oat x,y,z;
 clrscr();
 printf(“enter the three variables x,y,z”);
 scanf(“%f %f %f”,&x,&y,&z);
 if(x > y)
 {
 if(x > z)
 printf(“x is greatest”);
 else
 printf(“z is greatest”);
 }
 else
 {
 if(y > z)
 printf(“y is greatest”);
 else
 printf(“z is greatest”);
 }
 getch();
 }

 (a) Draw the DD graph for the program.
 (b) Calculate the cyclomatic complexity of the program using all four methods.
 (c) List all independent paths.
 (d) Design all test cases from independent paths.
 (e) Derive all du-paths and dc-paths using data fl ow testing.

 11. Consider the following program which multiplies two matrices:

#include <stdio.h>
main()
{
int a[SIZE][SIZE], b[SIZE][SIZE], c[SIZE][SIZE], i, j, k, rowl,
colml, row2, colm2;

printf(“Enter the order of fi rst matrix <= %d %d \n”, SIZE, SIZE);
scanf(“%d%d”,&row1, colm1);
printf(“Enter the order of second matrix <= %d %d \n”, SIZE, SIZE);
scanf(“%d%d”,&row2, colm2);
if(colm1==row2)

 Software Testing: Principles and Practices184

 {
 printf(“Enter fi rst matrix”);
 for(i=0; i<row1; i++)
 {
 for(j=0; j<colml; j++)
 scanf(“%d”, &a[i][j]);
 }
 printf(“Enter second matrix”);
 for(i=0; i<row2; i++)
 {
 for(j=0; j<colm2; j++)
 scanf(“%d”, &b[i][j]);
 }
 printf(“Multiplication of two matrices is”);
 for(i=0; i<row1; i++)
 {
 for(j=0; j<colm1; j++)
 {
 c[i] [j] = 0;
 for(k=0; k<row2; k++)
 c[i][j]+ = a[i][k] + b[k][j];
 printf(“%6d”, c[i][j]);
 }
 }
 }
 else
 {
 printf(“Matrix multiplication is not possible”);
 }
}

 (a) Draw the DD graph for the program.

 (b) Calculate the cyclomatic complexity of the program using all four methods.

 (c) List all independent paths.

 (d) Design all test cases from the independent paths.

 (e) Derive all du-paths and dc-paths using data fl ow testing.

 12. Consider the following program for fi nding the prime numbers, their sum, and count:

main()
{
 int num, fl ag, sum, count;
 int CheckPrime(int n);
 sum = count = 0;
 printf(“Prime number between 1 and 100 are”);
 for(num=1; num<=50; num++)

185Dynamic Testing: White-Box Testing Technique l

 {
 fl ag = CheckPrime(num);
 if(fl ag)
 {
 printf(“%d”, num);
 sum+ = num;
 count++;
 }
 }
 printf(“Sum of primes %d”, count);
}
int CheckPrime(int n)
{
 int srt, d;
 srt = sqrt(n);
 d = 2;
 while(d <= srt)
 {
 If(n%d == 0)
 break;
 d++;
 }
 if(d > srt)
 return(1);
 else
 return(0);
}

 (a) Draw the DD graph for the program.
 (b) This program consists of main() and one module. Calculate the individual cyclo-

matic complexity number for both and collectively for the whole program. Show
that individual cyclomatic complexity of main() and CheckPrime() and cyclomatic
complexity of whole program is equal.

 (c) List all independent paths.
 (d) Design all test cases from independent paths.
 (e) Derive all du-paths and dc-paths using data fl ow testing.

 13. Consider the following program for calculating the grade of a student:

main()
{
 char grade;
 int s1, s2, s3, s4, total;
 fl oat average;
 printf(“Enter the marks of 4 subjects”);
 scanf(“%d %d %d %d”, &s1,&s2,&s3,&s4);

 Software Testing: Principles and Practices186

 if(s1 < 40 || s2 < 40 || s3 < 40 || s4 < 40)
 printf(“Student has failed”);
 else
 {
 total = s1 + s2 + s3 + s4;
 average = total/4.0;
 if(average > 80.0)
 grade = ‘A’;
 else if(average >= 70.0)
 grade = ‘B’;
 else if(average >= 60.0)
 grade = ‘C’;
 else if(average >= 50.0)
 grade = ‘D’;
 else if(average >= 45.0)
 grade = ‘E’;
 else
 grade = ‘F’;
 switch(grade)
 {
 case ‘A’: printf(“Student has got A grade”);
 case ‘B’: printf(“Student has got B grade”);
 case ‘C’: printf(“Student has got C grade”);
 case ‘D’: printf(“Student has got D grade”);
 case ‘E’: printf(“Student has got E grade”);
 case ‘F’: printf(“Student has got F grade”);
 }
 }
}

 (a) Draw the DD graph for the program.
 (b) Calculate the cyclomatic complexity of the program using all four methods.
 (c) List all independent paths.
 (d) Design all test cases from independent paths.

 14. Consider the following graph:

4

5

4

3

21

d
e

b

a

c

f

hg

i

187Dynamic Testing: White-Box Testing Technique l

 (a) Represent this graph in the form of a graph matrix.
 (b) Represent this graph in the form of a connection matrix.
 (c) Find 2-link paths and 3-link paths for each node.
 15. ‘Nested loops are problematic areas for testers.’ Comment on this.
 16. Give examples of each type of data anomaly.
 17. Consider Question 9 and perform static data fl ow analysis by fi nding out the defi ne-use-

kill patterns for all the variables in the source code.
 18. Consider Question 9 and draw data fl ow graph for each variable used in the program and

derive data fl ow testing paths with all the strategies.
 19. What is the difference between primary and secondary mutants?
 20. Consider Example 5.10. Find out the possible mutants and check how many of them are

killed by a set of test data. Add new test data if required.

 Software Testing: Principles and Practices188

We have discussed dynamic testing techniques that
execute the software being built with a number of
test cases. However, it suffers from the following
drawbacks:

 � Dynamic testing uncovers the bugs at a later
stage of SDLC and hence is costly to debug.

 � Dynamic testing is expensive and time-consum-
ing, as it needs to create, run, validate, and main-
tain test cases.

 � The effi ciency of code coverage decreases with
the increase in size of the system.

 � Dynamic testing provides information about
bugs. However, debugging is not always easy. It
is diffi cult and time-consuming to trace a failure
from a test case back to its root cause.

 � Dynamic testing cannot detect all the potential
bugs.

While dynamic testing is an important aspect of
any quality assurance program, it is not a universal
remedy. Thus, it alone cannot guarantee defect-
free product, nor can it ensure a suffi ciently high
level of software quality.

In response to the above discussion, static testing is a complimentary tech-
nique to dynamic testing technique to acquire higher quality software. Static
 testing techniques do not execute the software and they do not require the bulk
of test cases. This type of testing is also known as non-computer based testing
or human testing. All the bugs cannot be caught alone by the dynamic testing
technique; static testing reveals the errors which are not shown by dynamic
testing. Static testing can be applied for most of the verifi cation activities dis-

Chapter

6
Static Testing

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Static testing is complementary to

dynamic testing
 � Static testing also improves the software

quality
 � Some bugs can be detected only

through static testing
 � Three types of static testing: Inspection,

Walkthroughs, and Reviews
 � Inspections are the most widely used

technique for static testing which is a
formal process to detect the bugs early

 � Benefi ts and effectiveness of inspection
process

 � Variants of inspection process
 � Walkthrough is a less formal and

less rigorous method as compared to
inspection process

 � Review is a higher level technique as
compared to inspection or walkthrough,
as it also includes management
representatives

189Static Testing l

cussed earlier. Since verifi cation activities are required at every stage of SDLC
till coding, static testing also can be applied at all these phases.

Static testing techniques do not demonstrate that the software is operational
or that one function of software is working; rather they check the software
product at each SDLC stage for conformance with the required specifi cations
or standards. Requirements, design specifi cations, test plans, source code,
user’s manuals, maintenance procedures are some of the items that can be
statically tested.

Static testing has proved to be a cost-effective technique of error detec-
tion. An empirical comparison between static and dynamic testing [26, 27],
proves the effectiveness of static testing. Further, Fagan [28] reported that
more than 60% of the errors in a program can be detected using static testing.
Another advantage of static testing is that it provides the exact location of a
bug, whereas dynamic testing provides no indication of the exact source code
location of the bug. In other words, we can say that static testing fi nds the in-
process errors before they become bugs.

Static testing techniques help to produce a better product. Given below are
some of the benefi ts of adopting a static testing approach:

 � As defects are found and fi xed, the quality of the product increases.

 � A more technically correct base is available for each new phase of
development.

 � The overall software life cycle cost is lower, since defects are found
early and are easier and less expensive to fi x.

 � The effectiveness of the dynamic test activity is increased and less time
needs to be devoted for testing the product.

 � Immediate evaluation and feedback to the author from his/her peers
which will bring about improvements in the quality of future products.

The objectives of static testing can be summarized as follows:

 � To identify errors in any phase of SDLC as early as possible

 � To verify that the components of software are in conformance with its
requirements

 � To provide information for project monitoring

 � To improve the software quality and increase productivity

 Types of Static Testing
Static testing can be categorized into the following types:

 � Software inspections
 � Walkthroughs
 � Technical reviews

 Software Testing: Principles and Practices190

6.1 INSPECTIONS

Software inspections were fi rst introduced at IBM by Fagan in the early 1970s
[43]. These can be used to tackle software quality problems because they
allow the detection and removal of defects after each phase of the software
development process. Inspection process is an in-process manual examina-
tion of an item to detect bugs. It may be applied to any product or partial
product of the software development process, including requirements, design
and code, project management plan, SQA plan, software confi guration plan
(SCM plan), risk management plan, test cases, user manual, etc. Inspections
are embedded in the process of developing products and are done in the early
stages of each product’s development.

This process does not require executable code or test cases. With inspec-
tion, bugs can be found on infrequently executed paths that are not likely to
be included in test cases. Software inspection does not execute the code, so
it is machine-independent, requires no target system resources or changes to
the program’s operational behaviour, and can be used much before the target
hardware is available for dynamic testing purposes.

The inspection process is carried out by a group of peers. The group of
peers fi rst inspect the product at the individual level. After this, they discuss
the potential defects of the product observed in a formal meeting. The sec-
ond important thing about the inspection process is that it is a formal process
of verifying a software product. The documents which can be inspected are
SRS, SDD, code, and test plan.

An inspection process involves the interaction of the following elements:
 � Inspection steps
 � Role for participants
 � Item being inspected

The entry and exit criteria are used to determine whether an item is ready
to be inspected. Entry criteria mean that the item to be inspected is mature
enough to be used. For example, for code inspection, the entry criterion is
that the code has been compiled successfully. Exit criterion is that once the
item has been given for inspection, it should not be updated, otherwise it will
not know how many bugs have been reported and corrected through the
inspection process and the whole purpose of the inspection is lost.

6.1.1 INSPECTION TEAM

For the inspection process, a minimum of the following four team members
are required.

Author/Owner/Producer A programmer or designer responsible for producing
the program or document. He is also responsible for fi xing defects discovered
during the inspection process.

191Static Testing l

Inspector A peer member of the team, i.e. he is not a manager or supervisor. He
is not directly related to the product under inspection and may be concerned
with some other product. He fi nds errors, omissions, and inconsistencies in
programs and documents.

Moderator A team member who manages the whole inspection process. He
schedules, leads, and controls the inspection session. He is the key person with
the responsibility of planning and successful execution of the inspection.

Recorder One who records all the results of the inspection meeting.

6.1.2 INSPECTION PROCESS

A general inspection process (see Fig. 6.1) has the following stages [29,14]:

Planning and
overview

Follow-up

Bugs which are
reported in the

inspection
meeting are

fixed

Rework

Inspection
meeting

Item is
inspected in the

inspection
meeting

Individual
preparation

Team members
identify

potential errors

Overview

Define purpose
of the

inspection
meeting

Plan for the
inspection
meeting

Planning

Figure 6.1 Inspection process

 Software Testing: Principles and Practices192

Planning During this phase, the following is executed:

 � The product to be inspected is identifi ed.

 � A moderator is assigned.

 � The objective of the inspection is stated, i.e. whether the inspection is
to be conducted for defect detection or something else. If the objective
is defect detection, then the type of defect detection like design error,
interface error, code error must be specifi ed. The aim is to defi ne an ob-
jective for the meeting so that the effort spent in inspections is properly
utilized.

 During planning, the moderator performs the following activities:

 � Assures that the product is ready for inspection

 � Selects the inspection team and assigns their roles

 � Schedules the meeting venue and time

 � Distributes the inspection material like the item to be inspected, check-
lists, etc.

Overview In this stage, the inspection team is provided with the background
information for inspection. The author presents the rationale for the product,
its relationship to the rest of the products being developed, its function and
intended use, and the approach used to develop it. This information is necessary
for the inspection team to perform a successful inspection.

The opening meeting may also be called by the moderator. In this meeting,
the objective of inspection is explained to the team members. The idea is that
every member should be familiar with the overall purpose of the inspection.

Individual preparation After the overview, the reviewers individually prepare
themselves for the inspection process by studying the documents provided
to them in the overview session. They point out potential errors or problems
found and record them in a log. This log is then submitted to the moderator.
The moderator compiles the logs of different members and gives a copy of this
compiled list to the author of the inspected item.

The inspector reviews the product for general problems as well as those
related to their specifi c area of expertise. Checklists are used during this
stage for guidance on typical types of defects that are found in the type of
product being inspected. The product being inspected is also checked against
standard documents to assure compliance and correctness. After reviewing,
the inspectors record the defects found on a log and the time spent during
preparation. Completed preparation logs are submitted to the moderator
prior to the inspection meeting.

193Static Testing l

The moderator reviews the logs submitted by each inspector to determine
whether the team is adequately prepared. The moderator also checks for trou-
ble spots that may need extra attention during inspection, common defects
that can be categorized quickly, and the areas of major concern. If the logs
indicate that the team is not adequately prepared, the moderator should re-
schedule the inspection meeting. After this, the compiled log fi le is submitted
to the author.

Inspection meeting Once all the initial preparation is complete, the actual
inspection meeting can start. The inspection meeting starts with the author of
the inspected item who has created it. The author fi rst discusses every issue
raised by different members in the compiled log fi le. After the discussion, all
the members arrive at a consensus whether the issues pointed out are in fact
errors and if they are errors, should they be admitted by the author. It may be
possible that during the discussion on any issue, another error is found. Then,
this new error is also discussed and recorded as an error by the author.

The basic goal of the inspection meeting is to uncover any bug in the item.
However, no effort is made in the meeting to fi x the bug. It means that bugs
are only being notifi ed to the author, which he will fi x later. If there is any
clarifi cation regarding these bugs, then it should be asked or discussed with
other members during the meeting.

Another fact regarding the inspection is that the members of the meeting
should be sensitive to the feelings of the author. The author should not
be attacked by other members such that the author feels guilty about the
product. Every activity in the meeting should be a constructive engagement
so that more and more bugs can be discovered. It is the duty of the moderator
that the meeting remains focused towards its objective and the author is not
discouraged in any way.

At the end, the moderator concludes the meeting and produces a summary
of the inspection meeting. This summary is basically a list of errors found in
the item that need to be resolved by the author.

Rework The summary list of the bugs that arise during the inspection meeting
needs to be reworked by the author. The author fi xes all these bugs and reports
back to the moderator.

Follow-up It is the responsibility of the moderator to check that all the
bugs found in the last meeting have been addressed and fi xed. He prepares
a report and ascertains that all issues have been resolved. The document is
then approved for release. If this is not the case, then the unresolved issues
are mentioned in a report and another inspection meeting is called by the
moderator.

 Software Testing: Principles and Practices194

6.1.3 BENEFITS OF INSPECTION PROCESS

 Bug reduction The number of bugs is reduced through the inspection process.
L.H. Fenton [86] reported that through the inspection process in IBM, the
number of bugs per thousand lines of code has been reduced by two-thirds.
Thus, inspection helps reduce bug injection and detection rates. According to
Capers Jones, ‘Inspection is by far the most effective way to remove bugs.’

 Bug prevention Inspections can also be used for bug prevention. Based on
the experiences of previous inspections, analysis can be made for future
inspections or projects, thereby preventing the bugs which have appeared
earlier. Programmers must understand why bugs appear and what can be done
to avoid them in future. At the same time, they should provide inspection
results to the quality assurance team.

Productivity Since all phases of SDLC may be inspected without waiting
for code development and its execution, the cost of fi nding bugs decreases,
resulting in an increase in productivity. Moreover, the errors are found at their
exact places, therefore reducing the need of dynamic testing and debugging.
In the article by Fagan [43], an increase of 23% in coding productivity and a
25% reduction in schedules were reported.

Real-time feedback to software engineers The inspections also benefi t software
engineers/developers because they get feedback on their products on a relatively
real-time basis. Developers fi nd out the type of mistakes they make and what is
the error density. Since they get this feedback in the early stages of development,
they may improve their capability. Thus, inspections benefi t software engineers/
developers in the sense that they can recognize their weakness and improve
accordingly, which in turn benefi ts the cost of the project.

Reduction in development resource The cost of rework is surprisingly high if
inspections are not used and errors are found during development or testing.
Therefore, techniques should be adopted such that errors are found and fi xed as
close to their place of origin as possible. Inspections reduce the effort required
for dynamic testing and any rework during design and code, thereby causing
an overall net reduction in the development resource. Without inspections,
more resources may be required during design and dynamic testing. But, with
inspection, the resource requirement is greatly reduced.

Quality improvement We know that the direct consequence of testing is improve-
ment in the quality of software. The direct consequence of static testing also
results in the improvement of quality of the fi nal product. Inspections help to
improve the quality by checking the standard compliance, modularity, clarity,
and simplicity.

195Static Testing l

Project management A project needs monitoring and control. It depends on
some data obtained from the development team. However, this data cannot
be relied on forever. Inspection is another effective tool for monitoring the
progress of the project.

Checking coupling and cohesion The modules’ coupling and cohesion can be
checked easily through inspection as compared to dynamic testing. This also
reduces the maintenance work.

Learning through inspection Inspection also improves the capability of different
team members, as they learn from the discussions on various types of bugs and
the reasons why they occur. It may be more benefi cial for new members. They
can learn about the project in a very short time. This helps them in the later
stages of development and testing.

 Process improvement There is always scope of learning from the results of
one process. An analysis of why the errors occurred or the frequent places
where the errors occurred can be done by the inspection team members. The
analysis results can then be used to improve the inspection process so that the
current as well as future projects can benefi t. Discussed below are the issues of
process improvement.

Finding most error-prone modules Through the inspection process, the modules
can be analysed based on the error-density of the individual module, as shown
in Table 6.1.

Table 6.1 Error-prone modules

Module Name Error density (Error/ KLoC)

A 23

B 13

C 45

From the example modules given in Table 6.1, Module C is more error-
prone. This information can be used and some decision should be taken as to:

 (i) Redesign the module

 (ii) Check and rework on the code of Module C

 (iii) Take extra precautions and effi cient test cases to test the module

Distribution of error-types Inspections can also be used to provide data according
to the error-types. It means that we can analyse the data of the percentage of
bugs in a particular type of bug category, as shown in Table 6.2.

 Software Testing: Principles and Practices196

Table 6.2 Bug type distribution

Bug Type No. of errors %

Design Bugs 78 57.8

Interface Bugs 45 33.4

Code Bugs 12 8.8

If we get this data very early in the development process, then we can anal-
yse which particular type of bugs are repeating. We can modify the process
well in time and the results can also be used in future.

In this way, as the organization gains experience, the process can be im-
proved.

6.1.4 EFFECTIVENESS OF INSPECTION PROCESS

In an analysis done by Oliver Laitenberger [107], the inspection process was
found to be effective as compared to structural testing because the inspection
process alone found 52% errors. Of the remaining 48% of defects, on an aver-
age, only 17% are detected by structural testing.

The effectiveness of the inspection process lies in its rate of inspection. The
rate of inspection refers to how much evaluation of an item has been done by
the team. If the rate is very fast, it means the coverage of item to be evaluated
is high. Similarly if the rate is too slow, it means that the coverage is not much.
However, the rate should also be considered in the perspective of detection of
errors. If the rate is too fast, then it may be possible that it reveals only few er-
rors. If the rate is too slow, then the cost of project increases. Thus, a balanced
rate of inspection should be followed so that it concentrates on a reasonable
number of defects. It may be calculated as the error detection effi ciency of the
inspection process, as given below:

Error found by an inspection
Error detection efficiency 100

Total errors in the item before inspection
= ¥

The rate of inspection also depends on some factors like the experience
of the inspection team, the programming language, and the application
domain.

6.1.5 COST OF INSPECTION PROCESS

With at least four members involved in an inspection team, the cost of inspect-
ing 100 lines of code is roughly equivalent to one person-day of effort. This

197Static Testing l

assumes that the inspection itself takes about an hour and that each member
spends 1-2 hours preparing for the inspection. Testing costs are variable and
depend on the number of faults in the software. However, the effort required
for the program inspection is less than half the effort that would be required
for equivalent dynamic testing. Further, it has been estimated that the cost of
inspection can be 5–10% of the total cost of the project.

6.1.6 VARIANTS OF INSPECTION PROCESS

After Fagan’s original formal inspection concept, many researchers proposed
modifi cations in it. Table 6.3 lists some of the variants of the formal inspection.

Table 6.3 Formal inspection variants

 Active Design
Reviews (ADRs)

Several reviews are conducted targeting a particular type of bugs and con-
ducted by the reviewers who are experts in that area.

Formal Technical
Asynchronous review
method (FTArm)

Inspection process is carried out without really having a meeting of the mem-
bers. This is a type of asynchronous inspection in which the inspectors never
have to simultaneously meet.

 Gilb Inspection Defect detection is carried out by individual inspector at his level rather than
in a group.

 Humphrey’s
Inspection Process

Preparation phase emphasizes the fi nding and logging of bugs, unlike Fagan
inspections. It also includes an analysis phase wherein individual logs are
analysed and combined into a single list.

 N-Fold inspections Inspection process’s effectiveness can be increased by replicating it by having
multiple inspection teams.

 Phased Inspection Phased inspections are designed to verify the product in a particular domain
by experts in that domain only.

 Structured
Walkthrough

Described by Yourdon. Less formal and rigorous than formal inspections.
Roles are coordinator, scribe, presenter, reviewers, maintenance oracle, stan-
dards bearer, user representative. Process steps are Organization, Prepara-
tion, Walkthrough, and Rework. Lacks data collection requirements of formal
inspections.

 Active Design Reviews
Active Design Reviews [87] are for inspecting the design stage of SDLC. In
this process, several reviews are conducted targeting a particular type of bugs
and conducted by the reviewers who are experts in that area. Thus, it covers
all the sections of the design document based on several small reviews instead
of only one inspection. It is also based on the use of questionnaires to give the
reviewers better-defi ned responsibilities and to make them play a more active
role. The questionnaires are designed to make the reviewers take an active

 Software Testing: Principles and Practices198

stand on issues and to use the documentation. The technique has been used in
the Naval Research Laboratory’s (Washington) software cost reduction (SCR)
project for several years with good results. The SCR project involves the ex-
perimental redevelopment of the operational fl ight program (OFP) for the
Navy’s A-7E aircraft.

These are conducted in the following stages (see Fig. 6.2):

Overview Review Meeting

Figure 6.2 Active design reviews process

Overview A brief overview of the module being reviewed is presented. The
overview explains the modular structure in case it is unfamiliar to reviewers,
and shows them where the module belongs in the structure.

Review Reviewers are assigned sections of the document to be reviewed and
questionnaires based on the bug type. Reviewers answer the questions in the
questionnaires. They are also assigned a timeframe during which they may
raise any questions they have, and a time to meet with designers after the
designers have read the completed questionnaires.

Meeting The designers read the completed questionnaires and meet the
reviewers to resolve any queries that the designers may have about the
reviewer’s answers to the questionnaires. The reviewers may be asked to
defend their answers. This interaction continues until both designers and
reviewers understand the issues, although an agreement on these issues may
not be reached. After the review, the designers produce a new version of the
documentation.

Formal Technical Asynchronous Review Method (FTArm)
In this process, the meeting phase of inspection is considered expensive and
therefore, the idea is to eliminate this phase. The inspection process is carried
out without having a meeting of the members. This is a type of asynchronous
inspection [88] in which the inspectors never have to simultaneously meet.
For this process, an online version of the document is made available to every
member where they can add their comments and point out the bugs. This
process consists of the following steps, as shown in Fig. 6.3.

Setup It involves choosing the members and preparing the document for an
asynchronous inspection process. The document is prepared as a hypertext
document.

199Static Testing l

Setup

Orientation

Private review

Public review

Consolidation

Group meeting

Conclusion

Figure 6.3 Asynchronous method

Orientation It is same as the overview step of the inspection process discussed
earlier.

Private review It is same as the preparation phase discussed in the inspection
process. Here, each reviewer or inspector individually gives his comments on
the document being inspected. However, each inspector provides comments
individually and is unable to see the other inspector’s comments.

Public review In this step, all comments provided privately are made public
and all inspectors are able to see each other’s comments and put forward their
suggestions. Based on this feedback and with consultation of the author, it is
decided that there is a bug.

Consolidation In this step, the moderator analyses the result of private and
public reviews and lists the fi ndings and unresolved issues, if any.

Group meeting If required, any unresolved issues are discussed in this step.
But the decision to conduct a group meeting is taken in the previous step only
by the moderator.

Conclusion The fi nal report of the inspection process along with the analysis
is produced by the moderator.

 Software Testing: Principles and Practices200

 Gilb Inspection
Gilb and Graham [89] defi ned this process. It differs from Fagan inspection
in that the defect detection is carried out by individual inspectors at their own
level rather than in a group. Therefore, a checking phase has been introduced.
Three different roles are defi ned in this type of inspection:

 � Leader is responsible for planning and running the inspection.
 � Author of the document
 � Checker is responsible for fi nding and reporting the defects in the doc-

ument.

The inspection process consists of the following steps, as shown in
Fig. 6.4.

Planning

Kick-off

Checking

Logging

Brainstorming

Edit

Follow-up

Figure 6.4 Gilb inspection process

Entry The document must pass through an entry criteria so that the inspection
time is not wasted on a document which is fundamentally fl awed.

Planning The leader determines the inspection participants and schedules
the meeting.

Kick-off The relevant documents are distributed, participants are assigned
roles and briefed about the agenda of the meeting.

201Static Testing l

Checking Each checker works individually and fi nds defects.

Logging Potential defects are collected and logged.

 Brainstorm In this stage, process improvement suggestions are recorded
based on the reported bugs.

Edit After all the defects have been reported, the author takes the list and
works accordingly.

Follow-up The leader ensures that the edit phase has been executed
properly.

Exit The inspection must pass the exit criteria as fi xed for the completion of
the inspection process.

 Humphrey’s Inspection Process
It was described by Watts Humphrey [90]. In this process, the preparation
phase emphasizes on fi nding and logging of bugs, unlike Fagan inspections.
It also includes an analysis phase between preparation and meeting. In the
analysis phase, individual logs are analysed and combined into a single list.
The steps of this process are shown in Fig. 6.5.

Planning

Follow-up

Overview

Preparation

Analysis

Inspection

Rework

Figure 6.5 Humphrey’s process

 Software Testing: Principles and Practices202

 N-Fold Inspection
It is based on the idea that the effectiveness of the inspection process can be
increased by replicating it [91]. If we increase the number of teams inspect-
ing the item, the percentage of defects found may increase. But sometimes
the cost of organizing multiple teams is higher as compared to the number of
defects found. A proper evaluation of the situation is required. Originally, this
process was used for inspecting requirement specifi cations, but it can also be
used for any phase.

As discussed, this process consists of many independent inspection teams.
This process needs a coordinator who coordinates various teams, collects and
collates the inspection data received by them. For this purpose, he also meets
the moderator of every inspection team. This process consists of the following
stages, as shown in Fig. 6.6.

Planning and overview This is the formal planning and overview stage. In
addition, it also includes the planning of how many teams will participate in
the inspection process.

Inspection stages There are many inspection processes adopted by many
teams. It is not necessary that every team will choose the same inspection
process. The team is free to adopt any process.

Collation phase The results from each inspection process are gathered,
collated, and a master list of all detected defects is prepared.

Rework and follow-up This step is same as the tradition Fagan inspection
process.

Planning
and

overview
Inspection 2

Inspection 1

Inspection n

Collation
Rework

and
follow-up

Figure 6.6 N-fold inspection

 Phased Inspection
Phased inspections [92] are designed to verify the product in a particular
domain. If we feel that in a particular area, we may encounter errors, then
phased inspections are carried out. But for this purpose, only experts who
have experience in that particular domain are called. Thus, this inspection
process provides a chance to utilize human resources. In this process, inspec-
tion is divided into more than one phase. There is an ordered set of phases

203Static Testing l

and each phase is designed such that it will check a particular feature in the
product. The next phase in the ordered set of phases assumes that the par-
ticular feature has been verifi ed in the previous phase. There are two types of
phases, as discussed below.

Single inspector In this phase, a rigorous checklist is used by a single inspector
to verify whether the features specifi ed are there in the item to be inspected.

Multiple inspector Here, a checklist cannot be used. It means that the item
cannot be verifi ed just with the questions mentioned in the checklist. There are
many inspectors who are distributed the required documents for verifi cation
of an item. Each inspector examines this information and develops a list of
questions of their own based on a particular feature. These questions are not in
binary form as in single inspection. The item is then inspected individually by
all the inspectors based on a self-developed checklist which is either application
or domain specifi c. After individual checking by the inspectors, a reconciliation
meeting is organized where inspectors compare their fi ndings about the item.

Structured Walkthrough
Though structured walkthrough is a variant of the inspection process, we have
now categorized it as a separate category for static testing. We will discuss
structured walkthrough in Section 6.2.

6.1.7 READING TECHNIQUES

A reading technique can be defi ned as a series of steps or procedures whose
purpose is to guide an inspector to acquire a deep understanding of the
inspected software product. Thus, a reading technique can be regarded as
a mechanism or strategy for the individual inspector to detect defects in the
inspected product. Most of the techniques found in the literature support
individual inspection work. The various reading techniques are discussed
below.

 Ad hoc method In this method, there is no direction or guidelines provided for
inspection. However, ad hoc does not mean that inspection participants do not
scrutinize the inspected product systematically. The word ad hoc only refers to
the fact that no technical support on how to detect defects in a software artifact
is given to them. In this case, defect detection fully depends on the skills,
knowledge, and experience of an inspector.

 Checklists A checklist is a list of items that focus the inspector’s attention on
specifi c topics, such as common defects or organizational rules, while reviewing
a software document [43]. The purpose of checklists is to gather expertise

 Software Testing: Principles and Practices204

concerning the most common defects and thereby supporting inspections.
The checklists are in the form of questions which are very general and are
used by the inspection team members to verify the item.

However, checklists have some drawbacks too:
 � The questions, being general in nature, are not suffi ciently tailored to

take into account a particular development environment.

 � Instruction about using a checklist is often missing.

 � There is a probability that some defects are not taken care of. It hap-
pens in the case of those type of defects which have not been previously
detected.

 Scenario-based reading Checklists are general in nature and do not cover
different types of bugs. Scenario-based reading [93] is another reading
technique which stresses on fi nding different kind of defects. It is based on
scenarios, wherein inspectors are provided with more specifi c instructions than
typical checklists. Additionally, they are provided with different scenarios,
focusing on different kind of defects.

Basili et al. [94] defi ne scenario-based reading as a high-level term, which
they break down to more specifi c techniques. The original method of Porter &
Votta [93] is also known as defect-based reading. By using the defi nition by Basili
et al., most of the reading techniques are based on scenario-based techniques
wherein the inspector has to actively work with the inspected documents in-
stead of mere straightforward reading. The following methods have been de-
veloped based on the criteria given by scenario-based reading.

 Perspective-based reading The idea behind this method is that a software item
should be inspected from the perspective of different stakeholders [95,104,105].
Inspectors of an inspection team have to check the software quality as well as
the software quality factors of a software artifact from different perspectives.
The perspectives mainly depend upon the roles people have within the
software development or maintenance process. For each perspective, either
one or multiple scenarios are defi ned, consisting of repeatable activities an
inspector has to perform, and the questions an inspector has to answer. For
example, a testing expert fi rst creates a test plan based on the requirements
specifi cation and then attempts to fi nd defects from it.

This is designed specifi cally for requirements inspection, and inspectors
who participate in inspection should have expertise in inspecting require-
ments of their own area of expertise. Later, perspective-based reading has
been applied to code inspections and design inspections.

 Usage-based reading This method proposed by Thelin et al. [96,97,98] is
applied in design inspections. Design documentation is inspected based on use

205Static Testing l

cases, which are documented in requirements specifi cation. Since use-cases
are the basis of inspection, the focus is on fi nding functional defects, which are
relevant from the users’ point of view.

 Abstraction driven reading This method given by Dunsmore et al. [99,100,101]
is designed for code inspections. In this method, an inspector reads a sequence
of statements in the code and abstracts the functions these statements compute.
An inspector repeats this procedure until the fi nal function of the inspected
code artifact has been abstracted and can be compared to the specifi cation.
Thus, the inspector creates an abstraction level specifi cation based on the code
under inspection to ensure that the inspector has really understood the code.

 Task-driven reading This method is also valid for code inspections proposed
by Kelly & Shepard [102]. In this method, the inspector has to create a data
dictionary, a complete description of the logic and a cross-reference between
the code and the specifi cations.

 Function-point based scenarios This is based on scenarios for defect detection
in requirements documents [103]. This approach is based on function-point
analysis (FPA). FPA defi nes a software system in terms of its inputs, fi les,
inquiries, and outputs. The scenarios designed around function-points are
known as function-point scenarios. It consists of questions and directs the focus of
an inspector to a specifi c function-point item within the inspected requirements
document.

6.1.8 CHECKLISTS FOR INSPECTION PROCESS

The inspection team must have a checklist against which they detect er-
rors. The checklist is according to the item to be inspected. For example, the
design document and the code of the module should have different checklists.
 Checklists can be prepared with the points mentioned in the verifi cation of
each phase. Checklists should be prepared in consultation with experienced
staff and regularly updated as more experience is gained by the inspection
process.

The checklist may vary according to the environment and needs of the
organization. Each organization should prepare its own checklists for every
item.

6.2 STRUCTURED WALKTHROUGHS

The idea of structured walkthroughs was proposed by Yourdon [106]. It is a less
formal and less rigorous technique as compared to inspection. The common
term used for static testing is inspection but it is a very formal process. If you

 Software Testing: Principles and Practices206

want to go for a less formal process having no bars of organized meeting, then
walkthroughs are a good option.

A typical structured walkthrough team consists of the following members:

 � Coordinator Organizes, moderates, and follows up the walkthrough
activities.

 � Presenter/Developer Introduces the item to be inspected. This
member is optional.

 � Scribe/Recorder Notes down the defects found and suggestion pro-
posed by the members.

 � Reviewer/Tester Finds the defects in the item.
 � Maintenance Oracle Focuses on long-term implications and future

maintenance of the project.
 � Standards Bearer Assesses adherence to standards.
 � User Representative/Accreditation Agent Refl ects the needs and

concerns of the user.

 Walkthroughs differ signifi cantly from inspections. An inspection is a six-
step, rigorous, formalized process. The inspection team uses the checklist
approach for uncovering errors. A walkthrough is less formal, has fewer steps
and does not use a checklist to guide or a written report to document the team’s
work. Rather than simply reading the program or using error checklists, the
participants ‘play computer’. The person designated as a tester comes to the
meeting armed with a small set of paper test cases—representative sets of
inputs and expected outputs for the program or module. During the meeting,
each test case is mentally executed. That is, the test data are walked through
the logic of the program. The state of the program is monitored on a paper
or any other presentation media. The walkthrough should have a follow-up
process similar to that described in the inspection process. The steps of a
walkthrough process are shown in Fig. 6.7.

Organization Preparation Walkthrough Rework and
Follow-up

Figure 6.7 Walkthrough process

6.3 TECHNICAL REVIEWS

A technical review is intended to evaluate the software in the light of develop-
ment standards, guidelines, and specifi cations and to provide the management
with evidence that the development process is being carried out according to

207Static Testing l

the stated objectives. A review is similar to an inspection or walkthrough,
except that the review team also includes management. Therefore, it is con-
sidered a higher-level technique as compared to inspection or walkthrough.

A technical review team is generally comprised of management-level rep-
resentatives and project management. Review agendas should focus less on
technical issues and more on oversight than an inspection. The purpose is to
evaluate the system relative to specifi cations and standards, recording defects
and defi ciencies. The moderator should gather and distribute the documenta-
tion to all team members for examination before the review. He should also
prepare a set of indicators to measure the following points:

 � Appropriateness of the problem defi nition and requirements
 � Adequacy of all underlying assumptions
 � Adherence to standards
 � Consistency
 � Completeness
 � Documentation

The moderator may also prepare a checklist to help the team focus on
the key points. The result of the review should be a document recording the
events of the meeting, defi ciencies identifi ed, and review team recommenda-
tions. Appropriate actions should then be taken to correct any defi ciencies
and address all recommendations.

SUMMARY

Static testing techniques are not as popular as dynamic testing techniques. However, research-
ers have found static testing to be an effective aid in fi nding and preventing the defects at an
early stage. In recent years, due to the importance of early testing, these techniques are fi nding
their place in industries.

This chapter introduces static testing as a complementary technique to dynamic testing.
Static testing reveals the bugs which cannot be detected by dynamic testing. We have taken
three categories of static testing, namely inspection, walkthroughs, and reviews, and distin-
guished them. Inspection process is a widely used term for static testing. A lot of terminologies
are used interchangeably for static testing.

We have discussed every aspect of inspection process including the team members and the
inspection process. Moreover, in the literature, many variants of this process are also available.
These variants have also been discussed.

Let us review the important concepts discussed in this chapter:

 � The inspection process is a formal in-process manual examination of an item to detect
bugs. It may be applied to any product or partial product of the software development
process. This process is carried out by a group of peers with the help of checklists.

 Software Testing: Principles and Practices208

 � The rate of inspection is calculated as the error detection effi ciency of the inspection
process as given below:

Error found by an inspection
Error detection efficiency = × 100

Total errors in the item before inspection

 � Active Design Reviews inspects the design stage of SDLC. In this process, several re-
views are conducted targeting a particular type of bugs.

 � Formal Technical Asynchronous review method (FTArm) is a type of asynchronous in-
spection in which the inspectors never have to simultaneously meet. For this process, an
online version of the document is made available to every member where they can add
their comments and point out the bugs.

 � Gilb Inspection is a type of inspection process wherein the defect detection is carried out
by individual inspectors at their own level rather than in a group.

 � Humphrey’s Inspection emphasizes fi nding and logging the bugs in the preparation
phase. It also includes an analysis phase between preparation and meeting. In the anal-
ysis phase, individual logs are analysed and combined into a single list.

 � N-Fold Inspection process consists of many independent inspection teams to increase
the effectiveness of the inspection process and results in detecting more number of bugs
quickly. This process needs a coordinator who coordinates various teams, collects and
collates the inspection data received by them.

 � Phased Inspections are designed to verify the product in a particular domain with the
help of experts in that domain. In this process, the inspection is divided into more than
one phase. There is an ordered set of phases and each phase is designed such that it
will check a particular feature in the product.

 � A Reading Technique can be regarded as a mechanism or strategy for the individual
inspector to detect defects in the inspected product.

 � A Walkthrough is less formal, has fewer steps, and does not use a checklist to guide or
a written report to document the team’s work.

 � A Technical Review is intended to evaluate the software in light of development stan-
dards, guidelines, and specifi cations and to provide the management with evidence that
the development process is being carried out according to the stated objectives. A re-
view is similar to an inspection or walkthrough, except that the review team also includes
management.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. In static testing, a bug is found at its _______ location.
 (a) Exact
 (b) Nearby
 (c) None of the above

 2. Static testing can be applied for most of the _______ .
 (a) Validation activities

209Static Testing l

 (b) Verifi cation activities
 (c) SDLC activities
 (d) None of the above

 3. Formal peer evaluation of a software element whose objective is to verify that the soft-
ware element satisfi es its specifi cations and conforms to standards, is called _______ .

 (a) Walkthrough
 (b) Inspections
 (c) Reviews
 (d) None of the above

 4. The programmer or designer responsible for producing the program or document is
known as _______ .

 (a) Author
 (b) Owner
 (c) Producer
 (d) All

 5. The person who fi nds errors, omissions, and inconsistencies in programs and docu-
ments during an inspection is known as _______ .

 (a) Inspector
 (b) Moderator
 (c) Author
 (d) Producer

 6. The key person with the responsibility of planning and successful execution of inspection
is known as _______ .

 (a) Inspector
 (b) Moderator
 (c) Author
 (d) Producer

 7. The inspection team points out any potential errors or problems found and records them
in _______.

 (a) SDD
 (b) SRS
 (c) STD
 (d) Log Form

 8. ‘How much evaluation of an item has been done by the team’ is called _______ .
 (a) Rate of errors
 (b) Rate of inspection
 (c) Rate of failures
 (d) None of the above

 9. _______ is a more formal process.
 (a) Walkthroughs
 (b) Inspection

 Software Testing: Principles and Practices210

 (c) Reviews
 (d) None of the above

 10. The effi ciency of code coverage performed by dynamic testing _______ with the in-
crease in size of the system.

 (a) Decreases
 (b) Increases
 (c) Remains same
 (d) None of the above

 11. Through the inspection process, the modules can be analysed based on _______.
 (a) Error-types
 (b) Inspection reports
 (c) Error-density
 (d) None of the above

 12. The inspection in which the inspectors never have to simultaneously meet is known as
_______.

 (a) Phased Inspection
 (b) FTArm
 (c) Gilb Inspection
 (d) All

 13. Checking phase has been introduced in _______.
 (a) Phased Inspection
 (b) FTArm
 (c) Gilb Inspection
 (d) None of the above

 14. Analysis phase between preparation and meeting has been introduced in _______.
 (a) Phased Inspection
 (b) Humphrey’s Inspection
 (c) FTArm
 (d) N-fold Inspection

 15. Collation Phase has been introduced in _______.
 (a) Phased Inspection
 (b) Humphrey’s Inspection
 (c) FTArm
 (d) N-fold Inspection

 16. _______ process gives the chance to utilize human resources.
 (a) Phased Inspection
 (b) Humphrey’s Inspection
 (c) FTArm
 (d) N-fold Inspection

 17. A series of steps or procedures whose purpose is to guide an inspector in acquiring a
deep understanding of the inspected software is known as _______.

211Static Testing l

 (a) Checklists
 (b) Inspection
 (c) Reading Techniques
 (d) N-fold Inspection

 18. _______ is a reading technique.
 (a) Checklists
 (b) Inspection
 (c) Usage-based method
 (d) Task-based method

 19. A review is similar to an inspection or walkthrough, except that the review team also
includes _______.

 (a) Customer
 (b) Developer
 (c) Tester
 (d) Management

 20. _______ is not an inspection variant.
 (a) Active design review
 (b) FTArm
 (c) Walkthrough
 (d) None of the above

REVIEW QUESTIONS

 1. What are the advantages of static testing as compared to dynamic testing?

 2. What are the benefi ts of inspection process as compared to dynamic testing?

 3. Who can be a member of the inspection team?

 4. What are the stages of an inspection process?

 5. How does the rate of inspection affect the effectiveness of the inspection process?

 6. What is the difference between inspection, walkthrough, and reviews?

 7. Make a table indicating the feature of every type of inspection variant.

 8. What are the factors that increase the effectiveness of N-Fold inspection?

 9. How is scenario-based reading different from checklists? Explain the types of scenario-
based reading.

 10. Take a small project and apply all the static testing techniques on its SRS, SDD, and
code.

 11. Develop a list based on usage-based reading method on the project taken in Problem
10.

 12. What are the drawbacks of checklists?

 13. Is ad-hoc method a random method of reading?

 Software Testing: Principles and Practices212

In this chapter, we will discuss the details of all
validation concepts. Once we have verifi ed every
activity/stage in SDLC as shown in Fig. 7.1, the soft-
ware or module built up till this stage should also be
validated. By validation, we mean that the module
that has been prepared till now is in conformance
with the requirements which were set initially in
the SRS or user manual.

As shown in Fig. 7.1, every validation testing
focuses on a particular SDLC phase and thereby
focuses on a particular class of errors. We can see
a one-to-one correspondence between development
and testing processes. For example, the purpose
of unit validation testing is to fi nd discrepancies
between the developed module’s functionality and
its requirements and interfaces specifi ed in the SRS.
Similarly, the purpose of system validation testing is
to explore whether the product is consistent with its
original objectives. The advantage of this structure of
validation testing is that it avoids redundant testing
and prevents one from overlooking large classes of
errors.

Software validation is achieved through a series
of black-box tests that demonstrate conformity with

requirements [7]. A test plan outlines the classes of tests to be conducted and
a test procedure defi nes specifi c test cases that will be used to demonstrate
conformity with requirements. Both the plan and procedure are designed to
ensure that all functional requirements are satisfi ed, all behavioural character-

Chapter

7
Validation Activities

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Validation is the next step after

verifi cation
 � Validation is performed largely by black-

box testing techniques
 � Unit validation testing and role of stubs

and drivers in unit validation
 � Integration testing and its types:

Decomposition-based integration, call
graph-based integration, path graph-
based integration testing

 � Types of Decomposition-based
integration: Top-down integration,
Bottom-up integration testing

 � Function testing
 � System testing and its types: Recovery

testing, Security testing, Stress testing,
Performance testing, Usability testing,
Compatibility testing

 � Acceptance testing and its types: Alpha
and Beta testing

213Validation Activities l

istics are achieved, all performance requirements are attained, documentation
is correct and human-engineered, and other requirements are met.

End user

Requirement
Gathering

Verification Build
Acceptance
Test Plan

Build
System

Test Plan

Requirement
Specification/

Objectives

Functional
Design/High-
Level Design

(HLD)

Build
Function and
Integration
Test Plan

Build Unit
Test Plan

Internal
Design/Low-
Level Design

(LLD)

Coding

Unit
Validation
Testing

Function
Testing and
Integration

Testing

System
Testing

Acceptance
Testing

Installation
Testing

Verification

Verification

Verification

Verification

Figure 7.1 V&V activities

Validation testing techniques are described in the following sections.

7.1 UNIT VALIDATION TESTING

Since unit is the smallest building block of the software system, it is the fi rst
piece of system to be validated. Before we validate the entire software, units
or modules must be validated. Unit testing is normally considered an adjunct
to the coding step. However, it has been discussed that testing with the code
of a unit is called the verifi cation step. Units must also be validated to ensure
that every unit of software has been built in the right manner in conformance
with user requirements. Unit tests ensure that the software meets at least a
baseline level of functionality prior to integration and system testing. While

 Software Testing: Principles and Practices214

developing the software, if the developer detects and removes the bug, it
offers signifi cant savings of time and costs. This type of testing is largely based
on black-box techniques.

Though software is divided into modules but a module is not an isolated
entity. The module under consideration might be getting some inputs from
another module or the module is calling some other module. It means that
a module is not independent and cannot be tested in isolation. While testing
the module, all its interfaces must be simulated if the interfaced modules are
not ready at the time of testing the module under consideration. Discussed
below are the types of interface modules which must be simulated, if required,
to test a module.

 Drivers Suppose a module is to be tested, wherein some inputs are to be
received from another module. However, this module which passes inputs
to the module to be tested is not ready and under development. In such a
situation, we need to simulate the inputs required in the module to be tested.
For this purpose, a main program is prepared, wherein the required inputs are
either hard-coded or entered by the user and passed on to the module under
test. This module where the required inputs for the module under test are
simulated for the purpose of module or unit testing is known as a driver module.
The driver module may print or interpret the results produced by the module
under testing.

For example, see the design hierarchy of the modules, as shown in Fig.
7.2. Suppose module B is under test. In the hierarchy, module A is a super-
ordinate of module B. Suppose module A is not ready and B has to be unit
tested. In this case, module B needs inputs from module A. Therefore, a driv-
er module is needed which will simulate module A in the sense that it passes
the required inputs to module B and acts as a main program for module B in
which its being called, as shown in Fig. 7.3.

Module A

Module EModule D

Module CModule B

Module F

Figure 7.2 Design hierarchy of an example system

215Validation Activities l

Inputs as
parameters

Driver for
module A

Module B
to be tested

Figure 7.3 Driver Module for module A

Therefore, it can be said that a test driver is supporting the code and data
used to provide an environment for testing a part of a system in isolation. In
fact, it drives the unit being tested by creating necessary ‘inputs’ required for
the unit and then invokes the unit. A test driver may take inputs in the follow-
ing form and call the unit to be tested:

 � It may hard-code the inputs as parameters of the calling unit.

 � It may take the inputs from the user.

 � It may read the inputs from a fi le.

Thus, a driver can be defi ned as a software module which is used to invoke
a module under test and provide test inputs, control and monitor execution,
and report test results or most simplistically a line of code that calls a method
and passes a value to that method.

A test driver provides the following facilities to a unit to be tested:

 � Initializes the environment desired for testing.

 � Provides simulated inputs in the required format to the units to be
tested.

Projects where commercial drivers are not available, specialized drivers
need to be developed. This happens mainly in defence projects where proj-
ects are developed for a special application.

 Stubs The module under testing may also call some other module which is
not ready at the time of testing. Therefore, these modules need to be simulated
for testing. In most cases, dummy modules instead of actual modules, which
are not ready, are prepared for these subordinate modules. These dummy
modules are called stubs.

Thus, a stub can be defi ned as a piece of software that works similar to a
unit which is referenced by the unit being tested, but it is much simpler than
the actual unit. A stub works as a ‘stand-in’ for the subordinate unit and pro-
vides the minimum required behaviour for that unit.

 Software Testing: Principles and Practices216

For example, consider Fig. 7.2 again. Module B under test needs to call
module D and module E. But they are not ready. So there must be some skel-
etal structure in their place so that they act as dummy modules in place of the
actual modules. Therefore, stubs are designed for module D and module E,
as shown in Fig. 7.4.

Stubs have the following characteristics:
 � Stub is a place holder for the actual module to be called. Therefore, it is

not designed with the functionalities performed by the actual module. It
is a reduced implementation of the actual module.

 � It does not perform any action of its own and returns to the calling unit
(which is being tested).

 � We may include a display instruction as a trace message in the body of
stub. The idea is that the module to be called is working fi ne by accept-
ing the input parameters.

 � A constant or null must be returned from the body of stub to the calling
module.

 � Stub may simulate exceptions or abnormal conditions, if required.

Module B to
be tested

Stub
module D

Stub
module E

Figure 7.4 Stubs

Benefi ts of Designing Stubs and Drivers
The benefi t of designing drivers and stubs (see Fig. 7.5) is that a unit will work/
behave in the simulated environment as in the actual software environment.
Now a unit test case can be written against the interface and the unit will still
work properly once the drivers and stubs have been placed correctly.

The benefi ts of designing stubs and drivers are:
 � Stubs allow the programmer to call a method in the code being devel-

oped, even if the method does not have the desired behaviour yet.

 � By using stubs and drivers effectively, we can cut down our total debug-
ging and testing time by testing small parts of a program individually,
helping us to narrow down problems before they expand.

217Validation Activities l

 � Stubs and drivers can also be an effective tool for demonstrating prog-
ress in a business environment. For example, if you are to implement
four specifi c methods in a class by the end of the week, you can insert
stubs for any method and write a short driver program so that you can
demonstrate to your manager or client that the requirement has been
met. As you continue, you can replace the stubs and drivers with the
real code to fi nish your program.

User input

Inputs as parameter
(Module call)

Module return

Stub

Unit
to be
tested

Driver
module

Output

Stub Stub

. . .

Figure 7.5 Drivers and Stubs

However, drivers and stubs represent overheads also. Overhead of design-
ing them may increase the time and cost of the entire software system. There-
fore, they must be designed simple to keep overheads low. Stubs and drivers
are generally prepared by the developer of the module under testing. Devel-
opers use them at the time of unit verifi cation. But they can also be used by
any other person who is validating the unit.

Example 7.1

Consider the following program:

main()
{
 int a,b,c,sum,diff,mul;

 scanf(“%d %d %d”, &a, &b, &c);
 sum = calsum(a,b,c);
 diff = caldiff(a,b,c);
 mul = calmul(a,b,c);
 printf(“%d %d %d”, sum, diff, mul);
}

calsum(int x, int y, int z)
{
 int d;

 Software Testing: Principles and Practices218

 d = x + y + z;
 return(d);
}

 (a) Suppose main() module is not ready for the testing of calsum() module.
Design a driver module for main().

 (b) Modules caldiff() and calmul() are not ready when called in main().
Design stubs for these two modules.

Solution

 (a) Driver for main() module:

 main()
 {
 int a, b, c, sum;

 scanf(“%d %d %d”, &a, &b, &c);
 sum = calsum(a,b,c);
 printf(“The output from calsum module is %d”, sum);
 }

 (b) Stub for caldiff() Module

caldiff(int x, int y, int z)
 {
 printf(“Difference calculating module”);
 return 0;

}

 Stub for calmul() Module

calmul(int x, int y, int z)
{
 printf(“Multiplication calculation module”);
 return 0;
}

7.2 INTEGRATION TESTING

In the modular design of a software system where the system is composed
of different modules, integration is the activity of combining the modules
together when all the modules have been prepared. Integration of modules
is according to the design of software specifi ed earlier. Integration aims at
constructing a working software system. But a working software demands full
testing and thus, integration testing comes into the picture.

219Validation Activities l

Why do we need integration testing? When all modules have been verifi ed
independently, then why is integration testing necessary? As discussed ear-
lier, modules are not standalone entities. They are a part of a software system
which comprises of many interfaces. Even if a single interface is mismatched,
many modules may be affected. Thus, integration testing is necessary for the
following reasons:

 � Integration testing exposes inconsistency between the modules such as
improper call or return sequences.

 � Data can be lost across an interface.

 � One module when combined with another module may not give the
desired result.

 � Data types and their valid ranges may mismatch between the modules.

Thus, integration testing focuses on bugs caused by interfacing between the
modules while integrating them.

There are three approaches for integration testing, as shown in Fig. 7.6.

Integration
methods

Decomposition-
based Integration

Call Graph-based
Integration

Path-based
Integration

Figure 7.6 Integration Methods

7.2.1 DECOMPOSITION-BASED INTEGRATION

The idea for this type of integration is based on the decomposition of design
into functional components or modules. The functional decomposition is
shown as a tree in Fig. 7.7. In the tree designed for decomposition-based
integration, the nodes represent the modules present in the system and the
links/edges between the two modules represent the calling sequence. The
nodes on the last level in the tree are leaf nodes.

In the tree structure shown in Fig. 7.7, module A is linked to three
subordinate modules, B, C, and D. It means that module A calls modules,
B, C, and D. All integration testing methods in the decomposition-based
integration assume that all the modules have been unit tested in isolation.
Thus, with the decomposition-based integration, we want to test the interfaces
among separately tested modules.

 Software Testing: Principles and Practices220

B D

E F G H I J

A

C

Figure 7.7 Decomposition Tree

Integration methods in decomposition-based integration depend on the
methods on which the activity of integration is based. One method of in-
tegrating is to integrate all the modules together and then test it. Another
method is to integrate the modules one by one and test them incrementally.
Based on these methods, integration testing methods are classifi ed into two
categories: (a) non-incremental and (b) incremental.

Non-Incremental Integration Testing
In this type of testing, either all untested modules are combined together and
then tested or unit tested modules are combined together. It is also known as
Big-Bang integration testing.

Big-Bang method cannot be adopted practically. This theory has been dis-
carded due to the following reasons:

 1. Big-Bang requires more work. For example, consider the following
hierarchy of a software system.

2 3

4 56

1

7 8

Figure 7.8 Integration Testing

 According to the Big-Bang theory, if all unit tested modules are inte-
grated in this example, then for unit testing of all the modules indepen-
dently, we require four drivers and seven stubs. This count will grow
according to the size of the system.

221Validation Activities l

 2. Actual modules are not interfaced directly until the end of the software
system.

 3. It will be diffi cult to localize the errors since the exact location of bugs
cannot be found easily.

 Incremental Integration Testing
In this type, you start with one module and unit test it. Then combine the
module which has to be merged with it and perform test on both the modules.
In this way, incrementally keep on adding the modules and test the recent
environment. Thus, an integrated tested software system is achieved.

Incremental integration testing is benefi cial for the following reasons:
 1. Incremental approach does not require many drivers and stubs.

 2. Interfacing errors are uncovered earlier.

 3. It is easy to localize the errors since modules are combined one by one.
The fi rst suspect is the recently added module. Thus, debugging becomes
easy.

 4. Incremental testing is a more thorough testing. Consider the example in
Fig. 7.8. If we are testing module 6, then although module 1 and 2 have
been tested previously, they will get the chance to be tested again and
again. This gives the modules more exposure to the probable bugs by
the time the last module in the system is tested.

However, the two integration methods discussed above are sometimes not
acceptable. Incremental testing suffers from the problem of serially combin-
ing the methods according to the design. But practically, sometimes it is not
feasible in the sense that all modules are not ready at the same time. There-
fore, incremental testing cannot be adopted in its pure form.

One method that may work is to borrow the good features of both the
approaches. According to the big-bang method, all modules should be unit-
tested independently as they are developed. In this way, there is parallelism.
As soon as one module is ready, it can be combined and tested again in the
integrated environment according to the incremental integration testing.

 Types of Incremental Integration Testing
Design hierarchy of a software can be seen in a tree-like structure, as shown
in Fig. 7.8. In this tree-like structure, incremental integration can be done ei-
ther from top to bottom or bottom to top. Based on this strategy, incremental
integration testing is divided into two categories.

 Software Testing: Principles and Practices222

 Top-down Integration Testing The strategy in top-down integration is to look
at the design hierarchy from top to bottom. Start with the high-level modules
and move downward through the design hierarchy.

Modules subordinate to the top module are integrated in the following two
ways:

 Depth fi rst integration In this type, all modules on a major control path of the
design hierarchy are integrated fi rst. In the example shown in Fig. 7.8, modules
1, 2, 6, 7/8 will be integrated fi rst. Next, modules 1, 3, 4/5 will be integrated.

 Breadth fi rst integration In this type, all modules directly subordinate at each
level, moving across the design hierarchy horizontally, are integrated fi rst. In
the example shown in Fig. 7.8, modules 2 and 3 will be integrated fi rst. Next,
modules 6, 4, and 5 will be integrated. Modules 7 and 8 will be integrated last.

However, in practice, these two sequences of top-down integration cannot
be used every time. In general, there is no best sequence, but the following
guidelines can be considered:

 1. In practice, the availability of modules matter the most. The module
which is ready to be integrated, will be integrated and tested fi rst. We
should not wait to test it according to depth fi rst or breadth fi rst se-
quence, but use the availability of modules.

 2. If there are critical sections of the software, design the sequence such
that these sections will be added and tested as early as possible. A criti-
cal section might be a complex module, a module with a new algorithm
or a module suspected to be error prone.

 3. Design the sequence such that the I/O modules are added as early as
possible so that all interface errors will be detected earlier.

 Top-Down Integration Procedure
The procedure for top-down integration process is discussed in the following
steps:

 1. Start with the top or initial module in the software. Substitute the stubs
for all the subordinate modules of top module. Test the top module.

 2. After testing the top module, stubs are replaced one at a time with the
actual modules for integration.

 3. Perform testing on this recent integrated environment.

 4. Regression testing may be conducted to ensure that new errors have not
appeared.

 5. Repeat steps 2–4 for the whole design hierarchy.

223Validation Activities l

The top-down integration for Fig. 7.8 is shown below.

2 3

4 56

1

7 8

2 3

4 56

1

7 Stub for 8

2 3

4 56

1

Stub for 8Stub for 7

2 3

6

1

Stub for 8Stub for 7

Stub for 5

2 3

46

1

Stub for 8Stub for 7

Stub for 5Stub for 4

2 3

1

Stub for 5Stub for 6 Stub for 4

2

1

Stub for 3

Stub for 6

1

Stub for 3Stub for 2

Listed below are the drawbacks of top-down integration testing.

 1. Stubs must be prepared as required for testing one module.

 2. Stubs are often more complicated than they fi rst appear.

 3. Before the I/O functions are added, the representation of test cases in
stubs can be diffi cult.

 Software Testing: Principles and Practices224

 Bottom-up Integration Testing
The bottom-up strategy begins with the terminal or modules at the lowest
level in the software structure. After testing these modules, they are integrated
and tested moving from bottom to top level. Since the processing required for
modules subordinate to a given level is always available, stubs are not required
in this strategy.

Bottom-up integration can be considered as the opposite of top-down
approach. Unlike top-down strategy, this strategy does not require the archi-
tectural design of the system to be complete. Thus, bottom-up integration can
be performed at an early stage in the developmental process. It may be used
where the system reuses and modifi es components from other systems.

The steps in bottom-up integration are as follows:

 1. Start with the lowest level modules in the design hierarchy. These are
the modules from which no other module is being called.

 2. Look for the super-ordinate module which calls the module selected in
step 1. Design the driver module for this super-ordinate module.

 3. Test the module selected in step 1 with the driver designed in step 2.
 4. The next module to be tested is any module whose subordinate mod-

ules (the modules it calls) have all been tested.
 5. Repeat steps 2 to 5 and move up in the design hierarchy.
 6. Whenever, the actual modules are available, replace stubs and drivers

with the actual one and test again.
Bottom-up integration for Fig. 7.8, is shown below:

2 3

4 56

1

7 8

2 3

4 56

Driver for 1

7 8

6

7 8

Driver for 2

4 5

Driver for 3

7 8

Driver for 6

225Validation Activities l

This type of integration is useful for integrating object-oriented systems,
real-time systems, and systems with strict performance requirements. Bottom-
up integration has the disadvantage that the software as a whole does not exist
until the last module is added. It is also not an optimal strategy for function-
ally decomposed systems, as it tests the most important subsystem last.

Comparison between Top-Down and Bottom-Up Integration Testing
Table 7.1 provides a comparison between top-down and bottom-up integra-
tion testing techniques [29].

Table 7.1 Comparison between top-down and bottom-up testing

Issue Top-Down Testing Bottom-Up Testing

Architectural
Design

It discovers errors in high-level design, thus
detects errors at an early stage.

High-level design is validated at a later
stage.

System
Demonstration

Since we integrate the modules from top
to bottom, the high-level design slowly
expands as a working system. Therefore,
feasibility of the system can be demon-
strated to the top management.

It may not be possible to show the fea-
sibility of the design. However, if some
modules are already built as reusable
components, then it may be possible to
produce some kind of demonstration.

Test
Implementation

(nodes – 1) stubs are required for the sub-
ordinate modules.

(nodes – leaves) test drivers are
required for super-ordinate modules to
test the lower-level modules.

Practical Approach for Integration Testing
There is no single strategy adopted for industry practice. For integrating the
modules, one cannot rely on a single strategy. There are situations depending
on the project in hand which will force to integrate the modules by combining
top-down and bottom-up techniques. This combined approach is sometimes
known as sandwich integration testing.

Selection of an integration testing strategy depends on software character-
istics and sometimes project schedules. In general, sandwich testing strategy
that uses top-down tests for upper levels of the program structure with bot-
tom-up tests for subordinate levels is the best compromise.

The practical approach for adopting sandwich testing is driven by the fol-
lowing factors:

Priority There may be situations which force us to prioritize the modules to be
integrated. Some of the prioritizing guidelines [7] are given below:

 Software Testing: Principles and Practices226

 � Integration should follow the lines of fi rst putting together those subsys-
tems that are of great concern or with more important requirements.

 � This prioritization might dictate top-down integration if the module has
a high level of control on its subordinate modules.

 � The modules with more user interfaces should be tested fi rst, as they are
more error-prone.

 � If the customer is anxious to see a running program early in the testing
phase, then top-down integration will help.

 � In another situation, the machine interface and performance might be
of special interest. Here, bottom-up integration would be dictated. With
this approach, we stand better chance of experiencing a high degree of
concurrency during our integration.

 � The module whose cyclomatic complexity is high must be tested fi rst.

Availability In practice, the availability of modules matter the most. The
module which is ready to be integrated, will be integrated and tested fi rst. We
should not wait according to top-down or bottom-up sequence, but use the
availability of modules. Different development schedules for different modules
of the system force us to integrate with available modules only.

Pros and Cons of Decomposition-Based Integration
Decomposition-based integration techniques are better for monitoring the
progress of integration testing along the decomposition tree. If there is failure
in this integration, the fi rst suspect goes to the recently added module, as the
modules are integrated one by one either in top-down or bottom-up sequence.
Thus, debugging is easy in decomposition-based integration.

However, there is more effort required in this type of integration, as stubs
and drivers are needed for testing. Drivers are more complicated to design as
compared to stubs. The integration testing effort is computed as the number of
test sessions. A test session is one set of test cases for a specifi c confi guration.

The total number of test sessions in a decomposition-based integration is
computed as:

Number of test sessions = nodes – leaves + edges

7.2.2 CALL GRAPH-BASED INTEGRATION

It is assumed that integration testing detects bugs which are structural. How-
ever, it is also important to detect some behavioural bugs. If we can refi ne the
 functional decomposition tree into a form of module calling graph, then we are
moving towards behavioural testing at the integration level. This can be done
with the help of a call graph, as given by Jorgensen [78].

227Validation Activities l

A call graph is a directed graph, wherein the nodes are either modules
or units, and a directed edge from one node to another means one module
has called another module. The call graph can be captured in a matrix form
which is known as the adjacency matrix. For example, see Fig. 7.9, which is a
call graph of a hypothetical program. The fi gure shows how one unit calls
another. Its adjacency matrix is shown in Fig. 7.10. This matrix may help the
testers a lot.

1

2

3

4
5

6

7 8 9

16 17 18 19 20

11 12 13 15

14

10

Figure 7.9 Example call graph

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 × × × × × ×
2
3
4
5 × × ×
6
7
8 × ×
9 ×

10 × ×
11 ×
12 ×
13 ×
14 ×
15 ×
16
17
18
19
20

Figure 7.10 Adjacency matrix

 Software Testing: Principles and Practices228

The call graph shown in Fig. 7.9 can be used as a basis for integration
testing. The idea behind using a call graph for integration testing is to avoid
the efforts made in developing the stubs and drivers. If we know the calling
sequence, and if we wait for the called or calling function, if not ready, then
call graph-based integration can be used.

There are two types of integration testing based on call graph which are
discussed next.

 Pair-wise Integration
If we consider only one pair of calling and called modules, then we can make
a set of pairs for all such modules, as shown in Fig. 7.11, for pairs 1–10 and
1–11. The resulting set will be the total test sessions which will be equal to the
sum of all edges in the call graph. For example, in the call graph shown in Fig.
7.11, the number of test sessions is 19 which is equal to the number of edges
in the call graph.

1

2

3

4
5

6

7 8 9

16 17 18 19 20

11 12 13 15

14

10

Figure 7.11 Pair-wise integration

 Neighbourhood Integration
There is not much reduction in the total number of test sessions in pair-wise
integration as compared to decomposition-based integration. If we consider
the neighbourhoods of a node in the call graph, then the number of test ses-
sions may reduce. The neighbourhood for a node is the immediate predeces-
sor as well as the immediate successor nodes. The neighbourhood of a node,
thus, can be defi ned as the set of nodes that are one edge away from the given
node.

The neighbourhoods of each node in the call graph shown in Fig. 7.9 is
shown in Table 7.2.

229Validation Activities l

Table 7.2 Neighbourhood integration details

Node
Neighbourhoods

Predecessors Successors

1 ----- 2,3,4,5,10,11

5 1 6,7,8

8 5 9,16

9 8 17

10 1 13,14

11 1 12

12 11 18

13 10 19

14 10 15

15 14 20

The total test sessions in neighbourhood integration can be calculated as:
 Neighbourhoods = nodes – sink nodes
 = 20 – 10
 = 10
where sink node is an instruction in a module at which the execution terminates.

7.2.3 PATH-BASED INTEGRATION

As we have discussed, in a call graph, when a module or unit executes, some
path of source instructions is executed (remember fl ow graph?). And it may
be possible that in that path execution, there may be a call to another unit. At
that point, the control is transferred from the calling unit to the called unit.
This passing of control from one unit to another unit is necessary for integra-
tion testing. Also, there should be information within the module regarding
instructions that call the module or return to the module. This must be tested
at the time of integration. It can be done with the help of path-based integra-
tion defi ned by Paul C. Jorgenson [78]. We need to understand the following
defi nitions for path-based integration.

 Source node It is an instruction in the module at which the execution starts
or resumes. The nodes where the control is being transferred after calling the
module are also source nodes.

 Sink node It is an instruction in a module at which the execution terminates.
The nodes from which the control is transferred are also sink nodes.

 Module execution path (MEP) It is a path consisting of a set of executable
statements within a module like in a fl ow graph.

 Software Testing: Principles and Practices230

 Message When the control from one unit is transferred to another unit, then
the programming language mechanism used to do this is known as a message.
For example, when there is a function call, then it is a message from one unit
(where the call is mentioned; caller module) to another unit (the unit which is
being called).

 MM-path It is a path consisting of MEPs and messages. The path shows the
sequence of executable statements; it also crosses the boundary of a unit when
a message is followed to call another unit. In other words, MM-path is a set of
MEPs and transfer of control among different units in the form of messages.

 MM-path graph It can be defi ned as an extended fl ow graph where nodes are
MEPs and edges are messages. It returns from the last called unit to the fi rst
unit where the call was made. In this graph, messages are highlighted with
thick lines.
Now let us see the concept of path-based integration with the help of one
example. Fig. 7.12 shows the MM-path as a darken line. The details regarding
the example units shown in Fig. 7.12 is given in Table 7.3.

1

2 3

4

5

3

2

1

4

5

6

1

2 3

4

5

Unit A Unit B Unit C

Figure 7.12 MM-path

Table 7.3 MM-path details

Source Nodes Sink Nodes MEPs

Unit A 1,4 3,5 MEP(A,1) = <1,2,5>
MEP(A,2) = <1,3>
MEP(A,3) = <4,5>

Unit B 1,5 4,6 MEP(B,1) = <1,2,4>
MEP(B,2) = <5,6>
MEP(B,3) = <1,2,3,4,5,6>

Unit C 1 5 MEP(C,1) = <1,3,4,5>
MEP(C,2) = <1,2,4,5>

231Validation Activities l

The MM-path graph for this example is shown in Fig. 7.13.

MEP(A, 1)

MEP(A, 3)

MEP(A, 2) MEP(B, 1)

MEP(B, 2)

MEP(B, 3)

MEP(C, 1)

MEP(C, 2)

Figure 7.13 MEP graph

7.3 FUNCTION TESTING

When an integrated system is tested, all its specifi ed functions and external
interfaces are tested on the software. Every functionality of the system speci-
fi ed in the functions is tested according to its external specifi cations. An ex-
ternal specifi cation is a precise description of the software behaviour from the
viewpoint of the outside world (e.g. user). Kit [1] has defi ned function testing
as the process of attempting to detect discrepancies between the functional specifi cations
of a software and its actual behaviour.

Thus, the objective of function test is to measure the quality of the func-
tional (business) components of the system. Tests verify that the system be-
haves correctly from the user/business perspective and functions according
to the requirements, models, or any other design paradigm used to specify the
application. The function test must determine if each component or business
event:

 1. performs in accordance to the specifi cations,

 2. responds correctly to all conditions that may present themselves by in-
coming events/data,

 3. moves data correctly from one business event to the next (including
data stores), and

 4. is initiated in the order required to meet the business objectives of the
system.

Function testing can be performed after unit and integration testing, or
whenever the development team thinks that the system has suffi cient function-
ality to execute some tests. The test cases are executed such that the execution
of a given test case against the software will exercise external functionality of

 Software Testing: Principles and Practices232

certain parts. To keep a record of function testing, a function coverage metric
is used. Function coverage can be measured with a function coverage matrix. It
keeps track of those functions that exhibited the greatest number of errors.
This information is valuable because it tells us that these functions probably
contain the preponderance of errors that have not been detected yet.

An effective function test cycle must have a defi ned set of processes and
deliverables. The primary processes/deliverables for requirements based
function test are discussed below.

Test planning During planning, the test leader with assistance from the test
team defi nes the scope, schedule, and deliverables for the function test cycle.
He delivers a test plan (document) and a test schedule (work plan)—these
often undergo several revisions during the testing cycle.

Partitioning/functional decomposition Functional decomposition of a system
(or partitioning) is the breakdown of a system into its functional components
or functional areas. Another group in the organization may take responsibility
for the functional decomposition (or model) of the system, but the testing
organization should still review this deliverable for completeness before
accepting it into the test organization. If the functional decompositions or
partitions have not been defi ned or are deemed insuffi cient, then the testing
organization will have to take responsibility for creating and maintaining the
partitions.

Requirement defi nition The testing organization needs specifi ed requirements
in the form of proper documents to proceed with the function test. These
requirements need to be itemized under an appropriate functional partition.

Test case design A tester designs and implements a test case to validate that
the product performs in accordance with the requirements. These test cases
need to be itemized under an appropriate functional partition and mapped/
traced to the requirements being tested.

 Traceability matrix formation Test cases need to be traced/mapped back to
the appropriate requirement. A function coverage matrix is prepared. This
matrix is a table, listing specifi c functions to be tested, the priority for testing
each function, and test cases that contain tests for each function. Once all the
aspects of a function have been tested by one or more test cases, then the test
design activity for that function can be considered complete. This approach
gives a more accurate picture of the application when coverage analysis is
done. For example, in Table 7.4, function F2 test cases must be executed, as
its priority is highest; and through the function coverage matrix, we can track
which functions are being tested through which test cases.

233Validation Activities l

Table 7.4 Function coverage matrix

Functions/Features Priority Test Cases

F1 3 T2,T4,T6

F2 1 T1, T3,T5

Test case execution As in all phases of testing, an appropriate set of test cases
need to be executed and the results of those test cases recorded. Which test
cases are to be executed should be defi ned within the context of the test plan
and the current state of the application being tested. If the current state of
the application does not support the testing of one or more functions, then
this testing should be deferred until it justifi es the expenditure of testing
resources.

7.4 SYSTEM TESTING

When all the modules have been integrated with the software system, then
the software is incorporated with other system elements (e.g. hardware, peo-
ple, information). This integrated system needs to be validated now. But the
system is not validated according to functional specifi cations. System testing
should not be misunderstood at this point. In function testing, we have al-
ready validated all the requirement functionality. Thus, system testing is not a
process of testing the functions of a complete system or program.

System testing is the process of attempting to demonstrate that a program or system
does not meet its original requirements and objectives, as stated in the requirement
specifi cation. System testing is actually a series of different tests to test the whole
system on various grounds where bugs have the probability to occur. The
ground can be performance, security, maximum load, etc. The integrated
system is passed through various tests based on these grounds and depend-
ing on the environment and type of project. After passing through these tests,
the resulting system is a system which is ready for acceptance testing which
involves the user, as shown in Fig. 7.14.

But it is diffi cult to test the system on various grounds, since there is no
methodology for system testing. One solution to this problem is to think from
the perspective of the user and the problem the user is trying to solve.

Unlike function testing, the external specifi cations cannot be used as the
basis for deriving the system test cases, since this would weaken the purpose
of system testing. On the other hand, the objectives document cannot be used
by itself to formulate test cases, since it does not by defi nition, contain precise

 Software Testing: Principles and Practices234

descriptions of the program’s external interfaces. This dilemma is solved by
using the program’s user documentation. Design the system test by analysing
the objectives; formulate test cases by analysing the user documentation. This
has a useful side-effect of comparing the program with its objectives and the
user documentation, as well as comparing the user documentation with the
objectives, as shown in Fig. 7.15.

It is obvious that the central purpose of system testing is to compare the
system with its stated objectives. However, there are no test case design meth-
odologies. The reason for this is that objectives state what a program should
do and how well the program should do it, but they do not state the represen-
tation of the program’s functions.

User
Documentation

System
Objectives
Documents

Software
Dystem

Figure 7.15 Design the system by analysing the objectives

Given the statement of objectives, there is no identifi able methodology that
would yield a set of test cases, other than the vague but useful guideline of
writing test cases to attempt to show that the system is inconsistent with each
sentence in the objectives statement. Therefore, rather than developing a sys-
tem test methodology, distinct categories of system test cases are taken. Some
of the categories are discussed below.

Recovery testing
Compatibility testing

Performance testing

Stress testing
Security testing

Integrated
system after
Integration

Testing

System
ready for

Acceptance
Testing

Figure 7.14 System testing

235Validation Activities l

7.4.1 CATEGORIES OF SYSTEM TESTS

 Recovery Testing
Recovery is just like the exception handling feature of a programming lan-
guage. It is the ability of a system to restart operations after the integrity of the
application has been lost. It reverts to a point where the system was function-
ing correctly and then, reprocesses the transactions to the point of failure.

Some software systems (e.g. operating system, database management sys-
tems, etc.) must recover from programming errors, hardware failures, data er-
rors, or any disaster in the system. So the purpose of this type of system testing
is to show that these recovery functions do not work correctly.

The main purpose of this test is to determine how good the developed soft-
ware is when it faces a disaster. Disaster can be anything from unplugging the
system which is running the software from power, network etc., also stopping
the database, or crashing the developed software itself. Thus, recovery testing is
the activity of testing how well the software is able to recover from crashes, hardware
failures, and other similar problems. It is the forced failure of the software in vari-
ous ways to verify that the recovery is properly performed. Some examples of
recovery testing are given below:

 � While the application is running, suddenly restart the computer and
thereafter, check the validity of application’s data integrity.

 � While the application receives data from the network, unplug the cable
and plug-in after awhile, and analyse the application’s ability to con-
tinue receiving data from that point, when the network connection dis-
appeared.

 � Restart the system while the browser has a defi nite number of sessions
and after rebooting, check that it is able to recover all of them.

Recovery tests would determine if the system can return to a well-known
state, and that no transactions have been compromised. Systems with auto-
mated recovery are designed for this purpose. There can be provision of mul-
tiple CPUs and/or multiple instances of devices, and mechanisms to detect
the failure of a device. A ‘checkpoint’ system can also be put that meticulously
records transactions and system states periodically to preserve them in case
of failure. This information allows the system to return to a known state after
the failure.

Beizer [49] proposes that testers should work on the following areas during
recovery testing:

Restart If there is a failure and we want to recover and start again, then fi rst
the current system state and transaction states are discarded. Following the
criteria of checkpoints as discussed above, the most recent checkpoint record

 Software Testing: Principles and Practices236

is retrieved and the system is initialized to the states in the checkpoint record.
Thus, by using checkpoints, a system can be recovered and started again from
a new state. Testers must ensure that all transactions have been reconstructed
correctly and that all devices are in proper states. The system now is in a
position to begin to process new transactions.

Switchover Recovery can also be done if there are standby components and
in case of failure of one component, the standby takes over the control. The
ability of the system to switch to a new component must be tested.

A good way to perform recovery testing is under maximum load. Maxi-
mum load would give rise to transaction inaccuracies and the system would
crash, resulting in defects and design fl aws.

 Security Testing
Safety and security issues are gaining importance due to the proliferation of
commercial applications on the Internet and the increasing concern about
privacy. Security is a protection system that is needed to assure the customers
that their data will be protected. For example, if Internet users feel that their
personal data/information is not secure, the system loses its accountability.
Security may include controlling access to data, encrypting data in commu-
nication, ensuring secrecy of stored data, auditing security events, etc. The
effects of security breaches could be extensive and can cause loss of informa-
tion, corruption of information, misinformation, privacy violations, denial of
service, etc.

 Types of Security Requirements While performing security testing, the following
security requirements must be considered:

 � Security requirements should be associated with each functional re-
quirement. Each functional requirement, most likely, has a specifi c set
of related security issues to be addressed in the software implementa-
tion. For example, the log-on requirement in a client-server system must
specify the number of retries allowed, the action to be taken if the log-on
fails, and so on.

 � In addition to security concerns that are directly related to particular
requirements, a software project has security issues that are global in
nature, and are therefore, related to the application’s architecture and
overall implementation. For example, a Web application may have a
global requirement that all private customer data of any kind is stored
in encrypted form in the database. In another example, a system-wide
security requirement is to use SSL to encrypt the data sent between the
client browser and the Web server. Security testing team must verify
that SSL is correctly used in all such transmissions.

237Validation Activities l

Security testing is the process of attempting to devise test cases to evaluate
the adequacy of protective procedures and countermeasures.

The problem with security testing is that security-related bugs are not as
obvious as other type of bugs. It may be possible that the security system has
failed and caused the loss of information without the knowledge of loss. Thus,
the tester should perform security testing with the goal to identify the bugs
that are very diffi cult to identify.

 Security vulnerabilities Vulnerability is an error that an attacker can exploit.
Security vulnerabilities are of the following types:

 � Bugs at the implementation level, such as local implementation errors
or interprocedural interface errors

 � Design-level mistakes

Design-level vulnerabilities are the hardest defect category to handle, but
they are also the most prevalent and critical. Unfortunately, ascertaining
whether a program has design-level vulnerabilities requires great expertise,
which makes fi nding not only diffi cult but particularly hard to automate.
Examples of design-level security fl aws include problem in error-handling,
unprotected data channels, incorrect or missing access control mechanisms,
and timing errors especially in multithreaded systems.

How to perform security testing Testers must use a risk-based approach, ground-
ed in both the system’s architectural reality and the attacker’s mindset, to gauge
software security adequately. By identifying risks and potential loss associated
with those risks in the system and creating tests driven by those risks, the tes-
ter can properly focus on areas of code in which an attack is likely to succeed.
Therefore, risk analysis, especially at the design-level, can help us identify po-
tential security problems and their impacts. Once identifi ed and ranked, soft-
ware risks can help guide software security testing.

 Risk management and security testing Software security practitioners perform
many different tasks to manage software security risks, including:

 � Creating security abuse/misuse cases

 � Listing normative security requirements

 � Performing architectural risk analysis

 � Building risk-based security test plans

 � Wielding static analysis tools

 � Performing security tests

Three tasks, i.e. architectural risk analysis, risk-based security test planning,
and security testing, are closely linked because a critical aspect of security

 Software Testing: Principles and Practices238

testing relies on probing security risks. Based on design-level risk analysis and
ranking of security related risks, security test plans are prepared which guide
the security testing.

Thus, security testing must necessarily involve two diverse approaches:
 � Testing security mechanisms to ensure that their functionality is prop-

erly implemented

 � Performing risk-based security testing motivated by understanding and
simulating the attacker’s approach

 Elements of security testing The basic security concepts that need to be
covered by security testing are discussed below:

 Confi dentiality A security measure which protects against the disclosure of
information to parties other than the intended recipient.

 Integrity A measure intended to allow the receiver to determine that the
information which it receives has not been altered in transit or by anyone other
than the originator of the information. Integrity schemes often use some of
the same underlying technologies as confi dentiality schemes, but they usually
involve adding additional information to a communication to form the basis of
an algorithmic check rather than encoding all the communication.

 Authentication A measure designed to establish the validity of a transmission,
message, or originator. It allows the receiver to have confi dence that the
information it receives originates from a specifi c known source.

 Authorization It is the process of determining that a requester is allowed to
receive a service or perform an operation. Access control is an example of
authorization.

 Availability It assures that the information and communication services will be
ready for use when expected. Information must be kept available for authorized
persons when they need it.

 Non-repudiation A measure intended to prevent the later denial that an action
happened, or a communication took place, etc. In communication terms, this
often involves the interchange of authentication information combined with
some form of provable timestamp.

 Performance Testing
Performance specifi cations (requirements) are documented in a performance
test plan. Ideally, this is done during the requirements development phase of
any system development project, prior to any design effort.

239Validation Activities l

Performance specifi cations (requirements) should ask the following ques-
tions, at a minimum:

 � In detail, what is the performance test scope? What subsystems, inter-
faces, components, etc. are in and out of the scope for this test?

 � For the user interfaces (UIs) involved, how many concurrent users are
expected for each (specify peak vs. nominal)?

 � What does the target system (hardware) look like (specify all server and
network appliance confi gurations)?

 � What are the time requirements for any/all backend batch processes
(specify peak vs. nominal)?

A system along with its functional requirements, must meet the quality
requirements. One example of quality requirement is performance level. The
users may have objectives for a software system in terms of memory use,
response time, throughput, and delays. Thus, performance testing is to test
the run-time performance of the software on the basis of various performance
factors. Performance testing becomes important for real-time embedded
systems, as they demand critical performance requirements.

This testing requires that performance requirements must be clearly men-
tioned in the SRS and system test plans. The important thing is that these
requirements must be quantifi ed. For example, a requirement that the system
should return a response to a query in a reasonable amount of time is not an
acceptable requirement; the time must be specifi ed in a quantitative way. In
another example, for a Web application, you need to know at least two things:
(a) expected load in terms of concurrent users or HTTP connections and (b)
acceptable response time.

 Performance testing is often used as a part of the process of performance
profi le tuning. The goal is to identify the ‘weakest links’—the system often
carries a number of parts which, with a little tweak, can signifi cantly improve
the overall performance of the system. It is sometimes diffi cult to identify
which parts of the system represent the critical paths. To help identify critical
paths, some test tools include (or have as add-ons) instrumentation agents
that run on the server and report transaction times, database access times,
network overhead, and other server monitors. Without such instrumenta-
tion, the use of primitive system tools may be required (e.g. Task Manager in
Microsoft Windows). Performance testing usually concludes that it is the soft-
ware (rather than the hardware) that contribute most to delays (bottlenecks)
in data processing.

For performance testing, generally a generic set of sample data is created
in the project and because of time constraints, that data is used throughout

 Software Testing: Principles and Practices240

development and functional testing. However, these datasets tend to be unre-
alistic, with insuffi cient size and variation, which may result in performance
surprises when an actual customer, using much more data than contained in
the sample dataset, attempts to use the system. Therefore, it becomes neces-
sary that testing team must use production-size realistic databases that include
a wide range of possible data combinations.

Using realistic-size databases provides the following benefi ts:

 � Since a large dataset may require signifi cant disk space and processor
power, it leads to backup and recoverability concerns.

 � If data is transferred across a network, bandwidth may also be a consid-
eration.

Thus, working with realistic datasets as early as possible will help bring
these issues to the surface while there is time and when it is more cost-effec-
tive to do something about them, rather than after the software is already in
production environment, when such issues can become very costly to address
in terms of both budget and schedule.

The following tasks must be done for this testing:

 � Decide whether to use internal or external resources to perform tests,
depending on in-house expertise (or the lack of it).

 � Gather performance requirements (specifi cations) from users and/or
business analysts.

 � Develop a high-level plan (or project charter), including requirements,
resources, timelines, and milestones.

 � Develop a detailed performance test plan (including detailed scenarios
and test cases, workloads, environment info, etc).

 � Choose test tool(s).

 � Specify test data needed.

 � Develop detailed performance test project plan, including all depen-
dencies and associated timelines.

 � Confi gure the test environment (ideally identical hardware to the pro-
duction platform), router confi guration, deployment of server instru-
mentation, database test sets developed, etc.

 � Execute tests, probably repeatedly (iteratively), in order to see whether
any unaccounted factor might affect the results.

 Load Testing
Normally, we don’t test the system with its full load, i.e. with maximum values
of all resources in the system. The normal system testing takes into consider-

241Validation Activities l

ation only nominal values of the resources. However, there is high probability
that the system will fail when put under maximum load. Therefore, it is im-
portant to test the system with all its limits. When a system is tested with a load
that causes it to allocate its resources in maximum amounts, it is called load testing.
The idea is to create an environment more demanding than the application
would experience under normal workloads.

When you are doing performance testing, it may not be possible that you
are taking all statistically representative loads for all the parameters in the sys-
tem. For example, the system is designed for n number of users, t number of
transactions per user per unit time, with p unit time response time, etc. Have
you tested the performance of the system with all these representative loads?
If no, then load testing must be performed as a part of performance testing.
Load is varied from a minimum (zero) to the maximum level the system can
sustain without running out of resources. As the load is being increased, trans-
actions may suffer (application-specifi c) excessive delay. For example, when
many users work simultaneously on a web server, the server responds slow.
In this way, through load testing, we are able to determine the maximum
sustainable load the system can handle.

 Stress Testing
Stress testing is also a type of load testing, but the difference is that the system
is put under loads beyond the limits so that the system breaks. Thus, stress
testing tries to break the system under test by overwhelming its resources in order to fi nd
the circumstances under which it will crash. The areas that may be stressed in a
system are:

 � Input transactions

 � Disk space

 � Output

 � Communications

 � Interaction with users

Stress testing is important for real-time systems where unpredictable events
may occur, resulting in input loads that exceed the values described in the
specifi cation, and the system cannot afford to fail due to maximum load on
resources. Therefore, in real-time systems, the entire threshold values and
system limits must be noted carefully. Then, the system must be stress-tested
on each individual value.

Stress testing demands the amount of time it takes to prepare for the test
and the amount of resources consumed during the actual execution of the test.
Therefore, stress testing cost must be weighed against the risk of not identify-

 Software Testing: Principles and Practices242

ing volume-related failures. For example, many of the defense systems which
are real-time in nature, demand the systems to perform continuously in war-
fare conditions. Thus, for a real-time defense system, we must stress-test the
system; otherwise, there may be loss of equipment as well as life.

 Usability Testing
This type of system testing is related to a system’s presentation rather than
its functionality. System testing can be performed to fi nd human-factors or
usability problems on the system. The idea is to adapt the software to users’
actual work styles rather than forcing the users to adapt according to the soft-
ware. Thus, the goal of usability testing is to verify that intended users of the
system are able to interact properly with the system while having a positive
and convenient experience. Usability testing identifi es discrepancies between the
user interfaces of a product and the human engineering requirements of its potential
users.

What the user wants or expects from the system can be determined using
several ways as proposed by Dustin [12]:

Area experts The usability problems or expectations can be best understood
by the subject or area experts who have worked for years in the same area.
They analyse the system’s specifi c requirements from the user’s perspective
and provide valuable suggestions.

Group meetings Group meeting is an interesting idea to elicit usability
requirements from the user. These meetings result in potential customers’
comments on what they would like to see in an interface.

Surveys Surveys are another medium to interact with the user. It can also yield
valuable information about how potential customers would use a software
product to accomplish their tasks.

Analyse similar products We can also analyse the experiences in similar kinds
of projects done previously and use it in the current project. This study will
also give us clues regarding usability requirements.

Usability characteristics against which testing is conducted are discussed
below:

Ease of use The users enter, navigate, and exit with relative ease. Each user
interface must be tailored to the intelligence, educational background, and
environmental pressures of the end-user.

Interface steps User interface steps should not be misleading. The steps should
also not be very complex to understand either.

243Validation Activities l

Response time The time taken in responding to the user should not be so high
that the user is frustrated or will move to some other option in the interface.

Help system A good user interface provides help to the user at every step. The
help documentation should not be redundant; it should be very precise and
easily understood by every user of the system.

Error messages For every exception in the system, there must be an error
message in text form so that users can understand what has happened in the
system. Error messages should be clear and meaningful.

An effective tool in the development of a usable application is the user-in-
terface prototype. This kind of prototype allows interaction between potential
users, requirements personnel, and developers to determine the best approach
to the system’s interface. Prototypes are far superior because they are interac-
tive and provide a more realistic preview of what the system will look like.

 Compatibility/Conversion/Confi guration Testing
Compatibility testing is to check the compatibility of a system being devel-
oped with different operating system, hardware and software confi guration
available, etc. Many software systems interact with multiple CPUs. Some soft-
ware control real-time process and embedded software interact with devices.
In many cases, users require that the devices be interchangeable, removable,
or re-confi gurable. Very often the software will have a set of commands or
menus that allow users to make these confi guration changes. Confi guration
testing allows developers/testers to evaluate system performance and avail-
ability when hardware exchanges and reconfi gurations occur. The number of
possible combinations for checking the compatibilities of available hardware
and software can be too high, making this type of testing a complex job.
Discussed below are some guidelines for compatibility testing [12].

Operating systems The specifi cations must state all the targeted end-user
operating systems on which the system being developed will be run.

Software/Hardware The product may need to operate with certain versions of
Web browsers, with hardware devices such as printers, or with other softwares
such as virus scanners or word processors.

Conversion testing Compatibility may also extend to upgrades from previous
versions of the software. Therefore, in this case, the system must be upgraded
properly and all the data and information from the previous version should also
be considered. It should be specifi ed whether the new system will be backward
compatible with the previous version. Also, if other user’s preferences or
settings are to be preserved or not.

 Software Testing: Principles and Practices244

Ranking of possible confi gurations Since there will be a large set of possible
confi gurations and compatibility concerns, the testers must rank the possible
confi gurations in order, from the most to the least common, for the target
system.

Identifi cation of test cases Testers must identify appropriate test cases and data
for compatibility testing. It is usually not feasible to run the entire set of possible
test cases on every possible confi guration, because this would take too much
time. Therefore, it is necessary to select the most representative set of test cases
that confi rms the application’s proper functioning on a particular platform.

Updating the compatibility test cases The compatibility test cases must also be
continually updated with the following:

 (i) Tech-support calls provide a good source of information for updating
the compatibility test suite.

 (ii) A beta-test program can also provide a large set of data regarding real
end-user confi gurations and compatibility issues prior to the fi nal re-
lease of a system.

7.5 ACCEPTANCE TESTING

Developers/testers must keep in mind that the software is being built to satisfy
the user requirements and no matter how elegant its design is, it will not be
accepted by the users unless it helps them achieve their goals as specifi ed in
the requirements. After the software has passed all the system tests and defect
repairs have been made, the customer/client must be involved in the testing
with proper planning. The purpose of acceptance testing is to give the end-
user a chance to provide the development team with feedback as to whether
or not the software meets their needs. Ultimately, it’s the user that needs to be
satisfi ed with the application, not the testers, managers, or contract writers.

Acceptance testing is one of the most important types of testing we can
conduct on a product. It is more important to worry whether users are happy
about the way a program works rather than whether or not the program
passes a bunch of tests that were created by testers in an attempt to validate
the requirements, that an analyst did their best to capture and a programmer
interpreted based on their understanding of those requirements.

Thus, acceptance testing is the formal testing conducted to determine whether a soft-
ware system satisfi es its acceptance criteria and to enable buyers to determine whether
to accept the system or not.

Acceptance testing must take place at the end of the development process. It
consists of tests to determine whether the developed system meets the prede-

245Validation Activities l

termined functionality, performance, quality, and interface criteria acceptable
to the user. Therefore, the fi nal acceptance acknowledges that the entire soft-
ware product adequately meets the customer’s requirements. User acceptance
testing is different from system testing. System testing is invariably performed
by the development team which includes developers and testers. User accep-
tance testing, on the other hand, should be carried out by end-users.

Thus, acceptance testing is designed to:

 � Determine whether the software is fi t for the user.

 � Making users confi dent about the product.

 � Determine whether a software system satisfi es its acceptance criteria.

 � Enable the buyer to determine whether to accept the system or not.

The fi nal acceptance marks the completion of the entire development pro-
cess. It happens when the customer and the developer has no further prob-
lems.

Acceptance test might be supported by the testers. It is very important to
defi ne the acceptance criteria with the buyer during various phases of SDLC.
A well-defi ned acceptance plan will help development teams to understand
users’ needs. The acceptance test plan must be created or reviewed by the
customer. The development team and the customer should work together and
make sure that they:

 � Identify interim and fi nal products for acceptance, acceptance criteria,
and schedule.

 � Plan how and by whom each acceptance activities will be performed.

 � Schedule adequate time for the customer to examine and review the
product.

 � Prepare the acceptance plan.

 � Perform formal acceptance testing at delivery.

 � Make a decision based on the results of acceptance testing.

Entry Criteria
 � System testing is complete and defects identifi ed are either fi xed or doc-

umented.

 � Acceptance plan is prepared and resources have been identifi ed.

 � Test environment for the acceptance testing is available.

Exit Criteria
 � Acceptance decision is made for the software.

 � In case of any warning, the development team is notifi ed.

 Software Testing: Principles and Practices246

 Types of Acceptance Testing
Acceptance testing is classifi ed into the following two categories:

 � Alpha Testing Tests are conducted at the development site by the end
users. The test environment can be controlled a little in this case.

 � Beta Testing Tests are conducted at the customer site and the develop-
ment team does not have any control over the test environment.

7.5.1 ALPHA TESTING

Alpha is the test period during which the product is complete and usable in
a test environment, but not necessarily bug-free. It is the fi nal chance to get
verifi cation from the customers that the tradeoffs made in the fi nal develop-
ment stage are coherent.

Therefore, alpha testing is typically done for two reasons:

 (i) to give confi dence that the software is in a suitable state to be seen by
the customers (but not necessarily released).

 (ii) to fi nd bugs that may only be found under operational conditions. Any
other major defects or performance issues should be discovered in this
stage.

Since alpha testing is performed at the development site, testers and users
together perform this testing. Therefore, the testing is in a controlled manner
such that if any problem comes up, it can be managed by the testing team.

 Entry Criteria to Alpha

 � All features are complete/testable (no urgent bugs).
 � High bugs on primary platforms are fi xed/verifi ed.
 � 50% of medium bugs on primary platforms are fi xed/verifi ed.
 � All features have been tested on primary platforms.
 � Performance has been measured/compared with previous releases (user

functions).
 � Usability testing and feedback (ongoing).
 � Alpha sites are ready for installation.

 Exit Criteria from Alpha
After alpha testing, we must:

 � Get responses/feedbacks from customers.
 � Prepare a report of any serious bugs being noticed.
 � Notify bug-fi xing issues to developers.

247Validation Activities l

7.5.2 BETA TESTING

Once the alpha phase is complete, development enters the beta phase. Beta
is the test period during which the product should be complete and usable in
a production environment. The purpose of the beta ship and test period is to
test the company’s ability to deliver and support the product (and not to test
the product itself). Beta also serves as a chance to get a fi nal ‘vote of confi -
dence’ from a few customers to help validate our own belief that the product
is now ready for volume shipment to all customers.

Versions of the software, known as beta-versions, are released to a limited
audience outside the company. The software is released to groups of people
so that further testing can ensure the product has few or no bugs. Sometimes,
beta-versions are made available to the open public to increase the feedback
fi eld to a maximal number of future users.

Testing during the beta phase, informally called beta testing, is generally
constrained to black-box techniques, although a core of test engineers are
likely to continue with white-box testing parallel to beta tests. Thus, the term
 beta test can refer to a stage of the software—closer to release than being ‘in
alpha’—or it can refer to the particular group and process being done at that
stage. So a tester might be continuing to work in white-box testing while the
software is ‘in beta’ (a stage), but he or she would then not be a part of ‘the
beta test’ (group/activity).

 Entry Criteria to Beta

 � Positive responses from alpha sites.

 � Customer bugs in alpha testing have been addressed.

 � There are no fatal errors which can affect the functionality of the software.

 � Secondary platform compatibility testing is complete.

 � Regression testing corresponding to bug fi xes has been done.

 � Beta sites are ready for installation.

 Guidelines for Beta Testing

 � Don’t expect to release new builds to beta testers more than once every
two weeks.

 � Don’t plan a beta with fewer than four releases.

 � If you add a feature, even a small one, during the beta process, the clock
goes back to the beginning of eight weeks and you need another 3–4
releases.

 Software Testing: Principles and Practices248

 Exit Criteria from Beta
After beta testing, we must:

 � Get responses/feedbacks from the beta testers.

 � Prepare a report of all serious bugs.

 � Notify bug-fi xing issues to developers.

SUMMARY

This chapter describes all the validation testing activities. The test plans for all validation testing
types are done in advance while doing verifi cation at every stage of SDLC. Validation testing
is done at three levels: unit, integration of all modules, and system. Unit validation cannot be
done in isolation. It is performed with the help of drivers and stubs which increase the cost of the
project. But they are unavoidable if testing has to be performed of a module that gets input from
another module which is not ready, or that calls other modules which are not ready.

The next level is integration of all the unit tested modules and then test the integrated mod-
ules. Validation testing continues at the system level which has various types depending upon
the project, user requirements, etc. The integrated system must be tested on these grounds to
test its performance, functionality, etc.

The fi nal tested system then goes to another level of validation, i.e. testing the system with
the user so that he accepts it according to his satisfaction. This is known as acceptance test-
ing. Acceptance testing is performed at the developer’s site as well as the customer’s own site.
When the customer is satisfi ed at his own site, then the fi nal system is installed in the operation
status. All these validation activities have been discussed in detail in this chapter.

These validation testing activities are necessary to produce a better system. If we do not
perform level-wise validation testing, the system will have many bugs which are also diffi cult to
fi nd. But if we test the system at every level, we reduce the chances of bugs. For example, if
we perform unit validation, we test every module’s functionality. When we integrate the modules
and test them, we uncover the interface bugs, if they are present. Similarly, when we perform
system testing on various grounds like security, stress, performance, we try to make a system
which will work in severe conditions as a bug-proof system.

Let us review the important concepts described in this chapter:

 � Unit testing ensures that the software meets at least a baseline level of functionality at a
module-level prior to integration and system testing.

 � A test driver can be defi ned as a software module which is used to invoke a module un-
der test and provide test inputs, control and monitor execution, and report test results or
most simplistically, a line of code that calls a method and passes that method a value.

 � A stub can be defi ned as a piece of software that works similar to a unit which is refer-
enced by the unit being tested, but it is much simpler than the actual unit. It works as a
‘stand-in’ for the subordinate unit and provides the minimum required behaviour for that
unit.

 � Integration testing focuses on bugs caused by interfacing between the modules while
integrating them.

249Validation Activities l

 � Various types of integration testing can be seen in a hierarchical tree given below:

Integration testing
types

Decomposition-based
testing

Call graph-based
testing

Path-based testing

Neighbourhood testingPair-wise testing
Incremental

testing
Non-incremental

testing

Top-down testing Sandwich testingBottom-up testing

Depth-first testing Breadth-first testing

 � Decomposition-based integration is based on the decomposition of design into functional
components or modules in a hierarchical tree form consisting of modules as nodes and
interfaces between them as edges between those nodes. Thus, the interfaces among
separately tested modules are tested.

 � In non-incremental integration testing, either all untested modules are combined together
and then tested, or unit-tested modules are combined together.

 � In incremental integration testing, start with one module and unit-test it. Then combine
the module which has to be merged with it and test both the modules. In this way, incre-
mentally keep on adding the modules and test the recent environment.

 � The strategy in top-down integration is to look at the design hierarchy from top to bottom.
Start with high-level modules and move downward through the design hierarchy.

 � The bottom-up strategy begins with terminal nodes or modules at the lowest level in the
software structure. After testing these modules, they are integrated and tested, moving
from bottom to top level.

 � The total test sessions in a decomposition-based integration is computed as:
Number of test sessions = nodes – leaves + edges

 � Call graph-based integration uses call graphs, wherein the nodes are either modules
or units, and a directed edge from one node to another means one module has called
another module. The graph and its corresponding adjacency matrix help the testers in
integration testing.

 � Function testing is the process of attempting to detect discrepancies between the func-
tional specifi cations of a software and its actual behaviour.

 � System testing is the process of attempting to demonstrate that a program or system

 Software Testing: Principles and Practices250

does not meet its original requirements and objectives, as stated in the requirement
specifi cation.

 � Recovery is the ability of a system to restart operations after the integrity of the applica-
tion has been lost.

 � Security is a protection system that is needed to secure confi dential information and to
assure the customer that their data will be protected.

 � Stress testing tries to break the system under test by overwhelming its resources and
fi nding the circumstances under which it will crash.

 � Performance testing is to test the system against all performance requirements men-
tioned in the SRS. It is often used as a part of performance profi le tuning. The goal is to
identify the ‘weakest links’ — the system often carries a number of parts which, with a
little tweak, can signifi cantly improve the overall performance of the system.

 � Usability testing identifi es discrepancies between the user interfaces of a product and
the human engineering requirements of its potential users.

 � Compatibility testing is to check the compatibility of a system being developed with dif-
ferent operating systems, hardware and software confi gurations available, etc.

 � Confi guration testing allows developers/testers to evaluate system performance and
availability, when hardware exchanges and reconfi gurations occur.

 � Acceptance testing is the formal testing conducted to determine whether a software sys-
tem satisfi es its acceptance criteria and to enable buyers to determine whether to accept
the system or not. It is of two types: alpha testing and beta testing.

 � Alpha testing is performed with customers at the developers’ site.
 � Beta testing is performed by customers at their own site.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. Software validation is achieved through a series of _______ tests that demonstrate con-
formity with requirements.

 (a) white-box
 (b) black-box
 (c) unit tests
 (d) none of the above

 2. Before we validate the entire software, _______ must be validated fi rst.

 (a) modules
 (b) system
 (c) functionality
 (d) all of the above

 3. Unit tests ensure that the software meets at least a _______ of functionality prior to
integration and system testing.

 (a) high-level
 (b) low-level

251Validation Activities l

 (c) baseline level
 (d) none of the above

 4. Two types of interface modules which must be simulated, if required, to test the module
are _______.

 (a) unit and integration
 (b) simulators and emulators
 (c) stubs and drivers
 (d) none of the above

 5. Overhead of stubs and drivers may increase the _______ of the entire software sys-
tem.

 (a) test cases
 (b) time
 (c) cost
 (d) time and cost

 6. Integration of modules is according to the _______ of software.

 (a) design
 (b) coding
 (c) specifi cations
 (d) all of the above

 7. Recovery is the ability of a system to _______ operations after the integrity of the ap-
plication has been lost.

 (a) suspend
 (b) observe
 (c) restart
 (d) all of the above

 8. A system that meticulously records transactions and system states periodically so that
these are preserved in case of a failure is called a _______.

 (a) checkpoint
 (b) transaction system
 (c) recovery system
 (d) none of the above

 9. Security requirements should be associated with each _______ requirement.

 (a) functional
 (b) design
 (c) coding
 (d) testing

 10. Measures intended to allow the receiver to determine that the information which it re-
ceives has not been altered in transit is known as _______.

 (a) confi dentiality
 (b) integrity

 Software Testing: Principles and Practices252

 (c) authentication
 (d) none of the above

 11. The process of determining that a requester is allowed to receive a service or perform an
operation is called _______.

 (a) confi dentiality
 (b) integrity
 (c) authentication
 (d) authorization

 12. A measure intended to prevent the later denial that an action happened, or a communi-
cation took place is called _______.

 (a) confi dentiality
 (b) integrity
 (c) non-repudiation
 (d) authorization

 13. The type of system testing related to a system’s presentation rather than its functionality
is called _______.

 (a) usability testing
 (b) stress testing
 (c) conversion testing
 (d) all of the above

 14. A system test should not be performed by _______.

 (a) programmers
 (b) testers
 (c) designers
 (d) all of the above

 15. Acceptance testing must occur at the _______ of the development process.

 (a) start
 (b) end
 (c) middle
 (d) none of the above

 16. Top-down integration testing requires _______ stubs.

 (a) nodes + 2
 (b) nodes – 1
 (c) nodes + 1
 (d) none

 17. Bottom-up integration testing requires _______ drivers.

 (a) nodes + 2
 (b) nodes + leaves
 (c) nodes – leaves
 (d) none

253Validation Activities l

 18. Total number of sessions in decomposition-based integration testing is _______.
 (a) nodes + 2
 (b) nodes + leaves
 (c) nodes – leaves + edges
 (d) none of the above

 19. The total number of sessions in a pair-wise call graph-based integration testing is
_______.

 (a) total edges in the graph + 2
 (b) nodes + leaves
 (c) nodes – leaves + edges
 (d) total edges in the graph

 20. Total number of sessions in neighbourhood call graph-based integration testing is
_______.

 (a) total edges in the graph + 2
 (b) nodes + sink nodes
 (c) nodes – leaves + edges
 (d) nodes – sink nodes

 21. The nodes where the control is being transferred after calling the module, are called
_______.

 (a) sink nodes
 (b) source nodes
 (c) message
 (d) none of the above

 22. The nodes from which the control is transferred are called _______.
 (a) sink nodes
 (b) source nodes
 (c) message
 (d) none of the above

 23. When the control from one unit is transferred to another unit, then the programming
language mechanism used to do this is known as

 (a) sink nodes
 (b) source nodes
 (c) message
 (d) none of the above

 24. A call graph is a _______.
 (a) undirected graph
 (b) cyclic graph
 (c) directed graph
 (d) none of the above

 Software Testing: Principles and Practices254

REVIEW QUESTIONS

 1. Consider Problem 5.12. (a) Suppose main() module is not ready for the testing of
CheckPrime() module. Design driver module for main(). (b) Module CheckPrime() is not
ready when called in main(). Design stubs for this module.

 2. Perform top-down and bottom-up integration procedure from the following system hier-
archy.

1

3 4 5 6 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22

2a 2b

7

 3. Calculate the number of test sessions for the decomposition tree shown in Problem 2.
 4. Consider Problem 5.12 again. Perform path-based integration calculating source nodes,

sink nodes, MEPs and MM-path graph.
 5. What are the factors that guide sandwich integration testing?
 6. ‘Design the system test by analysing the objectives.’ Comment on this statement.
 7. What is recovery testing? Give some examples.
 8. What is risk-based security testing?
 9. What are the elements of security testing?
 10. What is the importance of realistic size databases in performance testing?
 11. What is the difference between alpha and beta testing?
 12. What is the entry and exit criteria for alpha and beta testing?
 13. Calculate the number of test sessions for the pair-wise and neighbourhood call graph-

based integration testing for the call graph shown below.

1

3

2

9

6 7 8

4 105

255Regression Testing l

In Chapter 7, integration testing was discussed
as one of the validation activity. However, when
a new module is added as a part of integration
testing, the software changes. New data fl ow paths
are established, new I/O may occur, etc. These
changes, due to addition of new modules, may affect
the functioning of earlier integrated modules which
otherwise were functioning fl awlessly. Moreover,
the software may also change whenever a new bug
in the working system appears and it needs some
changes. The new modifi cations may affect other
parts of the software too. It means that whenever
the software confi guration changes, there is a
probability of other modules getting affected due to
bug fi xing. In this case, it becomes important to test
the whole software again with all the test cases so that a new modifi cation in a
certain part of the software does not affect other parts of the software.

8.1 PROGRESSIVE VS. REGRESSIVE TESTING

Whatever test case design methods or testing techniques, discussed until now,
have been referred to as progressive testing or development testing. From
verifi cation to validation, the testing process progresses towards the release of
the product. However, to maintain the software, bug fi xing may be required
during any stage of development and therefore, there is a need to check the
software again to validate that there has been no adverse effect on the already
working software. A system under test (SUT) is said to regress if
 � a modifi ed component fails, or
 � a new component, when used with unchanged components, causes fail-

ures in the unchanged components by generating side-effects or feature
interactions.

Chapter

8
Regression Testing

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Regression testing is necessary to

maintain software whenever it is updated
 � Regression testing increases the quality

of software
 � Objectives of regression testing
 � Types of regression testing
 � Regression testability
 � Problems of regression testing
 � Regression testing techniques

 Software Testing: Principles and Practices256

Therefore, now the following versions will be there in the system:

 Baseline version The version of a component (system) that has passed a test
suite.

 Delta version A changed version that has not passed a regression test.

 Delta build An executable confi guration of the SUT that contains all the delta
and baseline components.

Thus, it can be said that most test cases begin as progressive test cases and
eventually become regression test cases. Regression testing is not another test-
ing activity. Rather, it is the re-execution of some or all of the already devel-
oped test cases.

Defi nition
The purpose of regression testing is to ensure that bug-fi xes and new func-
tionalities introduced in a new version of the software do not adversely affect
the correct functionality inherited from the previous version. IEEE software
glossary defi nes regression testing as follows [44]:

Regression testing is the selective retesting of a system or component to verify that
modifi cations have not caused unintended effects and that the system or component still
complies with its specifi ed requirements.

After a program has been modifi ed, we must ensure that the modifi cations
work correctly and check that the unmodifi ed parts of the program have not
been adversely affected by these modifi cations. It may be possible that small
changes in one part of a program may have subtle undesired effects on other
unrelated modules of the software. It is not necessary that if you are getting
the desired outputs on the screen, then there is no problem. It may produce
incorrect outputs on other test cases on which the original software produced
correct outputs earlier. Thus, during regression testing, the modifi ed software
is executed on all tests to validate that it still behaves the same as it did in the
original software, except where a change is expected.

Thus, regression testing can be defi ned as the software maintenance task per-
formed on a modifi ed program to instill confi dence that changes are correct and have not
adversely affected the unchanged portions of the program.

8.2 REGRESSION TESTING PRODUCES QUALITY SOFTWARE

As discussed before, regression testing is performed in case of bug-fi xing or
whenever there is a need to incorporate any new requirements in the soft-
ware. After the fi rst release, whenever there is a need to fi x the bugs that have

257Regression Testing l

been reported or if there is any updation in the requirement itself, the devel-
oper fi xes the bug or incorporates the new requirement by changing the code
somewhere. This changed software requires to be fully tested again so as to
ensure: (a) bug-fi xing has been carried out successfully, (b) the modifi cations
have not affected other unchanged modules, and (c) the new requirements
have been incorporated correctly. (see Fig. 8.1). It means that every time you
make a change in the software for whatever reasons, you have to perform a
set of regression tests to validate the software. This process of executing the
whole set of test again and again may be time-consuming and frustrating, but
it increases the quality of software. Therefore, the creation, maintenance, and
execution of a regression test suite helps to retain the quality of the software.
Industry experiences noted by Onoma et al. [45] indicate that regression test-
ing often has a strong positive infl uence on software quality. Indeed, the im-
portance of regression testing is well-understood for the following reasons:

 � It validates the parts of the software where changes occur.

 � It validates the parts of the software which may be affected by some
changes, but otherwise unrelated.

 � It ensures proper functioning of the software, as it was before changes
occurred.

 � It enhances the quality of software, as it reduces the risk of high-risk
bugs.

Bugs fixing/
Incorporating

Updates

Regression
Testing

First build of
Software

Version 1.0

Next build
of Software

Version

Bugs/other
updates

Bugs/other
updates

Software
Development

Figure 8.1 Regression testing produces Quality Software

8.3 REGRESSION TESTABILITY

Regression testability refers to the property of a program, modifi cation, or
test suite that lets it be effectively and effi ciently regression-tested. Leung and
White [47] classify a program as regression testable if most single statement

 Software Testing: Principles and Practices258

modifi cations to the program entail rerunning a small proportion of the cur-
rent test suite. Under this defi nition, regression testability is a function of both
the design of the program and the test suite.

To consider regression testability, a regression number is computed. It is
the average number of affected test cases in the test suite that are affected by
any modifi cation to a single instruction. This number is computed using infor-
mation about the test suite coverage of the program.

If regression testability is considered at an early stage of development, it
can provide signifi cant savings in the cost of development and maintenance
of the software.

8.4 OBJECTIVES OF REGRESSION TESTING

It tests to check that the bug has been addressed The fi rst objective in bug-
fi x testing is to check whether the bug-fi xing has worked or not. Therefore,
you run exactly the same test that was executed when the problem was fi rst
found. If the program fails on this testing, it means the bug has not been fi xed
correctly and there is no need to do any regression testing further.

If fi nds other related bugs It may be possible that the developer has fi xed
only the symptoms of the reported bugs without fi xing the underlying bug.
Moreover, there may be various ways to produce that bug. Therefore,
regression tests are necessary to validate that the system does not have any
related bugs.

It tests to check the effect on other parts of the program It may be possible that
bug-fi xing has unwanted consequences on other parts of a program. Therefore,
regression tests are necessary to check the infl uence of changes in one part on
other parts of the program.

8.5 WHEN IS REGRESSION TESTING DONE?
Software Maintenance
Corrective maintenance Changes made to correct a system after a failure has
been observed (usually after general release).

Adaptive maintenance Changes made to achieve continuing compatibility
with the target environment or other systems.

Perfective maintenance Changes designed to improve or add capabilities.

259Regression Testing l

Preventive maintenance Changes made to increase robustness, maintainability,
portability, and other features.

Rapid Iterative Development
The extreme programming approach requires that a test be developed for each
class and that this test be re-run every time the class changes.

First Step of Integration
Re-running accumulated test suites, as new components are added to succes-
sive test confi gurations, builds the regression suite incrementally and reveals
regression bugs.

Compatibility Assessment and Benchmarking
Some test suites are designed to be run on a wide range of platforms and
applications to establish conformance with a standard or to evaluate time and
space performance. These test suites are meant for regression testing, but not
intended to reveal regression bugs.

8.6 REGRESSION TESTING TYPES

Bug-Fix regression This testing is performed after a bug has been reported
and fi xed. Its goal is to repeat the test cases that expose the problem in the fi rst
place.

Side-Effect regression/Stability regression It involves retesting a substantial
part of the product. The goal is to prove that the change has no detrimental
effect on something that was earlier in order. It tests the overall integrity of the
program, not the success of software fi xes.

8.7 DEFINING REGRESSION TEST PROBLEM

Let us fi rst defi ne the notations used in regression testing before defi ning the
regression test problem.

P denotes a program or procedure,

P ¢ denotes a modifi ed version of P,

S denotes the specifi cation for program P,

S ¢ denotes the specifi cation for program P ¢,

P(i) refer to the output of P on input i,

 Software Testing: Principles and Practices260

P ¢(i) refer to the output of P ¢ on input i, and

T = {t1,….. tn} denotes a test suite or test set for P.

8.7.1 IS REGRESSION TESTING A PROBLEM?
Regression testing is considered a problem, as the existing test suite with prob-
able additional test cases needs to be tested again and again whenever there is
a modifi cation. The following diffi culties occur in retesting:

 � Large systems can take a long time to retest.
 � It can be diffi cult and time-consuming to create the tests.
 � It can be diffi cult and time-consuming to evaluate the tests. Sometimes,

it requires a person in the loop to create and evaluate the results.
 � Cost of testing can reduce resources available for software improve-

ments.

8.7.2 REGRESSION TESTING PROBLEM

Given a program P, its modifi ed version P ¢, and a test set T that was used
earlier to test P; fi nd a way to utilize T to gain suffi cient confi dence in the cor-
rectness of P ¢.

8.8 REGRESSION TESTING TECHNIQUES

There are three different techniques for regression testing. They are discussed
below.

Regression test selection technique This technique attempt to reduce the time
required to retest a modifi ed program by selecting some subset of the existing
test suite.

Test case prioritization technique Regression test prioritization attempts to reorder
a regression test suite so that those tests with the highest priority, according to
some established criteria, are executed earlier in the regression testing process
rather than those with lower priority. There are two types of prioritization:

 (a) General Test Case Prioritization For a given program P and test suite
T, we prioritize the test cases in T that will be useful over a succession of
subsequent modifi ed versions of P, without any knowledge of the modi-
fi ed version.

 (b) Version-Specifi c Test Case Prioritization We prioritize the test cases
in T, when P is modifi ed to P ¢, with the knowledge of the changes made
in P.

261Regression Testing l

Test suite reduction technique It reduces testing costs by permanently eliminat-
ing redundant test cases from test suites in terms of codes or functionalities
exercised.

8.8.1 SELECTIVE RETEST TECHNIQUE

 Software maintenance includes more than 60% of development costs. In that
case, testing costs dominate because many systems require labour-intensive
manual testing. Selective retest techniques attempt to reduce the cost of test-
ing by identifying the portions of P ¢ that must be exercised by the regression
test suite. Selective retesting is distinctly different from a retest-all approach
that always executes every test in an existing regression test suite (RTS). Thus,
the objective of selective retest technique is cost reduction. It is the process of
selecting a subset of the regression test suite that tests the changes.

Following are the characteristic features of the selective retest technique:

 � It minimizes the resources required to regression test a new version.

 � It is achieved by minimizing the number of test cases applied to the new
version.

 � It is needed because a regression test suite grows with each version,
resulting in broken, obsolete, uncontrollable, redundant test cases.

 � It analyses the relationship between the test cases and the software ele-
ments they cover.

 � It uses the information about changes to select test cases.

Rothermel and Harrold [50,51,52] have also characterized the typical steps
taken by this technique in the following manner (see Fig. 8.2):

T : Regression
test cases

selected from T

¢ T : New
test cases

¢¢

Test Suite T

T : New
test cases

¢¢

Program P

Program P

Changed features

New features

Program P¢

Regression Test Suite T¢¢¢

Figure 8.2 Selective Retest Technique

 Software Testing: Principles and Practices262

 1. Select T ¢ subset of T, a set of test cases to execute on P ¢.

 2. Test P ¢ with T ¢, establishing correctness of P ¢ with respect to T ¢.

 3. If necessary, create T ¢¢, a set of new functional or structural test cases for
P ¢.

 4. Test P ¢ with T ¢¢, establishing correctness of P ¢ with respect to T ¢¢.

 5. Create T ¢¢¢, a new test suite and test execution profi le for P ¢, from T, T ¢,
and T ¢¢.

Each of these steps involves the following important problems:

 Regression test selection problem Step 1 involves this problem. The problem
is to select a subset T ¢ of T with which P ¢ will be tested.

 Coverage identifi cation problem Step 3 addresses this problem. The problem is
to identify portions of P ¢ or its specifi cations that requires additional testing.

 Test suite execution problem Steps 2 and 4 address the test suite execution
problem. The problem is to execute test suites effi ciently and checking test
results for correctness.

 Test suite maintenance problem Step 5 addresses this problem. The problem
is to update and store test information.

Strategy for Test Case Selection
Effective testing requires strategies to trade-off between the two opposing
needs of amplifying testing thoroughness on one side (for which a high num-
ber of test cases would be desirable) and reducing time and costs on the other
(for which the fewer the test cases, the better). Given that test resources are
limited, how the test cases are selected is of crucial importance. Indeed, the
problem of test cases selection has been the largely dominating topic in soft-
ware testing research to the extent that in the literature ‘software testing’ is
often taken as synonymous for ‘test case selection’. A decision procedure for
selecting the test cases is provided by a test criterion.

Selection Criteria Based on Code
The motivation for code-based testing is that potential failures can only be
detected if the parts of code that can cause faults are executed. All the code-
based regression test selection techniques attempt to select a subset T ¢ of T
that will be helpful in establishing confi dence that P ¢s functionality has been
preserved where required. In this sense, all code-based test selection tech-
niques are concerned with locating tests in T that expose faults in P ¢. The
following tests are based on these criteria.

263Regression Testing l

 Fault-revealing test cases A test case t detects a fault in P ¢ if it causes P ¢ to fail.
Hence t is fault-revealing for P ¢. There is no effective procedure to fi nd the
tests in T that are fault-revealing for P ¢. Under certain conditions, however, a
regression test selection technique can select a superset of the tests in T that are
fault-revealing for P ¢. Under these conditions, such a technique omits no tests
in T that can reveal faults in P ¢.

 Modifi cation-revealing test cases A test case t is modifi cation-revealing for P
and P ¢ if and only if it causes the outputs of P and P ¢ to differ.

 Modifi cation-traversing test cases A test case t is modifi cation-traversing if
and only if it executes new or modifi ed code in P ¢. These tests are useful to
consider because a non-obsolete test t in T can only be modifi cation-revealing
for P and P ¢ if it is modifi cation-traversing for P and P ¢.

 Regression Test Selection Techniques
A variety of regression test selection techniques have been described in the
research literature. We consider the following selective retest techniques:

 Minimization techniques Minimization-based regression test selection tech-
niques attempt to select minimal sets of test cases from T that yield coverage
of modifi ed or affected portions of P. For example, the technique of Fischer
et al. [53] uses systems of linear equations to express relationships between
test cases and basic blocks (single-entry, single-exit, sequences of statements
in a procedure). The technique uses a 0-1 integer programming algorithm to
identify a subset T ¢ of T that ensures that every segment that is statically reach-
able from a modifi ed segment is exercised by at least one test case in T ¢ that
exercises the modifi ed segment.

 Datafl ow techniques Datafl ow coverage-based regression test selection tech-
niques select test cases that exercise data interactions that have been affect-
ed by modifi cations. For example, the technique of Harrold and Soffa [54]
requires that every defi nition-use pair that is deleted from P, new in P ¢, or
modifi ed for P ¢, should be tested. The technique selects every test case in T
that, when executed on P, exercised, deleted, or modifi ed defi nition-use pairs,
or executed a statement containing a modifi ed predicate.

 Safe techniques Most regression test selection techniques, minimization and
datafl ow techniques among them, are not designed to be safe. Techniques that
are not safe can fail to select a test case that would have revealed a fault in the
modifi ed program. In contrast, when an explicit set of safety conditions can be
satisfi ed, safe regression test selection techniques guarantee that the selected
subset T ¢ contains all test cases in the original test suite T that can reveal faults
in P ¢.

 Software Testing: Principles and Practices264

For example, the technique of Rothermel and Harrold [55] uses control-
fl ow graph representations of P and P ¢ and test execution profi les gathered
on P, to select every test case in T that, when executed on P, exercised at least
one statement that has been deleted from P, or that, when executed on P ¢,
will exercise at least one statement that is new or modifi ed in P ¢ (when P is
executed, a statement that does not exist in P cannot be exercised).

Ad hoc/Random techniques When time constraints prohibit the use of a retest-
all approach, but no test selection tool is available, developers often select test
cases based on ‘intuitions’ or loose associations of test cases with functionality.
Another simple approach is to randomly select a predetermined number of
test cases from T.

Retest-all technique The retest-all technique simply reuses all existing test
cases. To test P ¢, the technique effectively selects all test cases in T.

Evaluating Regression Test Selection Techniques
To choose a technique for practical application, Rothermel et al. [51] have
recognized the following categories for evaluating the regression test selection
techniques:

Inclusiveness It measures the extent to which M chooses modifi cation-
revealing test from T for inclusion in T ¢, where M is a regression test selection
technique.

Suppose, T contains n tests that are modifi cation-revealing for P and P ¢,
and suppose M selects m of these tests. The inclusiveness of M relative to P
and P ¢ and T is:

 1. INCL(M) = (100 ¥ (m/n)%, if n ≠ 0

 2. INCL(M)% = 100%, if n = 0

For example, if T contains 100 tests of which 20 are modifi cation-revealing
for P and P ¢, and M selects 4 of these 20 tests, then M is 20% inclusive relative
to P, P ¢, and T. If T contains no modifi cation-revealing tests, then every test
selection technique is 100% inclusive relative to P, P ¢, and T.

If for all P, P ¢, and T, M is 100% inclusive relative to P, P ¢, and T, then M
is safe.

Precision It measures the extent to which M omits tests that are non-
modifi cation-revealing. Suppose T contains n tests that are non-modifi cation-
revealing for P and P ¢, and suppose M omits m of these tests. The precision of
M relative to P, P ¢, and T is given by

Precision = 100 ¥ (m/n) % if n ≠ 0

Precision = 100 % if n = 0

265Regression Testing l

For example, if T contains 50 tests of which 22 are non-modifi cation-re-
vealing for P and P ¢, and M omits 11 of these 22 tests, then M is 50% precise
relative to P, P ¢, and T. If T contains no non-modifi cation-revealing tests, then
every test selection technique is 100% precise relative to P, P ¢, and T.

Effi ciency The effi ciency of regression test selection techniques is measured in
terms of their space and time requirements. Where time is concerned, a test
selection technique is more economical than the retest-all technique, if the cost
of selecting T ¢ is less than the cost of running the tests in T–T ¢. Space effi ciency
primarily depends on the test history and program analysis information a
technique must store. Thus, both space and time effi ciency depends on the
size of the test suite that a technique selects, and on the computational cost of
that technique.

8.8.2 REGRESSION TEST PRIORITIZATION

The regression test prioritization approach is different as compared to
selective retest techniques. The prioritization methods order the execution
of RTS with the intention that a fault is detected earlier. In other words,
regression test prioritization attempts to reorder a regression test suite so that
those tests with the highest priority, according to some established criterion,
are executed earlier in the regression testing process than those with a lower
priority. By prioritizing the execution of a regression test suite, these methods
reveal important defects in a software system earlier in the regression testing
process.

This approach can be used along with the previous selective retest tech-
nique. The steps for this approach are given below:

 1. Select T ¢ from T, a set of test to execute on P ¢.

 2. Produce T ¢p , a permutation of T ¢, such that T ¢p will have a better rate
of fault detection than T ¢.

 3. Test P ¢ with T ¢p in order to establish the correctness of P ¢ with respect
to T ¢p .

 4. If necessary, create T ¢¢, a set of new functional or structural tests for
P ¢¢.

 5. Test P ¢ with T ¢¢ in order to establish the correctness of P’ with respect
to T ¢¢.

 6. Create T ¢¢¢, a new test suite for P ¢, from T, T ¢p , and T ¢¢.

Step 1 allows the tester to select T ¢such that it is a proper subset of T or that
it actually contains every test that T contains. Furthermore, step 2 could pro-
duce T ¢p so that it contains an execution ordering for the regression test that

 Software Testing: Principles and Practices266

is the same or different than the order provided by T ¢. The intention behind
prioritizing the execution of a regression test suite is to ensure that the defects
normally introduced by competent programmers are discovered earlier in the
testing process.

Test prioritization will be discussed in detail in Chapter 12.

SUMMARY

This chapter discusses the importance of regression testing. It validates the changes after the code
is modifi ed or the requirements are updated. However, regression testing is considered a problem.
The general strategy to validate the system is to execute all the test cases. But it is nearly impossible
to test all of them due to time and budget constraints. In this case, we need to decide which parts or
modules are unaffected by the changes. So the problem of regression testing lies in deciding the sub-
set of full test cases which will validate the modifi cations in the software. This chapter discusses the
issues of defi ning regression testing problem, regression testing techniques, and their evaluation.

Let us review the important concepts described in this chapter:

 � Regression testing often has a strong positive infl uence on software quality.

 � Regression number is the average number of affected test cases in the test suite that are
affected by any modifi cation to a single instruction.

 � Regression testing is of two types: bug-fi x regression and side-effect regression

 � Regression testing is considered a problem, as the existing test suite with probable additional
test cases needs to be tested again and again whenever there is a modifi cation.

 � Regression testing techniques are: regression test selection technique, test case prioritiza-
tion technique, and test suite reduction technique.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. A changed version that has not passed a regression test is called __________.

 (a) baseline version

 (b) delta version

 (c) delta build

 (d) none of the above

 2. Regression testability is a function of __________.

 (a) design of the program and the test suite

 (b) design of the program

 (c) test suite

 (d) none of the above

267Regression Testing l

 3. Regression number is computed using information about the __________.

 (a) design coverage of the program

 (b) test suite coverage of the program

 (c) number of faults

 (d) all of the above

 4. Changes made to correct a system after a failure has been observed is called __________.

 (a) perfective maintenance

 (b) adaptive maintenance

 (c) corrective maintenance

 (d) all of the above

 5. Changes made to achieve continuing compatibility with the target environment or other sys-
tems is called __________.

 (a) perfective maintenance

 (b) adaptive maintenance

 (c) corrective maintenance

 (d) all of the above

 6. Changes designed to improve or add capabilities is called __________.

 (a) perfective maintenance

 (b) adaptive maintenance

 (c) corrective maintenance

 (d) all of the above

 7. Changes made to increase robustness, maintainability, portability, and other features is
called __________.

 (a) perfective maintenance

 (b) preventive maintenance

 (c) adaptive maintenance

 (d) corrective maintenance

 8. Which statement best characterizes the regression test selection?

 (a) Minimize the resources required to regression test a new version

 (b) Typically achieved by minimizing the number of test cases applied to the new version

 (c) Select a test case which has caused the problem

 (d) None of the above

 9. Problem to select a subset T’ of T with which P’ will be tested is called __________.

 (a) coverage identifi cation problem

 (b) test suite execution problem

 (c) regression test selection problem

 (d) test suite maintenance problem

 Software Testing: Principles and Practices268

 10. The problem to identify portions of P’ or its specifi cation that requires additional testing is
called __________.

 (a) coverage identifi cation problem

 (b) test suite execution problem

 (c) regression test selection problem

 (d) test suite maintenance problem

 11. The problem to execute test suites effi ciently and checking test results for correctness is
called __________.

 (a) coverage identifi cation problem

 (b) test suite execution problem

 (c) regression test selection problem

 (d) test suite maintenance problem

 12. The problem to update and store test information is called __________.

 (a) coverage identifi cation problem

 (b) test suite execution problem

 (c) regression test selection problem

 (d) test suite maintenance problem

 13. A test case t is modifi cation-revealing for P and P’ if __________.

 (a) it executes new or modifi ed code in P’

 (b) it detect a fault in P’ if it causes P’ to fail

 (c) it causes the outputs of P and P’ to differ

 (d) all of the above

 14. A test case t is modifi cation-traversing if __________.

 (a) it executes new or modifi ed code in P’

 (b) it detect a fault in P’ if it causes P’ to fail

 (c) it causes the outputs of P and P’ to differ

 (d) all of the above

 15. A test case t is fault-revealing if __________.

 (a) it executes new or modifi ed code in P’

 (b) it detect a fault in P’ if it causes P’ to fail

 (c) it causes the outputs of P and P’ to differ

 (d) all of the above

 16. Regression testing is helpful in __________.

 (a) detecting bugs

 (b) detecting undesirable side effects by changing the operating environment

 (c) integration testing

 (d) all of the above

269Regression Testing l

REVIEW QUESTIONS

 1. When is a system said to regress?

 2. What is the difference between baseline version and delta version?

 3. How do you classify a program as regression testable?

 4. What is regression number?

 5. How does regression testing help in producing a quality software?

 6. What are the situations to perform regression testing?

 7. Why is regression testing a problem?

 8. Defi ne regression testing problem with an example.

 9. What is the aim of selective retest technique?

 10. Defi ne the following:

 (a) Regression test selection problem

 (b) Coverage identifi cation problem

 (c) Test suite execution problem

 (d) Test suite maintenance problem

 11. What is regression test prioritization test technique?

 12. What is the difference between fault-revealing test cases, modifi cation-revealing test cases,
and modifi cation-traversing test cases?

 13. Explain the following regression test selection techniques:

 (a) Minimization

 (b) Datafl ow

 (c) Safe

 (d) Ad hoc

 14. What are the different parameters for evaluating regression test selection techniques?

 15. T contains 90 tests of which 20 are modifi cation-revealing for P and P’ and M selects 12 of
these 20 tests, then calculate the inclusiveness of M relative to P, P’, and T.

 16. T contains 100 tests of which 64 are non-modifi cation-revealing for P and P’ and M omits 43
of these 64 tests, then calculate the precision of M relative to P, P’, and T.

Testing process, still in its infancy, needs to be man-
aged from various perspectives. In many industries,
no test organization hierarchy is followed. Rather,
there is a single development team performing
every activity including testing. To perform effective
testing, we need a testing hierarchy of people with
various roles. To manage a testing process, thus, the
fi rst step is to get a test organization in place. Next,
we must have a master test plan which guides us
when and how to perform various testing activities.

In this part, we discuss various test plans includ-
ing verifi cation and validation test plans. Various
specifi cations such as test design, test case, test re-
sult specifi cations, have been explained in order to
carry out systematic documented testing.

To manage the testing process, an organization is not suffi cient; we also need to monitor and
control various testing activities in order to meet the testing and project milestones. But we can-
not monitor and control the test activities unless we have some methods of measurements.

This part discusses software and testing metrics. These metrics help in understanding, moni-
toring, and controlling various testing activities.

There is one major problem while managing the test process. The test suite prepared to test
the system and to perform regression testing is too large to test. We are not able to execute
all the test cases. In such a situation, if we leave out some of the test cases, we are unsure if
the left-out test cases are critical test cases to be executed or not. This part discusses various
techniques adopted to reduce the number of test cases in order to perform effective test cases
and manage the test suite.

This part will make ground for the following concepts:

 ∑ Structure of test organization
 ∑ Test planning
 ∑ Test design and report specifi cations
 ∑ Testing metrics
 ∑ Test suite reduction methods

Managing the Test Process

Part

3
CHAPTERS

Chapter 9:
Test Management

Chapter 10:
Software Metrics

Chapter 11:
Testing Metrics for Monitoring and
Controlling the Testing Process

Chapter 12:
Effi cient Test Suite Management

 Test management is concerned with both test
resource and test environment management. It is
the role of test management to ensure that new
or modifi ed service products meet the business
requirements for which they have been developed
or enhanced. The key elements of test management
are discussed below.

 Test organization It is the process of setting up and
managing a suitable test organizational structure and
defi ning explicit roles. The project framework un-
der which the testing activities will be carried out is
reviewed, high-level test phase plans are prepared,
and resource schedules are considered. Test organi-
zation also involves the determination of confi gura-
tion standards and defi ning the test environment.

 Test planning The requirements defi nition and
design specifi cations facilitate the identifi cation of
major test items and these may necessitate updating
the test strategy. A detailed test plan and schedule
is prepared with key test responsibilities being indi-
cated.

Detailed test design and test specifi cations A detailed design is the process of
designing a meaningful and useful structure for the tests as a whole. It speci-
fi es the details of the test approach for a software functionality or feature and
identifying the associated test cases.

 Test monitoring and assessment It is the ongoing monitoring and assessment to
check the integrity of development and construction. The status of confi guration
items should be reviewed against the phase plans and the test progress reports
prepared, the ensure the verifi cation and validation activities are correct.

Chapter

9
Test Management

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Elements of test management
 � Capabilities of a tester
 � Structure of testing group
 � Test plan components
 � Master test plan
 � Verifi cation test plan
 � Unit test plan
 � Integration test plan
 � Function test plan
 � System test plan
 � Acceptance test plan
 � Test design specifi cations
 � Test case specifi cations
 � Test result specifi cations: test log, test

incident report, and test summary report

 Software Testing: Principles and Practices274

Product quality assurance The decision to negotiate the acceptance testing
program and the release and commissioning of the service product is subject to
the ‘product assurance’ role being satisfi ed with the outcome of the verifi cation
and validation activities. Product assurance may oversee some of the test
activity and may participate in process reviews.

9.1 TEST ORGANIZATION

Since testing is viewed as a process, it must have an organization such that a
testing group works for better testing and high quality software. The testing
group is responsible for the following activities:

 � Maintenance and application of test policies

 � Development and application of testing standards

 � Participation in requirement, design, and code reviews

 � Test planning

 � Test execution

 � Test measurement

 � Test monitoring

 � Defect tracking

 � Acquisition of testing tools

 � Test reporting

The staff members of such a testing group are called test specialists or test
engineers or simply testers. A tester is not a developer or an analyst. He does
not debug the code or repair it. He is responsible for ensuring that testing is
effective and quality issues are being addressed. The skills a tester should pos-
sess are discussed below.

Personal and Managerial Skills

 � Testers must be able to contribute in policy-making and planning the
testing activities.

 � Testers must be able to work in a team.

 � Testers must be able to organize and monitor information, tasks, and
people.

 � Testers must be able to interact with other engineering professionals,
software quality assurance staff, and clients.

 � Testers should be capable of training and mentoring new testers.

275Test Management l

 � Testers should be creative, imaginative, and experiment-oriented.

 � Testers must have written and oral communication skills.

Technical Skills

 � Testers must be technically sound, capable of understanding software
engineering principles and practices.

 � Testers must be good in programming skills.
 � Testers must have an understanding of testing basics, principles, and

practices.
 � Testers must have a good understanding and practice of testing strate-

gies and methods to develop test cases.
 � Testers must have the ability to plan, design, and execute test cases with

the goal of logic coverage.
 � Testers must have technical knowledge of networks, databases, operat-

ing systems, etc. needed to work in a the project environment.
 � Testers must have the knowledge of confi guration management.
 � Testers must have the knowledge of testware and the role of each docu-

ment in the testing process.

 � Testers must have know about quality issues and standards.

9.2 STRUCTURE OF TESTING GROUP

Testing is an important part of any software project. One or two testers are
not suffi cient to perform testing, especially if the project is too complex and
large. Therefore, many testers are required at various levels. Figure 9.1 shows
different types of testers in a hierarchy.

 Test Manager A test manager occupies the top level in the hierarchy. He has
the following responsibilities:

 (i) He is the key person in the testing group who will interact with project
management, quality assurance, and marketing staff.

 (ii) Takes responsibility for making test strategies with detailed master plan-
ning and schedule.

 (iii) Interacts with customers regarding quality issues.

 (iv) Acquires all the testing resources including tools.

 (v) Monitors the progress of testing and controls the events.

 (vi) Participates in all static verifi cation meetings.

 (vii) Hires, fi res, and evaluates the test team members.

 Software Testing: Principles and Practices276

Test
Manager

Test Leader

Test
Engineers

Junior Test
Engineers

Figure 9.1 Testing Group Hierarchy

 Test Leader The next tester in the hierarchy is the test leader who assists the
test manager in meeting testing and quality goals. The prime responsibility of
a test leader is to lead a team of test engineers who are working at the leaf-level
of the hierarchy. The following are his responsibilities:

 (i) Planning the testing tasks given by the test manager.

 (ii) Assigning testing tasks to test engineers who are working under him.

 (iii) Supervising test engineers.

 (iv) Helping the test engineers in test case design, execution, and reporting.

 (v) Providing tool training, if required.

 (vi) Interacting with customers.

 Test Engineers Test engineers are highly experienced testers. They work
under the leadership of the test leader. They are responsible for the following
tasks:

 (i) Designing test cases.

 (ii) Developing test harness.

 (iii) Set-up test laboratories and environment.

 (iv) Maintain the test and defect repositories.

 Junior Test Engineers Junior test engineers are newly hired testers. They
usually are trained about the test strategy, test process, and testing tools. They
participate in test design and execution with experienced test engineers.

9.3 TEST PLANNING

There is a general human tendency to ‘get on with the next thing’, especially
under pressure [1]. This is true for the testers who are always short of time.

277Test Management l

However, if resources are to be utilized intelligently and effi ciently during the
earlier testing phases and later phases, these are repaid many times over. The
time spent on planning the testing activities early is never wasted and usually
the total time cycle is signifi cantly shorter.

According to the test process as discussed in STLC, testing also needs plan-
ning as is needed in SDLC. Since software projects become uncontrolled if
not planned properly, the testing process is also not effective if not planned
earlier. Moreover, if testing is not effective in a software project, it also affects
the fi nal software product. Therefore, for a quality software, testing activities
must be planned as soon as the project planning starts.

A test plan is defi ned as a document that describes the scope, approach,
resources, and schedule of intended testing activities. Test plan is driven with
the business goals of the product. In order to meet a set of goals, the test plan
identifi es the following:

 � Test items

 � Features to be tested

 � Testing tasks

 � Tools selection

 � Time and effort estimate

 � Who will do each task

 � Any risks

 � Milestones

9.3.1 TEST PLAN COMPONENTS

IEEE Std 829–1983 [56] has described the test plan components. These com-
ponents (see Fig. 9.2) must appear for every test item. These components are
described below.

Test Plan Identifi er
Each test plan is tagged with a unique identifi er so that it is associated with a
project.

Introduction
The test planner gives an overall description of the project with:

 � Summary of the items and features to be tested.

 � The requirement and the history of each item (optional).

 � High-level description of testing goals.

 Software Testing: Principles and Practices278

 � References to related documents, such as project authorization, project
plan, QA plan, confi guration management plan, relevant policies, and
relevant standards.

Test Plan Components
Test Plan Identifier
Introduction
Test-Item to be tested
Features to be tested
Features not to be tested
Approach
Item Pass/Fail Criteria
Suspension criteria and resumption requirements
Test deliverables
Testing tasks
Environmental needs
Responsibilities
Staffing and training needs
Scheduling
Risks and contingencies
Testing costs
Approvals

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 9.2 Test plan components

Test-Item to be Tested

 � Name, identifi er, and version of test items.

 � Characteristics of their transmitting media where the items are stored,
for example, disk, CD, etc.

 � References to related documents, such as requirements specifi cation,
design specifi cation, users’ guide, operations guide, installation guide.

 � References to bug reports related to test items.

 � Items which are specifi cally not going to be tested (optional).

Features to be Tested
This is a list of what needs to be tested from the user’s viewpoint. The features
may be interpreted in terms of functional and quality requirements.

 � All software features and combinations of features are to be tested.

 � References to test-design specifi cations associated with each feature and
combination of features.

279Test Management l

Features Not to be Tested
This is a list of what should ‘not’ be tested from both the user’s viewpoint and
the confi guration management/version control view:

 � All the features and the signifi cant combinations of features which will
not be tested.

 � Identify why the feature is not to be tested. There can be many rea-
sons:

 (i) Not to be included in this release of the software.

 (ii) Low-risk, has been used before, and was considered stable.

 (iii) Will be released but not tested or documented as a functional part
of the release of this version of the software.

Approach
 � Overall approach to testing.

 � For each major group of features or combinations of features, specify
the approach.

 � Specify major activities, techniques, and tools which are to be used to
test the groups.

 � Specify the metrics to be collected.

 � Specify the number of confi gurations to be tested.

 � Specify a minimum degree of comprehensiveness required.

 � Identify which techniques will be used to judge comprehensiveness.

 � Specify any additional completion criteria.

 � Specify techniques which are to be used to trace requirements.

 � Identify signifi cant constraints on testing, such as test-item availability,
testing-resource availability, and deadline.

Item Pass/Fail Criteria
This component defi nes a set of criteria based on which a test case is passed or
failed. The failure criteria is based on the severity levels of the defect. Thus, an
acceptable severity level for the failures revealed by each test case is specifi ed
and used by the tester. If the severity level is beyond an acceptable limit, the
software fails.

Suspension Criteria and Resumption Requirements
Suspension criteria specify the criteria to be used to suspend all or a portion
of the testing activities, while resumption criteria specify when the testing can
resume after it has been suspended.

 Software Testing: Principles and Practices280

For example, system integration testing in the integration environment can
be suspended in the following circumstances:
 � Unavailability of external dependent systems during execution.
 � When a tester submits a ‘critical’ or ‘major’ defect, the testing team will

call for a break in testing while an impact assessment is done.

System integration testing in the integration environment may be resumed
under the following circumstances:
 � When the ‘critical’ or ‘major’ defect is resolved.
 � When a fi x is successfully implemented and the testing team is notifi ed

to continue testing.

Test Deliverables
 � Identify deliverable documents: test plan, test design specifi cations, test

case specifi cations, test item transmittal reports, test logs, test incident
reports, test summary reports, and test harness (stubs and drivers).

 � Identify test input and output data.

Testing Tasks
 � Identify the tasks necessary to prepare for and perform testing.

 � Identify all the task interdependencies.

 � Identify any special skills required.

All testing-related tasks and their interdependencies can be shown through
a work breakdown structure (WBS). WBS is a hierarchical or tree-like represen-
tation of all testing tasks that need to be completed in a project.

Environmental Needs
 � Specify necessary and desired properties of the test environment: physi-

cal characteristics of the facilities including hardware, communications
and system software, the mode of usage (i.e. stand-alone), and any other
software or supplies needed.

 � Specify the level of security required.

 � Identify any special test tools needed.

 � Identify any other testing needs.

 � Identify the source for all needs which are not currently available.

Responsibilities
 � Identify the groups responsible for managing, designing, preparing, ex-

ecuting, checking, and resolving.

281Test Management l

 � Identify the groups responsible for providing the test items identifi ed in
the test items section.

 � Identify the groups responsible for providing the environmental needs
identifi ed in the environmental needs section.

Staffi ng and Training Needs
 � Specify staffi ng needs by skill level.

 � Identify training options for providing necessary skills.

Scheduling
 � Specify test milestones.

 � Specify all item transmittal events.

 � Estimate the time required to perform each testing task.

 � Schedule all testing tasks and test milestones.

 � For each testing resource, specify a period of use.

Risks and Contingencies
Specify the following overall risks to the project with an emphasis on the test-
ing process:

 � Lack of personnel resources when testing is to begin.

 � Lack of availability of required hardware, software, data, or tools.

 � Late delivery of the software, hardware, or tools.

 � Delays in training on the application and/or tools.

 � Changes to the original requirements or designs.

 � Complexities involved in testing the applications.

Specify the actions to be taken for various events. An example is given below.

Requirements defi nition will be complete by January 1, 20XX and, if the require-
ments change after that date, the following actions will be taken:

The test schedule and the development schedule will move out an appro-
priate number of days. This rarely occurs, as most projects tend to have fi xed
delivery dates.

 � The number of tests performed will be reduced.

 � The number of acceptable defects will increase.

 � These two items may lower the overall quality of the delivered product.

 � Resources will be added to the test team.

 � The test team will work overtime.

 Software Testing: Principles and Practices282

 � The scope of the plan may be changed.
 � There may be some optimization of resources. This should be avoided,

if possible, for obvious reasons.

The management team is usually reluctant to accept scenarios such as the
one mentioned above even though they have seen it happen in the past. The
important thing to remember is that, if you do nothing at all, testing is cut back
or omitted completely, neither of which should be an acceptable option.

Testing Costs
The IEEE standard has not included this component in its specifi cation. How-
ever, it is a usual component of any test plan, as test costs are allocated in the
total project plan. To estimate the costs, testers will need tools and techniques.
The following is a list of costs to be included:

 � Cost of planning and designing the tests
 � Cost of acquiring the hardware and software required for the tests
 � Cost to support the environment
 � Cost of executing the tests
 � Cost of recording and analysing the test results
 � Cost of training the testers, if any
 � Cost of maintaining the test database

Approvals

 � Specify the names and titles of all the people who must approve the plan.
 � Provide space for signatures and dates.

9.3.2 TEST PLAN HIERARCHY

Test plans can be organized in several ways depending on the organizational
policy. There is often a hierarchy of plans that includes several levels of qual-
ity assurance and test plans. At the top of the plan hierarchy is a master plan
which gives an overview of all verifi cation and validation activities for the
project, as well as details related to other quality issues such as audits, stan-
dards, and confi guration control. Below the master test plan, there is indi-
vidual planning for each activity in verifi cation and validation, as shown in
Fig. 9.3.

The test plan at each level of testing must account for information that
is specifi c to that level, e.g. risks and assumptions, resource requirements,
schedule, testing strategy, and required skills. The test plans according to each
level are written in an order such that the plan prepared fi rst is executed last,

283Test Management l

i.e. the acceptance test plan is the fi rst plan to be formalized but is executed
last. The reason for its early preparation is that the things required for its
completion are available fi rst.

Master Test Plan
(SQA V&V Plan)

Project
Plan

Verification Plan

Requirement
Verification

Plan

Validation Plan

Functional
Design

Verification Plan

Internal
Design

Verification
Plan

Code
Verification

Plan

Unit Test
Plan

Integration
Function
Test Plan

System
Test Plan

Acceptance
Test Plan

Figure 9.3 Test Plan Hierarchy

9.3.3 MASTER TEST PLAN

The master test plan provides the highest level description of verifi cation
and validation efforts and drives the testing at various levels. General project
information is used to develop the master test plan.

 Software Testing: Principles and Practices284

The following topics must be addressed before planning:
 � Project identifi cation
 � Plan goals
 � Summary of verifi cation and validation efforts
 � Responsibilities conveyed with the plan
 � Software to be verifi ed and validated
 � Identifi cation of changes to organization standards

Verifi cation and validation planning may be broken down into the follow-
ing steps:
 � Identify the V&V scope
 � Establish specifi c objectives from the general project scope
 � Analyse the project input prior to selecting V&V tools and techniques
 � Select tools and techniques
 � Develop the software verifi cation and validation plan (SVVP).

Discussed below are the major activities of V&V planning.

Master Schedule
 � The master schedule summarizes various V&V tasks and their relation-

ship to the overall project.
 � Describes the project life cycle and project milestones including com-

pletion dates.
 � Summarizes the schedule of V&V tasks and how verifi cation and vali-

dation results provide feedback to the development process to support
overall project management functions.

 � Defi nes an orderly fl ow of material between project activities and V&V
tasks. Use reference to PERT, CPM, and Gantt charts to defi ne the re-
lationship between various activities.

Resource Summary
This activity summarizes the resources needed to perform V&V tasks, including
staffi ng, facilities, tools, fi nances, and special procedural requirements such as
security, access rights, and documentation control. In this activity,
 � Use graphs and tables to present resource utilization.
 � Include equipment and laboratory resources required.
 � Summarize the purpose and cost of hardware and software tools to be

employed.
 � Take all resources into account and allow for additional time and money

to cope with contingencies.

285Test Management l

Responsibilities
Identify the organization responsible for performing V&V tasks. There are
two levels of responsibilities—general responsibilities assigned to different or-
ganizations and specifi c responsibilities for the V&V tasks to be performed,
assigned to individuals. General responsibilities should be supplemented with
specifi c responsibility for each task in the V&V plan.

Tools, Techniques, and Methodology
Identify the special software tools, techniques, and methodologies to be
employed by the V&V team. The purpose of each should be defi ned and
plans for the acquisition, training, support, and qualifi cation of each should
be described. This section may be in a narrative or graphic format. A separate
tool plan may be developed for software tool acquisition, development, or
modifi cation. In this case, a separate tool plan section may be added to the
plan.

9.3.4 VERIFICATION TEST PLAN

Verifi cation test planning includes the following tasks:

 � The item on which verifi cation is to be performed.

 � The method to be used for verifi cation: review, inspection, walkthrough.

 � The specifi c areas of the work product that will be verifi ed.

 � The specifi c areas of the work product that will not be verifi ed.

 � Risks associated.

 � Prioritizing the areas of work product to be verifi ed.

 � Resources, schedule, facilities, tools, and responsibilities.

9.3.5 VALIDATION TEST PLAN

Validation test planning includes the following tasks:

 � Testing techniques

 � Testing tools

 � Support software and documents

 � Confi guration management

 � Risks associated, such as budget, resources, schedule, and training

 Software Testing: Principles and Practices286

 Unit Test Plan
Generally, unit tests are performed by the module developer informally. In
this case, bugs are not recorded and do not become a part of the unit’s his-
tory. It is a bad practice because these bugs’ history will not be re-used, which
otherwise becomes important especially in real-time systems. Therefore, to
implement unit testing formally and to make it an effective testing for other
projects, it is necessary to plan for unit test. To prepare for unit test, the devel-
oper must do the following tasks:

 � Prepare the unit test plan in a document form.

 � Design the test cases.

 � Defi ne the relationship between tests.

 � Prepare the test harness, i.e. stubs and drivers, for unit testing.

Discussed below are the tasks contained in a test plan document.

Module overview Briefl y defi ne the purpose of this module. This may require
only a single phrase, i.e. calculates overtime pay amount, calculates equipment
depreciation, performs date edit validation, or determines sick pay eligibility,
etc.

Inputs to module Provide a brief description of the inputs to the module under
test.

Outputs from module Provide a brief description of the outputs from the
module under test.

Logic fl ow diagram Provide a logic fl ow diagram, if additional clarity is
required. For example, DFD, STD, and ERD.

Test approach Decide the method to test the module.

Features to be tested Identify the features to be tested for the module.

Features not to be tested Identify the features not be tested due to some
constraints. Also, assess the risks of not testing these features.

Test constraints Indicate anticipated limitations on the test due to test
conditions, such as interfaces, equipment, personnel, and databases.

 Test harness Describe the requirements for test harness that interfaces with the
units to be tested.

Interface modules Identify the modules that interface with this module indicating
the nature of the interface: outputs data to, receives input data from, internal

287Test Management l

program interface, external program interface, etc. Identify the sequencing
required for subsequent string tests or sub-component integration tests.

Test tools Identify any tools employed to conduct unit testing. Specify any
stubs or utility programs developed or used to invoke tests. Identify names
and locations of these aids for future regression testing. If data is supplied from
the unit test of a coupled module, specify module relationship.

Archive plan Specify how and where the data is archived for use in subsequent
unit tests. Defi ne any procedures required to obtain access to data or tools
used in the testing effort. The unit test plans are normally archived with the
corresponding module specifi cations.

Updates Defi ne how updates to the plan will be identifi ed. Updates may be
required due to enhancements, requirement changes, etc. The same unit test
plan should be re-used with revised or appended test cases identifi ed in the
update section.

Milestones List the milestone events and dates for unit testing.

Budget List the funds allocated to test this module. A checklist can also be
maintained, as shown below:

 � Does the test plan completely test the functionality of the unit as defi ned
in the design specifi cation and in functional specifi cation?

 � Are the variable (including global variables) inputs to the unit included
in the features to be tested in the test plan?

 � Are the variable outputs from the unit result included in the features to be
tested?

 � Is every procedure in the design exercised by the test?

 � Does the test plan include critical procedures to demonstrate that per-
formance meets stated requirements?

 � For units that interface with other units, are the invalid features tested to
test for defensive coding?

 Integration Test Plan
An integration test plan entails the development of a document, which in-
structs a tester what tests to perform in order to integrate and test the already
existing individual code modules. The objective of the integration test plan
activity is to develop a plan which specifi es the necessary steps needed to
integrate individual modules and test the integration. It also helps the tech-
nical team to think through the logical sequence of integration activities, so

 Software Testing: Principles and Practices288

that their individual detailed development plans are well-synchronized, and
integration happens in a reasonable manner.

Create a draft of the plan very early in the execution phase. By this time,
you will know from the high-level design work in the initiation phase, what
major pieces of hardware and/or software will have to be integrated. An early
look at integration sequencing will help you sanity-check the amount of time
you have put into the schedule for integration testing.

Discussed below are the tasks to be performed under integration test plan.

Documents to be used All the documents needed should be arranged, e.g.
SRS, SDD, user manual, usage scenarios containing DFDs, data dictionaries,
state charts, etc.

Modules for integration It should be planned which modules will be integrated
and tested. There can be many criteria for choosing the modules for integrating.
Some are discussed below.

 � Availability All the modules may not be ready at one time. But we
cannot delay the integration and testing of modules which are ready.
Therefore, the modules which are ready for integration must be inte-
grated and tested fi rst.

 � Subsystems The goal of integration testing is also to have some work-
ing subsystems and combine them into the working system as a whole.
While planning for integration, the subsystems are selected based on
the requirements, user needs, and availability of the modules. The sub-
systems may also be prioritized based on key or critical features. Some-
times, developers need to show the clients some subsystems that are
working at the time of integration testing.

Strategy for integration The strategy selection for integration testing should
also be well-planned. Generally, sandwich integration testing is adopted.

 Test harness A factor to be considered while developing an integration test
plan is the amount of ‘ dead code’ or test harness that will have to be developed.
The drivers and stub code that is developed is thrown away and never used
again, so a minimum amount of development of this code is desired. Thus, if
the program uses a lot of low-level routines such that it is not practical to write
a driver for every low-level routine, then perhaps the level above should be
developed fi rst, with drivers for it.

List of tasks to be tested The functionalities and interfaces to be tested through
the integration of modules must also be planned.

289Test Management l

List of tasks not to be tested Plan the functionalities and interfaces not to be
tested due to whatever reasons.

 Function Test Plan
During planning, the test lead with assistance from the test team defi nes the
scope, schedule, and deliverables for the function test cycle. The test lead
delivers a test plan (document) and a test schedule (work plan)—these often
undergo several revisions during the testing cycle. The following are the tasks
under function test planning:

 � List the objectives of function testing A list of the overall objectives
for performing function testing is prepared.

 � Partitioning/Functional decomposition Functional decomposition
of a system (or partitioning) is the breakdown of a system into its func-
tional components or functional areas. Another group in the organiza-
tion may take responsibility for the functional decomposition (or model)
of the system, but the testing organization should still review this deliv-
erable for completeness before accepting it into the test organization.
If the functional decomposition or partitions have not been defi ned or
are deemed insuffi cient, then the testing organization will have to take
responsibility for creating and maintaining the partitions.

 � Traceability matrix formation Test cases need to be traced/mapped
back to the appropriate requirement. A function coverage matrix is pre-
pared. This matrix is a table, listing specifi c functions to be tested, the
priority for testing each function, and test cases that contain tests for
each function. Once all the aspects of a function have been tested by
one or more test cases, the test design activity for that function can be
considered complete. This approach gives a more accurate picture of
the application when coverage analysis is done.

 � List the functions to be tested A list of all the functions mentioned
in the traceability matrix with their appropriate details needed for plan-
ning, is prepared.

 System Test Plan
One of the most important parts of software development is testing. Before
you implement a new software into a system, you must be sure it won’t crash
and that proper bug checking has been done. Testing ensures that your system
runs properly and effi ciently and meets all the requirements. To fully ensure
that your system is free of defects, testing should follow a system test plan and
must be thorough and complete.

 Software Testing: Principles and Practices290

Often people rush to implement a new program and then spend hours
repairing the system, losing many hours of productivity. The experts prevent
this by using a system test plan. Basically, a system test plan is a systematic
approach to testing a system. The plan contains a detailed understanding of
what the eventual workfl ow will be. This will help keep the project on sched-
ule and make the integration of the new system as smooth as possible. We
should not build a house without blueprints, nor should we run a new system
without having created a proper system test plan.

 System testing is also diffi cult, as there are no design methodologies for
test cases because requirements and objectives do not describe the functions
precisely. However, requirements are general. Therefore, a system test plan
fi rst requires that requirements are formulated specifi cally. For this system,
test cases are divided into some categories, according to which the system test
plan is described. For example, system testing is described in terms of per-
formance testing, then the test plans are prepared according to performance
checking. Similarly, test plans can be prepared for stress testing, compatibility
testing, security testing, etc.

The following steps describe how a system test plan is implemented.

Partition the requirements Partition the requirements into logical categories
and for each category, develop a list of detailed requirements and plan.

System description Provide a chart and briefl y describe the inputs, outputs,
and functions of the software being tested as a frame of reference for the test
descriptions.

Features to be tested The set of functionalities of the test items to be tested must
be recognized, as there may be several criteria for system testing.

Strategy and reporting format The strategy to be followed in system testing
should also be planned. The type of tests to be performed, standards for
documentation, mechanism for reporting, and special considerations for the
type of project must also be planned, e.g. a test strategy might say that black-
box testing techniques will be used for functional testing.

Develop a requirement coverage matrix Develop a requirement coverage
matrix which is a table in which an entry describes a specifi c subtest, priority
of the subtest, the specifi c test cases in which the subtest appears. This matrix
specifi es the functions that are to be tested, defi ning the objectives of the test.

 Smoke test set The system test plan also includes a group of test cases that
establish that the system is stable and all major functionalities are working. This
group of test cases is referred to as smoke tests or testability assessment criteria.

291Test Management l

Entry/Exit criteria The entry criteria will contain some exit criteria from the
previous level as well as establishment of test environment, installation of tools,
gathering of data, and recruitment of testers, if necessary. The exit criteria also
need to be established, e.g. all test cases have been executed and no major
identifi ed bugs are open.

Suspension criteria It identifi es the conditions that suspend testing, e.g. critical
bugs preventing further testing.

Resource requirements State the resource requirements including documents,
equipment, software, and personnel.

Test team State the members who are in the test team and enlist their
assignments.

Participating organizations System testing may not be done by a single
organization, as the software to be developed may be large with many
modules being developed by various organizations. Thus, integrated system
testing needs people from all these organizations. Identify the participating
organizations and fi x the date and time with them.

Extent and constraints Since the system testing of a large software system
needs many resources, some might not be available. Therefore, indicate the
extent of testing, e.g. total or partial. Include the rationale for the partial one.
Similarly, indicate anticipated limitations on the test due to test conditions,
such as interfaces, equipment, personnel, and database.

Schedule estimation The time schedule for accomplishing testing milestones
should also be planned. But this plan should be in tune with the time allocation
in the project plan for testing.

 Acceptance Test Plan
It is important to have the acceptance criteria defi ned so that acceptance test-
ing is performed against those criteria. It means that in the acceptance test
plan, we must have all the acceptance criteria defi ned in one document. If
these are not available, then prepare them and plan the acceptance test ac-
cordingly. Acceptance criteria are broadly defi ned for functionality require-
ments, performance requirements, interface quality requirements, and overall
software quality requirements.

Another point in acceptance testing plan is to decide the criticality of
acceptance features defi ned. It is necessary to defi ne the criticality. If the
system fails the high critical acceptance requirement, then it should not pass
the acceptance testing.

 Software Testing: Principles and Practices292

9.4 DETAILED TEST DESIGN AND TEST SPECIFICATIONS

The ultimate goal of test management is to get the test cases executed. Till
now, test planning has not provided the test cases to be executed. Detailed
test designing for each validation activity maps the requirements or features
to the actual test cases to be executed. One way to map the features to their
test cases is to analyse the following:

 � Requirement traceability

 � Design traceability

 � Code traceability

The analyses can be maintained in the form of a traceability matrix (see
Table 9.1) such that every requirement or feature is mapped to a function in
the functional design. This function is then mapped to a module (internal
design and code) in which the function is being implemented. This in turn is
linked to the test case to be executed. This matrix helps in ensuring that all
requirements have been covered and tested. Priority can also be set in this
table to prioritize the test cases.

Table 9.1 Traceability matrix

Requirement/Feature Functional Design Internal Design/Code Test cases

R1 F1, F4,F5 abc.cpp, abc.h T5, T8,T12,T14

9.4.1 TEST DESIGN SPECIFICATION

A test design specifi cation should have the following components according
to IEEE recommendation [56]:

Identifi er A unique identifi er is assigned to each test design specifi cation with
a reference to its associated test plan.

Features to be tested The features or requirements to be tested are listed with
reference to the items mentioned in SRS/SDD.

Approach refi nements In the test plan, an approach to overall testing was
discussed. Here, further details are added to the approach. For example,
special testing techniques to be used for generating test cases are explained.

Test case identifi cation The test cases to be executed for a particular feature/
function are identifi ed here, as shown in Table 9.1. Moreover, test procedures
are also identifi ed. The test cases contain input/output information and the test
procedures contain the necessary steps to execute the tests. Each test design
specifi cation is associated with test cases and test procedures. A test case may
be associated with more than one test design specifi cations.

293Test Management l

Feature pass/fail criteria The criteria for determining whether the test for a
feature has passed or failed, is described.

9.4.2 TEST CASE SPECIFICATIONS

Since the test design specifi cations have recognized the test cases to be ex-
ecuted, there is a need to defi ne the test cases with complete specifi cations.
The test case specifi cation document provides the actual values for input with
expected outputs. One test case can be used for many design specifi cations
and may be re-used in other situations. A test case specifi cation should have
the following components according to IEEE recommendation [56]:

Test case specifi cation identifi er A unique identifi er is assigned to each test
case specifi cation with a reference to its associated test plan.

Purpose The purpose of designing and executing the test case should be mentioned
here. It refers to the functionality you want to check with this test case.

Test items needed List the references to related documents that describe the
items and features, e.g. SRS, SDD, and user manual.

Special environmental needs In this component, any special requirement in
the form of hardware or software is recognized. Any requirement of tool may
also be specifi ed.

Special procedural requirements Describe any special condition or constraint
to run the test case, if any.

Inter-case dependencies There may be a situation that some test cases are
dependent on each other. Therefore, previous test cases which should be run
prior to the current test case must be specifi ed.

Input specifi cations This component specifi es the actual inputs to be given while
executing a test case. The important thing while specifying the input values is
not to generalize the values, rather specifi c values should be provided. For
example, if the input is in angle, then the angle should not be specifi ed as a range
between 0 and 360, but a specifi c value like 233 should be specifi ed. If there is
any relationship between two or more input values, it should also be specifi ed.

Test procedure The step-wise procedure for executing the test case is described
here.

Output specifi cations Whether a test case is successful or not is decided
after comparing the output specifi cations with the actual outputs achieved.
Therefore, the output should be mentioned complete in all respects. As in the
case of input specifi cations, output specifi cations should also be provided in
specifi c values.

 Software Testing: Principles and Practices294

Example 9.1

There is a system for railway reservation system. There are many functional-
ities in the system, as given below:

S. No. Functionality Function ID in SRS Test cases

1 Login the system F3.4 T1

2 View reservation status F3.5 T2

3 View train schedule F3.6 T3

4 Reserve seat F3.7 T4

5 Cancel seat F3.8 T5

6 Exit the system F3.9 T6

Suppose we want to check the functionality corresponding to ‘view reserva-
tion status’. Its test specifi cation is given in Fig. 9.4.

�

�

�

�

�

�

�

�

�

T2

To check the functionality of View Reservation Status’

Refer function F3.5 in SRS of the system.

Internet should be in working condition. Database software through which the data will be
retrieved should be in running condition.

The function ‘Login’ must be executed prior to the current test case.

T1 test case must be executed prior to the current test case execution.

Enter PNR number in 10 digits between 0–9 as given below:
4102645876
21A2345672
234
asdgggggggg

Press ‘View Reservation status’ button.
Enter PNR number and press ENTER.

The reservation status against the entered PNR number is displayed as S12 or RAC13 or WL123
as applicable.

Test case Specification Identifier

Purpose

Test Items Needed

Special Environmental

Special Procedural Requirements

Inter-case Dependencies

Input Specifications

Test Procedure

Output Specifications

‘

Requirements

Figure 9.4 Test specifi cations

295Test Management l

9.4.3 TEST PROCEDURE SPECIFICATIONS

A test procedure is a sequence of steps required to carry out a test case or
a specifi c task. This can be a separate document or merged with a test case
specifi cation.

9.4.4 TEST RESULT SPECIFICATIONS

There is a need to record and report the testing events during or after the test
execution, as shown in Fig. 9.5.

Verification Testing Validation Testing

Verification
Test Report

Verification
Test Report

Test Summary Report

Test Log

Test Incident
Report

Test Log

Test Incident
Report

Figure 9.5 Test result specifi cations

 Test Log
Test log is a record of the testing events that take place during the test. Test
log is helpful for bug repair or regression testing. The developer gets valuable
clues from this test log, as it provides snapshots of failures. The format for
preparing a test log according to IEEE [56] is given below:

 � Test log identifi er

 � Description Mention the items to be tested, their version number, and
the environment in which testing is being performed.

 � Activity and event entries Mention the following:

 (i) Date

 (ii) Author of the test

 (iii) Test case ID

 (iv) Name the personnel involved in testing

 Software Testing: Principles and Practices296

 (v) For each execution, record the results and mention pass/fail status

 (vi) Report any anomalous unexpected event, before or after the execu-
tion

 The test log corresponding to Example 9.1 is given in Fig. 9.6.

�

�

�

TL2

Function 3.5 in SRS v 2.1. The function tested in Online environment with Internet.

Mention the following:
(i) Date: 22/03/2009
(ii) Author of test: XYZ
(iii) Test case ID: T2
(iv) Name of the personnel involved in testing: ABC, XYZ
(v) For each execution, record the results and mention pass/fail status

The function was tested with the following inputs:

Report any anomalous unexpected event before or after the execution.
Nil

Test Log Identifier

Description

Activity and Event Entries

(vi)

Status

Pass

Fail

Enter correct 10 digit
PNR number

Pass

Fail

Inputs Results

4102645876 S12

21A2345672 S14

234

asdgggggggg RAC12

Figure 9.6 Sample test log for Example 9.1

 Test Incident Report
This is a form of bug report. It is the report about any unexpected event dur-
ing testing which needs further investigation to resolve the bug. Therefore,
this report completely describes the execution of the event. It not only reports
the problem that has occurred but also compares the expected output with
the actual results. Listed below are the components of a test incident report
[56]:

 � Test incident report identifi er

 � Summary Identify the test items involved, test cases/procedures, and
the test log associated with this test.

 � Incident description It describes the following:
 (i) Date and time
 (ii) Testing personnel names

297Test Management l

 (iii) Environment

 (iv) Testing inputs

 (v) Expected outputs

 (vi) Actual outputs

 (vii) Anomalies detected during the test

 (viii) Attempts to repeat the same test

 � Impact The originator of this report will assign a severity value/rank to
this incident so that the developer may know the impact of this problem
and debug the critical problem fi rst.

The test log corresponding to Example 9.1 is given in Fig. 9.7.

�

�

�

�

Test Incident Report Identifier

Summary

Incident Description

Impact

TI2

(i)
(ii)
(iii)
(iv)
(v)

Function 3.5 in SRS v 2.1. Test Case T2 and Test Log TL2.

It describes the following:
Date and time: 23/03/2009, 2.00pm
Testing personnel names: ABC, XYZ
Environment: Online environment with X database
Testing inputs
Expected outputs

(vi) Actual outputs
(vii) Anomalies detected during the test
(viii) Attempts to repeat the same test

The severity value is 1(Highest).

Testing Expected Actual Anomalies
repeat the
same test

Attempts to
Inputs outputs outputs detected

4102645876 S12 S12 nil –

21A2345672 Enter correct 10 S14 Alphabet is 3

234 Enter correct 10 Enter correct 10 nil –

asdgggggggg Enter correct RAC12 Alphabet is 5

digit PNR number being accepted
in the input.

digit PNR number digit PNR number

10 digit PNR number being accepted
in the input.

Figure 9.7 Sample test incident report for Example 9.1

 Software Testing: Principles and Practices298

 Test Summary Report
It is basically an evaluation report prepared when the testing is over. It is the
summary of all the tests executed for a specifi c test design specifi cation. It can
provide the measurement of how much testing efforts have been applied for
the test. It also becomes a historical database for future projects, as it provides
information about the particular type of bugs observed.

The test summary report corresponding to Example 9.1 is given in Fig. 9.8.

�

�

�

�

�

�

TS2

SRS v 2.1

1 Login the system F3.4 T1

2 View reservation status F3.5 T2

3 View train schedule F3.6 T3

4 Reserve seat F3.7 T4

5 Cancel seat F3.8 T5

6 Exit the system F3.9 T6

Nil

All the test cases were tested except F3.7, F3.8, F3.9 according to the test plan.

1 Login the system F3.4 T1 Pass

2 View reservation status F3.5 T2 Bug Found. Could not
be resolved.

3 View train schedule F3.6 T3 Pass

The functions F3.4, F3.6 have been tested successfully. Function F3.5 couldn't be tested as the bug has
been found. The bug is that the PNR number entry has also accepted alphabetical entries as wrong

Test Summary Report Identifier

Description

S. No. Functionality Function ID Test cases

Variances

Comprehensive Statement

Summary of Results

S. No. Functionality Function ID Test cases Status

Evaluation

in SRS

in SRS

Figure 9.8 Test summary report

A test summary report contains the following components [56]:
 � Test summary report identifi er

 � Description Identify the test items being reported in this report with
the test case/procedure ID.

 � Variances Mention any deviation from the test plans, test procedures,
if any.

299Test Management l

 � Comprehensive statement The originator of this report compares
the comprehensiveness of the testing efforts made with the test plans. It
describes what has been tested according to the plan and what has not
been covered.

 � Summary of results All the results are mentioned here with the
resolved incidents and their solutions. Unresolved incidents are also
reported.

 � Evaluation Mention the status of the test results. If the status is fail,
then mention its impact and severity level.

 � Summary of activities All testing execution activities and events are
mentioned with resource consumption, actual task durations, etc.

 � Approvals List the names of the persons who approve this document
with their signatures and dates.

SUMMARY

Testing is not an intuitive process. It is a systematic well-defi ned process. Therefore, it needs
complete management. There should be a hierarchy of testing persons in the test organization
with well-defi ned roles. Testing activities start with proper planning and continue with detailed
test design specifi cations to result specifi cations. The idea is to plan and document the steps of
STLC according to which the tester works. The tester plans, design, executes the test cases,
and reports the test results.

This chapter discusses the test organization with the hierarchy of every testing person. A
general test plan’s components have been described. A master plan including verifi cation and
validation plan is also needed for testing a software. The verifi cation plan and validation test
plan at every stage – unit test plan, integration test plan, and system test plan, have also been
discussed in this chapter.

The test case specifi cations along with test design specifi cations are discussed for designing
the test cases. After the test case execution, the test results should also be reported. Test re-
porting exists in three main documents namely – test log, test incident report, and test summary
report. All these testware have been explained in detail with their specifi cations.

Let us review the important concepts described in this chapter:

 � Project manager is a key person in the testing group who interacts with project manage-
ment, quality assurance, and marketing staff.

 � Test leader leads a team of test engineers who work at the leaf-level of the hierarchy.

 � Test engineers work under the lead of the test leader and are responsible for designing,
developing, and maintaining test cases.

 � Junior test engineers are newly hired testers. They usually go for training to learn the test
strategy, test process, and testing tools.

 � A test plan is defi ned as a document that describes the scope, approach, resources, and
schedule of intended testing activities.

 Software Testing: Principles and Practices300

 � Master test plan provides the highest level description of verifi cation and validation ef-
forts and drives the testing at various levels.

 � Unit test is provided by the module developer. He prepares a test harness to identify the
interfaces between the unit to be tested and other units.

 � Integration test plan specifi es the necessary steps needed to integrate individual mod-
ules and test the integration. It helps the technical team to think through the logical
sequence of integration activities.

 � Function test plan specifi es the requirements for a bare-minimum functioning of the sys-
tem. The plan must be ready with a traceability matrix that maps every function to its
requirement and a list of functions to be tested.

 � A system test plan is a systematic approach for testing a system containing a detailed
understanding of what the eventual workfl ow will be. For this system, test cases are
divided into some categories (recovery, security, performance, compatibility, etc.), ac-
cording to which the system test plan is described.

 � Acceptance test plan must have all the acceptance criteria defi ned in one document.
If they are not available, then prepare them and plan the acceptance test accordingly.
Another point in acceptance testing plan is to decide the criticality of acceptance feature
defi ned. It is necessary to defi ne the criticality so as to ensure that the system does not
pass the accepted test, if it has failed in high critical acceptance requirement.

 � Test log is a record of the testing events that take place during a test.

 � Test incident report keeps a log of any unexpected event that has occurred during the
test, which needs further investigation to resolve the bug.

 � Test summary report is about the tests executed for a specifi c test design specifi cation.
It can measure how much testing efforts have been applied for the test.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. The key elements of test management are __________.
 (a) test organization
 (b) test harness
 (c) test planning
 (d) test monitoring and assessment

 2. __________ is at the top-level in the test group hierarchy.
 (a) test engineer
 (b) test manager
 (c) test leader
 (d) junior engineer

 3. Verifi cation plan includes __________.
 (a) unit test plan

301Test Management l

 (b) integration test plan
 (c) function design plan
 (d) none of the above

 4. Validation plan includes __________.
 (a) unit test plan
 (b) integration test plan
 (c) function design plan
 (d) none of the above

 5. Master schedule in V&V planning __________.
 (a) summarizes the V&V tasks and their relationship with the overall project
 (b) summarizes the resources needed to perform V&V tasks
 (c) identifi es the organization responsible for performing V&V tasks
 (d) none of the above

 6. Test log is __________.
 (a) an evaluation report prepared when the testing is over
 (b) a form of bug report
 (c) a record of the testing events that take place during test
 (d) none of the above

 7. Test incident report is __________.
 (a) an evaluation report prepared when the testing is over
 (b) a form of bug report
 (c) a record of the testing events that take place during test
 (d) none of the above

 8. Test summary report is __________.
 (a) an evaluation report prepared when the testing is over
 (b) a form of bug report
 (c) a record of the testing events that take place during test
 (d) none of the above

 9. Test incident report is __________.
 (a) test procedure specifi cation document
 (b) test result specifi cation document
 (c) test design specifi cation document
 (d) none of the above

 10. __________ integration testing is preferred while planning integration test.
 (a) top-down
 (b) bottom-up
 (c) sandwich
 (d) none of the above

 Software Testing: Principles and Practices302

 11. Test engineer is responsible for __________.
 (a) test planning the given tasks by the test manager
 (b) providing tool training, if needed
 (c) interacting with customer
 (d) designing the test cases

 12. Junior test engineer __________.
 (a) participates in test design and execution with experienced test engineers
 (b) assigns testing tasks to test engineers who are working under him
 (c) supervises test engineers
 (d) none of the above

 13. Test leader is __________.
 (a) responsible for making test strategies with detailed master planning and sched-

ule
 (b) interacts with customer regarding quality issues
 (c) acquires all the testing resources including tools
 (d) assigns testing tasks to test engineers who are working under him

 14. Test manager __________.
 (a) interacts with customer regarding quality issues
 (b) acquires all the testing resources including tools
 (c) designs test cases
 (d) develops test harness

REVIEW QUESTIONS

 1. Discuss the key components of test management.

 2. What are the major activities of a testing group?

 3. What is meant by testing group hierarchy? Explain the role of each member in this
hierarchy.

 4. Suppose you are working in the testing group of a company. Identify your role in the
testing group hierarchy. What are the major duties performed by you there?

 5. What type of test planning will you plan for a real-time critical software? Design a test
plan using test plan components.

 6. How can the users/clients help in preparing the test plans?

 7. What are the major activities in V&V planning?

 8. Acquire SRS and SDD of any project and develop the following:
 (a) Unit test plan
 (b) Integration test plan
 (c) System test plan

303Test Management l

 9. Explain the importance of test harness in the integration test plan.

 10. What is the difference between system test plan and acceptance test plan?

 11. Discuss the role of traceability matrix in designing the test cases.

 12. Discuss the role of test log, test incident report, and test summary report in validation
testing.

 13. Take three modules of your choice in a project and prepare the following for each
module:

 (a) Test design specifi cations
 (b) Test case specifi cations
 (c) Test procedure specifi cations
 (d) Test result specifi cations

 14. The modules taken in Question 13 need to be integrated. Which test planning will you
choose for integrating the modules?

 15. What is functional decomposition?

 16. List all the testing deliverables (documents) and describe the purpose of each, in the
organization where you are working.

 Software Testing: Principles and Practices304

Today, every technical process demands measure-
ment. We cannot describe a product by simply saying
that it should be of high quality or that it should be
reliable. Today, the demand is to quantify the terms
‘good or high quality’, ‘more reliable’, ‘effi cient’, etc.
It is a world of quantifi cation. This becomes more
important in terms of software, as its development is
becoming more and more complex.

With the increase in complexity, it becomes im-
portant to control the software development pro-
cess to monitor its progress on factors like time,
budget, and resource constraints, and measure the
quality of the end-product. Thus, if we want to con-
trol all these parameters in software, we need soft-
ware metrics.

DeMarco rightly said, You cannot control what you
cannot measure. Sometimes, we don’t know what can
derail a project, therefore it is essential to measure

and record the characteristics of good projects as well as bad ones. Therefore,
quantifi cation has become a necessity for the effective management of the soft-
ware process.

 Software metrics are used by the software industry to quantify the develop-
ment, operation, and maintenance of software. Metrics give us information
regarding the status of an attribute of the software and help us to evaluate it in
an objective way. The practice of applying software metrics to a software pro-
cess and to a software product is a complex task. By evaluating an attribute of
the software, we can know its status. From there, we can identify and classify
what its situation is; which helps us to fi nd opportunities of improvements in
the software. This also helps us to make plans for modifi cations that need to
be implemented in the future.

Chapter

10
Software Metrics

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Software projects need measurement to

quantify things for better monitoring and
control over software development

 � Software metrics are quantitative
measurements

 � Various types of software metrics
 � Entities to be measured for the software:

process, product, and resource
 � Recognition of attributes before

measurement, as they are important for
designing software metrics

 � Line-of-code metrics
 � Halstead metrics
 � Function point analysis metrics

305Software Metrics l

Software metrics play an important role in measuring the attributes that
are critical for the success of a software project. Measurement of these at-
tributes helps to make the characteristics and relationships between the at-
tributes clearer. This in turn supports informed decision-making. Measuring
the attributes of a development process enables the management to have a
better insight into the process. Thus, measurement is a tool through which the
management identifi es important events and trends, enabling them to make
informed decisions. Moreover, measurements help in predicting outcomes
and evaluating risks, which in turn decreases the probability of unanticipated
surprises in different processes.

10.1 NEED OF SOFTWARE MEASUREMENT

Measurements are a key element for controlling software engineering pro-
cesses. By controlling, it is meant that one can assess the status of the process,
observe the trends to predict what is likely to happen, and take corrective ac-
tion for modifying our practices. Measurements also play their part in increas-
ing our understanding of the process by making visible relationships among
process activities and entities involved. Lastly, measurements improve our
processes by modifying the activities based on different measures.

Understanding

Control

Improvement

Software
engineering
processes

Software
metrics

Figure 10.1 Need for software metrics

On the basis of this discussion, software measurement is needed for the fol-
lowing activities (see Fig. 10.1):

Understanding Metrics help in making the aspects of a process more visible,
thereby giving a better understanding of the relationships among the activities
and entities they affect.

Control Using baselines, goals, and an understanding of the relationships, we
can predict what is likely to happen and correspondingly, make appropriate
changes in the process to help meet the goals.

 Software Testing: Principles and Practices306

Improvement By taking corrective actions and making appropriate changes,
we can improve a product. Similarly, based on the analysis of a project, a
process can also be improved.

10.2 DEFINITION OF SOFTWARE METRICS

Software metrics can be defi ned as ‘the continuous application of measure-
ment-based techniques to the software development process and its products
to supply meaningful and timely management information, together with the
use of those techniques to improve that process and its products.’

The IEEE Standard Glossary of Software Engineering Terms [21] defi nes a
metric as ‘a quantitative measure of the degree to which a system component
or process possesses a given attribute.’

10.3 CLASSIFICATION OF SOFTWARE METRICS

10.3.1 PRODUCT VS. PROCESS METRICS

Software metrics may be broadly classifi ed as either product metrics or process
metrics. Product metrics are measures of the software product at any stage of
its development, from requirements to installed system. Product metrics may
measure the complexity of the software design, the size of the fi nal program,
or the number of pages of documentation produced.

Process metrics, on the other hand, are measures of the software develop-
ment process, such as the overall development time, type of methodology
used, or the average level of experience of the programming staff.

10.3.2 OBJECTIVE VS. SUBJECTIVE METRICS

Objective measures should always result in identical values for a given metric,
as measured by two or more qualifi ed observers. For subjective measures,
even qualifi ed observers may measure different values for a given metric. For
example, for product metrics, the size of product measured in line of code
(LOC) is an objective measure. In process metrics, the development time is
an example of objective measure, while the level of a programmer’s experi-
ence is likely to be a subjective measure.

10.3.3 PRIMITIVE VS. COMPUTED METRICS

Primitive metrics are those metrics that can be directly observed, such as the
program size in LOC, the number of defects observed in unit testing, or the

307Software Metrics l

total development time for the project. Computed metrics are those that can-
not be directly observed but are computed in some way from other metrics.
For example, productivity metrics like LOC produced per person-month or
product quality like defects per thousand lines of code.

10.3.4 PRIVATE VS. PUBLIC METRICS

This classifi cation is based on the use of different types to process data. Be-
cause it is natural that individual software engineers might be sensitive to the
use of metrics collected on an individual basis, these data should be private to
individuals and serve as an indicator for individuals only. Examples of private
metrics include defect rates (by individual and by module) and errors found
during development.

Public metrics assimilate information that originally was private to individuals
and teams. Project-level defect rates, effort, calendar times, and related data are
collected and evaluated in an attempt to uncover indicators that can improve
organizational process performance.

10.4 ENTITIES TO BE MEASURED

In order to measure, it is needed to identify an entity and a specifi c attribute of
it. It is very important to defi ne clearly what is being measured, otherwise, the
measures cannot be performed or the measures obtained can have different
meaning for different people.

The entities considered in software measurement are:

 � Processes Any activity related to software development.

 � Product Any artifact produced during software development.

 � Resource People, hardware, or software needed for a process.

The attributes of an entity can be internal or external.

 � Internal attributes of any entity can be measured only based on the
entity and therefore, measured directly. For example, size is an internal
attribute of any software measurement.

 � External attributes of any entity can be measured only with respect to
how the entity is related with the environment and therefore, can only
be measured indirectly. For example, reliability, an external attribute
of a program, does not depend only on the program itself but also on
the compiler, machine, and user. Productivity, an external attribute of a
person, clearly depends on many factors such as the kind of process and
the quality of the software delivered.

 Software Testing: Principles and Practices308

10.5 SIZE METRICS

The software size is an important metric to be used for various purposes. At
the same time, it is diffi cult to measure because, unlike other physical prod-
ucts, a software cannot be measured directly with conventional units. Various
approaches used for its measurement are given below.

10.5.1 LINE OF CODE (LOC)
This metric is based on the number of lines of code present in the program.
The lines of code are counted to measure the size of a program. The com-
ments and blank lines are ignored during this measurement. The LOC metric
is often presented on thousands of lines of code (KLOC). It is often used
during the testing and maintenance phases, not only to specify the size of the
software product, but also it is used in conjunction with other metrics to anal-
yse other aspects of its quality and cost.

10.5.2 TOKEN COUNT (HALSTEAD PRODUCT METRICS)
The problem with LOC is that it is not consistent, because all lines of code
are not at the same level. Some lines are more diffi cult to code than others.
Another metric set has been given by Halstead. He stated that any software
program could be measured by counting the number of operators and oper-
ands. From these set of operators and operands, he defi ned a number of for-
mulae to calculate the vocabulary, the length, and the volume of the software
program. Halstead extended this analysis to determine the effort and time.
Some Halstead metrics are given below.

 Program Vocabulary
It is the number of unique operators plus the number of unique operands as
given below:
 n = n1 + n2
where n = program vocabulary
 n1 = number of unique operators
 n2 = number of unique operands

 Program Length
It is the total usage of all the operators and operands appearing in the imple-
mentation. It is given as,
 N = N1 + N 2
where N = program length

309Software Metrics l

 N1 = all operators appearing in the implementation
 N 2 = all operands appearing in the implementation

 Program Volume
The volume refers to the size of the program and it is defi ned as the program
length times the logarithmic base 2 of the program vocabulary. It is given as,
 V = N log2 n
where V = program volume
 N = program length
 n = program vocabulary

10.5.3 FUNCTION POINT ANALYSIS (FPA)
It is based on the idea that the software size should be measured according to the
functionalities specifi ed by the user. Therefore, FPA is a standardized methodol-
ogy for measuring various functions of a software from the user’s point of view.

The size of an application is measured in function points. The process of
counting the functions using FPA has been standardized by the International
Function Point Users Group (IFPUG). IFPUG [123] has defi ned the rules and
standards for calculating function points and it also promotes their use and
evolution.

 Process to Calculate Function Points
The process used to calculate the function points is given below [122]:
 1. Determine the type of project for which the function point count is to

be calculated. For example, development project (a new project) or
enhancement project.

 2. Identify the counting scope and the application boundary.
 3. Identify data functions (internal logical functions and external interface

fi les) and their complexity.
 4. Identify transactional functions (external inputs, external outputs, and

external queries) and their complexity.
 5. Determine the unadjusted function point count (UFP).
 6. Determine the value adjustment factor, which is based on 14 general

system characteristics (GSCs).
 7. Calculate the adjusted function point count (AFP).

Function point counting has been depicted in Fig. 10.2. This fi gure shows
all the data functions and transactional functions. The details of all these func-
tions are described in the following sections.

 Software Testing: Principles and Practices310

External
Output

External
Input

External
Output

External
Inquiry

Application Boundary Other Applications

Internal
Logical

File
External

Input

External
Interface

File

External User

Figure 10.2 Functionality recognized in function point counting

Sizing Data Functions
Data functions are those functions in the project which relate to the logical
data stored and available for update, reference, and retrieval. These functions
are categorized in two parts: internal logical functions and external interface
fi les. The categories are logical groupings of logically related data, and not
physical representations. These are discussed below.

 � Internal logical fi les (ILF) An internal logical fi le is a user-identifi able
group of logically related data or control information maintained within
the boundary of the application.

 � External interface fi les (EIF) An external interface fi le is a user-iden-
tifi able group of logically related data or control information referenced
by the application but maintained within the boundary of a different
application. An EIF counted for an application must be in another ap-
plication.

The physical count of ILFs and EIFs, together with the relative functional com-
plexity of each, determines the contribution of the data function types to the
unadjusted function point. Each identifi ed data function must be assigned a
functional complexity based on the number of data element types (DETs) and
record element types (RETs) associated with the ILF and EIF.

DETs are unique user-recognizable, non-repeatable fi elds or attributes.
RETs are user-recognizable subgroups (optional or mandatory) of data ele-
ments contained within an ILF or EIF. Subgroups are typically represented in
an entity relationship diagram as entity subtypes or attribute entities.

Functional complexity is the rating assigned to each data function. The
rating is based on record types and DETs being counted, as shown in
Table 10.1.

311Software Metrics l

Table 10.1 Complexity matrix for ILFs and EIFs

RETs DETs

1–19 20–50 >=51

1 Low Low Average

2–5 Low Average High

>5 Average High High

Sizing Transactional Functions
Information systems are usually developed to mechanize and automate manual
tasks. The tasks that have been automated are identifi ed as transactional
functions which represent the functionality provided to the user for processing
the data by an application. The categorization of these functions is given
below.

External inputs (EIs) are incoming data or control information to alter the
behaviour of a system, e.g. adding, changing, deleting, etc.

External inquiries (EQs) send data outside the application through retrievals
of data or control information from ILFs and/or EIFs, e.g. retrieval and display
of a current description from our fi le.

External outputs (EOs) send data outside the application with processing
logic other than or in addition to retrieval of data or control information, e.g.
report of monthly sales with calculation by category.

Complexity and Contribution
The physical count of EIs, EOs, and EQs together with the relative functional
complexity for each, determines the contribution of external inputs, outputs,
and queries to the unadjusted function point count. Each identifi ed EI, EO,
and EQ must be assigned a functional complexity based on the number of
DETs and FTRs (fi le type referenced) associated with them. Complexity ma-
trices for EIs, EOs, and EQs are shown in Tables 10.2, 10.3, and 10.4.

Table 10.2 Complexity matrix for EIs

FTRs DETs

1–4 5–15 >=16

<2 Low Low Average

2 Low Average High

>2 Average High High

 Software Testing: Principles and Practices312

Table 10.3 Complexity matrix for EOs

FTRs DETs

1–5 6–19 >=20

<2 Low Low Average

2–3 Low Average High

>3 Average High High

Table 10.4 Complexity matrix for EQs

FTRs DETs

1–5 6–19 >=20

<2 Low Low Average

2–3 Low Average High

>3 Average High High

Calculating Unadjusted Function Point (UFP)
The steps for calculating UFP are given below:

 � Count all DETs/FTRs for all fi ve components, i.e. ILF, EIF, EI, EO,
and EQ of an application and determine the level of the component
as low, average, or high, based on the individual complexity matrix, as
described above.

 � Count the number of all fi ve components. The sum of each count is
multiplied by an appropriate weight using Table 10.5, as shown below.

Table 10.5 IFPUGs unadjusted function point table

Components Function Levels

Low Average High

ILF X7 X10 X15

EIF X5 X7 X10

EI X3 X4 X6

EO X4 X5 X7

EQ X3 X4 X6

 � Add all the fi ve results calculated in the previous step. This is the fi nal
UFP.

Calculating Adjusted Function Point
There are some characteristics regarding every project which must be con-
sidered for the effort being measured for the project. Therefore, the function
point calculated above is unadjusted, as the project dependent characteristics
have not been considered in the function count. Therefore, IFPUG defi nes a

313Software Metrics l

 value adjustment factor (VAF) which is used as a multiplier of the unadjusted
function point count in order to calculate the adjusted function point (AFP)
count of an application.

Each GSC is evaluated in terms of its degree of infl uence (DI) on a scale of
0 to 5, as given below in Table 10.6.

Table 10.6 Degree of infl uence scaling

DI Meaning

0 Not present, or no infl uence

1 Incidental infl uence

2 Moderate infl uence

3 Average infl uence

4 Signifi cant infl uence throughout

Table 10.7 shows the GSCs to calculate the VAF.

Table 10.7 Components of VAF

Factor Meaning

F1 Data communications

F2 Performance

F3 Transaction rate

F4 End user effi ciency

F5 Complex processing

F6 Installation ease

F7 Multiple sites

F8 Distributed data processing

F9 Heavily used confi guration

F10 Online data entry

F11 Online update

F12 Reusability

F13 Operational ease

F14 Facilitate change

The 14 GSCs shown in the table are summarized in the VAF. After ap-
plying the VAF, the UFP adjusts by 35% to determine the adjusted function
point. The following steps determine the AFP.

 � Evaluate the 14 GSCs on a scale of 0–5 to determine the DI for each
GSC description.

 � Add the DIs for all 14 GSCs to produce the total degree of infl uence
(TDI).

 Software Testing: Principles and Practices314

 � Use the TDI in the following equation to compute VAF.

VAF = (TDI × 0.01) + 0.065

 � The fi nal adjusted function point is calculated as,

AFP = UFP × VAF

Example 10.1

Consider a project with the following parameters: EI = 50, EO = 40, EQ
= 35, ILF = 06, and ELF = 04. Assume all weighing factors are average. In
addition, the system requires critical performance, average end-user effi ciency,
moderate distributed data processing, and critical data communication. Other
GSCs are incidental. Compute the function points using FPA.

Solution
 UFP = 50 ¥ 4 + 40 ¥ 5 + 35 ¥ 4 + 6 ¥ 10 + 4 ¥ 7 = 628

 TDI = (4 + 3 + 2 + 4) ¥ 10 = 130

 VAF = 130 ¥ 0.01 + 0.065 = 1.365

 AFP = 628 ¥ 1.365 = 857.22

SUMMARY

Software measurement is not only useful but necessary. After all, how do you decide that a
project is under control, if there is no measure for this? Software metrics play an important role
today in understanding, controlling, and improving the software process as well as the product.

This chapter discusses the need for software measurement with its various types of metrics.
Function point analysis is the major size metric used to measure the size of software. The
technique has been adopted for measuring the development and testing effort. The chapter
discusses the whole process of calculating the function points for a project to be developed. This
chapter makes ground for the next chapter which is about software testing metrics.

Let us review the important concepts described in this chapter:

 � Software metrics play an important role in measuring attributes that are critical to the
success of a software project. Measurement of these attributes helps to make the char-
acteristics and relationships between the attributes clearer.

 � Software metric can be defi ned as a quantitative measure of the degree to which a sys-
tem component or process possesses a given attribute.

 � LOC (line of code) metric is based on the number of lines of code present in the program.
The lines of code are counted for measuring the size of the program.

 � Token count metric is based on counting the number of operators and operands in a
program. From this set of operators and operands, a number of formulae are defi ned to
calculate the vocabulary, the length, and the volume of the software program.

315Software Metrics l

 � Function point analysis (FPA) is a standardized methodology for measuring the various
functions of a software from the user’s point of view. The size of an application is mea-
sured in function points.

 � Data functions are those functions in the project which relate to logical data stored and
available for update, reference, and retrieval.

 � An internal logical fi le (ILF) is a user-identifi able group of logically related data or control
information, maintained within the boundary of the application.

 � An external logical fi le (EIF) is a user-identifi able group of logically related data or control
information, referenced by the application, but maintained within the boundary of a differ-
ent application. An EIF counted for an application must be in another application.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. Metrics give us information regarding the status of _______ in a software.
 (a) attributes
 (b) processes
 (c) costs
 (d) none of the above

 2. ________ activity does not require software measurement.
 (a) Development
 (b) Understanding
 (c) Control
 (d) Improvement

 3. Primitive metrics are those metrics that can be _______observed.
 (a) directly
 (b) indirectly
 (c) user
 (d) none of the above

 4. Data functions are those functions in the project which relate to _______ data stored.
 (a) physical
 (b) logical
 (c) complex
 (d) none of the above

 5. VAF = (TDI × 0.01) + _______
 (a) 0.076
 (b) 0.075
 (c) 0.065
 (d) none of the above

 Software Testing: Principles and Practices316

 6. VAF adjusts the UFP by _______ to determine the adjusted function point.
 (a) 34%
 (b) 35%
 (c) 43%
 (d) none of the above

 7. AFP = UFP __ VAF
 (a) +
 (b) *
 (c) –
 (d) /

REVIEW QUESTIONS

 1. What is the need for software measurement?

 2. Discuss the various types of software metrics.

 3. What is the disadvantage of LOC metrics?

 4. What is the basis of Halstead metrics to calculate the size of a software?

 5. What type of projects can be best counted with function point analysis?

 6. Explain the process of calculating function points for a project which you are going to
build.

 7. Can you adopt the FPA for calculating the function points of a real-time software?

 8. What is the difference between UFP and AFP?

 9. Consider a project with the following parameters: EI= 60, EO= 40, EQ = 45, ILF = 06,
ELF = 08. Assume all weighing factors are average. In addition, the system requires
signifi cant data communications, performance is very critical, designed code may be
moderately reusable, and other GSCs are average. Compute the function points using
FPA.

 10. Consider a project with the following components: EI (simple) = 30, EO (average) = 20,
EQ (average) = 35, ILF (complex) = 08, ELF (complex) = 05. In addition, the system
requires signifi cant end-user effi ciency, moderate distributed data processing, critical
data communications, and other GSCs are incidental. Compute the function points for
this system using FPA.

317Testing Metrics for Monitoring and Controlling the Testing Process l

Software testing is the most time-consuming part of
SDLC. Therefore, managing the software testing pro-
cess is a real challenge. Everyone in the project team
has some questions regarding the testing process.

 � How effi cient is our testing?

 � Is it worth doing verifi cation as opposed to
validation?

 � What is the thoroughness of validation testing?

 � What kind of errors are we going to detect
and how many?

 � How many errors remain in the product, even
after testing?

 � When should we stop testing?

Measurement answers all these questions. Test ex-
ecution can be tracked effectively using software
metrics. Software metrics play a vital role in under-
standing, controlling, and improving the test pro-
cess. The organizations that can control their software testing processes are
able to predict costs and schedules and increase the effectiveness, effi ciency,
and profi tability of their business [113]. Therefore, knowing and measuring
what is being done is important for an effective testing effort [112].

Thus, assessment of the effectiveness of a software testing process has to
rely on appropriate measures. If these measures are embedded in the orga-
nizational-level testing strategy, they make the underlying testing process ac-
tivities visible. It helps the managers and engineers to better acknowledge the
connections among various process activities. Moreover, measurement helps
in improving the software testing procedures, methods, tools, and activities,
by providing objective evidence for evaluations and comparisons.

Chapter

11
Testing Metrics for Monitoring and

Controlling the Testing Process

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Testing metrics are important to monitor

and control all testing activities
 � Attributes for software testing on the

basis of which testing metrics are
designed

 � Progress metrics
 � Quality metrics
 � Cost metrics
 � Size metrics
 � Testing effort estimation models:

Halstead model, development ratio
method, project-staff ratio method,
test procedure method, task planning
method, function point method, test-
point method

 Software Testing: Principles and Practices318

The benefi ts of measurement in software testing are [35]:

 � Identifying the strengths and weaknesses of testing

 � Providing insights into the current state of the testing process

 � Evaluating testing risks

 � Benchmarking

 � Improving the planning process

 � Improving the effectiveness of testing

 � Evaluating and improving the product quality

 � Measuring the productivity

 � Determining the level of customer involvement and satisfaction

 � Supporting, controlling, and monitoring the testing process

 � Comparing the processes and products with those inside and outside
the organization

11.1 MEASUREMENT OBJECTIVES FOR TESTING

The objectives for assessing a test process should be well-defi ned. A number of
metrics programs begin by measuring what is convenient or easy to measure,
rather than by measuring what is needed. Such programs often fail because
the resulting data are not useful to anyone [32]. A measurement program
will be more successful, if it is designed with the goals of the project in mind.
For this purpose, we can take the help of a goal question metric (GQM), fi rst
suggested by Basili and Rombach.

The GQM approach is based on the fact that the objectives of measure-
ment should be clear, much before the data collection begins. According to
this approach, the objectives of a measurement process should be identifi ed
fi rst. The GQM approach, with reference to test process measurement, pro-
vides the following framework:

 � Lists the major goals of the test process.

 � Derives from each goal, the questions that must be answered to deter-
mine if the goals are being met.

 � Decides what must be measured in order to answer the questions ad-
equately.

In this way, we generate only those measures that are related to the goals.
In many cases, several measurements may be required to answer a single ques-
tion. Likewise, a single measurement may apply to more than one question.

319Testing Metrics for Monitoring and Controlling the Testing Process l

Software measurement is effective only when the metrics are used and
analysed in conjunction with one another. We will now discuss the metrics
for testing.

11.2 ATTRIBUTES AND CORRESPONDING METRICS IN SOFTWARE TESTING

An organization needs to have a reference set of measurable attributes and
corresponding metrics that can be applied at various stages during the course
of execution of an organization-wide testing strategy. The attributes to be
measured depend on the following factors:

 � Time and phase in the software testing lifecycle.

 � New business needs.

 � Ultimate goal of the project.

Therefore, we discuss measurable attributes for software testing and the
corresponding metrics based on the attribute categorization done by Wasif
Afzal and Richard Torkar [121], as shown in Table 11.1. These attributes are
discussed in the subsequent sections.

Table 11.1 Attribute categories

Category Attributes to be Measured

Progress

• Scope of testing
• Test progress
• Defect backlog
• Staff productivity
• Suspension criteria
• Exit criteria

Cost

• Testing cost estimation
• Duration of testing
• Resource requirements
• Training needs of testing group and tool requirement
• Cost-effectiveness of automated tool

Quality

• Effectiveness of test cases
• Effectiveness of smoke tests
• Quality of test plan
• Test completeness

Size
• Estimation of test cases
• Number of regression tests
• Tests to automate

 Software Testing: Principles and Practices320

11.3 ATTRIBUTES
11.3.1 PROGRESS

The following attributes are defi ned under the progress category of metrics:

 � Scope of testing

 � Test progress

 � Defect backlog

 � Staff productivity

 � Suspension criteria

 � Exit criteria

Scope of testing It helps in estimating the overall amount of work involved,
by documenting which parts of the software are to be tested [114], thereby
estimating the overall testing effort required. It also helps in identifying the
testing types that are to be used for covering the features under test.

 Tracking test progress The progress of testing should also be measured to keep
in line with the schedule, budget, and resources. If we monitor the progress
with these metrics by comparing the actual work done with the planning,
then the corrective measures can be taken in advance, thereby controlling the
project.

For measuring the test progress, well-planned test plans are prepared wherein
testing milestones are planned. Each milestone is scheduled for completion
during a certain time period in the test plan. These milestones can be used
by the test manager to monitor how the testing efforts are progressing. For
example, executing all planned unit tests is one example of a testing milestone.
Measurements need to be available for comparing the planned and actual
progress towards achieving the testing milestones. To execute the testing
milestones of all planned unit tests, the data related to the number of planned
unit tests currently available and the number of executed unit tests on this date
should be available.

The testing activity being monitored can be projected using graphs that
show the trends over a selected period of time. The test progress S curve
compares the test progress with the plan to indicate corrective actions, in case
the testing activity is falling behind schedule. The advantage of this curve is
that schedule slippage is diffi cult to ignore. The test progress S curve shows
the following set of information on one graph [42]:

 � Planned number of test cases to be completed successfully by a week.

 � Number of test cases attempted in a week.

 � Number of test cases completed successfully by a week.

321Testing Metrics for Monitoring and Controlling the Testing Process l

Defect backlog It is the number of defects that are outstanding and unresolved
at one point of time with respect to the number of defects occurring. The
defect backlog metric is to be measured for each release of a software product
for release-to-release comparisons [42]. One way of tracking it is to use defect
removal percentage [112] for a prior release so that decisions regarding additional
testing can be wisely taken in the current release. If the backlog increases, the
bugs should be prioritized according to their criticality.

Staff productivity Measurement of testing staff productivity helps to improve
the contributions made by the testing professionals towards a quality testing
process. For example, as test cases are developed, it is interesting to measure
the productivity of the staff in developing these test cases. This estimation is
useful for the managers to estimate the cost and duration for testing activities.

The basic and useful measures of a tester’s productivity are [60]:

 � Time spent in test planning.

 � Time spent in test case design.

 � Number of test cases developed.

 � Number of test cases developed per unit time.

 Suspension criteria These are the metrics that establish conditions to suspend
testing. It describes the circumstances under which testing would stop tempo-
rarily. The suspension criteria of testing describes in advance that the occur-
rence of certain events/conditions will cause the testing to stop temporarily.
With the help of suspension metrics, we can save precious testing time by rais-
ing the conditions that suspend testing. Moreover, it indicates the shortcom-
ings of the application and the environmental setup.

The following conditions indicate the suspension of testing:

 � There are incomplete tasks on the critical path.

 � Large volumes of bugs are occurring in the project.

 � Critical bugs.

 � Incomplete test environments (including resource shortages).

Exit criteria The exit criteria are established for all the levels of a test plan. It
indicates the conditions that move the testing activities forward from one level
to the next. If we are clear when to exit from one level, the next level can start.
On the other hand, if the integration testing exit criteria are not strict, then
system testing may start before the completion of integration testing.

The exit criteria determine the termination of testing effort which must be
communicated to the development team prior to the approval of the test plan.

 Software Testing: Principles and Practices322

The exit criteria should also be standardized. If there are any open faults, then
the software development manager, along with the project manager and the
members of the change control board, decides whether to fi x the faults, or
defer them to the next release, or take the risk of shipping it to the customer
with the faults.

The following metrics are studied for the exit criteria of testing:

 Rate of fault discovery in regression tests.

 Frequency of failing fault fi xes.

 Fault detection rate.

11.3.2 COST

The following attributes are defi ned under the cost category of metrics:

 Testing cost estimation

 Duration of testing

 Resource requirements

 Training needs of testing groups and tool requirements

 Cost effectiveness of automated tools

 Testing cost estimation The metrics supporting the budget estimation of testing
need to be established early. It also includes the cost of test planning itself.

 Duration of testing There is also a need to estimate the testing schedule during
test planning. As a part of the testing schedule, the time required to develop a
test plan is also estimated. A testing schedule contains the timelines of all testing
milestones. The testing milestones are the major testing activities carried out
according to a particular level of testing. A work break-down structure is used
to divide the testing efforts into tasks and activities. The timelines of activities
in a testing schedule matches the time allocated for testing in the overall project
plan.

Resource requirements Test planning activities have to estimate the number
of testers required for all testing activities with their assigned duties planned
in the test plan.

Training needs of testing groups and tool requirements Since the test planning
also identifi es the training needs of testing groups and their tool requirements,
we need to have metrics for training and tool requirements.

Cost-effectiveness of automated tools When a tool is selected to be used for
testing, it is benefi cial to evaluate its cost-effectiveness. The cost-effectiveness

323Testing Metrics for Monitoring and Controlling the Testing Process l

is measured by taking into account the cost of tool evaluation, tool training,
tool acquisition, and tool update and maintenance.

11.3.3 QUALITY

The following attributes are defi ned under this category of metrics:

 � Effectiveness of test cases

 � Effectiveness of smoke tests

 � Quality of test plan

 � Test completeness

 Effectiveness of test cases The test cases produced should be effective so that
they uncover more and more bugs. The measurement of their effectiveness
starts from the test case specifi cations. The specifi cations must be verifi ed at
the end of the test design phase for conformance with the requirements. While
verifying the specifi cations, emphasis must be given to those factors that affect
the effectiveness of test cases including the test cases with incomplete functional
specifi cations, poor test designs, and wrong interpretation of test specifi cations
by the testers [110].

Common methods available for verifying test case specifi cations include
inspections and traceability of test case specifi cations to functional specifi cations.
These methods seldom help to improve the fault-detecting ability of test case
specifi cations.

There are several measures based on faults to check the effectiveness of test
cases. Some of them are discussed here:

 1. Number of faults found in testing.

 2. Number of failures observed by the customer which can be used as a re-
fl ection of the effectiveness of test cases.

 3. Defect-removal effi ciency is another powerful metric for test-effectiveness,
which is defi ned as the ratio of the number of faults actually found in
testing and the number of faults that could have been found in testing.
There are potential issues that must be taken into account while mea-
suring the defect-removal effi ciency. For example, the severity of bugs
and an estimate of time by which the customers would have discovered
most of the failures are to be established. This metric is more helpful
in establishing the test effectiveness in the long run as compared to the
current project.

 4. Defect age is another metric that can be used to measure the test effective-
ness, which assigns a numerical value to the fault, depending on the phase

 Software Testing: Principles and Practices324

in which it is discovered. Defect age is used in another metric called defect
spoilage to measure the effectiveness of defect-removal activities. Defect
spoilage is calculated as [117]:

 Spoilage =
Sum of (Number of defects Defect age)

Total number of defects
¥

 Spoilage is more suitable for measuring the long-term trend of test-effec-
tiveness. Generally, low values of defect spoilage mean more effective defect
discovery processes. The effectiveness of a test case can also be judged on the
basis of the coverage provided. It is a powerful metric in the sense that it is not
dependent on the quality of software and also, it is an in-process metric that is
applicable when the testing is actually done.

Example 11.1

Consider a project with the following distribution of data and calculate its
defect spoilage.

SDLC phase No. of defects Defect age

Requirement Specs. 34 2

HLD 25 4

LLD 17 5

Coding 10 6

Solution
Spoilage = (34 ¥ 2 + 25 ¥ 4 + 17 ¥ 5 + 10 ¥ 6)/86 = 3.64

Effectiveness of smoke tests Smoke tests are required to ensure that the
application is stable enough for testing, thereby assuring that the system has
all the functionality and is working under normal conditions. This testing does
not identify faults, but establishes confi dence over the stability of a system.
The tests that are included in smoke testing cover the basic operations that are
most frequently used, e.g. logging in, addition, and deletion of records. Smoke
tests need to be a subset of the regression testing suite. It is time-consuming
and human-intensive to run the smoke tests manually, each time a new
build is received for testing. Automated smoke tests are executed against the
software, each time the build is received, ensuring that the major functionality
is working.

Quality of test plan The quality of the test plan produced is also a candidate
attribute to be measured, as it may be useful in comparing different plans for
different products, noting down the changes observed, and improving the test
plans for the future. The test plan should also be effective in giving a high

325Testing Metrics for Monitoring and Controlling the Testing Process l

number of errors. Thus, the quality of a test plan is measured in concern with
the probable number of errors.

To evaluate a test plan, Berger describes a multi-dimensional qualitative
method using rubrics [118]. Rubrics take the form of a table, where each row
represents a particular dimension and each column represents a ranking of
the dimension. There are ten dimensions that contribute to the philosophy of
test planning. These ten dimensions are:

 1. Theory of objective

 2. Theory of scope

 3. Theory of coverage

 4. Theory of risk

 5. Theory of data

 6. Theory of originality

 7. Theory of communication

 8. Theory of usefulness

 9. Theory of completeness

 10. Theory of insightfulness

Against each of these theories, there is a rating of excellent, average, and
poor, depending on certain criteria, as shown in Table 11.2.

Table 11.2 Measuring test plan through rubrics

Dimension Rating

Excellent Average Poor

Theory of
Objective

Identifi cation of realistic
test objectives to have the
most effi cient test cases.

Describes somewhat
credible test objectives.

No objectives or
irrelevant objectives.

Theory of
Scope

Specifi c and unambiguous
test scope.

Some scope of testing
understood by only some
people.

Wrong scope
assumptions.

Theory of
Coverage

The test coverage is
completely
relative to the test scope.

The test coverage is
somewhat
related to the test scope.

Coverage is not
related to test scope or
objective.

Theory of Risk Identifi es possible testing
risks.

Risks have inappropriate
priorities.

No understanding of
project risk.

Theory of Data Effi cient method to
generate enough valid and
invalid test data.

Some method to generate
test data.

There is no method of
capturing data.

 Software Testing: Principles and Practices326

Theory of
Originality

High information in test
plan.

A test plan template has
some original content.

Template has not been
fi lled in.

Theory of
Communication

Multiple modes to
communicate test plan to,
and receive feedback from
appropriate stakeholders.

Less effective feedback. No distribution, no
opportunity for feedback

Theory of
Usefulness

Effective test plan such
that it discovers critical
bugs early.

Critical bugs are not
discovered earlier.

Test plans are
not useful to the
organization.

Theory of
Completeness

Enough testing through
the plan.

Most test items have been
identifi ed.

Enough testing criteria
has not been defi ned.

Theory of
Insightfulness

Understanding of what is
interesting and challenging
in testing this specifi c
project.

The test plan is effective,
but weak.

No insight through the
plan.

 Measuring test completeness This attribute refers to how much of code and
requirements are covered by the test set. The advantages of measuring test
coverage are that it provides the ability to design new test cases and improve
existing ones. There are two issues: (i) whether the test cases cover all possible
output states and (ii) the adequate number of test cases to achieve test coverage.
The relationship between code coverage and the number of test cases is
described by the following expression [119]:

 C (x) = 1 – e –(p/N) * x

where C(x) is the coverage after executing x number of test cases, N is the
number of blocks in the program, and p is the average number of blocks
covered by a test case during the function test. The function indicates that
test cases cover some blocks of code more than others, while increasing test
coverage beyond a threshold is not cost-effective.

 Test coverage for control fl ow and data fl ow can be measured using span-
ning sets of entities in a program fl ow graph. A spanning set is a minimum
subset of the set of entities of the program fl ow graph such that a test suite
covering the entities in this subset is guaranteed to cover every entity in the
set [120].

At the system testing level, we should measure whether all the features of
the product are being tested or not. Common requirements coverage metric
is the percentage of requirements covered by at least one test [112]. A require-
ments traceability matrix can be used for this purpose.

327Testing Metrics for Monitoring and Controlling the Testing Process l

11.3.4 SIZE

The following attributes are defi ned under the size category of metrics:

 � Estimation of test cases

 � Number of regression tests

 � Tests to automate

 Estimation of test cases To fully exercise a system and to estimate its resources,
an initial estimate of the number of test cases is required. Therefore, metrics
estimating the required number of test cases should be developed.

 Number of regression tests Regression testing is performed on a modifi ed pro-
gram that establishes confi dence that the changes and fi xes against reported faults
are correct and have not affected the unchanged portions of the program [51].
However, the number of test cases in regression testing becomes too large to test.
Therefore, careful measures are required to select the test cases effectively.

Some of the measurements to monitor regression testing are [60]:

 � Number of test cases re-used

 � Number of test cases added to the tool repository or test database

 � Number of test cases rerun when changes are made to the software

 � Number of planned regression tests executed

 � Number of planned regression tests executed and passed

Tests to automate Tasks that are repetitive in nature and tedious to perform
manually are prime candidates for an automated tool. The categories of tests
that come under repetitive tasks are:

 � Regression tests

 � Smoke tests

 � Load tests

 � Performance tests

If automation tools have a direct impact on the project, it must be mea-
sured. There must be benefi ts attached with automation including speed,
effi ciency, accuracy and precision, resource reduction, and repetitiveness. All
these factors should be measured.

11.4 ESTIMATION MODELS FOR ESTIMATING TESTING EFFORTS

After discussing the attributes needed to measure the testing efforts, we will
see some estimation models and metrics that are being used.

 Software Testing: Principles and Practices328

11.4.1 HALSTEAD METRICS

The metrics derived from Halstead measures described in Chapter 10 can
be used to estimate testing efforts, as given by Pressman [116]. Halstead de-
veloped expressions for program volume V and program level PL which
can be used to estimate testing efforts. The program volume describes the
number of volume of information in bits required to specify a program. The
program level is a measure of software complexity. Using these defi nitions,
Halstead effort e can be computed as [124]:

 PL = 1/[(n1/2) ¥ (N 2/n 2)]

 e = V/PL

The percentage of overall testing effort to be allocated to a module k can be
estimated using the following relationship:

Percentage of testing effort (k) = e(k)/∑e(i)

where e (k) is the effort required for module k and ∑e (i) is the sum of Halstead
effort across all modules of the system.

Example 11.2

In a module implementation of a project, there are 17 unique operators, 12
unique operands, 45 total operators, and 32 total operands appearing in the
module implementation. Calculate its Halstead effort.

Solution
 n = n1 + n2 = 17 + 12 = 92

 N = N1 + N2 = 45 + 32 = 77

 V = N log2 n = 77 ¥ log2 92 = 502.3175

 PL = 1/[(n1/2) ¥ (N 2/n2)] = 3/68 = 0.044

 e = V/PL = 11416.30

11.4.2 DEVELOPMENT RATIO METHOD

This model is based on the estimation of development efforts. The number
of testing personnel required is estimated on the basis of the developer-tester
ratio [12]. The results of applying this method is dependent on numerous
factors including the type and complexity of the software being developed,
testing level, scope of testing, test-effectiveness during testing, error tolerance
level for testing, and available budget.

329Testing Metrics for Monitoring and Controlling the Testing Process l

Another method of estimating tester-to-developer ratios, based on heu-
ristics, is proposed by K. Iberle and S. Bartlett [115]. This method selects a
baseline project(s), gathers testers-to-developers ratios, and collects data on
various effects like developer-effi ciency at removing defects before testing,
developer-effi ciency at inserting defects, defects found per person, and the
value of defects found. After that, an initial estimate is made to calculate the
number of testers based upon the ratio of the baseline project. The initial
estimate is adjusted using professional experience to show how the above-
mentioned effects affect the current project and the baseline project.

11.4.3 PROJECT-STAFF RATIO METHOD

Project-staff ratio method makes use of historical metrics by calculating the
percentage of testing personnel from the overall allocated resources planned
for the project [12]. The percentage of a test team size may differ according to
the type of project. The template can be seen in Table 11.3.

Table 11.3 Project-staff ratio

Project type Total number of project staff Test team size % Number of testers

Embedded system 100 23 23

Application development 100 8 8

11.4.4 TEST PROCEDURE METHOD

This model is based on the number of test procedures planned. The number
of test procedures decides the number of testers required and the testing time
[12]. Thus, the baseline of estimation here is the quantity of test procedures.
But you have to do some preparation before actually estimating the resources.
It includes developing a historical record of projects including the data related
to size (e.g. number of function points, number of test procedures used) and
test effort measured in terms of personnel hours. Based on the estimates of
historical development size, the number of test procedures required for the
new project is estimated.

The only thing to be careful about in this model is that the projects to be
compared should be similar in terms of nature, technology, required expertise,
and problems solved. The template for this model can be seen in Table 11.4.
For a historical project, person-hours consumed for testing test procedures were
observed and a factor in the form of number hours per test procedure was cal-
culated. This factor is used for a new project where the number of test proce-
dures are given. Using this factor, we will calculate the number of person-hours
for the new project. Then, with the knowledge of the total expended period for
this new project, we are able to calculate the number of testers required.

 Software Testing: Principles and Practices330

Table 11.4 Test procedure method

Number
of test
procedures
(NTP)

Number of
person-hours
consumed for
testing (PH)

Number of
hours per test
procedure = PH/
NTP

Total period in
which testing is
to be done (TP)

Number of
testers =
PH/TP

Historical
Average
Record

840 6000 7.14 10 months
(1600 hrs)

3.7

New Project
Estimate

1000 7140 7.14 1856 hrs 3.8

11.4.5 TASK PLANNING METHOD

In this model, the baseline for estimation is the historical records of the num-
ber of personnel hours expended to perform testing tasks. The historical
records collect data related to the work break-down structure and the time
required for each task so that the records match the testing tasks [12]. First,
the number of person-hours for the full project is calculated as in the test pro-
cedure method (see Table 11.5).

Table 11.5 Calculating number of person-hours

Number of Test
Procedures (NTP)

Person-hours consumed
for testing (PH)

Hours per test
procedure = PH/NTP

840 6000 7.14

1000 (New project) 7140 7.14

The historical data is observed to see how much time has been consumed
on individual test activities. After estimating the average idea on historical
data, the total person-hours are distributed, which is later adjusted according
to some conditions in the new project (see Table 11.6).

Table 11.6 Task planning method

Testing activity Historical
value

% time of the project
consumed on the test

activity

Preliminary
estimate of

person hours

Adjusted estimate of
person-hours

Test planning 210 3.5 249
Test design 150 2.5 178
Test execution 180 3 214

Project total 6000 100% 7140 6900

Next, the test team size is calculated using the total adjusted estimate of
person-hours for the project, as given in Table 11.7.

331Testing Metrics for Monitoring and Controlling the Testing Process l

Table 11.7 Test team size using task planning method

NTP PH (Adjusted
estimate)

Number of hours per test
procedure = PH/NTP

TP Number of
testers = PH/TP

New project
estimate

1000 6900 6.9 1856 hrs 3.7

After getting an idea about the model for effort estimation, let us discuss
some important metrics being used in various phases of testing.

11.5 ARCHITECTURAL DESIGN METRIC USED FOR TESTING

Card and Glass [57] introduced three types of software design complexity that
can also be used in testing. These are discussed below.

 Structural Complexity
It is defi ned as

S (m) = f 2out(m)

where S is the structural complexity and fout(m) is the fan-out of module m.
This metric gives us the number of stubs required for unit testing of the

module m. Thus, it can be used in unit testing.

 Data Complexity
This metric measures the complexity in the internal interface for a module m
and is defi ned as

D(m) = v(m) / [fout(m) + 1]

where v(m) is the number of input and output variables that are passed to and
from module m.

This metric indicates the probability of errors in module m. As the data
complexity increases, the probability of errors in module m also increases. For
example, module X has 20 input parameters, 30 internal data items, and 20
output parameters. Similarly, module Y has 10 input parameters, 20 internal
data items, and 5 output parameters. Then, the data complexity of module
X is more as compared to Y, therefore X is more prone to errors. Therefore,
testers should be careful while testing module X.

 System Complexity
It is defi ned as the sum of structural and data complexity:

SC(m) = S(m) + D(m)

 Software Testing: Principles and Practices332

Since the testing effort of a module is directly proportional to its system
complexity, it will be diffi cult to unit test a module with higher system com-
plexity. Similarly, the overall architectural complexity of the system (which
is the sum total of system complexities of all the modules) increases with the
increase in each module’s complexity. Consequently, the efforts required for
integration testing increase with the architectural complexity of the system.

11.6 INFORMATION FLOW METRICS USED FOR TESTING

Researchers have used information fl ow metrics between modules. For under-
standing the measurement, let us understand the way the data moves through
a system:

 � Local direct fl ow exists if

 (i) a module invokes a second module and passes information to it.

 (ii) the invoked module returns a result to the caller.

 � Local indirect fl ow exists if the invoked module returns information
that is subsequently passed to a second invoked module.

 � Global fl ow exists if information fl ows from one module to another via
a global data structure.

The two particular attributes of the information fl ow can be described as
follows:

 (i) Fan-in of a module m is the number of local fl ows that terminates at m,
plus the number of data structures from which information is retrieved
by m.

 (ii) Fan-out of a module m is the number of local fl ows that emanate from
m, plus the number of data structures that are updated by m.

11.6.1 HENRY AND KAFURA DESIGN METRIC
Henry and Kafura’s information fl ow metric is a well-known approach for
measuring the total level of information fl ow between individual modules and
the rest of the system. They measure the information fl ow complexity as

IFC(m) = length(m) ¥ ((fan-in(m) ¥ fan-out(m))2

Higher the IF complexity of m, greater is the effort in integration and inte-
gration testing, thereby increasing the probability of errors in the module.

333Testing Metrics for Monitoring and Controlling the Testing Process l

11.7 CYCLOMATIC COMPLEXITY MEASURES FOR TESTING

McCabe’s cyclomatic complexity was discussed in the previous chapter. This
measure can be used in software testing in the following ways:

 � Since the cyclomatic number measures the number of linearly indepen-
dent paths through fl ow graphs, it can be used as the set of minimum
number of test cases. If the number of test cases is lesser than the cyc-
lomatic number, then you have to search for the missing test cases. In
this way, it becomes a thumb rule that cyclomatic number provides the
minimum number of test cases for effective branch coverage.

 � McCabe has suggested that ideally, cyclomatic number should be less
than or equal to 10. This number provides a quantitative measure of
testing diffi culty. If the cyclomatic number is more than 10, then the
testing effort increases due to the following reasons:

 1. Number of errors increase.

 2. Time required to detect and correct the errors increase.

Thus, the cyclomatic number is an important indication of the ultimate
reliability. The amount of test design and test effort is better approximated by
the cyclomatic number as compared to the lines of code (LOC) measure. A
project in USA that applied these rules did achieve zero defects for at least 12
months after its delivery [34].

11.8 FUNCTION POINT METRICS FOR TESTING

The function point (FP) metric is used effectively for measuring the size of a
software system. Function-based metrics can be used as a predictor for the
overall testing effort. Various project-level characteristics (e.g. testing effort
and time, errors uncovered, number of test cases produced) of past projects
can be collected and correlated with the number of FP produced by a project
team. The team can then project the expected values of these characteristics
for the current project.

Listed below are a few FP measures:

 1. Number of hours required for testing per FP.

 2. Number of FPs tested per person-month.

 3. Total cost of testing per FP.

 4. Defect density measures the number of defects identifi ed across one or
more phases of the development project lifecycle and compares that
value with the total size of the system. It can be used to compare the

 Software Testing: Principles and Practices334

density levels across different lifecycle phases or across different devel-
opment efforts. It is calculated as

Number of defects (by phase or in total) / Total number of FPs

 5. Test case coverage measures the number of test cases that are neces-
sary to adequately support thorough testing of a development project.
This measure does not indicate the effectiveness of test cases, nor does
it guarantee that all conditions have been tested. However, it can be an
effective comparative measure to forecast anticipated requirements for
testing that may be required on a development system of a particular
size. This measure is calculated as

Number of test cases / Total number of FPs

Capers Jones [146] estimates that the number of test cases in a system can
be determined by the function points estimate for the corresponding effort.
The formula is

Number of test cases = (function points)1.2

Function points can also be used to measure the acceptance test cases. The
formula is

Number of test cases = (function points) × 1.2

The above relationships show that test cases grow at a faster rate than
function points. This is intuitive because, as an application grows, the number
of inter-relationships within the applications becomes more complex. For
example, if a development application has 1,000 function points, there should
be approximately 4,000 total test cases and 1,200 acceptance test cases.

Example 11.3

In a project, the estimated function points are 760. Calculate the total number
of test cases in the system and the number of test cases in acceptance testing.
Also, calculate the defect density (number of total defects is 456) and test case
coverage.

Solution

Total number of test cases = (760)1.2 = 2864

Number of test cases for acceptance testing = (760) × 1.2 = 912

Defect density = 456/760 = 0.6

Test case coverage = 2864/760 = 3.768

335Testing Metrics for Monitoring and Controlling the Testing Process l

11.9 TEST POINT ANALYSIS (TPA)
 Test point analysis is a technique to measure the black-box test effort
estimation, proposed by Drs Eric P W M Van Veenendaal CISA and Ton
Dekkers [111]. The estimation is for system and acceptance testing. The
technique uses function point analysis in the estimation. TPA calculates the
 test effort estimation in test points for highly important functions, according
to the user and also for the whole system. As the test points of the functions
are measured, the tester can test the important functionalities fi rst, thereby
predicting the risk in testing. This technique also considers the quality
characteristics, such as functionality, security, usability, effi ciency, etc. with
proper weightings.

11.9.1 PROCEDURE FOR CALCULATING TPA
For TPA calculation, fi rst the dynamic and static test points are calculated (see
Fig. 11.1). Dynamic test points are the number of test points which are based on
dynamic measurable quality characteristics of functions in the system. Dy-
namic test points are calculated for every function. To calculate a dynamic
function point, we need the following:

 � Function points (FPs) assigned to the function.

 � Function dependent factors (FDC), such as complexity, interfacing,
function-importance, etc.

 � Quality characteristics (QC).

The dynamic test points for individual functions are added and the result-
ing number is the dynamic test point for the system.

Similarly, static test points are the number of test points which are based
on static quality characteristics of the system. It is calculated based on the
following:

 � Function points (FPs) assigned to the system.

 � Quality requirements or test strategy for static quality characteristics
(QC).

After this, the dynamic test point is added to the static test point to get the
total test points (TTP) for the system. This total test point is used for calculat-
ing primary test hours (PTH). PTH is the effort estimation for primary testing
activities, such as preparation, specifi cation, and execution. PTH is calculated
based on the environmental factors and productivity factors. Environmental
factors include development environment, testing environment, testing tools,

 Software Testing: Principles and Practices336

etc. Productivity factor is the measure of experience, knowledge, and skills of
the testing team.

Secondary testing activities include management activities like controlling
the testing activities. Total test hours (TTH) is calculated by adding some allow-
ances to secondary activities and PTH. Thus, TTH is the fi nal effort estima-
tion for the testing activities.

FP FDC QC

Dynamic
Test Points

Total Test
Points
(TTP)

Productivity
Factor

Primary
Test Hours

(PTH)

Environmental
Factor

Total Test
Hours (TTH)

Static Test
Points

Controls
Factors

FP QC

Figure 11.1 Procedure for test point analysis

11.9.2 CALCULATING DYNAMIC TEST POINTS

The number of dynamic test points for each function in the system is calcu-
lated as

DTP = FP × FDCw × QCdw

where DTP = number of dynamic test points

 FP = function point assigned to function.

 FDCw = weight-assigned function-dependent factors

 QCdw = quality characteristic factor, wherein weights are assigned to
dynamic quality characteristics

FDCw is calculated as

FDCw = ((FIw + UINw + I + C) ∏ 20) × U

where FIw = function importance rated by users

 UINw = weights given to usage intensity of the function, i.e. how fre-
quently the function is being used

337Testing Metrics for Monitoring and Controlling the Testing Process l

 I = weights given to the function for interfacing with other func-
tions, i.e. if there is a change in function, how many functions
in the system will be affected

 C = weights given to the complexity of function, i.e. how many
conditions are in the algorithm of function

 U = uniformity factor

The ratings done for providing weights to each factor of FDCw can be seen
in Table 11.8.

Table 11.8 Ratings for FDCw factors

Factor/
Rating

Function
Importance

(FI)

Function
usage

Intensity (UIN)

Interfacing
(I)

Complexity
(C)

Uniformity Factor

Low 3 2 2 3 0.6 for the function, wherein
test specifi cations are largely
re-used such as in clone function
or dummy function. Otherwise,
it is 1.

Normal 6 4 4 6

High 12 12 8 12

QCdw is calculated based on four dynamic quality characteristics, namely
suitability, security, usability, and effi ciency. First, the rating to every quality
characteristic is given and then, a weight to every QC is provided. Based on
the rating and weights, QCdw is calculated.

QCdw = ∑ (rating of QC / 4) ¥ weight factor of QC

Rating and weights are provided based on the following characteristics, as
shown in Table 11.9.

Table 11.9 Ratings and weights for QCdw

Characteristic/
Rating

Not
Important

(0)

Relatively
Unimportant

(3)

Medium
Importance

(4)

Very
Important

(5)

Extremely
Important

(6)

Suitability 0.75 0.75 0.75 0.75 0.75

Security 0.05 0.05 0.05 0.05 0.05

Usability 0.10 0.10 0.10 0.10 0.10

Effi ciency 0.10 0.10 0.10 0.10 0.10

 Software Testing: Principles and Practices338

11.9.3 CALCULATING STATIC TEST POINTS

The number of static test points for the system is calculated as

STP = FP ¥ ∑QCsw / 500

where STP = static test point
 FP = total function point assigned to the system
 QCsw = quality characteristic factor, wherein weights are assigned to

static quality characteristics

Static quality characteristic refers to what can be tested with a checklist.
QCsw is assigned the value 16 for each quality characteristic which can be
tested statically using the checklist.

Total test points (TTP) = DTP + STP

11.9.4 CALCULATING PRIMARY TEST HOURS

The total test points calculated above can be used to derive the total testing
time in hours for performing testing activities. This testing time is called pri-
mary test hours (PTH), as it is an estimate for primary testing activities like
preparation, specifi cation, execution, etc. This is calculated as

PTH = TTP × productivity factor × environmental factor

Productivity factor It is an indication of the number of test hours for one test
point. It is measured with factors like experience, knowledge, and skill set of
the testing team. Its value ranges between 0.7 to 2.0. But explicit weightage
for testing team experience, knowledge, and skills have not been considered
in this metric.

Environmental factor Primary test hours also depend on many environmental
factors of the project. Depending on these factors, it is calculated as
 Environmental factor = weights of (test tools + development testing
 + test basis + development environment
 + testing environment + testware)/21

These factors and their weights are discussed below.

 Test tools It indicates the use of automated test tools in the system. Its rating is
given in Table 11.10.

Table 11.10 Test tool ratings

1 Highly automated test tools are used.

2 Normal automated test tools are used.

4 No test tools are used.

339Testing Metrics for Monitoring and Controlling the Testing Process l

Development testing It indicates the earlier efforts made on development
testing before system testing or acceptance testing for which the estimate is
being done. If development test has been done thoroughly, then there will be
less effort and time needed for system and acceptance testing, otherwise, it will
increase. Its rating is given in Table 11.11.

Table 11.11 Development testing ratings

2 Development test plan is available and test team is
aware about the test cases and their results.

4 Development test plan is available.

8 No development test plan is available.

Test basis It indicates the quality of test documentation being used in the
system. Its rating is given in Table 11.12.

Table 11.12 Test basis rating

3 Verifi cation as well as validation documentation are available.

6 Validation documentation is available.

12 Documentation is not developed according to standards.

Development environment It indicates the development platforms, such as
operating systems, languages, etc. for the system. Its rating is given in Table
11.13.

Table 11.13 Development environment rating

2 Development using recent platform.

4 Development using recent and old platform.

8 Development using old platform.

Test environment It indicates whether the test platform is a new one or has
been used many times on the systems. Its rating is given in Table 11.14.

Table 11.14 Test environment rating

1 Test platform has been used many times.

2 Test platform is new but similar to others already
in use.

4 Test platform is new.

Testware It indicates how much testware is available in the system. Its rating
is given in Table 11.15.

 Software Testing: Principles and Practices340

Table 11.15 Testware rating

1 Testware is available along with detailed test cases.

2 Testware is available without test cases.

4 No testware is available.

11.9.5 CALCULATING TOTAL TEST HOURS

Primary test hours is the estimation of primary testing activities. If we also
include test planning and control activities, then we can calculate the total
test hours.

Total test hours = PTH + Planning and control allowance

Planning and Control allowance is calculated based on the following fac-
tors:

Team size
3 £ 4 team members

6 5–10 team members

12 >10 team members

Planning and control tools

2 Both planning and controlling tools are available.

4 Planning tools are available.

8 No management tools are available.

Planning and control allowance (%)
 = weights of (team size + planning and control tools)

Planning and control allowance (hours)
 = planning and control allowance (%) ¥ PTH

Thus, the total test hours is the total time taken for the whole system. TTH
can also be distributed for various test phases, as given in Table 11.16.

Table 11.16 TTH distribution

Testing phase % of TTH

Plan 10%

Specifi cation 40%

Execution 45%

Completion 5%

341Testing Metrics for Monitoring and Controlling the Testing Process l

Example 11.4

Calculate the total test points for a module whose specifi cations are: functions
points = 414, ratings for all FDCw factors are normal, uniformity factor =1,
rating for all QCdw are ‘very important’ and for QCsw, three static qualities
are considered.

Solution

 FDCw = ((FIw + UINw + I + C) /20) × U = ((6+4+4+6)/20) × 1 = 1
 QCdw = ∑ (rating of QC / 4) × weight factor of QC
 = (5/4 × 0.75) + (5/4 × 0.05) + (5/4 × 0.10) + (5/4 × 0.10)
 = 0.9375 + 0.0625 + 0.125 + 0.125 = 1.25
 DTP = FP × FDCw × QCdw

 = 414 × 1 × 1.25 = 517.5
 STP = FP × ∑QCsw / 500
 = 414 × ((16 × 3)/500) = 39.744

Total test points (TTP) = DTP + STP = 517.5 + 39.744 = 557.244

11.10 SOME TESTING METRICS

Everyone in the testing team wants to know when the testing should stop. To
know when the testing is complete, we need to track the execution of test-
ing. This is achieved by collecting data or metrics, showing the progress of
testing. Using these progress metrics, the release date of the project can be
determined. These metrics are collected iteratively during the stages of test
execution cycle. Some metrics [12] are discussed below.

 Test Procedure Execution Status
It is defi ned as:

Test Proc Exec. Status (%) = Number of executed test cases / Total number of test cases

This metric ascertains the number of percentage of test cases remaining to
be executed.

 Defect Aging
Defect aging is the turnaround time for a defect to be corrected. This metric is
defi ned as

Defect aging = Closing date of bug – Start date when bug was opened

This metric data for various bugs is used for a trend analysis such that
it can be known that n number of defects per day can be fi xed by the test

 Software Testing: Principles and Practices342

team. For example, suppose 100 defects are being recorded for a project.
If documented, the past experience indicates that the team can fi x as many
as 20 defects per day, the turnaround time for 100 problem reports may be
estimated at one work-week.

 Defect Fix Time to Retest
It is defi ned as

Defect fi x time to retest
= Date of fi xing the bug and releasing in new build – Date of retesting the bug

This metric provides a measure that the test team is retesting all the modi-
fi cations corresponding to bugs at an adequate rate. If the rate of fi xing and
retesting them is not on time, then the project progress will suffer and conse-
quently will increase the cost of the project.

 Defect Trend Analysis
It is defi ned as the trend in the number of defects found as the testing life cycle
progresses. For example,

Number of defects of each type detected in unit test per hour

Number of defects of each type detected in integration test per hour

To strengthen the defect information, defects of a type can also be classifi ed
according to their severity of impact on the system. It will be useful for testing,
if we get many defects of high severity. For example,

Number of defects over severity level X (where X is an integer value for measuring
the severity levels)

The trend can be such that the number of bugs increases or decreases as the
system approaches its completion. Ideally, the trend should be such that the
number of newly opened defects should decrease as the system testing phase
ends. If the trend shows that the number of bugs are increasing with every
stage of testing:
 1. Previous bugs have not been closed/fi xed properly.
 2. Testing techniques for testing coverage is not adequate for earlier builds.
 3. Inability to execute some tests until some of the defects have been fi xed,

allowing execution of those tests, which then fi nd new defects.

 Recurrence Ratio
This metric indicates the quality of bug-fi xes. The quality of bug-fi xes is good
if it does not introduce any new bug in the previous working functionality of
the software and the bug does not re-occur. But if the bug-fi xing introduces
new bugs in the already working software or the same bug re-occurs, then the
quality is not good. Moreover, this metric indicates the test team the degree to

343Testing Metrics for Monitoring and Controlling the Testing Process l

which the previously working functionality is being adversely affected by the
bug-fi xes. When the degree is high, the developers are informed about it. This
metric is measured as

Number of bugs remaining per fi x

 Defect Density
This metric is defi ned as

Defect density =
Total number of defects found for a requirement
Number of test cases executed for that requirement

It indicates the average number of bugs found per test case in a specifi c
functional area or requirement. If the defect density is high in a specifi c func-
tionality, then there is some problem in the functionality due to the following
reasons:

 1. Complex functionality

 2. Problem with design or implementation of that functionality

 3. Inadequate resources are assigned to the functionality

This metric can also be utilized after the release of the product. The defect
data should also be collected after the release of the product. For example, we
can use the following metric:

Pre-ship defect density / Post-ship defect density
This metric gives the indication of how many defects remain in the soft-

ware when it is released. Ideally, the number of pre-release defects found
should increase and post-release defects should decrease.

 Coverage Measures
Coverage goals can be planned, against which the actual ones can be measured.
For white-box testing, a combination of following is recommended: degree of
statement, branch, data fl ow, basis path, etc. coverage (planned, actual).

In this way, testers can use the following metric:
Actual degree of coverage / Planned degree of coverage

Similarly, for black-box testing, the following measures can be determined:
(i) number of requirements or features to be tested, and (ii) number of equiva-
lence classes identifi ed.

In this way, testers can use the following metric:
Number of features or equivalence classes actually covered / Total number of features
or equivalence classes.
These metrics will help in identifying the work to be done.

 Software Testing: Principles and Practices344

 Tester Productivity Measures
Testers’ productivity in unit time can also be measured and tracked. Managers
can use these metrics for their team’s productivity and build a confi dence level
for the on-date delivery of the product.
The following are some useful metrics in measuring the testers’ productivity:

 1. Time spent in test planning
 2. Time spent in test case design
 3. Time spent in test execution
 4. Time spent in test reporting
 5. Number of test cases developed
 6. Number of test cases executed

Each of these metrics is planned and actual ones are measured and used for
tracking the productivity.

 Budget and Resource Monitoring Measures
The budget and other resources involved in a project are well-planned and
must be tracked with the actual ones. Otherwise, a project may stop in between
due to over-budget or fall behind its schedule.

 Earned value tracking [108,109] given by Humphrey is the measure which
is used to monitor the use of resources in testing. Test planners fi rst estimate
the total number of hours or cost involved in testing. Each testing activity is
then assigned a value based on the estimated percentage of the total time or
budget. It provides a relative value to each testing activity with respect to the
entire testing effort. Then, this metric can be measured for the actual one and
compared with the planned earned value.

For the planned earned values, we need the following measurement data:

 1. Total estimated time or cost for overall testing effort.
 2. Estimated time or cost for each testing activity.
 3. Actual time or cost of each testing activity.

Then, the following metric is used to track the cost and time:

Estimated cost or time for testing activity / Actual cost or time of testing activity

Earned values are usually represented in a table form, as shown in
Table 11.17.

Table 11.17 Earned values

Planned Actual

Testing
Activity

Estimated
Time (HRS)

Estimated
Earned Value

Cumulative
Earned Value

Date Actual Earned
value

Cumulative
Earned Value

345Testing Metrics for Monitoring and Controlling the Testing Process l

This table has two partitions: planned values and actual values. Each testing
activity as well as their estimated hours for completion should be listed. The
total hours for all the tasks are determined and the estimated earned value
for each activity is then calculated based on their estimated percentage of the
total time. This gives a relative value to each testing activity with respect to
the entire testing effort. The estimated earned values are accumulated in the
next column. When the testing effort is in progress, the date and actual earned
value for each activity as well as their actual accumulated earned values.

 Test Case Effectiveness Metric
This metric was defi ned by Chernak [110]. It shows how to determine whether
a set of test cases is suffi ciently effective in revealing defects. It is defi ned as

 TCE = 100
Number of defects found by the test cases

×
Total number of defects

In fact, a baseline value is selected for the TCE and is assigned for the proj-
ect. When the TCE value is at or above the baseline, then the test cases have
been found effective for testing. Otherwise, the test cases must be redesigned
to increase the effectiveness.

SUMMARY

This chapter discusses the importance of testing effort measurements so that the largest phase
of SDLC, i.e. testing, does not go beyond its schedule and budget. Therefore, testing metrics
are designed to track and control all the testing activities at every phase of STLC. But before
designing the testing metrics, we must know the attributes of testing to be measured, as we
have seen in Chapter 10 on software measurement that attributes are necessary to design the
metrics. We have recognized four major categories of attributes: progress, quality, cost, and
size. All the attributes under these categories have been discussed in detail.

Various testing effort estimation models have also been discussed. These models consider
various strategies to measure the effort made on testing activities. For example, Halstead mod-
el, function-point based model, test-point based model, etc. All these models provide metrics
which can be used to measure the testing effort. Some of the models are very well-established
in the industry. After covering the testing effort estimation model, fi nally, we discussed some of
the well-known testing metrics.

Let us review the important concepts described in this chapter:

 Defect backlog is the number of defects that are outstanding and unresolved at one point
of time with respect to the number of defects occuring.

 Defect-removal effi ciency is a powerful metric for test-effectiveness, which is defi ned as
the ratio of number of faults actually found in testing and the number of faults that could
have been found in testing.

 Software Testing: Principles and Practices346

 � Defect age is another metric that can be used to measure the test-effectiveness, which
assigns a numerical value to the fault, depending on the phase in which it is discovered.
Defect age is used in another metric called defect spoilage to measure the effectiveness
of defect removal activities. Defect spoilage is calculated as

Spoilage = Sum of (number of defects × defect age) / Total number of defects

 � Spoilage is more suitable for measuring the long-term trend of test effectiveness. Gener-
ally, low values of defect spoilage mean more effective defect discovery processes.

 � The relationship between code coverage and the number of test cases is described by
the expression C(x) = 1 − e−(p / N) * x where C(x) is the coverage after executing x number
of test cases, N is the number of blocks in the program and p is the average number of
blocks covered by a test case during the function test.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. The function point metric is used effectively for measuring the _______ of a software
system.

 (a) effort
 (b) time
 (c) size
 (d) none of the above

 2. As the data complexity increases, the probability of errors in module m _______
 (a) remains the same
 (b) increases
 (c) decreases
 (d) none of the above

 3. It will be diffi cult to unit test a module with _______ system complexity.
 (a) higher
 (b) lower
 (c) none of the above

 4. Integration and integration testing effort increases with the _______ in architectural
complexity of the system.

 (a) decrease
 (b) increase
 (c) none of the above

 5. Cyclomatic number should be less than or equal to _______.
 (a) 8
 (b) 9
 (c) 10
 (d) 12

347Testing Metrics for Monitoring and Controlling the Testing Process l

 6. Earned value tracking is the measure which is used to monitor the use of _______ in
testing.

 (a) resources
 (b) modules
 (c) test cases
 (d) none of the above

 7. Test point analysis is a technique to measure the _______ test effort estimation.
 (a) black-box
 (b) white-box
 (c) black-box and white-box
 (d) none of the above

 8. Function point analysis is a technique to measure the _______ test effort estimation.
 (a) black-box
 (b) white-box
 (c) black-box and white-box
 (d) none of the above

 9. Estimating an overall amount of work involved by documenting the parts of the software
to be tested, is known as _______.

 (a) staff productivity
 (b) progress
 (c) scope of testing
 (d) none of the above

 10. Which information is not shown on the test progress S curve?
 (a) planned number of test cases to be completed successfully by week
 (b) number of test cases attempted by week
 (c) number of test cases completed successfully by week
 (d) testing defect backlog

 11. Test point analysis uses the _______ for calculating test points.
 (a) function points
 (b) use case points
 (c) number of test cases
 (d) number of testers

 12. QCdw is assigned the value _______ for each quality characteristic which can be tested
statically using the checklist.

 (a) 13
 (b) 16
 (c) 17
 (d) 19

 Software Testing: Principles and Practices348

REVIEW QUESTIONS

 1. Consider the following program for fi nding the divisors of a positive integer:

main()

{
 int number, fl ag;
 int CheckPrime(int n);

 printf(“Enter the value of positive integer”);
 scanf(“%d”, &number);

 if(number == 1)
 printf(“Divisor of %d is %d”, number, number);
 else
 {
 fl ag = CheckPrime(number);
 if (fl ag)
 {
 printf(“ %d is a prime number”, number);
 printf(“ Divisors are 1 and %d”, number);
 }
 }
}

int CheckPrime(int n)
{
 void divisors(int n);
 int squareroot, x;

 squareroot = sqrt(n);
 x = 2;
 while(x<=squareroot)
 {
 if(number == 0)
 break;
 x++;
 }
 if(x > squareroot)
 return(1);
 else
 {
 printf(“%d is a composite number”, number);
 printf(“Divisors are”);
 divisors(number);
 return(0);
 }
}

349Testing Metrics for Monitoring and Controlling the Testing Process l

void divisors(int n)
{
 int x, mid;
 mid = n/2;
 for(x = 1; x<=mid; x++)
 {
 if (n % d == 0)
 printf(“%d”, x);
 }
 printf(“%d”, n);
}

 (a) Calculate the following for each module in the program:
 (i) Fan-in
 (ii) Fan-out
 (iii) Structural complexity
 (iv) Data complexity
 (v) System complexity
 (vi) IFC
 (b) Which module is diffi cult to unit test?

 2. Consider a project with the following distribution of data and calculate its defect spoilage.

SDLC Phase No. of defects Defect age

Requirement Specs. 34 2

HLD 25 4

LLD 17 5

Coding 10 6

 3. The module implementation details of a software project are given below:

Module Unique operators Unique operands Total operators Total operands

A 23 12 43 37

B 34 12 56 34

C 12 23 54 41

 Calculate Halstead effort for all the modules and the percentage of overall testing effort
to be allocated to each module.

 4. There are 1200 estimated function points in a project. Calculate the total number of test
cases in the system and the number of test cases in acceptance testing. Also calculate
the defect density (number of total defects is 236) and test case coverage.

 5. Consider the table in Question 2 and calculate the defect density at each phase consid-
ering FP = 980 for the system.

 Software Testing: Principles and Practices350

 6. What are the consequences if the cyclomatic complexity of a system is greater than 10?
As a designer of the system, what strategy will you choose to handle it?

 7. In a software project, 2050 test cases were planned, out of which 1980 were executed
till date. During the execution of these test cases, bugs were found with the following
details:

Bug reference ID Bug opening date Bug closing date

M01-01 09-10-2007 10-10-2007

M01-02 12-10-2007 12-10-2007

M01-03 11-10-2007 14-10-2007

M02-01 13-10-2007 14-10-2007

M02-02 13-10-2007 15-10-2007

M02-03 14-10-2007 16-10-2007

M02-04 15-10-2007 15-10-2007

M02-05 17-10-2007 20-10-2007

M02-06 17-10-2007 19-10-2007

 Compute the following for this project:
 (a) Test procedure execution status
 (b) Turnaround time for a defect to be corrected
 (c) Bug trend analysis for defects per day that can be fi xed
 (d) Defect density for requirement number M01 and M02
 (e) TCE

 8. What is the importance of software attributes in measurement?

 9. Explain the different categories of testing attributes.

 10. Visit a CMM level 5 software industry. Survey the various testing metrics being used
there. List all of them and mark their importance in STLC.

 11. Obtain the test plan of a project and evaluate it on the basis of rubrics discussed in this
chapter.

 12. What is testing defect backlog?

 13. What are the problems in measuring the staff productivity attribute?

 14. Defi ne and discuss the purpose of defect removal effi ciency, defect age, and defect
spoilage.

 15. The historical record of some similar type of projects are shown below:

Number of test procedures (NTP) Number of person-hours
consumed for testing (PH)

866 4500

870 4512

956 4578

903 4520

790 4460

351Testing Metrics for Monitoring and Controlling the Testing Process l

 If a new project of similar types is to be developed for which the number of test procedures
are 1245, calculate the number of testers required if the total period of testing scheduled is
2050 hours.

 16. Calculate the total test points for the functions of a software. The specifi cations of all the
modules are given in the table below.

Function Specifi cation

M01 Function points = 234, Ratings for all FDCw factors are high. Uniformity factor =1, rating
for all QCdw are ‘important’ and for QCsw, two static qualities are considered.

M02 Functions points = 340, Ratings for all FDCw factors are normal. Uniformity factor = 1, rat-
ing for all QCdw are ‘very important’ and for QCsw, three static qualities are considered.

M03 Functions points = 450, Ratings for all FDCw factors are high. Uniformity factor = 1, rating
for all QCdw are ‘important’ and for QCsw, two static qualities are considered.

 Software Testing: Principles and Practices352

Software testing is a continuous process that takes
place throughout the life cycle of a project. Test
cases in an existing test suite can often be used to
test a modifi ed program. However, if the test suite
is inadequate for retesting, new test cases may be
developed and added to the test suite. Thus, the size
of a test suite grows as the software evolves. Due to
resource constraints, it is important to prioritize the
execution of test cases so as to increase the chances
of early detection of faults. A reduction in the size
of the test suite decreases both the overhead of
maintaining the test suite and the number of test
cases that must be rerun after changes are made to
the software. This chapter discusses the techniques
of minimizing a test suite.

12.1 WHY DOES A TEST SUITE GROW?
A testing criterion is a rule or collection of rules that imposes requirements on
a set of test cases. Test engineers measure the extent to which a criterion is sat-
isfi ed in terms of coverage; a test set achieves 100% coverage if it completely
satisfi es the criterion. Coverage is measured in terms of the requirements that
are imposed; partial coverage is defi ned as the percentage of requirements that
are satisfi ed.

Test requirements are specifi c things that must be satisfi ed or covered; e.g. for
statement coverage, each statement is a requirement; in mutation, each mutant
is a requirement; and in data fl ow testing, each DU pair is a requirement.

Chapter

12
Effi cient Test Suite Management

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Why the test suite grows as the software

evolves
 � Why is it required to minimize the

number of test cases
 � Factors to be considered while

minimizing a test suite
 � Defi nition of test suite minimization

problem
 � Test suite prioritization as a method to

reduce test cases
 � Prioritization techniques

353Effi cient Test Suite Management l

 Coverage criteria are used as a stopping point to decide when a program is
suffi ciently tested. In this case, additional tests are added until the test suite has
achieved a specifi ed coverage level according to a specifi c adequacy criterion.
For example, to achieve statement coverage adequacy for a program, one
would add additional test cases to the test suite until each statement in that
program is executed by at least one test case.

 Test suites can also be reused later as the software evolves. Such test suite
reuse, in the form of regression testing, is pervasive in the software industry.
These tests account for as much as one half of the cost of software maintenance.
Running all the test cases in a test suite, however, can require a lot of effort.

There may be unnecessary test cases in the test suite including both obsolete
and redundant test cases. A change in a program causes a test case to become
obsolete by removing the reason for the test case’s inclusion in the test suite.
A test case is redundant if other test cases in the test suite provide the same
coverage of the program. Thus, due to obsolete and redundant test cases, the
size of a test suite continues to grow unnecessarily.

12.2 MINIMIZING THE TEST SUITE AND ITS BENEFITS

A test suite can sometimes grow to an extent that it is nearly impossible to
execute. In this case, it becomes necessary to minimize the test cases such that
they are executed for maximum coverage of the software. Following are the
reasons why minimization is important:

 � Release date of the product is near.

 � Limited staff to execute all the test cases.

 � Limited test equipments or unavailability of testing tools.

When test suites are run repeatedly for every change in the program, it is of
enormous advantage to have as small a set of test cases as possible. Minimiz-
ing a test suite has the following benefi ts:

 � Sometimes, as the test suite grows, it can become prohibitively expen-
sive to execute on new versions of the program. These test suites will
often contain test cases that are no longer needed to satisfy the coverage
criteria, because they are now obsolete or redundant. Through minimi-
zation, these redundant test cases will be eliminated.

 � The sizes of test sets have a direct bearing on the cost of the project. Test
suite minimization techniques lower costs by reducing a test suite to a
minimal subset.

 Software Testing: Principles and Practices354

 � Reducing the size of a test suite decreases both the overhead of main-
taining the test suite and the number of test cases that must be rerun
after changes are made to the software, thereby reducing the cost of
regression testing.

Thus, it is of great practical advantage to reduce the size of test cases.

12.3 DEFINING TEST SUITE MINIMIZATION PROBLEM

Harrold et al. [51] have defi ned the problem of minimizing the test suite as
given below.

Given A test suite TS; a set of test case requirements r1, r2 ,….., rn that must be
satisfi ed to provide the desired testing coverage of the program; and subsets of
TS, T1 , T2 , …. , Tn , one associated with each of the ri’s such that any one of
the test cases tj belonging to Ti can be used to test ri.

Problem Find a representative set of test cases from TS that satisfi es all the
ri’s.

The ri’s can represent either all the test case requirements of a program or
those requirements related to program modifi cations. A representative set of
test cases that satisfi es the ri’s must contain at least one test case from each
Ti. Such a set is called a hitting set of the group of sets, T1, T2, ... Tn. Maxi-
mum reduction is achieved by fi nding the smallest representative of test cases.
However, this subset of the test suite is the minimum cardinality hitting set of
the Ti’s and the problem of fi nding the minimum cardinality hitting set is NP-
complete. Thus, minimization techniques resort to heuristics.

12.4 TEST SUITE PRIORITIZATION

The reduction process can be best understood if the cases in a test suite are
prioritized in some order. The purpose of prioritization is to reduce the set of
test cases based on some rational, non-arbitrary criteria, while aiming to select
the most appropriate tests. For example, the following priority categories can
be determined for the test cases:

Priority 1 The test cases must be executed, otherwise there may be worse conse-
quences after the release of the product. For example, if the test cases for this
category are not executed, then critical bugs may appear.

Priority 2 The test cases may be executed, if time permits.

355Effi cient Test Suite Management l

Priority 3 The test case is not important prior to the current release. It may be tested
shortly after the release of the current version of the software.

Priority 4 The test case is never important, as its impact is nearly negligible.

In the prioritization scheme, the main guideline is to ensure that low-prior-
ity test cases do not cause any severe impact on the software. There may be
several goals of prioritization. These goals can become the basis for prioritiz-
ing the test cases. Some of them are discussed here:

 � Testers or customers may want to get some critical features tested and
presented in the fi rst version of the software. Thus, the important features
become the criteria for prioritizing the test cases. But the consequences
of not testing some low-priority features must be checked. Therefore,
risk factor should be analysed for every feature in consideration.

 � Prioritization can be on the basis of the functionality advertised in the
market. It becomes important to test those functionalities on a priority
basis, which the company has promised to its customers.

 � The rate of fault detection of a test suite can reveal the likelihood of
faults earlier.

 � Increase the coverage of coverable code in the system under test at a
faster rate, allowing a code coverage criterion to be met earlier in the
test process.

 � Increase the rate at which high-risk faults are detected by a test suite,
thus locating such faults earlier in the testing process.

 � Increase the likelihood of revealing faults related to specifi c code
changes, earlier in the regression testing process.

12.5 TYPES OF TEST CASE PRIORITIZATION

 General Test Case Prioritization
In this prioritization, we prioritize the test cases that will be useful over a suc-
cession of subsequent modifi ed versions of P, without any knowledge of the
modifi ed versions. Thus, a general test case prioritization can be performed
following the release of a program version during off-peak hours, and the cost
of performing the prioritization is amortized over the subsequent releases.

 Version-Specifi c Test Case Prioritization
Here, we prioritize the test cases such that they will be useful on a specifi c ver-
sion P ¢ of P. Version-specifi c prioritization is performed after a set of changes

 Software Testing: Principles and Practices356

have been made to P and prior to regression testing of P ¢, with the knowledge
of the changes that have been made.

12.6 PRIORITIZATION TECHNIQUES

Prioritization techniques schedule the execution of test cases in an order that
attempts to increase their effectiveness at meeting some performance goal.
Therefore, given any prioritization goal, various prioritization techniques
may be applied to a test suite with the aim of meeting that goal. For example,
in an attempt to increase the rate of fault-detection of test suites, we might
prioritize test cases in terms of the extent to which they execute modules that,
measured historically, tend to fail. Alternatively, we might prioritize the test
cases in terms of their increasing cost-per-coverage of code components, or
in terms of their increasing cost-per-coverage of features listed in a require-
ment specifi cation. In any case, the intent behind the choice of a prioritization
technique is to increase the likelihood that the prioritized test suite can better
meet the goal than an ad hoc or random ordering of test cases.

Prioritization can be done at two levels, as discussed below.

Prioritization for regression test suite This category prioritizes the test suite
of regression testing. Since regression testing is performed whenever there is
a change in the software, we need to identify the test cases corresponding to
modifi ed and affected modules.

Prioritization for system test suite This category prioritizes the test suite of
system testing. Here, the consideration is not the change in the modules.
The test cases of system testing are prioritized based on several criteria: risk
analysis, user feedback, fault-detection rate, etc.

12.6.1 COVERAGE-BASED TEST CASE PRIORITIZATION

This type of prioritization [58] is based on the coverage of codes, such as
statement coverage, branch coverage, etc. and the fault exposing capability
of the test cases. Test cases are ordered based on their coverage. For example,
count the number of statements covered by the test cases. The test case that
covers the highest number of statements will be executed fi rst. Some of the
techniques are discussed below.

Total Statement Coverage Prioritization
This prioritization orders the test cases based on the total number of state-
ments covered. It counts the number of statements covered by the test cases

357Effi cient Test Suite Management l

and orders them in a descending order. If multiple test cases cover the same
number of statements, then a random order may be used.

For example, if T1 covers 5 statements, T2 covers 3, and T3 covers 12 state-
ments; then according to this prioritization, the order will be T3, T1, T2.

Additional Statement Coverage Prioritization
Total statement coverage prioritization schedules the test cases based on the
total statements covered. However, it will be useful if it can execute those
statements as well that have not been covered yet. Additional statement cov-
erage prioritization iteratively selects a test case T1, that yields the greatest
statement coverage, then selects a test case which covers a statement uncov-
ered by T1. Repeat this process until all statements covered by at least one test
case have been covered.

For example, if we consider Table 12.1, according to total statement cover-
age criteria, the order is 2,1,3. But additional statement coverage selects test
case 2 fi rst and next, it selects test case 3, as it covers statement 4 which has
not been covered by test case 2. Thus, the order according to addition cover-
age criteria is 2,3,1.

Table 12.1 Statement coverage

Statement Statement Coverage

Test case 1 Test case 2 Test case 3

1 X X X

2 X X X

3 X X

4 X

5

6 X

7 X X

8 X X

9 X X

Total Branch Coverage Prioritization
In this prioritization, the criterion to order is to consider condition branches
in a program instead of statements. Thus, it is the coverage of each possible
outcome of a condition in a predicate. The test case which will cover maxi-
mum branch outcomes will be ordered fi rst. For example, see Table 12.2.
Here, the order will be 1, 2, 3.

 Software Testing: Principles and Practices358

Table 12.2 Branch coverage

Branch Statements Branch Coverage

Test case 1 Test case 2 Test case 3

Entry to while X X X

2-true X X X

2-false X

3-true X

3-false X

Additional Branch Coverage Prioritization
Here, the idea is the same as in additional statement coverage of fi rst selecting
the test case with the maximum coverage of branch outcomes and then, select-
ing the test case which covers the branch outcome not covered by the previous
one.

Total Fault-Exposing-Potential (FEP) Prioritization
Statement and branch coverage prioritization ignore a fact about test cases
and faults:

 � Some bugs/faults are more easily uncovered than other faults.

 � Some test cases have the profi ciency to uncover particular bugs as com-
pared to other test cases.

Thus, the ability of a test case to expose a fault is called the fault exposing
potential. It depends not only on whether test cases cover a faulty statement,
but also on the probability that a fault in that statement will also cause a
failure for that test case.

To obtain an approximation of the FEP of a test case, an approach was
adopted using mutation analysis [137,138]. This approach is discussed below.

Given a program P and a test suite T,

 � First, create a set of mutants N = {n1, n2,…..nm} for P, noting which state-
ment sj in P contains each mutant.

 � Next, for each test case tiT, execute each mutant version nk of P on ti,
noting whether ti kills that mutant.

 � Having collected this information for every test case and mutant, consider
each test case ti, and each statement sj in P, and calculate FEP(s,t) of ti on
sj as the ratio:

Mutants of sj killed / Total number of mutants of sj

 If ti does not execute sj, this ratio is zero.

359Effi cient Test Suite Management l

To perform total FEP prioritization, given these (FEP)(s,t) values, calculate
an award value for each test case tiT, by summing the (FEP)(sj, ti) values for
all statements sj in P. Given these award values, we prioritize the test cases by
sorting them in order of descending award value.

Table 12.3 shows FEP estimates of a program. Total FEP prioritization out-
puts the test case order as (2, 3, 1).

Table 12.3 FEP estimates

Statement FEP(s,t) values

Test case 1 Test case 2 Test case 3

1 0.5 0.5 0.3

2 0.4 0.5 0.4

3 0.01 0.4

4 1.3

5

6 0.3

7 0.6 0.1

8 0.8 0.2

9 0.6

Award values 1.8 3.11 2.0

12.6.2 RISK-BASED PRIORITIZATION

Risk-based prioritization [22] is a well-defi ned process that prioritizes modules
for testing. It uses risk analysis to highlight potential problem areas, whose
failures have adverse consequences. The testers use this risk analysis to select
the most crucial tests. Thus, risk-based technique is to prioritize the test cases
based on some potential problems which may occur during the project.

 � Probability of occurrence/fault likelihood It indicates the probabil-
ity of occurrence of a problem.

 � Severity of impact/ failure impact If the problem has occurred, how
much impact does it have on the software.

 Risk analysis uses these two components by fi rst listing the potential
problems and then, assigning a probability and severity value for each
identifi ed problem, as shown in Table 12.4. By ranking the results in
this table in the form of risk exposure, testers can identify the potential

 Software Testing: Principles and Practices360

problems against which the software needs to be tested and executed
fi rst. For example, the problems in the given table can be prioritized in
the order of P5, P4, P2, P3, P1.

A risk analysis table consists of the following columns:

 � Problem ID A unique identifi er to facilitate referring to a risk factor.

 � Potential problem Brief description of the problem.

 � Uncertainty factor It is the probability of occurrence of the problem.
Probability values are on a scale of 1 (low) to 10 (high).

 � Severity of impact Severity values on a scale of 1 (low) to 10 (high).

 � Risk exposure Product of probability of occurrence and severity of
impact.

Table 12.4 Risk analysis table

Problem ID Potential Problem Uncertainty Factor Risk Impact Risk Exposure

P1 Specifi cation ambiguity 2 3 6

P2 Interface problems 5 6 30

P3 File corruption 6 4 24

P4 Databases not synchronized 8 7 56

P5 Unavailability of modules for
integration

9 10 90

12.6.3 PRIORITIZATION BASED ON OPERATIONAL PROFILES

This is not a prioritization in true sense, but the system is developed in such
a way that only useful test cases are designed. So there is no question of pri-
oritization. In this approach, the test planning is done based on the operation
profi les [128, 129] of the important functions which are of use to the customer.
An operational profi le is a set of tasks performed by the system and their
probabilities of occurrence. After estimating the operational profi les, testers
decide the total number of test cases, keeping in view the costs and resource
constraints.

12.6.4 PRIORITIZATION USING RELEVANT SLICES

During regression testing, the modifi ed program is executed on all existing
regression test cases to check that it still works the same way as the original

361Effi cient Test Suite Management l

program, except where a change is expected. But re-running the test suite
for every change in the software makes regression testing a time-consuming
process. If we can fi nd the portion of the software which has been affected
with the change in software, then we can prioritize the test cases based on
this information. This is called the slicing technique [130,131,132]. The various
defi nitions related to this technique have been defi ned in literature. Let us
discuss them.

 Execution Slice
The set of statements executed under a test case is called the execution slice of
the program. For example, see the following program (Fig. 12.1):

 Begin
 S1: read (basic, empid);
 S2: gross = 0;
 S3: if (basic > 5000 || empid > 0)
 {
 S4: da = (basic*30)/100;
 S5: gross = basic + da;
 }
 S6: else
 {
 S7: da = (basic*15)/100;
 S8: gross = basic + da;
 }
 S9: print (gross, empid);
 End

Figure 12.1 Example program for execution slice

Table 12.5 shows the test cases for the given program.

Table 12.5 Test cases

Test Case Basic Empid Gross Empid

T1 8000 100 10400 100

T2 2000 20 2300 20

T3 10000 0 13000 0

T 1 and T 2 produce correct results. On the other hand, T 3 produces an
incorrect result. Syntactically, it is correct, but an employee with the empid
‘0’ will not get any salary, even if his basic salary is read as input. So it has to
be modifi ed.

 Software Testing: Principles and Practices362

Suppose S 3 is modifi ed as [if (basic>5000 && empid>0)]. It means for T 1,
T 2, and T 3, the program would be rerun to validate whether the change in
S3 has introduced new bugs or not. But if there is a change in S 7 statement
[da = (basic*25)/100; instead of da = (basic*15)/100;], then only T 2 will be
rerun. So in the execution slice, we will have less number of statements. The
execution slice is highlighted in the given code segment.

 BeginBegin

 S1: read (basic, empid); S1: read (basic, empid);

 S2: gross=0; S2: gross=0;

 S3: if(basic > 5000 || empid > 0)

 {

 S4: da = (basic*30)/100;

 S5: gross = basic + da;

 }

 S6: else S6: else

 { {

 S7: da = (basic*15)/100; S7: da = (basic*15)/100;

 S8: gross = basic + da; S8: gross = basic + da;

 } }

 S9: print(gross, empid); S9: print(gross, empid);

 End End

Instead of computing an execution slice at the statement level, we may also
compute it at the function or the module level. That is, instead of determining
which program statements are executed under each test case, we may sim-
ply determine which functions or modules are invoked under each test case.
Then, we need to execute the new program on a test case only if a modifi ed
function or module was invoked during the original program’s execution on
that test case.

 Dynamic Slice

The set of statements executed under a test case having an effect on the pro-
gram output is called the dynamic slice of the program with respect to the out-
put variables. For example, see the following program (Fig. 12.2).

 Begin
 S1: read (a,b);
 S2: sum=0;
 S2.1: I=0;
 S3: if (a==0)

363Effi cient Test Suite Management l

 {
 S4: print(b);
 S5: sum+=b;
 }
 S6: else if(b==0)
 {
 S7: print(a);
 S8: sum+=a;
 }
 S9: else
 {
 S10: sum=a+b+sum;
 S10.1 I=25;
 S10.2 print(I);
 }
 S11:endif
 S12:print(sum);
 End

Figure 12.2 Example program for dynamic slice

Table 12.6 shows the test cases for the given program.

Table 12.6 Test cases

Test Case a b sum

T1 0 4 4

T2 67 0 67

T3 23 23 46

T 1, T 2, and T 3 will run correctly but if some modifi cation is done in S 10.1
[say I = 50], then this change will not affect the output variable. Therefore,
there is no need to rerun any of the test cases. On the other hand, if S 10 is
changed [say, sum=a*b+sum], then this change will affect the output variable
‘sum’, so there is a need to rerun T 3. The dynamic slice is highlighted in the
code segment.

 BeginBegin
 S1: read (a,b); S1: read (a,b);
 S2: sum = 0; S2: sum = 0;
 S2.1: I=0;
 S3: if (a==0)
 {
 S4: print(b);
 S5: sum+=b;
 }

 Software Testing: Principles and Practices364

 S6: elseif(b==0)
 {
 S7: print(a);
 S8: sum+=a;
 }
 S9: else
 {
 S10: sum=a+b+sum; S10: sum=a+b+sum;
 S10.1 I=25;
 S10.2 print(I);
 }
 S11: endif
 S12: print(sum); S12: print(sum);
 End End

 Relevant Slice
The set of statements that were executed under a test case and did not affect
the output, but have the potential to affect the output produced by a test case,
is known as the relevant slice of the program. It contains the dynamic slice and
in addition, includes those statements which, if corrected, may modify the
variables at which the program failure has manifested. For example, consider
the example of Fig. 12.2, statements S 3 and S 6 have the potential to affect
the output, if modifi ed.

If there is a change in any statement in the relevant slice, we need to rerun
the modifi ed software on only those test cases whose relevant slices contain
a modifi ed statement. Thus, on the basis of relevant slices, we can prioritize
the test cases. This technique is helpful for prioritizing the regression test suite
which saves time and effort for regression testing.

Jeffrey and Gupta [139] enhanced the approach of relevant slicing and
stated: ‘If a modifi cation in the program has to affect the output of a test case
in the regression test suite, it must affect some computation in the relevant slice
of the output for that test case’. Thus, they applied the heuristic for prioritizing
test cases such that the test case with larger number of statements must get
higher weight and will get priority for execution.

12.6.5 PRIORITIZATION BASED ON REQUIREMENTS

This technique is used for prioritizing the system test cases. The system test
cases also become too large in number, as this testing is performed on many
grounds. Since system test cases are largely dependent on the requirements,
the requirements can be analysed to prioritize the test cases.

365Effi cient Test Suite Management l

This technique does not consider all the requirements on the same level.
Some requirements are more important as compared to others. Thus, the test
cases corresponding to important and critical requirements are given more
weight as compared to others, and these test cases having more weight are
executed earlier.

Hema Srikanth et al. [136] have applied requirement engineering approach
for prioritizing the system test cases. It is known as PORT (prioritization of
requirements for test). They have considered the following four factors for
analysing and measuring the criticality of requirements:

Customer-assigned priority of requirements Based on priority, the customer
assigns a weight (on a scale of 1 to 10) to each requirement. Higher the number,
higher is the priority of the requirement.

Requirement volatility This is a rating based on the frequency of change of a
requirement. The requirement with a higher change frequency is assigned a
higher weight as compared to the stable requirements.

Developer-perceived implementation complexity All the requirements are
not equal on a implementation level. The developer gives more weight to a
requirement which he thinks is more diffi cult to implement.

Fault proneness of requirements This factor is identifi ed based on the previous
versions of system. If a requirement in an earlier version of the system has
more bugs, i.e. it is error-prone, then this requirement in the current version is
given more weight. This factor cannot be considered for a new software.

Based on these four factor values, a prioritization factor value (PFV) is com-
puted as given below. PFV is then used to produce a prioritized list of system
test cases.

PFVi = ∑(FVi j ¥ FWj)

where FVij = Factor value is the value of factor j corresponding to requirement i
 FWj = Factor weight is the weight given to factor j

12.7 MEASURING THE EFFECTIVENESS OF A PRIORITIZED TEST SUITE

When a prioritized test suite is prepared, how will we check its effectiveness?
We need one metric which can tell us the effectiveness of one prioritized test
suite. For this purpose, the rate of fault-detection criterion can be taken. El-
baum et al. [133,134] developed APFD (average percentage of faults detected)
metric that measures the weighted average of the percentage of faults detected

 Software Testing: Principles and Practices366

during the execution of a test suite. Its value ranges from 0 to 100, where a
higher value means a faster fault-detection rate. Thus, APFD is a metric to
detect how quickly a test suite identifi es the faults. If we plot percentage of test
suite run on the x-axis and percentage of faults detected on the y-axis, then
the area under the curve is the APFD value, as shown in Fig. 12.3.

0
20
40
60
80

100

120

1 32 4 5

Pe
rc

en
td

et
ec

te
d

fa
ul

ts

Test suite fraction

Figure 12.3 Calculating APFD

APFD is calculated as given below.

 APFD = 1− ((TF1 + TF2 +……….+ TFm)/nm) + 1/2n

where TFi is the position of the fi rst test in test suite T that exposes fault i
 m is the total number of faults exposed in the system or module under T
 n is the total number of test cases in T

Example 12.1

Consider a program with 10 faults and a test suite of 10 test cases, as shown
in Table 12.7.

Table 12.7 Test case fault exposure

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

F1 X X

F2 X X X X

F3 X X X X X X

F4 X X

F5 X X X X X X

F6 X X X X

F7 X

F8 X X X X X

F9 X X

F10 X X X X

367Effi cient Test Suite Management l

If we consider the order of test suite as (T1, T2, T3, T4, T5, T6, T7, T8, T9,
T10), then calculate the APFD for this program.

Solution

APFD = 1 − ((5 + 2 + 1 + 6 + 1 + 5 + 9 + 2 + 1 + 3)/10*10) +
1

2 ×10

 = 0.65 + 0.05
 = 0.7

All the bugs detected are not of the same level of severity. One bug may
be more critical as compared to others. Moreover, the cost of executing the
test cases also differs. One test case may take more time as compared to oth-
ers. Thus, APFD does not consider the severity level of the bugs and the cost
of executing the test cases in a test suite. Elbaum et al. [135] modifi ed their
APFD metric and considered these two factors to form a new metric which
is known as cost-cognizant APFD and denoted as APFDc. In APFDc, the total
cost incurred in all the test cases is represented on x-axis and the total fault
severity detected is taken on y-axis. Thus, it measures the unit of fault severity
detected per unit test case cost.

SUMMARY

The size of a test suite increases as the software evolves. We have also seen this in regression
testing. This chapter separately deals with this problem because test suite size is a general
problem, not restricted to regression testing. In this chapter, we discuss the benefi ts of reducing
the number of test cases along with the general defi nition of test suite minimization problem.

Test case prioritization technique has become very popular and effective today in minimiz-
ing the test suite. Prioritization can be done at various levels like statement coverage, branch
coverage, or fault exposing potential. The prioritization technique and its various methods have
also been discussed here.

Let us review the important concepts described in this chapter:

 � The purpose of prioritization is to reduce the set of test cases based on some rational,
non-arbitrary criteria, while aiming to select the most appropriate tests.

 � General test case prioritization technique prioritizes the test cases that will be useful over
a succession of subsequent modifi ed versions of P, without any knowledge of modifi ed
versions.

 � Version-specifi c test case prioritization prioritizes the test cases such that they will be
useful on a specifi c version P’ of P.

 � Risk-based prioritization technique is to prioritize the test cases based on some potential
problems which may occur during the project.

 � The set of statements executed under a test case is called the execution slice of the
program.

 Software Testing: Principles and Practices368

 � The set of statements executed under a test case having an effect on the program output
is called the dynamic slice of the program with respect to the output variables.

 � The set of statements that were executed under a test case and did not affect the out-
put, but have the potential to affect the output produced by a test case is known as the
relevant slice of a program.

 � Prioritization factor value (PFV) is used to produce a prioritized list of system test cases
as given below:

PFVi = ∑(FVi j ¥ FWj)

 where FV = Factor value is the value of factor j corresponding to requirement i

 FW = Factor weight is the weight given to factor j

 � APFD (average percentage of faults detected) is the metric that measures the weighted
average of the percentage of faults detected during the execution of a test suite. Its value
ranges from 0 to 100, where a higher value means a faster fault-detection rate.

APFD = 1− ((TF1 + TF2 +……….+ TFm) / nm) + 1/2n

 where TFi is the position of the fi rst test in test suite T that exposes fault i

 m is the total number of faults exposed in the system or module under T

 n is the total number of test cases in T

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. If the test suite is inadequate for retesting, then ______.
 (a) new test cases may be developed and added to the test suite
 (b) existing test suite should be modifi ed accordingly
 (c) old test suite should be discarded and altogether new test suite should be devel-

oped
 (d) none of the above

 2. The size of a test suite ______ as the software evolves.
 (a) decreases
 (b) increases
 (c) remains same
 (d) none of the above

 3. Coverage is measured in terms of the ______ that are imposed.
 (a) requirements
 (b) design
 (c) test cases
 (d) none of the above

369Effi cient Test Suite Management l

 4. In the prioritization scheme, the main guideline is to ensure that ______ priority test
cases do not cause any severe impacts on the software.

 (a) high
 (b) low
 (c) medium
 (d) none of the above

 5. Automatic test generation often results in ______ test sets.
 (a) larger
 (b) smaller
 (c) medium size
 (d) none of the above

 6. The set of statements executed under a test case, having an effect on the program out-
put under that test case is called ______.

 (a) execution slice
 (b) dynamic slice
 (c) relevant slice
 (d) none of the above

 7. The set of statements executed under a test case is called ______.
 (a) execution slice
 (b) dynamic slice
 (c) relevant slice
 (d) none of the above

 8. The set of statements that were executed under a test case and did not affect the output,
but have the potential to affect the output produced by a test case is known as ______.

 (a) execution slice
 (b) dynamic slice
 (c) relevant slice
 (d) none of the above

 9. Which one is true?
 (a) APFD = 1 + ((TF1+TF2+……….+ TFm) / nm) + 1/2n
 (b) APFD = 1− ((TF1+TF2+……….+ TFm) / nm) + 1/3n
 (c) APFD = 1− ((TF1+TF2+……….+ TFm) / nm) + 1/2n
 (d) none of the above

REVIEW QUESTIONS

 1. What is the need for minimizing the test cases in a project?

 2. Develop a priority category scheme for the test cases to be executed in a project that
deals with all kinds of priorities set in that project.

 Software Testing: Principles and Practices370

 3. Identify some potential problems in a project. Mark them on a scale of 1 to 10 for uncer-
tainty factor and risk impact. Prepare its risk table.

 4. Explain the following with example:
 (a) Total statement coverage prioritization
 (b) Additional statement coverage prioritization
 (c) Total branch coverage prioritization
 (d) Additional branch coverage prioritization
 (e) Total fault-exposing-potential (FEP) prioritization

 5. Take a module from a project and its test cases. Identify execution, dynamic, and rel-
evant slices in this module.

 6. PORT depends on four factors. Are these factors suffi cient for prioritization? If no, iden-
tify some more factors.

 7. What is the use of PFV?

 8. Search the literature on prioritization, based on operational profi les, and implement this
technique in a project.

 9. What is the difference between APFD and APFDc?

 10. Consider Example 12.1 and calculate its APFD with the following order of test suite:
 (a) (T2,T1,T3,T4,T5,T6,T7,T8,T9,T10)
 (b) (T1,T2,T5,T4,T3,T6,T9,T8,T7,T10)

 What is the effect of changing the order of test cases?

One of the major testing goals is to ensure software
quality. We defi ne testing as a critical element of
software quality. This is where the story of software
testing begins. We have mentioned this in Part I. In
Part IV, we discuss in detail the factors that contrib-
ute to software quality, the role of testing in quality,
and how to manage quality.

As software testing aims to get better quality soft-
ware, the quality of the testing process also needs

to be measured. There have been various quality models for SDLC, but none of them take
the testing process into consideration. Therefore, testing process should also be measured for
its maturity level with new models. The various models for testing the process maturity have
been discussed in this part.

This part will make ground for the following concepts:

 ∑ Quality control

 ∑ Quality assurance

 ∑ Quality management

 ∑ Quality factors

 ∑ Methods of quality management

 ∑ Test process maturity models

Quality Management

Part

4
CHAPTERS

Chapter 13:
Software Quality Management

Chapter 14:
Testing Process Maturity Models

We use the term quality very often in our daily life.
We expect a certain level of quality from a product.
But how do we defi ne quality? Crosby [39] defi nes
quality as conformance to requirements. This means
that the product should be developed according to
the pre-specifi ed requirements. If the requirements
are misunderstood and the product is developed
with incorrect requirements, then the product lacks
quality.

Juran & Gryna [40] defi nes quality as fi tness for
use. It means whether the product is actually usable
by the user or not. If the user is satisfi ed with the
product, it is of good quality.

This shows that quality is not a single idea; rather it
is a multi-dimensional concept, as shown in Fig. 13.1.

On the basis of the multi-dimensional concept,
quality can be defi ned as ‘the degree to which a
product or service possesses a desired combination
of attributes’.

Quality

Degree of
excellence

Life of
product

Cost of
product

Fitness for
use

Conformance to
requirements

Figure 13.1 Quality as multi-dimensional concept

Similarly, Pressman [7] defi nes quality as an attribute of an item; quality refers
to measurable characteristics—things we are able to compare to known standards such
as length, colour, electrical properties, etc.

Chapter

13
Software Quality Management

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Software Quality is a multi-dimensional

concept
 � Difference between product quality and

process quality
 � Costs incurred to maintain quality
 � Benefi ts of investment on quality
 � Difference between quality control, quality

assurance, and quality management
 � Difference between quality management

and project management
 � Various factors of quality
 � Types of quality management:

procedural and quantitative
 � Various quality metrics

 Software Testing: Principles and Practices374

13.1 SOFTWARE QUALITY

We know that software is not similar to any physical product, so the concept
of software quality also differs from physical products. Software quality is not
easily defi nable. Software has many possible quality characteristics. In the
narrowest sense, software quality revolves around defects. It is commonly
recognized as lack of bugs in the software. This defi nition is the same as the
classical defi nition of quality—‘conformance to requirements’. If a software
has functional bugs, then it may be possible that the software is not able to
perform the functions. Thus, software quality may be defi ned in the form of
delivered defect density or defect rate, i.e. the number of defects per unit size
(e.g. LOC, FP, or other unit).

However, as discussed above, software quality is also a multi-dimensional
concept rather than a single concept. In a software project, every member of
the project team is responsible for the quality of the product. In fact, quality,
along with cost and schedule is an important activity in a software project,
which concerns everyone in the team. The ultimate goal is that the fi nal prod-
uct should have as few defects as possible, resulting in high quality software.

13.2 BROADENING THE CONCEPT OF QUALITY

Till now, software has been considered a product and in quality sense, we
expect all its attributes to improve. But the defi nition of quality is not com-
plete at this point. The concept of quality can be extended to the process to
be adopted for development of the product. In this sense, there are two views
of quality.

 Product Quality
Quality measures are taken to improve the end-product.

 Process Quality
From customers’ requirements to the delivery of end-product, the develop-
ment process to be adopted for software development is complex. If the qual-
ity of development process is not good enough, then it will certainly affect the
quality of the end-product. If each stage of the development process is devel-
oped according to the requirement of its intermediate user, then the fi nal end-
product will be of high quality. Therefore, the quality of development process
directly affects the quality of delivered product, as shown in Fig. 13.2.

375Software Quality Management l

Improve
process

Define
process

Develop
process

Assess product
quality

Quality
OK

Standardize
process

Figure 13.2 Process affects quality

From the customer’s point of view, product quality is according to the cus-
tomer, while process quality is according to the intermediate user of the next
stage. For example, the design person will use SRS. But all the intermediate
stages of development process are being developed for a high-quality end-
product.

 Process quality is particularly useful in software development, as it is dif-
fi cult to measure software attributes, such as maintainability, without using the
software for a long period. Quality improvement focuses on identifying good
quality products and examining the processes so that they may be applied
across a range of projects.

To improve the quality of processes and products, the following activities
must be carried out:

 � Choose the development process best suited for the project.

 � Select and replay specifi c methods and approaches within the selected
process.

 � Adopt proper tools and technologies.

 � Prepare quality metrics for products based on their desired attributes
and implement software metrics program to ensure that the develop-
ment process is under control and making progress.

13.3 QUALITY COST

Quality of a software is maintained with efforts in both products and processes,
as shown above. If the efforts in the form of quality evaluation programs
are not implemented, then the desired-level quality cannot be achieved.
According to John Ruskin, quality is never by an accident, it is always the result of
an intelligent effort.

 Software Testing: Principles and Practices376

But implementation of those quality-related procedures and practices is
expensive and incurs cost. According to Pressman and Humphrey [7,41], the
cost of quality is decomposed into three major categories:

 � Prevention costs are related with activities that identify the cause of
defects and those actions that are taken to prevent them, e.g. quality
planning, formal technical reviews, test and laboratory equipments,
training, defect causal analysis and prevention.

 � Appraisal costs include the costs of evaluating the quality of software
products at some level, e.g. testing, in-process and inter-process inspec-
tion by implementing software metrics programs (SMP), equipment
calibrations, and maintenance.

 � Failure costs include the costs to analyse and remove the failures. Since
failures can occur at the development site as well as at the customer’s
site, failure costs can be divided into the following parts:

 ∑ External failure costs are associated with failures that appear at the
customer’s site when the product has been released, e.g. regres-
sion testing corresponding to any bug, listening and resolving the
customers’ problems in case of any complaint from the customer,
product return and replacement, etc.

 ∑ Internal failure costs are those costs that appear on the developer’s
site prior to the release of the product, e.g. regression testing, iso-
lating the bug and repairing, analysing the criticality of bug, etc.

As discussed earlier, the cost of fi nding and debugging a bug increases ten-
fold as we move further in the development stages of SDLC. Similarly, if we
are not implementing prevention and appraisal activities in the early stages,
then a high cost of failure detection and debugging has to be paid for internal
and external failures.

13.4 BENEFITS OF INVESTMENT ON QUALITY

Despite the costs incurred in prevention and appraisal activities, benefi ts
of these activities greatly outweigh the costs. If we invest in prevention
and appraisal activities at an early stage, then failures and failure-costs re-
duce (which are high if prevention and appraisal are ignored), as shown in
Fig. 13.3.

377Software Quality Management l

Failures

Appraisal

Prevention

Failures

Appraisal

Prevention

Figure 13.3 Benefi ts of investment on quality

Thus, by implementing quality evaluation programs, the following benefi ts
are achieved:

 � Customer is satisfi ed, as the end-product is of high quality.

 � Productivity increases due to shorter SDLC cycle.

 � Failures and failure costs reduce.

 � Rework and cost of quality reduce.

13.5 QUALITY CONTROL AND QUALITY ASSURANCE

It is clear that for a high-quality software, the removal of defects is necessary.
This removal of defects takes place when quality control activities are adopt-
ed. Quality control involves a series of static and dynamic testing throughout
the process, such that all the stages produce outputs according to the desired
requirements.

The term ‘quality control’ was used in 1960s, basically for manufacturing
products. The defi nition of quality control had a broad view at that time in-
cluding the measurement of processes. In 1980s, the term ‘quality assurance’
became popular. Both these terms appear to be synonymous and confusing.
But Pressman and Pankaj Jalote help to clarify the difference between the
two.

According to Pankaj Jalote [3], quality control focuses on fi nding and removing
defects, whereas the main purpose of quality assurance is to verify that applicable pro-
cedures and standards are being followed.

According to Pressman [7], a key concept of quality control is that all work
products have defi ned, measurable specifi cations to which we may compare the output
of each process.

Quality assurance consists of auditing and reporting functions of manage-
ment. Based on the above defi nitions, we can defi ne the two terms again in
reference to software.

 Software Testing: Principles and Practices378

Quality control is basically related to software product such that there is mini-
mum variation, according to the desired specifi cations. This variation is checked
at each step of development. Quality control may include the following activi-
ties: reviews, testing using manual techniques or with automated tools (V&V).

Quality assurance is largely related to the process. In addition, quality assur-
ance activities are in the management zone. Therefore, auditing and reporting
of quality, based on quantitative measurements, are also performed. The goal
is to inform the management about quality-related issues and supply relevant
data. It is the management’s responsibility to address these problems. Thus,
 software quality assurance (SQA) is defi ned as a planned and systematic ap-
proach to evaluate quality and maintain software product standards, process-
es, and procedures.

SQA includes the process of assuring that standards and procedures are
established and are followed throughout the software acquisition life cycle.
Compliance with agreed-upon standards and procedures is evaluated through
process monitoring, product evaluation, and audits. Software development
and control processes should include quality assurance approval points,
where an SQA evaluation of the product may be done in relation to the ap-
plicable standards.

Quality assurance may include the following activities:

 � Measuring the products and processes.

 � Auditing the quality of every step in SDLC and the end-product.

 � Verifying that the adopted procedures and standards are being followed.

13.6 QUALITY MANAGEMENT (QM)
We have discussed that quality assurance is a management activity performed
by managers. At the managerial level, quality needs to be planned on a larger
scale and all controlling and assurance activities are performed according to
quality plans. The managerial root has given the term ‘quality management’
whose scope is larger than quality control and quality assurance. It is now an
established way of managing the quality of a product.

The task of quality management is to

 � plan suitable quality control and quality assurance activities.

 � defi ne procedures and standards which should be used during software
development and verify that these are being followed by everyone.

 � properly execute and control activities.

379Software Quality Management l

If quality at some point is not under control, then it is the responsibility
of quality managers to manage the resources such that the required level of
quality is achieved.

But there is more to quality management. The major role of QM is to de-
velop a quality culture in the organization. Quality culture means that every
member of the team is aware and conscious about the quality and is working
towards a high-quality end-product. It is the responsibility of quality manag-
ers to encourage the team members to take responsibility for their work, not
only to function correctly but also for improving the quality (in the sense of
defects). Though QM specifi es the quality specifi cations and standards, yet
there are some aspects which cannot be standardized, e.g. elegance, read-
ability, etc. are intangible aspects of software quality. Quality managers also
encourage the team members to keep an eye on these intagible aspects of
quality. Thus, every team member works in unison to achieve the common
goal of high-quality software.

QM involves verifying and improving the software process. The quality of
intermediate results at each stage and the fi nal end-product is measured, re-
viewed, and analysed. If the target does not seem to be achievable with the cur-
rent process, then problems and diffi culties are reported to senior management,
and fi nally the current process can be improved based on this feedback.

13.7 QM AND PROJECT MANAGEMENT
QM is different from project management (PM), in the sense that QM is not
associated with a particular project, rather it is an organization-wide activity
for many projects. On the other hand, PM is specifi c to a particular project
and manages the cost schedule, resources, and quality of that project only.

13.8 QUALITY FACTORS

We discussed earlier that quality is not a single idea; rather it is a combination
of many factors. But these factors are based on the project and the environ-
ment in which the software is to be developed. Discussed below are some of
these factors.

Functionality The major visible factor for software quality is its functionality
such that all the intended features are working.

Correctness Software should be correct in nature largely satisfying specifi cations
and fulfi lling user’s objectives. Another measure of correctness may be the
extent to which a software is fault-free.

 Software Testing: Principles and Practices380

Completeness A software product should be complete to the extent that all its
parts are present and fully developed. This means that if the code calls a sub-
routine from an external library, the software package must provide reference
to that library and all the required parameters must be passed. All the required
input data must be available.

Effi ciency The software should be effi cient in its working, i.e. utilizing all
resources.

Portability A software product should be operated on all well-known platforms
and confi gurations.

 Testability A software should be testable such that it is easy to debug and
maintain.

Usability The software should be easy to use, operate, and understand in every
manner that its user wants. The usability criterion may differ from project to
project.

 Reliability It is the ultimate factor that a user demands from any product.
A software product should also be reliable in the sense that all its desired
features must run forever without bugs; it should not stop after working for
some years. This implies a time factor in which a reliable product is expected
to perform correctly over a period of time. It also encompasses environmental
considerations in which the product is required to perform correctly in
whichever condition it fi nds itself—this is sometimes called robustness. The
reliability factor is more in demand in case of real-time projects, where the
system must work continuously without fail.

Reusability It is an important factor, as it can greatly reduce the effort required
to engineer a software product. However, it is not easy to achieve.

Integrity It defi nes the extent to which an unauthorized access or a modifi cation
can be controlled in a computer system (either manually or with automated
tools).

Maintainability The software should have the scope of maintaining it, if a bug
appears or a new requirement needs to be incorporated.

13.9 METHODS OF QUALITY MANAGEMENT

We have discussed the meaning of quality management and the activities
which are involved in it. There are largely two approaches to perform QM
(see Fig. 13.4), which are discussed here.

381Software Quality Management l

13.9.1 PROCEDURAL APPROACH TO QM
In this approach, quality is controlled by detecting defects by performing re-
views, walkthroughs, inspections (static testing), and validation testing meth-
ods. For implementing this approach, the plan and procedures are defi ned for
conducting reviews and testing. As discussed earlier that every testing plan
is prepared at a certain point and according to the defi ned procedure in test
documents, testing activities are executed again on defi ned points. For exam-
ple, acceptance test plan is prepared at the time of requirement gathering and
acceptance testing is performed at the time of validation testing. Moreover,
 verifi cation is conducted after every step of SDLC.

Execution of all V&V activities are performed by software engineers with
the software quality assurance (SQA) team, who identify the defects. In this
way, quality is being controlled by identifying and removing defects in the
software.

Quality
management

Procedural
approach

Software
engineers

SQA team Measurement
and metrics

Quantitative
approach

Software metrics
program

Verification Validation Audits Standards

Figure 13.4 Methods of quality management

Software Quality Assurance Activities
 SQA activities include product evaluation and process monitoring. Products are
monitored for conformance to standards and processes are monitored for
conformance to procedures. Audits are a key technique used to perform prod-
uct evaluation and process monitoring.

Product evaluation assures that standards are being followed. SQA team
assures that clear and achievable standards exist and then evaluates the soft-
ware with the established standards. Product evaluation assures that the soft-
ware product refl ects the requirements of the applicable standard(s). Process
monitoring ensures that appropriate steps to carry out the process are being

 Software Testing: Principles and Practices382

followed. SQA team monitors processes by comparing the actual steps car-
ried out with those in the documented procedures.

The audit technique used by the SQA team looks at a process and/or a
product in depth, comparing them with the established procedures and stan-
dards. Audits are used to review management, technical, and assurance pro-
cesses to provide an indication of the quality and status of the software prod-
uct. The purpose of an SQA audit is to assure that proper control procedures
are being followed, that required documentation is maintained, and that the
developer’s status reports accurately refl ect the status of an activity. After the
audit, an audit report is prepared that consists of fi ndings and recommenda-
tions to bring the development into conformance with the standards and/or
procedures.

SQA Relationships to Other Assurance Activities
Some of the more important relationships of SQA to other management and
assurance activities are described below.

Confi guration management monitoring SQA assures that software confi gura-
tion management (CM) activities are performed in accordance with the CM
plans, standards, and procedures. It reviews the CM plans for compliance with
the software CM policies and requirements, and provides follow-up for non-
conformances. It also audits the CM functions for adherence to standards and
procedures and prepares a report of its fi ndings.

The CM activities monitored and audited by SQA include baseline con-
trol, confi guration identifi cation, confi guration control, confi guration status
accounting, and confi guration authentication. SQA also monitors and audits
the software library. It assures that:

 � Baselines are established and consistently maintained for use in subse-
quent baseline development and control.

 � Software confi guration identifi cation is consistent and accurate with re-
spect to the numbering or naming of computer programs, software mod-
ules, software units, and associated software documents.

 � Confi guration control is maintained such that the software confi guration
used in critical phases of testing, acceptance, and delivery is compatible
with the associated documentation.

 � Confi guration status accounting is performed accurately, including the
recording and reporting of data, refl ecting the software’s confi guration
identifi cation, proposed changes to the confi guration identifi cation, and
the implementation status of approved changes.

383Software Quality Management l

 � Software confi guration authentication is established by a series of confi gu-
ration reviews and audits that exhibit the performance required by the SRS
and the confi guration of the software is accurately refl ected in the software
design documents.

 � Software development libraries provide for proper handling of software
code, documentation, media, and related data in their various forms and
versions from the time of their initial approval or acceptance until they
have been incorporated into the fi nal media.

 � Approved changes to baselined software are made properly and consis-
tently in all products, and no unauthorized changes are ma

 Verifi cation and validation monitoring SQA assures verifi cation and valida-
tion (V&V) activities by monitoring technical reviews, inspections, and walk-
throughs. The SQA team’s role in reviews, inspections, and walkthroughs is to
observe, participate as needed, and verify that they were properly conducted
and documented. SQA also ensures that any actions required are assigned,
documented, scheduled, and updated.

Formal test monitoring SQA assures that formal software testings like accep-
tance testing, is done in accordance with plans and procedures. SQA reviews
testing documentation for completeness and adherence to standards. The doc-
umentation review includes test plans, test specifi cations, test procedures, and
test reports. SQA monitors testing and provides follow-up on non-conformanc-
es. By test monitoring, SQA assures software completeness and readiness for
delivery.

The objectives of SQA in monitoring formal software testing are to assure
that:

 � The test procedures are testing the software requirements in accordance
with the test plans.

 � The test procedures are verifi able.

 � The correct or ‘advertised’ version of the software is being tested (by
SQA monitoring of the CM activity).

 � Non-conformances occurring during testing (that is, any incident not
expected in the test procedures) are noted and recorded.

 � Test reports are accurate and complete.

 � Regression testing is conducted to assure that all the non-conformances
have been corrected.

 � Resolution of all non-conformances takes place prior to the delivery of
product.

 Software Testing: Principles and Practices384

 Software Quality Assurance during SDLC
In addition to the general activities described above, there are phase-specifi c
SQA activities that should be conducted during SDLC. The activities for each
phase are described here.

Concept and initiation phase SQA should be involved in both writing and
reviewing the management plan in order to assure that the processes, procedures,
and standards identifi ed in the plan are appropriate, clear, specifi c, and
auditable.

Requirements phase During this phase, SQA assures that software require-
ments are complete, testable, and properly expressed as functional, perfor-
mance, and interface requirements.

Architectural design phase SQA activities during the architectural (prelimi-
nary) design phase include:

 Assuring adherence to approved design standards as designated in the
management plan.

 Assuring all software requirements are allocated to software compo-
nents.

 Assuring that a testing verifi cation matrix exists and is kept up-to-date.

 Assuring the interface control documents are in agreement with the
standard, in form and content.

 Assuring the approved design is placed under confi guration manage-
ment.

Detailed design phase SQA activities during the detailed design phase include:

 Assuring the approved design standards are followed.

 Assuring the allocated modules are included in the detailed design.

 Assuring the results of design inspections are included in the design.

Implementation phase SQA activities during the implementation phase include
the audit of:

 Status of all deliverable items.

 Confi guration management activities.

 Non-conformance reporting and corrective action system.

385Software Quality Management l

Integration and test phase SQA activities during the integration and test phase
include:

 � Assuring readiness for testing of all deliverable items.

 � Assuring that all tests are run according to test plans and procedures
and that non-conformances are reported and resolved.

 � Assuring that test reports are complete and correct.

 � Certifying that testing is complete, and the software and its documenta-
tion are ready for delivery.

Acceptance and delivery phase As a minimum, SQA activities during the
acceptance and delivery phase include assuring the performance of a fi nal
confi guration audit to demonstrate that all deliverable items are ready for
delivery.

13.9.2 QUANTITATIVE APPROACH TO QM
In the procedural approach, V&V activities are performed to control the
quality by detecting and removing the bugs, but quality at the end of a project
cannot be assessed. It means, we have no confi dence in quality management.
Therefore, the quantitative approach that measures every activity in the life
cycle, analyses the data and then, gives judgement about the level of quality.
If there is a need to increase the level of quality, then auditing is done to
check whether all the procedures and standards are being followed. Thus, this
approach covers all the QA activities.

The overall effect of implementing software metrics for software quality
can be increased if the whole process of collecting data and analysing things
are put into a framework or systematic program of activities called the soft-
ware metrics programme (SMP). We discuss a model for SMP given by Paul
Goodman [34].

Paul Goodman Model for SMP
This model presents a framework for SMP in the lifecycle stages just like
 SDLC. The idea is to identify and implement the software metrics in the fi ner
detailed intermediate stages. This model comprises of fi ve stages as discussed
here (Fig. 13.5).

 Software Testing: Principles and Practices386

Trigger

Initiator

Initiation

Requirement
definition

Design
component

Implementation

Organization

Implemented SMP

Figure 13.5 Paul Goodman model for SMP

Initiation stage There are many triggers that can start a metrics program and
there are many individuals within an organization who can recognize such a
trigger. Some triggers are:

 � Productivity/quality concerns

 � Customer complaints

 � Customer/management requirement for more information

 � A cost-cutting environment

Some of the initiators are:

 � IT management

 � Senior management (non-IT)

 � Quality or R&D function

Requirement defi nition The SMP cannot be directly implemented in an orga-
nization without any reason. Therefore, the fi rst stage is to fi nd and analyse the
problems in an organization so that these problems can be removed or con-
trolled. Thus, in this stage, we collect the problems and defi ne the requirements
where we need to stress. The requirements may be customer identifi cation,
market identifi cation, late discovery of project, overfl ow of cost, etc.

Component design After analysing the requirements in the previous stage,
we will have sub-projects or components which must be designed or worked

387Software Quality Management l

on for the organization. Every requirement is linked to business needs. For
example, cost estimation, reliability prediction, etc. may be the components
which must be worked on for the organization.

Implementation Having completed all the four stages, the last stage is to
implement the program in an organization. So after preparing a program, it
has to be sold to the customers. To help the customer, training sessions and
procedures or written guidance addressing the application of measurement
must be provided. Changes or tailoring the original program according to
local conditions of the organization can also be done. Moreover, help should
be extended to the customers on a day-to-day basis.

Software metrics programs can be implemented for a project as well as for
a process, if required.

Major Issues for Quantitative Approach
The major issues for quantitatively managing quality for a project are:

Setting quality goal The quality goals can be set in a project in terms of defects.
It may be set as the number of defects to be delivered in the last phase of
validation testing, i.e. acceptance testing. One method to set the quality goals
is to use the past data if the same process is used in similar kind of projects.
Using the past data on similar projects, the number of defects in the current
project can be estimated, as given by Jalote [3]:

Estimate for defects(P) = defects(SP) ¥ effort estimate(P) / actual effort(SP)

where P is the current project and SP is the similar project

Managing the software development process quantitatively The development
process is managed towards achieving the quality goal by setting intermediate
goals at every intermediate stage and working towards these intermediate
goals.

13.10 SOFTWARE QUALITY METRICS

Software quality metrics are a subset of software metrics that focus on the
quality aspects of the product, process, and project. In general, software qual-
ity metrics are more closely associated with process and product metrics than
with project metrics. Nonetheless, the project parameters such as the number
of developers and their skill levels, the schedule, the size, and the organiza-
tion structure certainly affect the quality of product. Software quality metrics
can be divided further into end-product quality, and based on the fi ndings, to
engineer the improvements in both process and product quality. Moreover,

 Software Testing: Principles and Practices388

we should view quality from the entire software life cycle perspective and in
this regard, we should include metrics that measure the quality level of the
maintenance process as another category of software quality metrics. Thus,
software quality metrics can be grouped into the following three categories in
accordance with the software lifecycle: (i) product quality metrics, in-process
quality metrics, and metrics for software maintenance.

 Product Quality Metrics
In product quality, the following metrics are considered [42]:

 Mean-time to failure (MTTF) MTTF metric is an estimate of the average or
mean time until a product’s fi rst failure occurs. It is most often used with safety
critical systems such as the airline traffi c control system.

It is calculated by dividing the total operating time of the units tested by the
total number of failures encountered.

 Defect density metrics It measures the defects relative to the software size.

 Defect density = Number of defects / Size of product

Thus, it is the defect rate metrics or the volume of defects generally used for
commercial software systems. It is important for cost and resource estimate of
the maintenance phase of the software lifecycle.

 Customer problem metrics This metric measures the problems which customers
face while using the product. The problems may be valid defects or usability
problems, unclear documentation, etc. The problem metrics is usually expressed
in terms of problems per user month (PUM), as given below:

PUM =
Total problems reported by the customer for a time period

Total number of licensed months of the software during the period

where number of licensed months = number of installed licenses of the soft-
ware ¥ number of months in the calculation period.

PUM is usually calculated for each month after the software is released.
Basically, this metric relates with the problem of software usage. The goal is
to achieve a low PUM by:

 (a) Improving the development process and reducing the product defects.

 (b) Reducing the non-defect-oriented problems by improving all the aspects
of a product.

 (c) Increasing the number of installed licenses of the product.

 Customer satisfaction metrics Customer satisfaction is usually measured through
various methods of customer surveys via the fi ve-point scale.

389Software Quality Management l

 1. Very satisfi ed

 2. Satisfi ed

 3. Neutral

 4. Dissatisfi ed

 5. Very dissatisfi ed

Based on this scale, several metrics can be prepared like the percentage of
completely satisfi ed customers or the percentage of satisfi ed customers.

 In-process Quality Metrics
In-process quality metrics are less formally defi ned than the end-product
metrics. Following are some metrics [42]:

 Defect-density during testing Higher defect rates found during testing is an
indicator that the software has experienced higher error injection during its
development process. This metric is a good indicator of quality while the
software is still being tested. It is especially useful to monitor subsequent
releases of a product in the same development organization.

 Defect-arrival pattern during testing The pattern of defect arrivals or the time
between consecutive failures gives more information. Different patterns of
defect arrivals indicate different quality levels in the fi eld. The objective is to
have defect arrivals that stabilize at a very low level or times between failures
that are far apart.

 Defect-removal effi ciency

DRE =

Defects removed during the month
Number of problem arrivals during the month

 ¥ 100

Metrics for Software Maintenance
In this phase, the goal is to fi x the defects as soon as possible and with excellent
quality. The following metrics are important in software maintenance:

 Fix backlog and backlog management index Fix backlog metrics is the count
of reported problems that remain open at the end of a month or a week. This
metric can provide meaningful information for managing the maintenance
process.

Backlog management index (BMI) is also the metric to manage the backlog
of open unresolved problems.

BMI =
Number of problems closed during the month
Number of problem arrivals during the month

¥ 100

 Software Testing: Principles and Practices390

If BMI is larger than 100, it means the backlog is reduced; if BMI is less
than 100, the backlog is increased. Therefore, the goal is to have a BMI larger
than 100.

 Fix response time and fi x responsiveness While fi xing the problems, time-limit
also matters according to the severity of the problems. There may be some
critical situations in which the customers feel the risk due to defects in the
software product, therefore high-severity defects require the response in terms
of fi xing them as early as possible. The fi x response time metric is used for this
purpose and is calculated as mean-time of high severity defects from open to
closed. Thus, a short fi x response time leads to customer satisfaction.

This metric can be enhanced from the customers’ viewpoint. Sometimes,
the customer sets a time-limit to fi x the defects. This agreed-to fi x time is
known as fi x responsiveness metric. The goal is to get high fi x responsiveness to
meet customer expectations and have highly satisfi ed customers.

 Percent delinquent fi xes For each fi x, if the turn-around time greatly exceeds
the required response time, then it is classifi ed as delinquent.

Percent delinquent fi xes =

Number of fixes that exceeded the response
time criteria by severity level

100
Number of fixes delivered in a specified time

¥

Fix quality It is the metric to measure the number of fi xes that turn out to be
defective. A fi x is defective if it did not fi x the reported problems or injected
a new defect as a consequence of fi xing. For real-time software, this metric
is important for customer satisfaction. Fix quality is measured as a percent
defective fi xes. Percent defective fi xes is the percentage of all fi xes in a time
interval that are defective.

13.11 SQA MODELS

Organizations must adopt a model for standardizing their SQA activities.
Many SQA models have been developed in recent years. Some of them are
discussed below.

13.11.1 ISO 9126
This is an international software quality standard from ISO. It aims to elimi-
nate any misunderstanding between customers and developers. There may
be a case that the customer is not able to communicate the requirements for
the product to be developed. Moreover, the developer should also be able to
understand the requirement and assess with confi dence whether it is possible

391Software Quality Management l

to provide the product with the right level of software quality. Thus, there
may be problems with both customers and developers which may affect the
delivery and quality of the software project. ISO 9126 targets the common
understanding between customers and developers.

ISO 9126 provides a set of six quality characteristics with their defi nitions
and associated quality evaluation process to be used when specifying the re-
quirements, and evaluating the quality of software products throughout their
life cycle. The quality characteristics are shown in Fig. 13.6. The quality char-
acteristics are accompanied by guidelines for their use. Each attribute is as-
sociated with one or more metrics, which allow a value for that attribute to be
determined for a particular system.

Functionality

Efficiency

Maintainability Portability

Usability

Reliability

ISO
9126

Figure 13.6 ISO 9126 quality attributes

 ISO 9126 defi nes the following guidelines for implementation of this
model:

Quality requirements defi nition A quality requirement specifi cation is prepared
with implied needs, technical documentation of the project, and the ISO
standard.

Evaluation preparation This stage involves the selection of appropriate metrics,
a rating-level defi nition, and the defi nition of assessment criteria. Metrics
are quantifi able measures mapped onto scales. The rating levels defi nition
determines what ranges of values on these scales count as satisfactory or
unsatisfactory. The assessment criteria defi nition takes as input a management
criterion specifi c to the project and prepares a procedure for summarizing the
results of the evaluation.

Evaluation procedure The selected metrics are applied to the software product
and values are taken on the scales. Subsequently, for each measured value, the
rating level is determined. After this, a set of rated levels are summarized,
resulting in a summary of the software product quality. This summary is then

 Software Testing: Principles and Practices392

compared with other aspects such as time and cost, and the fi nal managerial
decision is taken, based on managerial criteria.

13.11.2 CAPABILITY MATURITY MODEL (CMM)
It is a framework meant for software development processes. This model is
aimed to measure the quality of a process by recognizing it on a maturity
scale. In this way, matured organizations can be distinguished from immature
ones. The maturity of a process directly affects the progress of a project and
its results. Therefore, for a high-quality software product, the process adopted
for development must be a matured one.

The development of CMM started in 1986 by the Software Engineering
Institute (SEI) with MITRE Corporation. They developed a process maturity
framework for improving software processes in organizations. After working
for four years on this framework, the SEI developed the CMM for software.
Later on, it was revised and is continuing to evolve.

 CMM Structure
The structure of CMM consists of fi ve maturity levels. These levels consist of
 key process areas (KPAs) which are organized by common features. These
features in turn consist of key practices, decided in KPAs depending on these
common features, as shown in Fig. 13.7. The maturity levels indicate the pro-
cess capability. Key practices describe the activities to be done. Common
features address implementations. In this way, by working on the activities
described in key practices under some common feature, we achieve a goal
under a KPA. In other words, each KPA identifi es a cluster of related activi-
ties that, when performed collectively, achieve a set of goals considered im-
portant for enhancing the process capability.

Maturity
levels

Key process
areas

Common
features

Contain
Organized

by Contain Key
practices

Figure 13.7(a) CMM Structure

Maturity levels Indicate Process capability

Key process areas Achieve Goals

Common features Address Implementation/Institutionalization

Key practices Describe Infrastructure/Activities

Figure 13.7(b) CMM Structure

393Software Quality Management l

The structure of CMM is hierarchical in nature such that if one organization
wishes to be on maturity level 3, then it must fi rst achieve maturity level 2,
and then work according to the goals of the next higher level. It means that
we need to attain maturity in a sequenced order of all levels, as shown in Fig.
13.8. The process capability at each maturity level is shown in Table 13.1.

Initial

Repeatable

Defined

Managed

Optimizing

1

2

3

4

5

Figure 13.8 Maturity levels

Table 13.1 Process capability at each maturity level

Maturity level Process Capability

1 —

2 Disciplined process

3 Standard consistent process

4 Predictable process

5 Continuously improving process

 Maturity Levels
A brief description of the fi ve maturity levels is given below.

Initial At this level, the process is chaotic or ad-hoc, where there is no control
on development progress and success is purely dependent on individual efforts.
There is no stable environment for development. The team members may not
know the components or goals of development processes. The projects exceed
the budget and schedule.

Repeatable Earlier project successes are used here and the lessons learned from
past projects are incorporated in the current project. Basic project management
processes are established so that cost, schedule, and other parameters can be
tracked. However, organization-wide processes still do not exist.

 Software Testing: Principles and Practices394

Defi ned The management scope is widened to the organization here. Project
management as well as process management starts. The standard processes
are defi ned with documentations.

Managed A quantitative understanding of the processes is established in order
to monitor and control them. Quantitative quality goals are also set for the
processes. It means the processes are predictable and controlled.

Optimizing The process is continually improved through incremental and
innovative technological changes or improvements. In this way, quantitative
process improvement objectives for the organization is identifi ed, evaluated,
and deployed.

Key Process Areas
The KPAs and their corresponding goals at each maturity level are discussed
in Tables 13.2, 13.3, 13.4, and 13.5.

Table 13.2 KPAs for level 2

KPAs, at this level, focus on the project’s concerns related to establishing basic project man-
agement controls.

KPA Goals

Requirement Management Document the requirements properly.
Manage the requirement changes properly.

Software Project Planning Ensure proper project plan including estimation and listing of activities
to be done.

Software Project Tracking
and Oversight

Evaluate the actual performance of the project against the plans during
project execution.
Action, if there is deviation from plan.

Software Sub-contract
Management

Selects qualifi ed software sub-contractors.
Maintain ongoing communications between prime contractor and the
software sub-contractor.
Track the software sub-contractor’s actual results and performance
against its commitments.

Software Quality Assurance Plan the SQA activities.
Ensure that there are proper processes by conducting review and audits.
Take proper actions, if projects fail.

Software Confi guration
Management

Identify work products and documents to be controlled in the project.
Control the changes in the software.

395Software Quality Management l

Table 13.3 KPAs for level 3

KPAs, at this level, address both project and organizational issues, as the organization estab-
lishes an infrastructure that institutionalizes effective software engineering and management
processes across all projects.

KPA Goals

Organization Process Focus Coordinate process development and improvement activities across
the organization.
Compare software processes with a process standard.
Plan organization-level process development and improvement
activities.

Organization Process Defi nition Standard software processes are defi ned and documented.

Training Program Identify training needs of various team members and implementation
of training programs.

Integrated Software Management Tailor the project from the standard defi ned process.
Manage the project according to defi ned process.

Software Product Engineering Defi ne, integrate, and perform software engineering tasks.
Keep the work products consistent especially if there are changes.

Inter-group Coordination Ensure coordination between different groups.

Peer Reviews Plan peer review activities.
Identify and remove defects in the software work products.

Table 13.4 KPAs for level 4

KPAs, at this level, focus on establishing a quantitative understanding of both the software pro-
cess and the software work products being built.

KPA Goals

Quantitative Process Management Plan the quantitative process management activities.
Control the performance of the project’s defi ned software process
quantitatively.
The process capability of the organization’s standard software
process is known in quantitative terms.

Software Quality Management Set and plan quantitative quality goals for the project.
Measure the actual performance of the project with quality goals
and compare them with plans.

 Software Testing: Principles and Practices396

Table 13.5 KPAs for level 5

KPAs, at this level, cover the issues that both the organization and the projects must address
to implement continuous and measurable software process improvement.

KPA Goals

Defect Prevention Plan the defect prevention activities.
Identify, prioritize, and eliminate the common causes of bugs.

Technology Change
Management

Plan the technology changes to be incorporated in the project, if any.
Evaluate the effect of new technologies on quality and productivity.

Process Change Management Plan the process improvement activities such that an organization-
wide participation is there.
Measure the change of improvement in the process.

Common Features
As discussed above, all KPAs are organized by common features. The com-
mon features are attributes that indicate what to implement according to a
KPA goal. The common features have been listed in Table 13.6.

Table 13.6 List of common features

Common Feature What to Implement/Institutionalize

Commitment to
Perform

Organization must take action to ensure that the process is established and
will carry on.

Ability to Perform Defi ne the pre-conditions that must exist in the project or organization to
implement the software process competently.
Estimate resources, organizational structures, and training.

Activities
Performed

Assign the team members and identify procedures to implement a key
process area.
Perform the work, track it, and take corrective actions as necessary.

Measurement and
Analysis

Measure the process and analyse the results.

Verifying
Implementation

Ensure that the activities are performed in compliance with the process that
has been established.
Implement reviews and audits by management and software quality
assurance team.

Assessment of Process Maturity
The assessment is done by an assessment team consisting of some experi-
enced team members. These members start the process of assessment by col-
lecting information about the process being assessed. The information about
the process can be collected in the form of maturity questionnaires, docu-
mentation, or interviews. For assessment, some representative projects of the
organization are selected.

397Software Quality Management l

13.11.3 SOFTWARE TOTAL QUALITY MANAGEMENT (STQM)
 Total quality management (TQM) is a term that was originally coined in 1985
by the Naval Air Systems Command to describe its Japanese-style manage-
ment approach to quality improvement. TQM is a philosophical management
strategy to have quality culture in the entire organization. TQM means that
the organization’s culture is defi ned by the constant attainment of satisfaction
through an integrated system of tools, techniques, and training. Thus, TQM
is defi ned as a quality-centered, customer-focused, fact-based, team-driven,
senior-management-led process to achieve an organization’s strategic impera-
tive through continuous process improvement.

 T = Total = everyone in the organization

 Q = Quality = customer satisfaction

 M = Management = people and processes

Total quality here means to provide quality product and quality services to the
customer, i.e. quality in all aspects. TQM is based on the participation of all
the members of an organization to improve processes, products, services, and
the culture they work in. TQM is a customer-driven approach, wherein the
quality is defi ned and judged by the customer. It focuses on continuous pro-
cess improvement to achieve high quality of product (or service). Moreover,
the emphasis is to achieve total quality throughout the entire business, not just
in the product. Thus, quality is a part of every function in all the phases of a
product’s lifecycle.

The elements of a TQM system can be summarized as follows:

 1. Customer focus The goal is to attain total customer satisfaction. It
includes studying customers’ needs, gathering customer requirements,
and measuring and managing customer satisfaction.

 2. Process The goal is to achieve continuous process improvement. Process
includes both the business process and the product development process.
Through process improvement, product quality will be enhanced.

 3. Human-side of quality The goal is to create a company-wide quality
culture. Focus areas include management commitment, total participa-
tion, employee empowerment, and other social, psychological, and hu-
man factors.

 4. Measurement and analysis The goal is to drive continuous improve-
ment in all quality parameters by the goal-oriented measurement system.

TQM has a few short-term advantages. Most of its benefi ts are long-term
and come into effect only after running smoothly for some time. In large
organizations, it may take several years before long-term benefi ts are realized.

 Software Testing: Principles and Practices398

Long-term benefi ts that may be expected from TQM are: higher productivity,
increased morale, reduced costs, and greater customer commitment.

TQM originated in the manufacturing sector, but it has been successfully
adopted by almost every type of organization. So it can also be applied to
software development because we need to improve our software processes.
Remember, we can’t test quality in our software, we design in it. And the only
way we can design quality in it is by continuously monitoring and improving
our processes. As we studied in the previous sections, the software quality is
maintained by the SQA team. However, SQA is not enough to achieve the
quality standards demanded by the customer. It becomes important to adopt
the TQM method to the entire software development organization. This is
known as software total quality management (STQM). The STQM is also a fun-
damental cultural change that incorporates quality improvements in every
aspect of the software organization. Therefore, SQA provides the methodol-
ogy to assure quality, while STQM provides the framework to continually
improve it. STQM fi ts well in the components of TQM discussed above.

Customer focus in software development As we know, requirement bugs con-
stitute a large portion of the software bugs. Therefore, gathering customers’
needs has become increasingly important in the software industry.

Process, technology, and development quality Given the customers’ require-
ments, the central question is how to develop the software effectively so that it
can meet the criterion of ‘conformance to customers’ requirements’. For this,
a matured process and updated technologies are needed to achieve product
quality.

Human-side of software quality In software development, at the operational
level, TQM can be viewed as the integration of project, process, and quality
management with the support of every development team member. During
software development, managers must manage in-process quality in the way
they manage schedule for quality improvement. Quality, process, and sched-
ule management must be totally integrated for software development to be
effective.

Measurement and analysis Software development must be controlled in
order to have product delivery on time and within budget, which are the prime
concerns for every software development. Software metrics help in measuring
various factors during development and thereby, in monitoring and controlling
them.

399Software Quality Management l

13.11.4 SIX SIGMA

Six sigma is a quality model originally developed for manufacturing processes.
It was developed by Motorola. Six sigma derives its meaning from the fi eld of
statistics. Sigma is the standard deviation for a statistical population. Six sigma
means, if one has six standard deviations between the mean of a process
and the nearest specifi cation limit, there will be practically no items that
fail to meet the specifi cations. Therefore, the goal of this model is to have a
process quality of that level. Eventually, six sigma evolved and was applied to
other non-manufacturing processes. Today, you can apply six sigma to many
fi elds like services, medical, and insurance procedures, call centers including
software.

Six sigma is a way to achieve strategic business results emphasizing on
lower costs with less number of defects. Six sigma processes will produce
less than 3.4 defects per million opportunities. To achieve this target, it uses a
methodology known as DMAIC with the following steps:

 � Defi ne opportunities

 � Measure performance

 � Analyse opportunity

 � Improve performance

 � Control performance

This methodology improves any existing business process by constantly
reviewing and improving the process.

Six sigma is not just all about statistics. It can be applied to software prob-
lems which affects its quality. Six sigma can be applied to analyse the cus-
tomer requirements and defi ne business goals correspondingly. Its approach
to customer requirements, if applied to software development projects, is fun-
damentally different than those typically practiced in software deployment
efforts. It does not start by asking the customers about the requirements fi rst.
But it begins by analysing what we need to learn. There are six sigma tools
which help in identifying the prioritization of functionalities to be delivered.

SUMMARY

Quality is the concept from where the story of software testing begins. In simple words, we want
quality in the software product, which is why we perform testing on it so that a high-quality prod-
uct can be made. This chapter discusses the concept of quality, its benefi ts, its various factors,
and the costs incurred in it.
 In literature, three terms have been in use: quality control, quality assurance, and quality
management; all these terms have been distinguished. Quality management is the term which

 Software Testing: Principles and Practices400

we use today in the broader sense. The two approaches for quality management, namely pro-
cedural approach and quantitative approach, have also been considered in detail. But for a
successful high-quality product, we have to pass the project through both approaches. Some
quality metrics to monitor and control the quality attributes have also been defi ned.

Let us review the important concepts described in this chapter:
 � Quality is the degree to which a product or service possesses a desired combination of

attributes.
 � Software quality may be defi ned in the form of delivered defect density or defect rate, i.e.

the number of defects per unit size (e.g. LOC, FP or other unit).
 � Quality costs include: prevention costs, appraisal costs, and failure costs.
 � Prevention costs are related with activities that identify the cause of defects and actions

that are taken to prevent them.
 � Appraisal costs include the costs of evaluating the quality of software products at some

level, e.g. testing, in-process and inter-process inspection by implementing software
metrics program (SMP), equipment calibrations, and maintenance.

 � Failure costs include the costs to analyse and remove failures.
 � Quality control focuses on fi nding and removing defects, whereas the main purpose of

quality assurance is to verify that applicable procedures and standards are being fol-
lowed.

 � Software quality assurance (SQA) is defi ned as a planned and systematic approach to
evaluate quality and maintain software product standards, processes, and procedures.
SQA includes the process of assuring that standards and procedures are established
and are followed throughout the software acquisition lifecycle.

 � Quality management is an established way of managing the quality of a product wherein
quality measures are planned on a larger scale and all controlling and assurance activi-
ties are performed according to quality plans.

 � The overall effect of implementing software metrics for software quality can be increased
if the whole process of collecting data and analysing them are put into a framework or
systematic program of activities called software metrics program (SMP).

 � Mean-time to failure (MTTF) metric is an estimate of the average or mean-time until a
product’s fi rst failure occurs. It is calculated by dividing the total operating time of the
units tested by the total number of failures encountered.

 � Backlog management index (BMI) is the metric to manage the backlog of open and
unresolved problems.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. Quality is a ______ dimension concept.
 (a) single
 (b) two

401Software Quality Management l

 (c) three
 (d) multi

 2. External failure costs are associated with failures that appear on the ______.
 (a) developer’s site
 (b) customer’s site
 (c) installation time
 (d) none of the above

 3. Internal failure costs are those costs that appear on the ______prior to release.
 (a) developer’s site
 (b) customer’s site
 (c) installation time
 (d) none of the above

 4. Quality control is basically related to software ______.
 (a) process
 (b) product
 (c) project
 (d) none of the above

 5. Quality assurance is basically related to software ______.
 (a) process
 (b) product
 (c) project
 (d) none of the above

 6. Scope of quality management is ______ than control or assurance.
 (a) smaller
 (b) same
 (c) larger
 (d) not related

 7. Project management is related to ______ project.
 (a) one
 (b) two
 (c) three
 (d) many

 8. Quality management is related to ______ project.
 (a) one
 (b) two
 (c) three
 (d) many

 Software Testing: Principles and Practices402

 9. Defect density = ______ / size of product
 (a) Number of defects
 (b) Number of test cases
 (c) Number of attributes
 (d) none of the above

 10. PUM should be ______.
 (a) high
 (b) low
 (c) average
 (d) none of the above

 11. Customer satisfaction is usually measured through various methods of customer sur-
veys via the ______ point scale.

 (a) 3
 (b) 4
 (c) 5
 (d) 6

 12. BMI = (Number of problems ______ during the month / Number of problem arrivals dur-
ing the month) × 100

 (a) closed
 (b) opened
 (c) none of the above

 13. If BMI is larger than 100, it means the backlog is ______.
 (a) increased
 (b) reduced
 (c) remains same
 (d) none of the above

REVIEW QUESTIONS

 1. How does a process affect the quality of a product?

 2. Take a project and prepare a list of all the categories of cost of quality in it.

 3. What is the difference between quality management and project management? List the
various activities under both.

 4. How does failure costs reduce if we invest in prevention and appraisal activities? Explain
with an example.

 5. Differentiate quality control, quality assurance, and quality management.

 6. Defi ne the following metrics:
 (a) Defect density
 (b) PUM

403Software Quality Management l

 (c) BMI
 (d) Fix responsiveness
 (e) Fix quality

 7. Explain the various activities performed in the procedural approach for quality manage-
ment.

 8. Explain the various activities performed in the quantitative approach for quality
management.

 9. What is CMMI? What is the difference between CMMI and CMM?

 10. Search the literature on SPICE quality model and compare it with CMM.

 Software Testing: Principles and Practices404

We have already discussed that software testing is
more a systematic process than an intuitive one.
Therefore, there should be ways or models for mea-
suring its maturity. The world is working on mea-
surements of the software development processes
like CMM, but little attention has been given to
measuring the maturity level of a testing process.
Many organizations strive hard to get better results
out of their testing process. But in the absence of a
standardized testing process, they are not able to
implement the best practices for software testing.

 There are many questions regarding the imple-
mentation of a testing process. How should you

organize and implement the various testing activities? How should these
activities correlated with organizational goals? How should one measure the
performance of one testing process? What are the key process areas to improve
the current testing process? Whenever an organization plans to make invest-
ments in testing practices, the problem of test process assessment arises. We are
dependent on conventional SQA models like CMM. However, CMM does
not adequately address the testing process or testing-related issues. Thus, it is
evident that while we have a standard for measuring the software development
process, we also need to have a testing process maturity measurement model.

Some work has been done in the direction of developing the models of testing
maturity. The prime purpose of these test maturity models was to provide a
foundation for testing process improvement. Many models came up around
1995–96 for assessing the testing process maturity. Some of them have been
developed based on the concepts already established in CMM. One of the

Chapter

14
Testing Process Maturity Models

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Testing process should be measured for

its maturity and improvement
 � Various test maturity models for assessment

and improvement of test process
 � Test Improvement Model (TIM)
 � Test Process Improvement (TPI) Model
 � Test Organization Model (TOM)
 � Test Maturity Model (TMM)

405Testing Process Maturity Models l

major models that has emerged is TMM (Testing Maturity Model), developed
by Ilene Burnstein of Illinois Institute of Technology. Another model is TPI
(Test Process Improvement), developed by Martin Pol and Koomen. These
models provide a list of key process areas according to the test process activities
and provide a formal basis for assessing any given system of software testing.

This chapter provides the details of all the major test process maturity mod-
els developed so far. The key process areas, levels, scope, and other details are
discussed for these models.

14.1 NEED FOR TEST PROCESS MATURITY

The basic underlying goal for every process is to have continuous process
improvement. The testing process should also be designed such that there
is scope of its continuous improvement. It merges with our general goals of
software development using software engineering, i.e. the software should be
tested such that it is released on time, within budget, and is of high quality. But,
test process improvement or test process maturity should be understood in
the sense of testing terminology, also leading to the goals mentioned above.

There are some key process areas under which we should recognize the
testing activities and concentrate on them so that these goals are achieved.
However, there should be a mechanism or model which informs us whether
the current practices of test process are suffi cient or not. If they are not able to
give the desired results, then we need to understand and work according to the
key process areas and reach a desired level of that test process. The following
are some of the reasons why test process maturity models are important:

 � The progress and quality of the whole test process should be measured and
the results should be used as input for further test process improvement.

 � The testing process steps, i.e. test planning, design, execution, etc. are in
place. There is a systematic fl ow of these activities in the organization.

 � Testing maturity model provides important information to the testers
and management, enabling them to improve the software quality.

 � The model should be able to improve the process such that it provides
information about the bug’s source, i.e. the exact location of their exis-
tence, leading to minimization of correction costs.

 � The model should be able to improve the process such that it detects
high-priority or criticality bugs early.

 Software Testing: Principles and Practices406

14.2 MEASUREMENT AND IMPROVEMENT OF A TEST PROCESS

To measure and improve an existing test process, the following steps are used
[145]:

Determine target focus areas of test process Why do you want to measure
or improve your current testing process? This question should be asked to
realize what your long-term goal is. Without realizing the goals, you cannot
improve the test process in reality. For example, you may have the target
focus on shortening the time-frame of the test process. It may be possible that
testing activities are not performed in order, so you want to have a proper test
organization in place.

Analyse the testing practices in the current testing process Look for the strong
and weak points of the current test process and analyse the aspects which are
lacking.

Compare the current practices with a test maturity model Every test activity
should be compared with a test maturity model in order to get the best test
practices in a process.

Determine key process areas Based on the analysis done in the previous step,
list the key process areas where the current process needs attention.

Develop a plan Depending on the key process areas recognized, develop a
plan and suggest changes to nullify all the weak points of a process. Based on
the suggestions, a modifi ed test process is developed.

Implement the plan Implement the developed plan to improve the existing
test process.

14.3 TEST PROCESS MATURITY MODELS

Around 1996, many models were developed to measure the maturity of a test
process. Some of the models are discussed here.

14.3.1 TESTING IMPROVEMENT MODEL
The testing improvement model (TIM) was developed by Ericson, Subotic,
and Ursing [144]. TIM is used to identify the current state of practice in key
areas, and it further suggests ways in which the weakness of a key area can be
removed. TIM consists of a

 (i) maturity model, and an (ii) Assessment procedure.

407Testing Process Maturity Models l

Maturity Model
TIM consists of four levels, each consisting of key areas. These are discussed
below:

 � Baselining A baseline work for all the testing activities is established.
The test personnel are assigned responsibilities and every work is docu-
mented.

 � Cost-effectiveness After establishing a baseline, efforts are made to im-
prove the cost-effectiveness of testing activities. The focus is on early
detection of bugs, training, and re-use.

 � Risk-lowering Risk management is to have a plan that addresses how to
deal with the undesired effects. For this purpose, it is required that the
testing team communicates and cooperates with the development team.
Ideally, the testing function should participate in all development work
and meetings. At the risk-lowering level, metrics are put to use. Metrics
are used for determining the fulfi llment of test objectives, analysing the
cost/benefi ts of test activities in order to justify expenses, and detecting
fault-prone test objects.

 � Optimizing Optimizing means to move towards continuous improve-
ment. The test process should be able to measure the quality and have
a base for improvement.

Key areas of TIM
The fi ve key areas of TIM are:

 � Organization

 � Planning and tracking

 � Testware

 � Test cases

 � Reviews

Each key area consists of related activities distributed over the four levels.

The Assessment Procedure of TIM
The assessment is performed as interviews, with strategically selected repre-
sentatives from the organization. The results of the interviews are analysed
and presented as ‘maturity profi le’, where the organization’s score for each
key area is given. Based on the maturity profi le, an improvement plan is de-
veloped, considering the needs and visions of the organization.

 Software Testing: Principles and Practices408

14.3.2 TEST ORGANIZATION MODEL (TOM)
This model emphasizes that the main hurdles in improving a test process is
not only the technical issues, but organizational issues are also responsible.
Therefore, while designing the test maturity model, organizational issues
should also be considered which have been neglected in other models. Thus,
the purpose of TOM is to identify and prioritize the organizational bottle-
necks and generate solutions for these problems. This model consists of the
following components [143]:

 � Questionnaire to identify and prioritize symptoms

 � Improvement suggestions

Questionnaire
It focuses on organization issues, as discussed above. Therefore, most of the
questions will be answered by management personnel. There are 20 questions
in total. This questionnaire serves to calculate a TOM level. The questions are
answered with a score of 1–5. The questionnaire has four parts. Part 1 and
Part 2 are meant for administrative and analysis purposes. Part 3 and Part 4
are used to calculate a TOM level. The various parts are discussed here:

Part 1 This part has questions on the organization, e.g. name of the organiza-
tion, address, employee details, turnover, etc.

Part 2 It is the data about the assessor, so that the person in the organization
can be contacted.

Part 3 The questions related to objectives and constraints are designed in this
part. But the answers are in the form of a rating from 1–5. It aims to prioritize
the objectives of the organization.

Part 4 Questions related to the symptoms of poor test process maturity are
raised here. There are 20 symptoms. Again, the answers are in the form of a
rating. Here, there are two ratings. First rating is the maturity score related
to every symptom that shows various maturity levels of that symptom. The
maturity scores are categorized in three parts: low (score 1), medium (score
3), and high (score 5). If you feel that your score is in between, then you can
provide 2 or 4 as well. Second rating is the impact level of that symptom which
is answered in the form of priority. Again, there are priority levels from 1 to 5.
A priority 1 symptom can be ignored. A priority 5 is extremely important and
must be addressed.

All ratings are added and a TOM level is calculated.

409Testing Process Maturity Models l

Improvement Suggestions
Based on the TOM level, the model provides testing improvements based on
a library of 83 potential improvements. Based on the assessment data entered,
the model may generate up to 70 prioritized improvement suggestions.

14.3.3 TEST PROCESS IMPROVEMENT (TPI) MODEL

The TPI model was developed by Koomen and Pol in 1997 [140,141]. It
contains the following parts (Fig. 14.1):

 � Key process areas

 � Maturity levels

 � Test maturity matrix

 � Checklist

 � Improvement suggestions

Test maturity matrix

KPA

Levels

Checkpoints
Improvements
suggestions

Figure 14.1 TPI model structure

In the TPI model, all key areas are not considered equally important for
the performance of the whole test process. We can map some dependencies
between the different key areas and levels. This mapping has been repre-
sented as a test maturity matrix in this model. Moreover, the concept of check-
points at every level has been introduced to verify that the activities have
been implemented at a level. If a test process passes all the checkpoints of a
certain level, then the process is classifi ed at that level. Improvement suggestions
have also been added to the model, giving instructions and suggestions for
reaching a certain maturity level.

 Software Testing: Principles and Practices410

Key Process Areas
In each test process, certain areas need specifi c attention in order to achieve
a well-defi ned process. These key areas are the basis for improving and struc-
turing the test process. Within the TPI model, 20 key areas have been recog-
nized to determine the maturity of a test process. These 20 areas are further
categorized into four groups identifi ed as cornerstones according to the Tmap
methodology [142]. These cornerstones, within each test process, require
some degree of attention. For a balanced test process, the development of the
cornerstones should be in balance. The cornerstones are (see Fig. 14.2):

 � Lifecycle (L) of test activities related to the development cycle.

 � Good organization (O).

 � Right infrastructure and tools (I).

 � Usable techniques (T) for performing the activities.

T

L

OI

Figure 14.2 TPI key area groups

Lifecycle-related key areas

Test strategy The test strategy goal is to detect critical bugs early in the lifecycle.
Moreover, there should be a complete mapping defi ned in the strategy to show
which requirements and quality risks are discovered by what tests.

Lifecycle model The selected lifecycle model must be clearly defi ned with
phases. Activities must be defi ned under each phase and all the details of ev-
ery activity like goals, inputs, processes, outputs, dependencies, etc. must be
mentioned.

Moment of involvement It emphasizes the concept of early testing. Testing
starts as soon as requirements specifi cations are ready, so as to have less
number of bugs. Debugging also becomes easy and less costly.

411Testing Process Maturity Models l

Techniques-related key areas

Estimating and planning Estimate the resources needed for testing and plan
all the test activities.

Test specifi cation techniques Defi ne a standardized test specifi cation technique
through which good quality test cases can be designed.

Static test techniques Defi ne the techniques and plan for performing static
testing.

Metrics Develop and defi ne standard metrics to measure every test activity.

Infrastructure and tools-related key areas

Test automation/tools Testing tools can have signifi cant benefi ts, like shorter
lead-times and more testing fl exibility. Recognize and deploy the tools required
at various levels of testing.

Test environment It consists of the following components: procedures, hard-
ware, software, means of communication, facilities for building and using da-
tabases and fi les. The environment has a signifi cant infl uence on the quality,
lead-time, and costs of the testing process.

Offi ce environment It includes all the requirements related to the physical
look of the environment where testing is being conducted.

Organization-related key areas

Commitment and motivation All the personnel issues which motivate the
testers to be committed towards their responsibility are recognized.

Test functions and training Form a team of skilled persons and provide train-
ing, if required.

Scope of methodology The aim is to have a methodology which is suffi ciently
generic to be applicable in every situation, and contains enough details so that
it is not necessary to rethink the same items again each time.

Communication Good communication channels facilitate smooth running of
a test process and create good conditions to optimize the test strategy.

Reporting There should be a proper mechanism for reporting bug, status of
quality, etc.

Defect management Track the lifecycle of a defect and analyse the quality
trends in the detected defects. Such analysis is used, for example, to give well-
founded quality advice, process improvement, etc.

 Software Testing: Principles and Practices412

 Testware management Every activity of testing must be documented and
managed in a standard template.

 Test process management To control every activity/process, four steps are
essential: planning, execution, maintaining, and adjusting. These steps need
to be identifi ed for every activity/process.

Evaluation Evaluate all the items being produced, such as SRS, SDD, etc. by
testing the intermediate stages of lifecycle and after the product is ready.

Low-level testing Unit testing and integration testing are well-known low-level
tests. Low-level testing is effi cient because it requires little communication and
often, the fi nder is both the error-producer as well as the one who corrects the
defect.

Maturity Levels
There are four basic levels in TPI consisting of 14 scales. Each level consists
of a specifi c range of scales. The maturity level is assigned to every KPA.
Further, levels (A, B, C, D) are used to assign a degree of maturity to each
key area.

The maturity levels with their allotted scales are:

 � Ad hoc (Scale 0)

 � Controlled (Scale 1–5)

 (i) Defi ned process steps

 (ii) Defi ned test strategy

 (iii) Test specifi cation techniques

 (iv) Bug reporting

 (v) Testware management

 � Effi cient (Scale 6–10) The testing process is automated and integrated
in the development organization.

 � Optimizing (Scale 11–13) Continuous improvement to optimize the
organization is a part of the regular methods of the organization.

 Test Maturity Matrix
If we want to look at the key areas which need attention and improvement,
all the information on maturity of a key area can be maintained in a ma-
trix consisting of key area and maturity levels with their scales, as shown in
Fig. 14.3. The main purpose of the matrix is to show the strong and weak
points of the current test process. This helps in prioritizing the actions to be
taken for improvement.

413Testing Process Maturity Models l

Key Area Ad hoc Controlled Efficient Optimizing

Test
Strategy

Life
Cycle
Model

0 1 2 3 4 5 6 7 8 9 10 11 12 13

… Increasing Test Maturity

Figure 14.3 Test maturity matrix

Checkpoints
Checkpoints are the helping points to fi nd what a maturity level demands.
They are maintained in the form of a list of questions. If the answers to these
questions are positive, it means the level is successfully achieved.

Improvement Suggestions
 TPI model includes suggestions to improve the test process. These are dif-
ferent kinds of hints and ideas that will help to achieve a certain level of test
maturity.

14.3.4 TEST MATURITY MODEL (TMM)
TMM was developed in 1996 at the Illinois Institute of Technology [2,3]. It
has two major components:

 1. A maturity model in which fi ve maturity levels are distinguished (as in
 CMM)

 2. An assessment model containing an assessment procedure, an assess-
ment instrument/questionnaire, team training, and selection criteria

TMM Components
The TMM structure contains several components, which are described here.
Figure 14.4 shows the framework of TMM.

 Maturity levels Each maturity level represents a specifi c testing maturity in
the evolution to a matured testing process. Each upper level assumes that the
lower level has practices that have been executed.

 Software Testing: Principles and Practices414

 There are fi ve levels within TMM:

 � Initial

 � Phase defi nition

 � Integration

 � Management and measurement

 � Optimization/defect prevention and quality control

Maturity levels

Maturity goals

Maturity sub-
goals

Activities/tasks/
responsibilities

Manager

Development/tester

Client

Figure 14.4 Framework of TMM

Maturity goals To achieve a certain maturity level in the model, some goals
have been identifi ed that must be addressed. The maturity goals of TMM are
the same as what we call the key process areas in CMM. Goals are identifi ed
for each level, except for level 1.

Maturity sub-goals For each maturity goal, the sub-goals that are more concrete
are defi ned. They defi ne the scope, boundaries, and accomplishments for a
particular level.

Activities, tasks, and responsibilities (ATRs) To implement the sub-goals
identifi ed, there should be a defi ned set of activities and responsibilities.
Therefore, a set of ATRs are designed for each sub-goal. The ATRs address
implementation and organizational adaptation issues at a specifi c level, targeting
to improve the testing capability. The responsibility for these activities and
tasks is assigned to the three key participants in the testing process: managers,
developers/testers, and users/clients.

Examples of ATRs are:

 � Upper management provides adequate resources and funding from the
committee for testing and debugging (manager view).

415Testing Process Maturity Models l

 � Developers/testers work with managers to set testing and debugging
goals (developers/testers view).

 � The testing goals for each level of testing: unit, integration, system, and
acceptance are set (developers/testers view).

 � Users/clients meet with developers/testers to give their view of the na-
ture of testing/debugging and policies. These goals and policies should
represent their interests with respect to product quality (users/clients
view).

 TMM Levels
TMM has been deliberately designed similar to CMM. The idea is to ensure
the growth in testing maturity is in tune with the growth in software capability
maturity. The characteristics of fi ve TMM levels are given below, as shown
in Fig. 14.5.

Optimization, defect prevention, and QC

Management and measurement

Integration

Phase definition

Initial
1

2

3

4

5

 Figure 14.5 Five levels of TMM

Initial level It is characterized by a random testing process. Testing activities
are performed after coding in an ad-hoc way. The objective of testing at this
level is to show only the functioning of the software.

Phase defi nition Testing and debugging are considered separate activities at
this level. Testing still follows coding, but is a planned activity. The primary
goal of testing at this maturity level is to show that the software meets its
specifi cations.

Integration It assumes that testing is no longer a phase after coding; it is
integrated into the entire software lifecycle and gets early testing consideration.
Test objectives are established with respect to the requirements based on user
and client needs and are used for test case plan, design, and success criteria.
There is a test organization in place consisting of various persons with assigned
responsibilities.

Management and measurement At this level, testing is recognized as a measured
and quantifi ed process. Testing starts as soon as the SRS is prepared, i.e. reviews

 Software Testing: Principles and Practices416

at all phases of the development process are now recognized as testing
and quality control activities. Testware is maintained for reuse, defects are
adequately logged.

Optimization, defect-prevention, and quality control At this level, the testing
process is defi ned and managed. The test process can be measured for costs
and other parameters and effectiveness can be monitored. The concept of bug-
prevention instead of bug-detection and quality control are practiced. There
are mechanisms put in place to fi ne-tune and improve the testing process.

Maturity goals and sub-goals As discussed above, TMM levels include various
goals and under each goal, there are sub-goals. These goals and sub-goals are
necessary in order to measure a test process maturity and correspondingly focus
on those goals and sub-goals in which the process is defi cient. If everything
is defi ned in the model in the form of goals, sub-goals, and ATRs, then it
becomes easy to measure the maturity of the process. The goals at each level
are discussed below, as shown in Table 14.1.

Table 14.1 TMM maturity goals by level

Maturity Level Goals

Level 1 --

Level 2 Develop and establish a test policy.
Develop testing and debugging goals.
Initiate a testing planning process.
Institutionalize basic testing techniques and methods.

Level 3 Establish a software test organization.
Establish a testing training program.
Integrate testing into software life cycle.
Control and monitor test process.

Level 4 Establish an organization-wide review program.
Establish a test measurement program.
Software quality evaluation.

Level 5 Application of process data for defect-prevention.
Quality control.
Test process optimization.

Level 2 – Phase Defi nition The maturity goals and sub-goals at Level 2 are
given below.

Develop and establish a test policy An organization should clearly set the
objectives and accordingly, develop a test policy. This goal aims to develop
and establish a test policy and an overall test approach for the organization.
The sub-goals, under this goal, are:

417Testing Process Maturity Models l

 1. Defi ne the organization’s overall test objectives aligned with the overall
business.

 2. Objectives should be translated into a set of high-level key test per-
formance indicators. The establishment of performance objectives and
indicators provides clear direction and communication of expected and
achieved levels of performance.

 3. Defi ne an overall test approach like the V-approach.

 4. Identify the levels of testing in the test approach, such as unit, integra-
tion, and system testing levels and identify the goals, responsibilities,
and main tasks at each level.

Develop testing and debugging goals This goal emphasizes that testing and
debugging are two separate processes. Testing process now is a planned activity
with identifi ed objectives and test approach, rather than a random process.
The sub-goals, under this goal, are given below:

 1. Make separate teams for testing and debugging.

 2. The teams must develop and record testing goals.

 3. The teams must develop and record debugging goals.

 4. The documented testing and debugging goals must be distributed to all
project managers and developers.

 5. Test plans should be based on these testing goals.

Initiate a test planning process If we want to make a process repeatable,
defi ned, and managed, then it must be planned properly. The test planning
may involve several activities, such as analysing risks, making the test
strategy according to the test phase, and identifying risks and specifi cations
for designing the test cases. The sub-goals, under this goal, are:

 1. An organization-wide test planning team must be formed.

 2. A framework for organization-wide test planning policies must be estab-
lished and supported by the management.

 3. A test plan template must be developed and made available to project
managers and developers.

 4. Test plan should be prepared with the inputs from the requirement
specifi cations.

Institutionalize basic testing techniques and methods Some testing techniques
and tools must be identifi ed so that the test cases are designed and executed
effectively. Examples of basic techniques and methods are black-box and
 white-box testing strategies, the use of a requirements traceability matrix, etc.

 Software Testing: Principles and Practices418

The sub-goals, under this goal, are:

 1. An organization-wide test technology group must be formed to study,
evaluate, and recommend a set of basic testing techniques and methods,
and recommend a set of simple tools to support them.

 2. Management must establish and encourage a set of policies that en-
sures recommended techniques and methods are consistently applied
throughout the organization.

Test environment The idea under this goal is to establish and maintain an
integrated software and hardware environment in which it is possible to
execute the tests in a manageable and repeatable way. The major concern is
that the environment should be closer to the actual one, so that more bugs can
be found. The sub-goals, under this goal, are:

 1. Test environments are specifi ed and their availability on time is ensured
in the projects.

 2. For higher test levels, the test environment is as ‘real-life’ as possible.

 3. Test environments are managed and controlled according to documented
procedures.

Level 3 – Integration The maturity goals and sub-goals at Level 3 are given
below.

Establish a software test organization A test organization including the vari-
ous test persons with their assigned responsibilities is necessary, as testing in-
cludes many complex activities. The sub-goals under this goal are:

 1. An organization-wide testing team must be established with a hierarchi-
cal order of various team members.

 2. Roles and responsibilities must be defi ned for the testing team.

 3. The testing team must participate in discussions with the customer and
the developer to incorporate user needs, requirements, and other design
issues into the testing process.

Establish a technical training program A technical training program for test
planning, testing methods, standards, techniques, review process, and tools
should be provided to the testing team. Training includes in-house courses,
self-study, and mentoring programs. The sub-goals, under this goal, are:

 1. Training needs, goals, and plans must be developed from time to time.

 2. Management must establish an organizational training program, based
on identifi ed goals and plans.

419Testing Process Maturity Models l

 3. An in-house training group must be established with the tools, facilities,
and materials in place.

Integrate testing into the software lifecycle The early testing concept is
recognized in this goal. All the team members of development and testing
should realize at this level that the testing activity should be conducted
parallel to all lifecycle phases in order to get a high-quality software.
Testing activities must start as soon as the SRS is prepared. The sub-goals,
under this goal, are:

 1. Identify the phases of SDLC where testing will be performed in order to
integrate the testing activities into the software lifecycle.

 2. Develop a customized V-model, based on defi ned testing sub-phases.

 3. Standard defi nitions must be developed for the testware to be used in
the organization.

 4. Testers must participate in review meetings like requirement specifi ca-
tions with analysts, design meetings with developers in order to get famil-
iar with the customer, level requirements and all design issues. This will
help testers in reviewing, planning, and designing every test activity.

Control and monitor the testing process Several controlling and monitoring
activities ensure that the testing process proceeds according to the plan. Every
test activity must be tracked and controlled according to the test plans. The
sub-goals are:

 1. The organization must develop mechanisms and policies to control and
monitor the testing process.

 2. A set of basic test process-related measurements must be defi ned,
recorded, and distributed.

 3. A set of corrective actions and contingency plans must be developed,
recorded, and documented for use when the testing deviates signifi cant-
ly from what is planned.

Level 4 – Management and Measurement At this level, the meaning of
‘testing activity’ is expanded such that reviews, inspections, and walkthroughs
at all phases of the lifecycle are also a part of it. Every testware is verifi ed.
This expanded defi nition of testing covers activities typically categorized as
 verifi cation and validation activities. Moreover, the controlling and monitoring
functions discussed in the previous level are now supported by an established
test measurement program. Test cases and procedures are stored for reuse and
regression testing. The maturity goals and sub-goals at Level 4 are discussed
here.

 Software Testing: Principles and Practices420

Establish an organization-wide review program Reviews are conducted at
all the phases of the lifecycle to identify, catalog, and remove defects from
software work products and to test work products early and effectively. The
sub-goals are:

 1. The upper management must develop review policies, support the re-
view process, and take responsibility for integrating them into the orga-
nizational culture.

 2. The testing team and the SQA team must develop and document goals,
plans, follow-up procedures, and recording mechanisms for reviews
throughout the software lifecycle.

 3. Items for review must be specifi ed by the above-mentioned two teams.

 4. Personnel must be trained so that they understand and follow proper
review policies, practices, and procedures.

Establish a test measurement program A formalized test-measurement pro-
gram should be prepared keeping in view the broad organizational goals.
Measurements may include test progress, test costs, data on errors and defects,
and product measures such as software reliability. The sub-goals are:

 1. Organization-wide test measurement policies and goals must be defi ned.

 2. A test measurement plan must be developed with mechanisms for data
collection, analysis, and application.

 3. Action plans that apply measurement results to test process improve-
ments must be developed and documented.

Software quality evaluation The test-measurement program must be correlated
with the quality goals of the software and these goals must be evaluated through
the metrics developed. The sub-goals, under this goal, are:

 1. Quality goals must be developed and known to all team members.

 2. The testing process must be structured, measured, and evaluated to en-
sure that the quality goals can be achieved.

Level 5 – Optimization, Defect-prevention, and Quality control The maturity
goals and sub-goals at Level 5 are given below:

Application of process data for defect-prevention At this level, organizations
must be able to learn from their bug history and prevent the bugs before they
occur. Bug-prevention is applied across all projects and across the organization.
A defect-prevention team is responsible for the defect-prevention activities,
interacting with developers to apply defect-prevention activities throughout
the lifecycle. The sub-goals, under this goal, are given below:

421Testing Process Maturity Models l

 1. A bug-prevention team must be established with management support.

 2. Bugs history must be recorded at every phase of lifecycle.

 3. A causal analysis mechanism must be established to identify the root
causes of bugs.

 4. Action plans must be developed through the interaction of managers,
developers, and testers to prevent identifi ed defects from recurring.
These plans must be tracked.

 Quality control At this level, organizations use statistical sampling, measure-
ments of confi dence levels, trustworthiness, and reliability goals to drive the
testing process and consequently control the quality parameters. The sub-
goals, under this goal, are:

 1. SQA group must establish quality goals for software products such as
product unit defectiveness, confi dence levels, and trustworthiness.

 2. Test managers must incorporate these quality goals into the test plans.

 3. The test group must be trained in statistical methods.

 Test process optimization There is scope of continuous improvement for any
test process. Therefore, the test process is quantifi ed and can be fi ne-tuned
so that it is optimized. Optimizing the testing process involves evaluation of
every test activity and adaptation of improvements. The sub-goals are:

 1. Assign the responsibility to monitor the testing process and identify ar-
eas for improvement to a group.

 2. A mechanism must be in place to evaluate new tools and technologies
that may improve the capability and maturity of the testing process.

 3. The effectiveness of the testing process must be continually evaluated in
a measurable and optimal manner.

The key process areas (KPAs) of each level are discussed in the tables below.

Table 14.2 KPAs at Level 2

KPAs Associated activities

Develop testing and
debugging goals

Various goals, tasks, activities, and tools for each must be identifi ed.
Responsibilities for each must be assigned.

Initiate a testing planning
process

Focus on initiating a planning process which involves stating objectives,
analysing risks, outlining strategies, and developing test design
specifi cations and test cases. Also addresses the allocation of recourses
and responsibilities for testing on the unit, integration system, and
acceptance levels.

Institutionalize basic testing
techniques and methods

Emphasis on applying basic testing techniques and methods to improve
test process capability across the organization.

 Software Testing: Principles and Practices422

Table 14.3 KPAs at Level 3

KPAs Associated activities

Establish a software
test organization

Establishment of a software test organization to identify a group of people who
are responsible for testing.

Establish a testing
training program

Establishment of a testing training program to ensure a skilled staff is available
to the testing group.

Integrate testing into
software life cycle

Integration of testing sub-phases into software life cycle. Also a mechanism
must be established that allows testers to work with developers, which
facilitates testing activity integration.

Control and monitor
test process

Several controlling and monitoring activities are performed which provide
visibility and ensure that the testing process proceeds according to plan.

Table 14.4 KPAs at Level 4

KPAs Associated activities

Establish an organization-
wide review program

Establishment of a review program to remove defects from software work
products and to test work products early and effectively.

Establish a test
measurement program

Organizational–wide test measurement policies and goals must be
defi ned as well as action plans that apply measurement results to test
process improvements must be developed and documented.

Software quality
evaluation

Software quality evaluation involves defi ning measurable quality attributes
and defi ning quality goals to evaluate software work products. Quality
goals are tied to testing process adequacy.

Table 14.5 KPAs at Level 5

KPAs Associated activities

Application of process
data for defect-
prevention

A defect-prevention team must be established with management support
and the defects injected or removed must be identifi ed and recorded during
each phase.

Quality control Organizations use statistical sampling, measurement of confi dence levels,
trustworthiness, and reliability goals to drive the testing process.

Test process optimization Testing process is subjected to continuous improvement across projects
and across the organization. A mechanism must be in place to evaluate new
tools and technologies that may improve the capability and maturity of the
testing process.

The Assessment Model
The TMM assessment model (TMM-AM) supports self-assessment of the test-
ing process. The TMM-AM has three major components:

The tools for assessment It contains the tools for assessing the test process. For
example, a questionnaire can be prepared. The questions designed may relate
to maturity goals and process issues described at each level.

423Testing Process Maturity Models l

The assessment procedure The assessment procedure will give the assessment
team guidelines on how to collect, organize, analyse, and interpret the data
collected from questionnaires and personal interviews.

Training procedure A training procedure should be used to instruct the
personnel in test process assessment.

SUMMARY

TMM models have been developed to measure and improve the maturity of a testing process.
These models can be used along with SDLC maturity models like CMM. These models cannot
replace SDLC maturity models, but they can assess an existing test process and suggest the
areas where an organization can improve. Thus, an organization can use both SDLC and STLC
maturity models in parallel.
 This chapter discusses the importance, development, levels, and key process areas of vari-
ous models: TPI, TOM, TIM, and TMM. The key process areas are important to recognize an
organization, what its capabilities are, and what type of testing process it uses. Therefore, fi rst
identify the key process areas, check all of them with your organization, rate the organization at
a maturity level, and strive for another higher level.
 The major motive behind the maturity models is to produce good quality software by measur-
ing the testing process. The test maturity models discussed in this chapter help in (i) improving
the test process, (ii) attaining the next CMM level, (iii) identifying the areas to be improved, (iv)
identifying the testing processes that can be adopted company-wide, and (v) providing a road-
map for implementing improvements.

Let us review the important concepts described in this chapter:

 � The test maturity model informs whether the current practices of test process are suf-
fi cient or not.

 � Testing maturity model provides important information to the testers and management,
enabling them to improve the software quality.

 � The testing improvement model (TIM) is used to identify the current state of practice
in key areas and further, it suggests ways in which the weakness of a key area can
be removed. It consists of a maturity model and an assessment procedure. The fi ve
key areas of TIM are: organization, planning and tracking, testware, test cases, and
reviews.

 � Test organization model (TOM) identifi es and prioritizes the organizational bottlenecks
and generates solutions for these problems. This model consists of the following
components: (i) questionnaire to identify and prioritize symptoms and (ii) improvement
suggestions.

 � Test process improvement (TPI) model does not consider all key areas equally impor-
tant for the performance of the whole test process. We can map some dependencies
between the different key areas and levels. This mapping has been represented as a test
maturity matrix in this model. Moreover, the concept of checkpoints at every level has

 Software Testing: Principles and Practices424

been introduced to verify that the activities have been completed at a level. It contains
the following parts: key process areas, maturity levels, test maturity matrix, a checklist,
and improvement suggestions.

 � Within the TPI model, 20 key areas have been recognized to determine the maturity of
the test process. These areas are further categorized into four groups identifi ed as the
cornerstones, namely: lifecycle (L) of test activities related to the development cycle,
good organization (O), right infrastructure and tools (I), and usable techniques (T) for
performing the activities.

 � There are four basic maturity levels in TPI consisting of 14 scales. Each level consists of
a specifi c range of scales. The maturity level is assigned to every KPA.

 � In TPI, all the information of maturity of a key area can be maintained in a matrix consist-
ing of key areas and maturity levels with their scales known as test maturity matrix.

 � Test maturity model (TMM) has two major components: a maturity model with fi ve matu-
rity levels and an assessment model.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. The total number of questions in a TOM questionnaire are ______.

 (a) 30

 (b) 20

 (c) 10

 (d) 15

 2. The TMM is characterized by ______ testing maturity levels.

 (a) 2

 (b) 3

 (c) 4

 (d) 5

 3. Initial level is at TMM level ______.

 (a) 1

 (b) 2

 (c) 3

 (d) 4

 4. Integration is at TMM level ______.
 (a) 1
 (b) 2
 (c) 3
 (d) 4

425Testing Process Maturity Models l

 5. Management and measurement is at TMM level ______.
 (a) 1
 (b) 5
 (c) 3
 (d) 4

 6. Optimization, defect-prevention, and quality control measurement is at TMM level
______.

 (a) 1
 (b) 5
 (c) 3
 (d) 4

 7. Phase defi nition measurement is at TMM level ______.
 (a) 1
 (b) 2
 (c) 3
 (d) 4

 8. The maturity goal ‘develop testing and debugging goals’ is at TMM level ______.
 (a) 1
 (b) 2
 (c) 3
 (d) 4

 9. The maturity goal ‘establish an organization-wide review program’ is at TMM level
______.

 (a) 1
 (b) 2
 (c) 3
 (d) 4

 10. The maturity goal ‘control and monitor the testing process’ is at TMM level ______.
 (a) 5
 (b) 2
 (c) 3
 (d) 4

 11. The maturity goal ‘quality control’ is at TMM level ______.
 (a) 5
 (b) 2
 (c) 3
 (d) 4

 Software Testing: Principles and Practices426

REVIEW QUESTIONS

 1. What is the need of a test process maturity model?

 2. Explain all the key areas mentioned in TIM.

 3. Elaborate the assessment procedure in TIM.

 4. What are the key areas and maturity levels mentioned in TPI?

 5. What is the meaning of test maturity matrix in TPI? How do you develop this matrix?

 6. How many levels are there in TMM?

 7. Explain all the key process areas at each TMM level.

 8. Compare and contrast the test process maturity models mentioned in the chapter.

 9. What is the correlation between CMM and TMM?

 10. How does TMM help in process improvement?

 11. Develop a checklist for the activities to be done in all TMM levels, and fi nd out if your
organization follows them.

The testing tools provide automation to almost ev-
ery technique discussed in Part II. Therefore, test-
ing tools can be adopted for all static and dynamic
testing techniques to save time and money. This
part discusses the need for automation and the vari-
ous categories of testing tools. However, the testing
tools are costly. Therefore, these tools should be se-

lected carefully, keeping in mind their use in STLC. First, analyse the need for automation
and then, go for the testing tool. One should not rely completely on testing tools. They cannot
replace the whole testing activity. Thus, automated tools are merely a part of the solution and
they are not a magical answer to the testing problem.

This part will make ground for the following concepts:

 ∑ Need for automation

 ∑ Static and dynamic tools

 ∑ Testing activity tools

 ∑ Costs incurred in testing tools

 ∑ Guidelines for automated testing

 ∑ Overview of some commercial tools

Test Automation

Part

5
CHAPTER

Chapter 15:
Automation and Testing Tools

As seen in Chapter 2, testing tools are a part of
testing tactics. The testing techniques, either stat-
ic or dynamic, can be automated with the help of
software tools which can greatly enhance the soft-
ware testing process. Testing today is not a manual
operation but is assisted with many effi cient tools
that help the testers. Test automation is the most
glamorous part of software testing. Testing automa-
tion is effective such that any kind of repetitive and
tedious activities can be done by machines, and
testers can utilize their time in more creative and
critical work.
 In the last decade, a lot of testing tools have been developed for use through-
out the various SDLC phases. But the major part is the selection of tools from
a pool of various categories of tools. Apart from the high cost of these tools,
a single tool may not cover the whole testing automation. Thus, tools must
be selected according to their application and needs of the organization. Au-
tomation is bound to fail if chosen for wrong reasons at the wrong places in
SDLC.

However, automated testing should not be viewed as a replacement for
manual testing. There is a misconception among professionals that software
testing is easy as you only run the test cases with automated tools. This is the
reason why newcomers prefer testing jobs. But the truth is that testers have
many duties in the development and it is not only about running automated
tools. There are many activities in the testing life cycle which cannot be au-
tomated and manual effort is required. Thus, automated tools are merely a
part of the solution; they are not a magical answer to the testing problem.
 Automated testing tools will never replace the analytical skills required to
conduct the test, nor will they replace manual testing. It must be seen as an
enhancement to the manual testing process [12].

Chapter

15
Automation and Testing Tools

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Need for automating the testing activities
 � Testing tools are not silver bullets to solve

all the testing problems
 � Static and dynamic testing tools
 � Selection of testing tools
 � Costs incurred in adopting a testing tool
 � Guidelines of testing automation

 Software Testing: Principles and Practices430

15.1 NEED FOR AUTOMATION

If an organization needs to choose a testing tool, the following benefi ts of au-
tomation must be considered.

Reduction of testing effort In verifi cation and validation strategies, numerous
test case design methods have been studied. Test cases for a complete software
may be hundreds of thousands or more in number. Executing all of them
manually takes a lot of testing effort and time. Thus, execution of test suits
through software tools greatly reduces the amount of time required.

Reduces the testers’ involvement in executing tests Sometimes executing the
test cases takes a long time. Automating this process of executing the test suit
will relieve the testers to do some other work, thereby increasing the parallelism
in testing efforts.

Facilitates regression testing As we know, regression testing is the most time-
consuming process. If we automate the process of regression testing, then testing
effort as well as the time taken will reduce as compared to manual testing.

Avoids human mistakes Manually executing the test cases may incorporate
errors in the process or sometimes, we may be biased towards limited test
cases while checking the software. Testing tools will not cause these problems
which are introduced due to manual testing.

Reduces overall cost of the software As we have seen that if testing time
increases, cost of the software also increases. But due to testing tools, time and
therefore cost can be reduced to a greater level as testing tools ease the burden
of the test case production and execution.

 Simulated testing Load performance testing is an example of testing where the
real-life situation needs to be simulated in the test environment. Sometimes, it
may not be possible to create the load of a number of concurrent users or large
amount of data in a project. Automated tools, on the other hand, can create
millions of concurrent virtual users/data and effectively test the project in the
test environment before releasing the product.

 Internal testing Testing may require testing for memory leakage or checking
the coverage of testing. Automation tools can help in these tasks quickly and
accurately, whereas doing this manually would be cumbersome, inaccurate,
and time-consuming.

 Test enablers While development is not complete, some modules for testing
are not ready. At that time, stubs or drivers are needed to prepare data, simulate
environment, make calls, and then verify results. Automation reduces the
effort required in this case and becomes essential.

431Automation and Testing Tools l

Test case design Automated tools can be used to design test cases also. Through
automation, better coverage can be guaranteed, than if done manually.

15.2 CATEGORIZATION OF TESTING TOOLS

A single tool may not cover the whole testing process, therefore, a variety of
testing tools are available according to different needs and users. The different
categories of testing tools are discussed here:

15.2.1 STATIC AND DYNAMIC TESTING TOOLS

These tools are based on the type of execution of test cases, namely static and
dynamic, as discussed in software testing techniques:

 Static testing tools For static testing, there are static program analysers which
scan the source program and detect possible faults and anomalies. These static
tools parse the program text, recognize the various sentences, and detect the
following:

 � Statements are well-formed.
 � Inferences about the control fl ow of the program.
 � Compute the set of all possible values for program data.

Static tools perform the following types of static analysis:

Control fl ow analysis This analysis detects loops with multiple exits and entry
points and unreachable code.

Data use analysis It detects all types of data faults.

Interface analysis It detects all interface faults. It also detects functions which
are never declared and never called or function results that are never used.

Path analysis It identifi es all possible paths through the program and unravels
the program’s control.

 Dynamic testing tools These tools support the following:

 � Dynamic testing activities.

 � Many a times, systems are diffi cult to test because several operations are
being performed concurrently. In such cases, it is diffi cult to anticipate
conditions and generate representative test cases. Automated test tools
enable the test team to capture the state of events during the execution
of a program by preserving a snapshot of the conditions. These tools are
sometimes called program monitors. The monitors perform the following
[66] functions:

 Software Testing: Principles and Practices432

 ∑ List the number of times a component is called or line of code is
executed. This information about the statement or path coverage
of their test cases is used by testers.

 ∑ Report on whether a decision point has branched in all directions,
thereby providing information about branch coverage.

 ∑ Report summary statistics providing a high-level view of the per-
centage of statements, paths, and branches that have been covered
by the collective set of test cases run. This information is important
when test objectives are stated in terms of coverage.

15.2.2 TESTING ACTIVITY TOOLS

These tools are based on the testing activities or tasks in a particular phase of
the SDLC. Testing activities can be categorized as [1]:

 � Reviews and inspections

 � Test planning

 � Test design and development

 � Test execution and evaluation

Now, we will discuss the testing tools based on these testing tasks.

 Tools for review and inspections Since these tools are for static analysis on
many items, some tools are designed to work with specifi cations but there are
far too many tools available that work exclusively with code. In this category,
the following types of tools are required:

 Complexity analysis tools It is important for testers that complexity is analysed
so that testing time and resources can be estimated. The complexity analysis
tools analyse the areas of complexity and provide indication to testers.

 Code comprehension These tools help in understanding dependencies, tracing
program logic, viewing graphical representations of the program, and
identifying the dead code. All these tasks enable the inspection team to analyse
the code extensively.

 Tools for test planning The types of tools required for test planning are:

 1. Templates for test plan documentation

 2. Test schedule and staffi ng estimates

 3. Complexity analyser

 Tools for test design and development Discussed below are the types of tools
required for test design and development.

433Automation and Testing Tools l

 Test data generator It automates the generation of test data based on a user
defi ned format. These tools can populate a database quickly based on a set of
rules, whether data is needed for functional testing, data-driven load testing,
or performance testing.

 Test case generator It automates the procedure of generating the test cases.
But it works with a requirement management tool which is meant to capture
requirements information. Test case generator uses the information provided
by the requirement management tool and creates the test cases. The test cases
can also be generated with the information provided by the test engineer
regarding the previous failures that have been discovered by him. This
information is entered into this tool and it becomes the knowledge-based tool
that uses the knowledge of historical fi gures to generate test cases.

 Test execution and evaluation tools The types of tools required for test
execution and evaluation are [1]:

 Capture/playback tools These tools record events (including keystrokes,
mouse activity, and display output) at the time of running the system and
place the information into a script. The tool can then replay the script to test
the system [22].

 Coverage analysis tools These tools automate the process of thoroughly testing
the software and provide a quantitative measure of the coverage of the system
being tested. These tools are helpful in the following:

 � Measuring structural coverage which enables the development and test
teams to gain insight into the effectiveness of tests and test suites

 � Quantifying the complexity of the design

 � Help in specifying parts of the software which are not being covered

 � Measure the number of integration tests required to qualify the design

 � Help in producing integration tests

 � Measuring the number of integration tests that have not been executed

 � Measuring multiple levels of test coverage, including branch, condition,
decision/condition, multiple conditions, and path coverage

 Memory testing tools These tools verify that an application is properly using its
memory resources. They check whether an application is:

 � Not releasing memory allocated to it

 � Overwriting/overreading array bounds

 � Reading and using uninitialized memory

 Software Testing: Principles and Practices434

 Test management tools Test management tools try to cover most of the activities
in the testing life cycle. These tools may cover planning, analysis, and design.
Some test management tools such as Rational’s TestStudio are integrated with
requirement and confi guration management and defect tracking tools, in order
to simplify the entire testing life cycle [12].

 Network-testing tools There are various applications running in the client-
server environments. However, these applications pose new complexity
to the testing effort and increases potential for errors due to inter-platform
connectivity. Therefore, these tools monitor, measure, test, and diagnose
performance across an entire network including the following:

 � Cover the performance of the server and the network

 � Overall system performance

 � Functionality across server, client, and the network

 Performance testing tools There are various systems for which performance testing
is a must but this becomes a tedious job in real-time systems. Performance testing
tools help in measuring the response time and load capabilities of a system.

15.3 SELECTION OF TESTING TOOLS

The big question is how to select a testing tool. It may depend on several fac-
tors. What are the needs of the organization; what is the project environment;
what is the current testing methodology; all these factors should be consid-
ered when choosing testing tools. Some guidelines to be followed by selecting
a testing tool are given below.

Match the tool to its appropriate use Before selecting the tool, it is necessary to
know its use. A tool may not be a general one or may not cover many features.
Rather, most of the tools are meant for specifi c tasks. Therefore, the tester
needs to be familiar with both the tool and its uses in order to make a proper
selection.

Select the tool to its appropriate SDLC phase Since the methods of testing
changes according to the SDLC phase, the testing tools also change. Therefore,
it is necessary to choose the tool according to the SDLC phase, in which testing
is to be done.

Select the tool to the skill of the tester The individual performing the test
must select a tool that conforms to his skill level. For example, it would be
inappropriate for a user to select a tool that requires programming skills when
the user does not possess those skills.

435Automation and Testing Tools l

Select a tool which is affordable Tools are always costly and increase the cost
of the project. Therefore, choose the tool which is within the budget of the
project. Increasing the budget of the project for a costlier tool is not desired. If
the tool is under utilization, then added cost will have no benefi ts to the project.
Thus, once you are sure that a particular tool will really help the project, then
only go for it otherwise it can be managed without a tool also.

Determine how many tools are required for testing the system A single tool
generally cannot satisfy all test requirements. It may be possible that many test
tools are required for the entire project. Therefore, assess the tool as per the
test requirements and determine the number and type of tools required.

Select the tool after examining the schedule of testing First, get an idea of the
entire schedule of testing activities and then decide whether there is enough
time for learning the testing tool and then performing automation with that
tool. If there is not enough time to provide training on the tool, then there is
no use of automation.

15.4 COSTS INCURRED IN TESTING TOOLS

Automation is not free. Obviously employing the testing tools incur a high
cost. Moreover, before acquiring the tools, signifi cant work is required. Fol-
lowing are some facts pertaining to the cost incurred in testing tools [22, 12]:

 Automated script development Automated test tools do not create test scripts.
Therefore, a signifi cant time is needed to program the tests. Scripts are
themselves programming languages. Thus, automating test execution requires
programming exercises.

Training is required It is not necessary that the tester will be aware of all the
tools and can use them directly. He may require training regarding the tool,
otherwise it ends up on the shelf or implemented ineffi ciently. Therefore, it
becomes necessary that in a new project, cost of training on the tools should
also be included in the project budget and schedule.

 Confi guration management Confi guration management is necessary to track
large number of fi les and test related artifacts.

Learning curve for the tools There is a learning curve in using any new tool.
For example, test scripts generated by the tool during recording must be
modifi ed manually, requiring tool-scripting knowledge in order to make the
script robust, reusable, and maintainable.

 Software Testing: Principles and Practices436

 Testing tools can be intrusive It may be necessary that for automation some
tools require that a special code is inserted in the system to work correctly
and to be integrated with the testing tools. These tools are known as intrusive
tools which require addition of a piece of code in the existing software system.
Intrusive tools pose the risk that defects introduced by the code inserted
specifi cally to facilitate testing could interfere with the normal functioning of
the system.

Multiple tools are required As discussed earlier, it may be possible that your
requirement is not satisfi ed with just one tool for automation. In such a case,
you have to go for many tools which incur a lot of cost.

15.5 GUIDELINES FOR AUTOMATED TESTING

Automation is not a magical answer to the testing problem. Testing tools can
never replace the analytical skills required to conduct testing and manual test-
ing. It incurs some cost as seen above and it may not provide the desired solu-
tion if you are not careful. Therefore, it is necessary that you carefully plan
the automation before adopting it. Decide which tool and how many tools are
required, how much resources are required including the cost of the tool and
the time spent on training.

Discussed below are the guidelines to be followed if you have planned for
automation in testing.

Consider building a tool instead of buying one, if possible It may not be possible
every time. But if the requirement is small and suffi cient resources allow, then
go for building the tool instead of buying, after weighing the pros and cons.
Whether to buy or build a tool requires management commitment, including
budget and resource approvals.

Test the tool on an application prototype While purchasing the tool, it is impor-
tant to verify that it works properly with the system being developed. How-
ever, it is not possible as the system being developed is often not available.
Therefore, it is suggested that if possible, the development team can build a
system prototype for evaluating the testing tool.

Not all the tests should be automated Automated testing is an enhancement
of manual testing, but it cannot be expected that all test on a project can be
automated. It is important to decide which parts need automation before going
for tools. Some tests are impossible to automate, such as verifying a printout.
It has to be done manually.

437Automation and Testing Tools l

Select the tools according to organizational needs Do not buy the tools just
for their popularity or to compete with other organizations. Focus on the needs
of the organization and know the resources (budget, schedule) before choosing
the automation tool.

Use proven test-script development techniques Automation can be effective
if proven techniques are used to produce effi cient, maintainable, and reusable
test scripts. The following are some hints:

 1. Read the data values from either spreadsheets or tool-provided data
pools, rather than being hard-coded into the test-case script because
this prevent test cases from being reused. Hard-coded values should be
replaced with variables and whenever possible read data from external
sources.

 2. Use modular script development. It increases maintainability and read-
ability of the source code.

 3. Build library of reusable functions by separating the common actions
into shared script library usable by all test engineers.

 4. All test scripts should be stored in a version control tool.

Automate the regression tests whenever feasible Regression testing consumes
a lot of time. If tools are used for this testing, the testing time can be reduced
to a greater extent. Therefore, whenever possible, automate the regression test
cases.

15.6 OVERVIEW OF SOME COMMERCIAL TESTING TOOLS

 Mercury Interactive’s WinRunner It is a tool used for performing functional
/ regression testing. It automatically creates the test scripts by recording the
user interactions on GUI of the software. These scripts can be run repeatedly
whenever needed without any manual intervention. The test scripts can also
be modifi ed if required because there is support of Test Script language (TSL)
with a ‘C’ like syntax. There is also provision for bringing the application to a
known state if any problem has occurred during automated testing. WinRunner
executes the statements by default with an interleaving of one second. But if
some activities take more time to complete, then it synchronizes the next test
cases automatically by waiting for the current operations to be completed.

 Segue Software’s SilkTest This tool is also for functional/regression testing.
It supports 4Test as a scripting language which is an object-oriented scripting
language. SilkTest has a provision for customized in-built recovery system

 Software Testing: Principles and Practices438

which helps in continuing the automated testing even if there is some failure
in between.

 IBM Rational SQA Robot It is another powerful tool for functional/regression
testing. Synchronization of test cases with a default delay of 20 seconds is also
available.

 Mercury Interactive’s LoadRunner This tool is used for performance and load
testing of a system. Generally, the tool is helpful for client/server applications
of various parameters with their actual load like response time, the number of
users, etc. The major benefi t of using this tool is that it creates virtual users on a
single machine and tests the system on various parameters. Thus, performance
and load testing is done with minimum infrastructure.

Apache’s JMeter This is an open-source software tool used for performance
and load testing.

 Mercury Interactive’s TestDirector TestDirector is a test management tool. It
is a web-based tool with the advantage of managing the testing if two teams are
at different locations. It manages the test process with four phases: specifying
requirements, planning tests, running tests, and tracking defects. Therefore,
there is advantage that the tests are planned as per the requirements evolved.
Once the test plan is ready, the test cases are executed. Defect-tracking can
be done in any phase of test process. During defect-tracking, new bug can be
reported; assign responsibility to someone for bug repair; assign priority to
the bug; bug repair status can be analysed, etc. This tool can also be integrated
with LoadRunner or WinRunner.

SUMMARY

Testing tools are a big aid to the testers. Testing activities, if performed manually, may take a
lot of time; thus there is need for automating the testing activities. This chapter discusses the
importance and need of testing automation and various types of testing tools. The tools are
mainly categorized as static and dynamic testing tools.
 Testing tools are helpful to the testers, but they cannot replace all the manual testing activi-
ties. There are some places where we have to perform manual testing.
 There was a time when it was thought that testing tools will fasten the speed of software de-
velopment and the manual effort will be zero. But there is no silver bullet like this. The guidelines
for automated testing are also provided at the end.

Let us review the important concepts described in this chapter:

 � Testing tools are based on the type of execution of test cases, namely static and
dynamic.

439Automation and Testing Tools l

 � Static tools perform control fl ow analysis, data use analysis, interface analysis, and path
analysis.

 � Automated test tools enable the test team to capture the state of events during the ex-
ecution of a program by preserving a snapshot of conditions. These tools are sometimes
called program monitors.

 � Testing activity tools are based on the testing activities or tasks in a particular phase of
the SDLC.

 � The complexity analysis tools analyse the areas of complexity and provide indication to
testers.

 � Code comprehension tools help inspection team to analyse the code extensively by
understanding dependencies, tracing program logic, viewing graphical representations
of the program, and identifying the dead code.

 � Test data generator automates the generation of test data based on a user-defi ned
format.

 � Test case generator uses the information provided by the requirement management tool
and creates the test cases.

 � Capture/playback tools record events at the time of running the system and place the
information into a script which can be run by the tester later.

 � Test coverage analysis tools provide a quantitative measure of the coverage of the sys-
tem being tested.

 � Memory testing tools verify that an application is properly using its memory resources.

 � Test management tools try to cover most of the activities in the testing life cycle. These
tools may cover planning, analysis, and design.

 � Network testing tools monitor, measure, test, and diagnose performance across an
entire network.

 � Performance testing tools help in measuring the response time and load capabilities of a
system.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. Tools that enable the test team to capture the state of events during the execution of a
program by preserving a snapshot of conditions are called ______.

 (a) monitor program

 (b) event program

 (c) snapshot program

 (d) code comprehension

 Software Testing: Principles and Practices440

 2. Tools that help in understanding dependencies, tracing program logic, viewing graphical
representations of the program, and identifying the dead code are called ______.

 (a) monitor program

 (b) event program

 (c) code comprehension

 (d) none of the above

 3. Tools that automate the generation of test data based on a user-defi ned format are
called ______.

 (a) test data generator

 (b) test case generator

 (c) code comprehension

 (d) none of the above

 4. The tools that record events at the time of running the system and place the information
into a script are called ______.

 (a) test data generator

 (b) test case generator

 (c) coverage analysis tools

 (d) capture playback tools

 5. Tools that automate the process of thoroughly testing the software and provide a quan-
titative measure of the coverage of the system being tested are called ______.

 (a) test data generator

 (b) test case generator

 (c) coverage analysis tools

 (d) capture playback tools

 6. WinRunner is a ______ tool.

 (a) test management

 (b) functional/regression testing

 (c) performance testing

 (d) none of the above

 7. JMeter is a ______ tool.

 (a) test management

 (b) functional/regression testing

 (c) performance testing

 (d) none of the above

 8. TestDirector is a ______ tool.

 (a) test management

441Automation and Testing Tools l

 (b) functional/regression testing

 (c) performance testing

 (d) none of the above

 9. ______ is not a functional/regression testing tool.

 (a) JMeter

 (b) TestDirector

 (c) WinRunner

 (d) LoadRunner

REVIEW QUESTIONS

 1. What is the need of automating the testing activities?

 2. What is the difference between static and dynamic tools?

 3. Analyse and report which tools are available for test planning?

 4. Analyse and report which tools are available for test design?

 5. What are the guidelines for selecting a testing tool?

 6. What are the costs incurred in adopting a testing tool?

 7. Is a single testing tool suffi cient for all testing activities?

 8. Make a list of some important testing tools which are open-source on the Internet. Use
them for testing your software.

Testing in specialized environments needs more at-
tention with more specialized techniques. This part
is devoted to software testing in various specialized
environments. Two specialized environments have
been considered: testing for object-oriented soft-
ware and testing for Web-based systems.

The major challenge of testing in specialized
environments is that the meaning of different tech-

niques changes according to the environment. For example, unit testing in general loses its
meaning in object-oriented testing. Similarly, in Web-based testing, we fi rst need to decide
what a unit will be. Thus, using basic testing techniques, we need to explore the issues in cur-
rent environment and apply these techniques correspondingly.

Some issues arise due to the environment in which the software is currently being devel-
oped and tested. For example, in object-oriented software, inheritance testing is a major issue.
Therefore, techniques must be devised for inheritance testing. Similarly, in Web-based soft-
ware, security of application is a major requirement and therefore, security testing becomes
mandatory. Thus, the methods for security testing must be known for this testing. In this way,
many issues need to be considered while testing specialized-environment software.

 This part will make ground for the following concepts:

 ∑ Differences between traditional software and specialized-environment software (object-
oriented software and Web-based software)

 ∑ Challenges in testing object-oriented software and web-based software
 ∑ Verifi cation and validation of object-oriented software and Web-based software
 ∑ Special issues to be tested due to the specialized environment

Testing for Specialized
Environments

Part

6
CHAPTERS

Chapter 16:
Testing Object-Oriented Software

Chapter 17:
Testing Web-based Systems

 Object-oriented technology has evolved rapidly
in the last two decades. Today, everyone is rush-
ing out to adopt this technology. Object-oriented
paradigm has affected almost every organization.
The object model based on data abstraction, rather
than function abstraction, manages the complexity,
inherent in many different kinds of systems. This
data-abstraction based on objects helps us to model
the problem domain in a better understandable
format. Thus, object-oriented technology is consid-
ered a natural way to understand and represent the
problems. Further, this technology has given birth
to the concept of reusability in software design. The
concept of reusability leads to faster software devel-
opment and high-quality programs.

Object-oriented technology (OOT) was established
with a number of object-oriented programming
languages. Today, OO paradigm is embedded in
the complete software engineering approach. Soft-
ware built with OO follows all the steps of OO soft-
ware engineering (OOSE). Modeling, analysis, de-
sign, and testing of OO software is different as compared to the structured
approach.

Testing an OO software is more challenging. Most of the testing concepts
lose their meaning in OO technology, e.g. a unit in OOT is not a module but
a class, and a class cannot be tested with input-output behaviour as in unit
testing of a module. Thus, both testing strategies and techniques change in
case of OO software.

Chapter

16
Testing Object-Oriented Software

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Issues in object-oriented testing
 � Strategy for testing object-oriented

software: Verifi cation of UML model and
validation

 � Issues in testing a class
 � Feature-based testing of class
 � State-based testing of class
 � Issues in testing inheritance
 � Incremental testing method for

inheritance
 � Integration testing of object-oriented

software
 � Thread-based integration testing
 � Implicit control fl ow-based integration

testing
 � UML-based testing and system testing

based on use-cases

 Software Testing: Principles and Practices446

16.1 OOT BASICS

The major reason for adopting OOT and discarding the structured approach
is the complexity of the software. Structured approach is unable to reduce the
complexity as the software size increases, thereby increasing the schedule and
cost of the software. On the other hand, OOT is able to tackle the complexity
and models the software in a natural way.

In the structured approach, the emphasis is on action, not on data. But data is
important for program existence. Global data is a structured approach wherein
data can be corrupted by anyone. In OOT, data is hidden, not to be accessed
by everyone. Functions in structured approach are not able to model the real
world very well. But when we model the same problem with OOT, the model-
ing is quite obvious and natural. Let us review some of the basic concepts and
terminology before discussing the testing issues of OO software.

16.1.1 TERMINOLOGY

 Object Grady Booch defi ned objects as [36]: ‘Objects are abstraction of entities
in the real world representing a particularly dense and cohesive clustering of
information. It can be defi ned as a tangible entity that exhibits some well-
defi ned behaviour. Objects serve to unify the ideas of algorithmic and data
abstraction’.

Thus, objects are individual entities formed from two components: state
and behaviour. The state is modeled by a data structure. The behaviour is
modeled by a set of operations (or actions) which manipulate the data struc-
ture to obtain the required change of state and result. Together, they form a
single coherent unit. The behaviour is invoked by sending a message to the
object requesting a particular service.

 Class All objects with the same structure and behaviour can be defi ned
with a common blueprint. This blueprint called a class, defi nes the data and
behaviour common to all objects of a certain type. Thus class is a template
that describes collection of similar objects, e.g. vehicle is a class and car is one
object of class vehicle. The operations provided by a class are also known as
 features, and each item of data defi ned by a class is a data-member. Any class that
invokes the features of another class is known as a client of the class providing
the features.

 Encapsulation A class contains data as well as operations that operate on
data. In this way, data and operations are said to be encapsulated into a single
entity. Encapsulation avoids the accidental change in data such that no one can
directly access the object’s data.

447Testing Object-Oriented Software l

 Abstraction Shaw [127] defi nes abstraction as: ‘A simplifi ed description,
or specifi cation of a system that emphasizes some of the system’s details or
properties while suppressing others. A good abstraction is one that emphasizes
details that are signifi cant to the user and suppresses details that are immaterial
to him’.

 Inheritance It is a strong feature of OOT. It provides the ability to derive new
class from existing classes. The derived class inherits all the data and behaviour
(operations) of the original base class. Moreover, derived class can also add
new features, e.g. employee is the base class and we can derive manager as
derived class.

 Polymorphism This feature is required to extend an existing OO system.
Polymorphism means having many forms and implementations of a particular
functionality. For example, when a user wants to draw some shape (line, circle,
etc.), the system issues a draw command. The system is composed of many
shapes, each of them having the behaviour to draw itself. So when the user
wants to draw a circle, the circle object’s draw command is invoked. By using
polymorphism, the system fi gures out, as it is running, which type of shape is
being drawn [37].

16.1.2 OBJECT-ORIENTED MODELING AND UML
Modeling is the method to visualize, specify different parts of a system, and the
relationship between them. Modeling basically divides the complex problem
into smaller understandable elements and provides a solution to the problem.
In object-oriented development, Unifi ed modeling language (UML) has become
the de facto standard for analysis and design of OOS. UML provides a number
of graphical tools that can be used to visualize a system from different view-
points. The views generally defi ned in it are:

 User view This view is from the user’s viewpoint which represents the goals
and objectives of the system as perceived by the user. It includes use-cases and
use-case diagram as a tool for specifying the objectives.

 Structural view This view represents the static view of the system representing
the elements that are either conceptual or physical. Class diagrams and object
diagrams are used to represent this view.

 Behavioural view This view represents the dynamic part of the system repre-
senting behaviour over time and space. The tools used for behavioral view are:
collaboration diagrams, sequence diagrams, state chart diagrams, and activity
diagrams.

 Software Testing: Principles and Practices448

 Implementation view This view represents the distribution of logical elements
of the system. It uses component diagrams as a tool.

 Environmental view This view represents the distribution of physical elements
of the system. It depicts nodes which are part of the physical hardware for
deployment of the system. It uses deployment diagram as a tool.

Let us review all the graphical tools used in the UML modeling. It is neces-
sary to understand them as you need to verify and validate the OO software
development through these models.

 Use-case model Requirements for a system can be elicited and analysed with
the help of a set of scenarios that identify how to use the system. The following
components are used for this model:

 Actors An actor is an external entity or agent that provides or receives
information from the system. Formally, an actor is anything that communicates
with the system or product and that is external to the system itself. An actor is
represented as a stick diagram.

 Use-case A use-case is a scenario that identifi es and describes how the system
will be used in a given situation. Each use-case describes an unambiguous
scenario of interactions between actors and the system. Thus, use-cases
defi ne functional and operational requirements of the system. A use-case is
represented as

Use-case

A complete set of use-cases describe all the means to use a system. Use-
cases can be represented as use-case templates and use-case diagrams.

 Use-case templates They are prepared as structured narrative mentioning the
purpose of use-case, actors involved, and the fl ow of events.

 Use-case diagrams These show the visual interaction between use-cases and
actors.

 Class diagrams A class diagram represents the static structure of the system
using classes identifi ed in the system with associations between them. In other
words, it shows the interactions between the classes in the system.

449Testing Object-Oriented Software l

 Object diagrams An object diagram represents the static structure of the system
at a particular instance of time. It shows a set of objects and their relationships
at a point of time.

 Class-responsibility-collaboration (CRC) diagrams This diagram represents a
set of classes and the interaction between them using associations and messages
sent and received by the classes. These diagrams are used to understand the
messages exchanged between the classes.

 CRC model index card This card represents a class. The card is divided into
three sections:

 � On the top of the card, name of class is mentioned.

 � In the body of the card on the left side, responsibilities of the class are
mentioned.

 � In the body of the card on the right side, the collaborators (relationship
between classes) are mentioned.

 Sequence diagram It is a pictorial representation of all possible sequences
along the time-line axis to show the functionality of one use-case, e.g. for the
use-case Deposit the money in a bank, there are sequences of events—customer
goes to cashier with cash and form, submits it to the cashier, cashier receives
the cash and form, deposits the amount and updates the balance, returns re-
ceipt to the customer.

 State chart diagrams These diagrams represent the states of reactive objects
(which respond to external events) and transitions between the states. A state
chart depicts the object’s initial state where it performs some activity and transi-
tions after which the object enters another state. Thus, these diagrams represent
the behaviour of objects with respect to their states and transitions.

 Activity diagrams It is a special case of a state chart diagram, wherein states
are activity states and transitions are triggered by the completion of activities.

 Component diagrams At the physical level, the system can be represented as
components. The components can be in the form of packages or sub-systems
containing classes. The component diagrams show the set of components and
their relationships.

Deployment diagrams These diagrams are also at the physical level. After
the components and their interaction have been identifi ed in the component
diagram, the components are deployed for execution in the actual hardware
nodes identifi ed according the implementation. Thus, these diagrams depict
the mappings of components to the nodes involved in the physical implemen-
tation of a system.

 Software Testing: Principles and Practices450

16.2 OBJECT-ORIENTED TESTING

It is clear that object-oriented software is different in many ways as compared
to the conventional procedural software. OO software is easy to design but
diffi cult to test. As dimensions of OOS increase in comparison to procedural
software, the testing of OOS should also be broadened such that all the prop-
erties of OOT are tested.

16.2.1 CONVENTIONAL TESTING AND OOT
Firesmith [67] has examined the differences between conventional testing and
object-oriented software testing in some depth. The difference between unit
testing for conventional software and object-oriented software arises from the
nature of classes and objects. We know that unit testing only addresses the
testing of individual operations and data. This is only a subset of the unit
testing for object-oriented software, as the meaning and behaviour of the re-
sources encapsulated in the classes depend on other resources with which
they are encapsulated. Integration testing (for conventional software) is truly
the unit testing of object-oriented software.
 The object-oriented paradigm lowers the complexity and hence, lessens the
need for basis path testing. In a nutshell, there are differences between how a
conventional software and an object-oriented software should be tested.

16.2.2 OBJECT-ORIENTED TESTING AND MAINTENANCE PROBLEMS
It is clear from the above discussion that it is not easy to understand and test
the OO software. Moreover, it also becomes diffi cult to maintain it. David et
al. [68] have recognized some of these problems which are discussed here:

Understanding problem The encapsulation and information hiding features
are not easily understood the very fi rst time. There may be a chain of
invocations of member functions due to these features. A tester needs to
understand the sequence of this chain of invocations and design the test cases
accordingly.

Dependency problem There are many concepts in OO that gives rise to the de-
pendency problem. The dependency problem is mainly due to complex rela-
tionships, e.g. inheritance, aggregation, association, template class instantiation,
class nesting, dynamic object creation, member function invocation, polymor-
phism, and dynamic binding relationships. These relationships imply that one
class inevitably depends on another class. For example, the inheritance relation-
ship implies that a derived class reuses both the data members and the function
members of a base class; and hence, it is dependent on the base class.

451Testing Object-Oriented Software l

The complex relationships that exist in an OOS make testing and mainte-
nance extremely diffi cult in the following way:

 (i) Dependency of the classes increases the complexity of understanding
and hence testing.

 (ii) In OO software, the stub development is more diffi cult as it needs to
understand the chain of called functions, possibly create and properly
initialize certain objects, and write their code.

 (iii) Template class feature is also diffi cult to test as it is impossible to predict
all the possible uses of a template class and to test them.

 (iv) Polymorphism and dynamic binding features add to the challenge
of testing them as it is diffi cult to identify and test the effect of these
features.

 (v) As the dependencies increase in OOS, it becomes diffi cult to trace the
impact of changes, increasing the chances of bugs, and hence making
testing diffi cult.

State behaviour problem Objects have states and state-dependent behaviours.
That is, the effect of an operation on an object also depends on the state of the
object and may change its state. Thus, combined effect of the operations must
be tested.

16.2.3 ISSUES IN OO TESTING

Based on the problems discussed for testing an OO software, the following
are some issues which come up while performing testing on OO software.

Basic unit for testing There is nearly universal agreement that class is the natu-
ral unit for test case design. Other units for testing are aggregations of classes:
class clusters, and application systems. The intended use of a class implies dif-
ferent test requirements, e.g., application-specifi c vs general-purpose classes,
abstract classes, and parameterized (template) classes. Testing a class instance
(an object) can verify a class in isolation. However, when verifi ed classes are
used to create objects in an application system, the entire system must be
tested as a whole before it can be considered verifi ed.

Implications of inheritance In case of inheritance, the inherited features
require retesting because these features are now in, new context of usage.
Therefore, while planning to test inheritance, include all inherited features.
Moreover, planning should also consider the multiple contexts of usage in
case of multiple inheritances.

 Software Testing: Principles and Practices452

 Polymorphism In case of polymorphism, each possible binding of a polymor-
phic component requires a separate test to validate all of them. However, it
may be hard to fi nd all such bindings. This again increases the chance of errors
and poses an obstacle in reaching the coverage goals.

 White-box testing There is also an issue regarding the testing techniques for
OO software. The issue is that the conventional white-box techniques cannot
be adapted for OO software. In OO software, class is the major component to
be tested, but conventional white-box testing techniques cannot be applied on
testing a class. These techniques may be applicable to individual methods but
not suitable for OO classes.

 Black-box testing The black-box testing techniques may be suitable to OO
software for conventional software, but sometimes re-testing of inherited fea-
tures require examination of class structure. This problem also limits the black-
box methods for OO software.

 Integration strategies Integration testing is another issue which requires at-
tention and there is need to devise newer methods for it. However, there is no
obvious hierarchy of methods or classes. Therefore, conventional methods of
incremental integration testing cannot be adopted.

16.2.4 STRATEGY AND TACTICS OF TESTING OOS
The strategy for testing OOS is the same as the one adopted earlier for pro-
cedural software, i.e. verifi cation and validation. However, tactics for testing
may differ depending upon the structure of OOS.

Object-oriented software testing is generally done bottom-up at four
levels:

 Method-level testing It refers to the internal testing of an individual method in
a class. Existing testing techniques for conventional programming languages
are fully applicable to method-level testing.

 Class-level testing Methods and attributes make up a class. Class-level (or
intra-class) testing refers to the testing of interactions among the components
of an individual class.

 Cluster-level testing Cooperating classes of objects make up a cluster. Cluster-
level (or inter-class) testing refers to the testing of interactions among objects.

 System-level testing Clusters make up a system. System-level testing is con-
cerned with the external inputs and outputs visible to the users of a system.

453Testing Object-Oriented Software l

16.2.5 VERIFICATION OF OOS
The verifi cation process is different in analysis and design steps. Since OOS is
largely dependent on OOA and OOD models, it becomes important to verify
them. For example, if there is problem in the defi nition of class attributes and
is uncovered during analysis, then this problem will propagate in design and
other phases too.

OOA is not matured enough in one iteration only. So it requires many it-
erations for a reliable analysis model. Verifi cation can play an important role
in these iterations of OOA. Each iteration should be verifi ed so that we know
that the analysis is complete. For example, consider a class in which a num-
ber of attributes are defi ned during the fi rst iteration, and an attribute may
be appended in another iteration due to some misunderstanding. If there is
verifi cation of OOA at each iteration, then this error may be pointed out in a
review and thereby avoid problems. Thus, all OO models must be tested for
their correctness, completeness, etc.

Verifi cation of OOA and OOD models

 � Assess the class-responsibility-collaborator (CRC) model and object-
relationship diagram.

 � Review system design (examine the object-behaviour model to check
mapping of system behaviour to subsystems, review concurrency and
task allocation, use use-case scenarios to exercise user interface de-
sign).

 � Test object model against the object relationship network to ensure that
all design objects contain necessary attributes and operations needed to
implement the collaborations defi ned for each CRC card.

 � Review detailed specifi cations of algorithms used to implement opera-
tions using conventional inspection techniques.

Verifi cation points of some of the models are given below:

 � Check that each model is correct in the sense that proper symbology
and modeling conventions have been used.

 � Check that each use-case is feasible in the system and unambiguous
such that it should not repeat operation.

 � Check that a specifi c use-case needs modifi cation in the sense that it
should be divisible further in more use-cases.

 � Check that actors identifi ed in use-case model are able to cover the
functionality of the whole system. If any new actor is needed to fulfi ll
the requirement, then add it.

 Software Testing: Principles and Practices454

 � All interfaces between actors and use-cases in use-case diagram must be
continuously checked such that there should be no inconsistency.

 � All events and their sequences must be checked iteratively in a sequence
diagram. If any detail of the operation is missing, then events can be
added or deleted if required.

 � Collaboration diagrams must be verifi ed for distribution of processing
between objects. Suppose the collaboration diagram was shaped like a
star, with several objects communicating with a central object. Analyst
may conclude that the system is too dependent on the central object
and redesign the objects to distinguish the processing power more
evenly [37].

 � Each identifi ed class must be checked against defi ned selection charac-
teristics such that it should be unique and unambiguous.

 � All collaborations in class diagrams must be verifi ed continuously such
that there should be no inconsistency.

 � Check the description of each CRC index card to determine the del-
egated responsibility.

16.2.6 VALIDATION ACTIVITIES

All validation activities described earlier are also implemented in OOS. But
the meaning of unit and integration testing changes due to the nature of OOS.
Therefore, new methods or techniques are required to test all the features of
OOS.

 Unit/Class Testing
Unit or module testing has no meaning in the context of OOS. Since the
structure of OOS is not based on action, module testing has lost its meaning.
OOS is based on the concept of class and objects. Therefore, the smallest
unit to be tested is a class. The nature of OOS is different as compared to
procedural software; therefore many issues rise for testing a class. These issues
are discussed in the next section.

Issues in testing a class

 � A class cannot be tested directly. First, we need to create the instances of
a class as object and then test it. Thus, an abstract class cannot be tested,
as its objects cannot be created.

 � Operations or methods in a class are the same as functions in traditional
procedural software. One idea is that they can be tested independently
using the previous white-box or black-box methods. But in the context

455Testing Object-Oriented Software l

of OOS, this isolated testing has no meaning. Thus the methods should
also be tested with reference to a class or class hierarchy in the direction
of complete testing of a class.

 � One important issue in class testing is the testing of inheritance. If some
classes have been derived from a base class, then independent base
class testing is not suffi cient. All derived classes in the hierarchy must
also be tested depending on the kind of inheritance. Thus, the following
special cases also apply to inheritance testing:

 (a) Abstract classes can only be tested indirectly (because it can’t be
instantiated). Hence, abstract classes have to be tested by testing
instance of its descendant specialized classes.

 (b) Special tests have to be written to test the inheritance mechanism,
e.g. a child class can inherit from a parent and that we can create
instance of the child class.

 � There may be operations in a class that change the state of the object on
their execution. Thus, these operations should be tested with reference
to state change of object.

 � Polymorphism provides us with elegant compact code, but it can also
make testing more complicated. The identifi cation of all the paths
through a section of code that uses polymorphism is harder because the
criteria which indicate different paths are not specifi cally mentioned in
the code.

16.2.7 TESTING OF OO CLASSES

 Feature-based Testing of Classes
There are a number of code complexity metrics available which vary from
simple ones such as the number of the source lines of code, to the McCabe
cyclomatic complexity metric. These metrics can be used to measure the
complexity of the individual features of a class providing the tester with an
accurate way of determining which features to consider fi rst for testing. The
features of a class can be categorized into six main groups [69, 70]:

Create These are also known as constructors. These features perform the initial
memory allocation to the object, and initialize it to a known state.

Destroy These are also known as destructors. These features perform the fi nal
memory de-allocation when the object is no longer required.

Modifi ers The features in this category alter the current state of the object, or
any part thereof.

 Software Testing: Principles and Practices456

Predicates The features in this category test the current state of the object for
a specifi c instance. Usually, they return a BOOLEAN value.

Selectors The features in this category examine and return the current state of
the object, or any part thereof.

Iterators The features in this group are used to allow all required sub-objects
to be visited in a defi ned order.

 Testing feature groups While testing the classes with features as discussed
above, there may be some preferences of these feature groups according to
which one is tested fi rst. Turner and Robson [71] have provided the following
guidelines for the preferred features to be tested:

 (i) The create features of a class must be verifi ed fi rst, as these features are
for the initialization of every object created. Therefore, they must be
tested rigorously.

 (ii) The selector features can be the next features to be verifi ed as they do
not alter the state of the object. To test them, alter the state of the object
either by using the appropriate constructor (if available), or by directly
altering the state of the object.

 (iii) The predicate features of a class test for specifi c states of the object and
therefore while constructing the test cases, care must be taken to place
the object in the specifi c state for the required test result.

 (iv) The modifi er features of a class are used to alter the state of the object
from one valid state to another. To detect if the transition was to the
correct state, the selectors and predicate features should be used where
possible.

 (v) The destructor feature of a class performs any ‘housekeeping’, for exam-
ple, returning any allocated memory to the heap. To test them, features
which alter the state of the object and allocate memory are used to cre-
ate the scenarios for the test cases, then the destructor is called.

 Role of Invariants in Class Testing
If we are able to specify the valid states and in valid states for an object, it can
help in testing the classes. The language Eiffel provides the facility of specify-
ing the invariants. But, by providing the features for testing the validity of the
object’s current state, you can also achieve this ability. Turner and Robson
[71] have also shown the importance of invariants in class testing.

457Testing Object-Oriented Software l

For example, take a class to implement an integer Stack as:
Class Stack with following data members:

ItemCount, empty, full, push, pop, max_size

Here in this class, invariants can be defi ned as given below:

 1. ItemCount cannot have a negative value.

 2. There is an upper bound check on ItemCount, i.e. ItemCount £ max-
size

 3. Empty stack, i.e. ItemCount = 0

 4. Full Stack, i.e. ItemCount = max_size

All invariants discussed above show the states of the class. These invari-
ants allow the validity of the current state of the object to be tested easily. An
invariant is also useful for ensuring that the data representation is in a valid
state, even if it has been directly altered. This can help maintain the integrity
of the class.

 State-Based Testing
State-based testing can also be adopted for testing of object-oriented pro-
grams. The systems can be represented naturally with fi nite state machines as
states correspond to certain values of the attributes and transitions correspond
to methods. The features of a class provide the desired behaviour by inter-
acting with the data-representation. Although these interactions are found in
programs written in traditional languages, they are more visible and prevalent
in object-oriented programming languages. State-based testing tests these in-
teractions by monitoring the effects that features have on the state of an ob-
ject. The state can be determined by the values stored in each of the variables
that constitute its data representation. Each separate variable is known as a
substate, and the values it may store are known as substate-values.

The restrictions on objects that are to be represented as state machines
include [71]:

 � The behaviour of the object can be defi ned with a fi nite number of
states.

 � There are a fi nite number of transitions between the states.

 � All states are reachable from the initial state.

 � Each state is uniquely identifi able through a set of methods.

 State-based testing based on the fi nite state automata, tests each feature with
all its valid input states. However, it may not be possible to use every single
value for each variable of the data-representation due to their potentially large

 Software Testing: Principles and Practices458

range. Therefore, the categorization is applied in order for a suitable reduc-
tion to be achieved.

For designing the test cases, we need to have stimuli. Stimuli are particular
values, obtained after analysing the feature’s parameters, and have specifi c
effects on the response of the feature, or are signifi cant. The test cases then
consist of applying each stimulus in combination with each possible state for
the representation. The resultant states generated are then validated against
those expected. The behaviour of an object can be predicted by matching the
input states expected by one feature with the output states of another. This
validation should ensure the correct operation of the class with no concern for
the order in which the features are invoked.

Process of state-based testing The process of using state-based testing tech-
niques is as follows:

 1. Defi nes the states.

 2. Defi ne the transitions between states.

 3. Defi ne test scenarios.

 4. Defi ne test values for each state.

To see how this works, consider the Stack example again.

Defi ne states The fi rst step in using state-based testing is to defi ne the states.
We can create a state model with the following states in the Stack example:

 1. Initial: before creation

 2. Empty: ItemCount = 0

 3. Holding: ItemCount > 0, but less than the max capacity

 4. Full: ItemCount = max

 5. Final: after destruction

Defi ne transitions between states The next step is to defi ne the possible
transitions between states and to determine what triggers a transition from
one state to another. Generally, when we test a class, a transition is triggered
when a method is invoked. Thus, some possible transitions could be defi ned
as follows:

 1. Initial Æ Empty:

 Action = “create” e.g. “s = new Stack()” in Java

 2. Empty Æ Holding:

 Action = “add”

 3. Empty Æ Full:

459Testing Object-Oriented Software l

 Action = “add” if max_size= 1

 4. Empty Æ Final:

 Action = “destroy” e.g. destructor call in C++, garbage collection in Java

 5. Holding Æ Empty:

 Action = “delete”

Thus, for each identifi ed state, we should list the following:

 1. Valid actions (transitions) and their effects, i.e., whether or not there is a
change of state.

 2. Invalid actions that should produce an exception.

Defi ne test scenario Tests generally consist of scenarios that exercise the object
along a given path through the state machine. The following are some guidelines:

 1. Cover all identifi ed states at least once.

 2. Cover all valid transitions at least once.

 3. Trigger all invalid transitions at least once.

Test cases are designed such that they exercise operations that change state
and those that do not change state separately. For instance,

Test case: Create-Add-Add-Delete-Add-delete-destroy
It is also needed to check the state of the object that is being tested through-

out the scenario to ensure that the theoretical state model you have defi ned is
actually the one implemented by the class you are testing.

Defi ne test values for each state Finally, choose test values for each individual
state. The consideration in choosing the values is that choose unique test values
and do not reuse values that were used previously in the context of other test
cases. This strategy provides more diversity in the test suite and increases the
likelihood of detecting bugs.

16.2.8 INHERITANCE TESTING

The issues in testing the inheritance feature are discussed below.

 Superclass modifi cations When a method is changed in superclass, the follow-
ing should be considered:

 (i) The changed method and all its interactions with changed and un-
changed methods must be retested in the superclass.

 (ii) The method must be retested in all the subclasses inheriting the method
as extension.

 Software Testing: Principles and Practices460

 (iii) The ‘super’ references to the method must be retested in subclasses.

 Inherited methods The following inherited methods should be considered for
testing:

 (i) Extension: It is the inclusion of superclass features in a subclass, inherit-
ing method implementation and interface (name and arguments).

 (ii) Overriding: It is the new implementation of a subclass method, with the
same inherited interface as that of a superclass method.

Reusing of test suite of superclass It may not be possible to reuse superclass
tests for extended and overridden methods due to the following reasons:

 (i) Incorrect initialization of superclass attributes by the subclass.

 (ii) Missing overriding methods.

 (iii) Direct access to superclass fi elds from the subclass code can create a
subtle side.

 (iv) A subclass may violate an invariant from the superclass or create an
invalid state.

Addition of subclass method When an entirely new method is added to a
specialized subclass, the following should be considered:

 (i) The new method must be tested with method-specifi c test cases.

 (ii) Interactions between the new method and the old methods must be
tested with new test cases.

Change to an abstract superclass interface ‘Abstract’ superclass is the class
wherein some of the methods have been left without implementation; just the
interface has been defi ned. In this case, all the subclasses must be retested,
even if they have not changed.

Interaction among methods To what extent should we exercise interaction
among methods of all superclasses and of the subclass under test?

Thus, inherited methods should be retested in the context of a subclass.

Example: If we change some method m() in a superclass, we need to retest m()
inside all subclasses that inherit it.

Example: If we add or change a subclass, we need to retest all methods inher-
ited from a superclass in the context of the new/changed subclass.

 Inheritance of Invariants of Base Class
If an invariant is declared for a base class, the invariant may be extended by
the derived class. Additional clauses may be added for new data-members

461Testing Object-Oriented Software l

declared by the derived class. However, the data-representation of the parent
class still complies with the original invariant and therefore does not require
retesting.

If the invariant provided by the base class is retracted, then the base class
must be retested with respect to the new invariant. A retraction involves the
loosening of clauses, allowing the data members of the parent class to accept
states that were previously not allowed. The retesting can be performed by
re-executing all the original test cases, along with some additional test cases
to cover the widened invariant. By clever analysis of the widened invariant, it
may be possible to reduce the number of test cases from the original suite of
test cases that need to be re-executed.

 Incremental Testing
Wegner and Zdonik [73] proposed this technique to test inheritance. The tech-
nique fi rst defi nes inheritance with an incremental hierarchy structure. Then
this approach is used to test the inheritance of classes. This technique is based
on the approach of a modifi er to defi ne a derived class. A modifi er is fi rst ap-
plied on the base class that alters its attributes. The modifi er and the base
class, along with the inheritance rules for the language, are used to defi ne the
derived class. We use the composition operator ≈ to represent this uniting of
base class and modifi er, and we get

D = B ≈ M
where D is derived class, B is base class, and M is a modifi er. This can be seen
in Fig. 16.1.

+

B

M

D

Figure 16.1 Deriving class D from base class B using modifi er M

The derived class designer specifi es the modifi er, which may contain vari-
ous types of attributes that alter the base class to get the derived class. The
following attributes have been identifi ed:
 � New attribute
 � Inherited attribute
 � Redefi ned attribute
 � Virtual-new attribute

 Software Testing: Principles and Practices462

 � Virtual-inherited attribute
 � Virtual-redefi ned attribute

All the above mentioned attributes have been illustrated in the Fig. 16.2.
After defi ning the inheritance as an incremental hierarchical approach,

now we will use this technique to test the inheritance. This is known as the
incremental class technique for testing inheritance. To test the derived class,
the issue is to fi nd out which attributes and interactions between them need
to be tested. This can be managed easily if we divide it into two categories:
Testing of features (TF) and testing of interactions (TI). With this information for
every class, the idea of incremental testing is that initially, the base class will
be tested by testing each feature and interactions between them. But, their ex-
ecution is maintained in a testing history of test cases. This testing history will
be reused for the features which are being inherited without any modifi cation
and unchanged context, thereby reducing the effort being made in testing
everything in the inherited subclasses. Only new features or those inherited-
affected features and their interactions are tested as added efforts. The follow-
ing steps describe the technique for incremental testing:

 1. Test the base class by testing each member function individually and
then testing the interactions among the member functions. All the test-
ing information is saved in a testing history. Let it be TH.

 2. For every derived class, determine the modifi er m and make a set M of
all features for all derived classes.

 3. For every feature in M, look for the following conditions and perform
testing:

 (i) If feature is new or virtual-new, then test the features and the inter-
actions among them as well.

 (ii) If feature is inherited or virtual-inherited without any affect, then
test only the interactions among the features. If there is a need to
test the features again in the derived class, then the test history TH
of base class can be reused for the test cases.

 (iii) If feature is redefi ned or virtual-redefi ned, then test the features
and the interactions among them as well. For testing, use the test
cases from testing history TH of the base class. However, if the
redefi ned feature is affected somewhere or there is need to interact
with new attribute, new test cases should be designed.

The benefi t of this technique is that we don’t need to analyse the derived
classes for what features must be tested and what may not be tested, thereby
reducing the time required in analysing and executing the test cases.

463Testing Object-Oriented Software l

Class B

{

 fl oat x;

 fl oat y;

public:

 B() {}

 void method1(

fl oat a, fl oat b)

 {

 x=a; y=b;

 }

virtual fl oat method2()

 {

 return x;

 }

 fl oat method3()

 {

 return y;

 }

 fl oat method4()

 {

 return method2();

 }

virtual fl oat method5()

 {

 return x;

 }

};

Class D: public B

{

private:

int i;

public:

 D() {}

 void method1(int a)

 {

 i = a + 5;

 }

virtual fl oat method2()

{

return 4*B::method2();

}

fl oat method3()

{

return 6*B::method3();

}

virtual int method6()

{

return i;

}

};

D’s attributes after the mapping

private:

int i; //New

public:

D() {} //New

void method1(fl oat a, fl oat b)

//Inherited

 {

 x=a; y=b;

 }

 void method1(int a) //New

 { i = a + 5; }

virtual fl oat method2()

// virtual redefi ned

{

return 4*B::method2();

}

fl oat method3() //redfi ned

{

return 6*B::method3();

}

fl oat method4() //inherited

{

return method2();

}

virtual fl oat method5()

//virtual inherited

{

return x;

}

virtual int method6()

//virtual new

{

return i;

}

Figure 16.2 Incremental modifi cation technique

 Software Testing: Principles and Practices464

16.2.9 INTEGRATION TESTING

Different classifi cations of testing levels have been proposed with the follow-
ing terminology:

 Inter-class testing This type of testing includes testing of any set of cooperat-
ing classes, aimed at verifying that the interaction between them is correct.
There are no constraints on how these classes are selected.

 Cluster testing This type of testing includes testing of the interactions between
the different classes belonging to a subset of the system, having some specifi c
properties called a cluster. Usually, a cluster is composed of cooperating classes
providing particular functionalities (e.g., all the classes which can be used to ac-
cess the fi le-system, or the classes composing a Java package). Clusters should
provide a well-defi ned interface, i.e. their interfaces should be well-understood
and they should mutually interact only by means of their interfaces.

 Inter-cluster testing This type of testing includes testing of the interactions
between already tested clusters. The result of the integration of all clusters is
the whole system.

 Thread-based Integration Testing
As long as we consider object-oriented systems as sets of cooperating entities
exchanging messages, threads can be naturally identifi ed with sequences of
subsequent message invocations. Therefore, a thread can be seen as a sce-
nario of normal usage of an object-oriented system. Testing a thread implies
testing the interactions between classes according to a specifi c sequence of
method invocations. This kind of technique has been applied by several au-
thors. Kirani and Tsai [77] propose a technique for generating test cases from
functional specifi cation for module and integration testing of object-oriented
systems. The method aims at generating test cases that exercise specifi c com-
binations of method invocations and provides information on how to choose
classes to be integrated.
 A similar approach is proposed by Jorgensen and Erickson [78], who in-
troduce the notion of method-message path (MM-path), defi ned as a sequence of
method executions linked by messages. For each identifi ed MM-path, inte-
gration is performed by pulling together classes involved in the path and ex-
ercising the corresponding message sequence. Thus, integration level thread
is a MM-path. More precisely, Jorgensen and Erickson identify two different
levels for integration testing:

Message quiescence This level involves testing a method together with all
methods it invokes, either directly or transitively.

Event quiescence This level is analogous to the message quiescence level,
with the difference that it is driven by system-level events. Testing at this level

465Testing Object-Oriented Software l

means exercising message chains (threads), such that the invocation of the
fi rst message of the chain is generated at the system interface level (i.e., the
user interface) and, analogously, the invocation of the last message results in
an event which can be observed at the system interface level. An end-to-end
thread is called an atomic system function (ASF). Therefore, a system-level thread
is a sequence of ASFs. ASFs have port events as their inputs and outputs,
and thus a sequence of ASFs implies an interleaved sequence of port input
and output events. The main drawback of this method is the diffi culty in the
identifi cation of ASFs, which requires either the understanding of the whole
system or an analysis of the source code.

 Implicit Control Flow-based Integration Testing
The integration testing should also consider the methods invocations where
the call is not obvious in the source code. For example, the C++ expression
“x*y” for object x and y. In this case, there is a call to a method via operator
overloading for the multiplication of two objects. Thus, these types of method
invocations also need to be considered in integration testing. This is known as
implicit control fl ow-based integration testing [74].

There are three approaches for this type of integration: optimistic, pessimis-
tic, and balanced. To understand all three approaches, let us take an example
as shown in Fig. 16.3. This example illustrates the very common example of
object-oriented feature where we want to calculate the salary of employees
of many categories, e.g. worker, assistant, and manager using the common
method CalSalary(). The CalSalary() will be run for which employee is known
at run time, i.e. it is a dynamically bound method. In this example, assume
that employee is a base class; worker, assistant, and manager are three derived
classes from employee. Each derived class uses the method Calsalary() with
different computations. But at run time, it will be decided which CalSalary()
method is invoked. Thus, method invocations are not obvious. In this case,
we will use the following three integration approaches as discussed below.

Worker::CalSalary Assistant::CalSalary Manager::CalSalary

CalSalary

Worker Assistant Manager

Employee

Figure 16.3 Implicit control fl ow example

 Software Testing: Principles and Practices466

Optimistic approach This approach is based on the optimistic view that
method invocation will be confi ned to the level of abstraction of the source
code only. Therefore, in this type of integration we will test only those method
invocation or interfaces which support this abstraction as shown in Fig. 16.4.

Worker::CalSalary Assistant::CalSalary Manager::CalSalary

Worker Assistant Manager

Figure 16.4 Optimistic approach to implicit control fl ow

Pessimistic approach This approach assumes that every class can call the
common method CalSalary. Therefore, all interfaces of calling the method are
tested here as shown in Fig. 16.5. However, the danger in this type of integra-
tion testing is the increase in the complexity in testing.

Worker::CalSalary Assistant::CalSalary Manager::CalSalary

Worker Assistant Manager

Figure 16.5 Pessimistic approach to implicit control fl ow

Balanced approach This approach is a balance between the above two ap-
proaches. We must take the interfaces according to the code as well as expected
method invocations. But, here we take a mid approach that all combinations
of interfaces in the pessimistic approach need not be tested. Instead, only one
or two classes should test source and some combinations of interfaces will be
tested such that other interfaces are likely to work properly. Therefore, we can
make an equivalence set of interfaces which will be tested and others will be
assumed to be working correctly as shown in Fig. 16.6.

16.2.10 UML-BASED OO TESTING

 UML is a design and modeling language for object-oriented software and is
widely used as a de facto standard that provides techniques to model the soft-
ware from different perspectives. It supports facilities both for abstract high-

467Testing Object-Oriented Software l

level modeling and for more detailed low-level modeling. It consists of a va-
riety of graphical diagram types that can be extended for specifi c application
areas. It is associated with a formal textual language, OCL (Object Constraint
Language). UML also provides support for model-based testing.

Worker::CalSalary Assistant::CalSalary Manager::CalSalary

Worker Assistant Manager

Figure 16.6 Balanced approach to implicit control fl ow

 UML diagrams in software testing
The following UML diagrams are helpful in the testing activities mentioned
below:

 � Use-case diagrams: testing of system-level functional requirements, accep-
tance testing

 � Class diagrams: class (module / unit) testing, integration testing

 � Sequence diagrams, collaboration diagrams: integration testing, testing of
control and interaction between objects, testing of communication pro-
tocols between (distributed) objects

 � Activity diagrams: testing of work fl ow and synchronization within the
system, white-box testing of control fl ow

 � State diagrams (state charts): state-based testing

 � Package diagrams, component diagrams: integration testing

 � Deployment diagrams: system testing

 System Testing based on Use-Cases

 Use-case In general, a use-case is a sequence of interactions by which the user
accomplishes a task in a dialogue with the system. When we use use-case in
testing, we follow the following:

 � use-case = one particular way to use the system

 � use-case (in testing) = user requirement

 � set of all use-cases = complete functionality of the system

 � set of all use-cases (in testing) = interface between the users (actors) and the
system

 Software Testing: Principles and Practices468

Scenario It is an instance of a use-case, expressing a specifi c task, by a specifi c
actor, at a specifi c time, and using specifi c data.

 Use-case model This is a set of use-case diagrams, each associated with a textual
description of the user’s task. For testing, the use-case model must be extended
with:

 � the domain of each variable participating in the use-cases,

 � the input/output relationships among the variables,

 � the relative frequency of the use-cases,

 � the sequential (partial) order among the use-cases.

Thus, use, case-based testing is a technique for generating test cases and
recommended confi gurations for system-level testing. The testers build a test
model based on the standard UML notions of use-cases, actors, and the rela-
tionships between these elements. The use-cases are enhanced with additional
information, including inputs from actors, outputs to the actors, and how the
use-case affects the state of the system.

To perform this testing, the tester needs to identify four things:

 � the use-cases of interest,

 � the actors involved in using the system,

 � the input, output, and system effects for the use-cases,

 � the fl ows of interest between the use-cases.

A use-case is a semantically meaningful function that provides some value
from the user’s point of view. For example, saving a fi le in a word processing
system would be represented by the Save File use-case. Each use-case can
have input parameters associated with it, and for each parameter, a set of logi-
cal partitions of the values that parameter can take may be identifi ed. Finally,
the use-cases can be connected using fl ows that describe a sequence of use-
case that are performed to accomplish some goal.

SUMMARY

Object-oriented software is different in nature from procedural software. Its origin is based on
reducing the complexity of the software development. However, this type of environment adds
many issues that need to be resolved while testing it. This chapter discusses the issues regard-
ing OO technology and techniques for testing the OO software. The meaning of unit is not the
same as seen in the procedural software. Similarly, there is no obvious hierarchy as observed
in procedural software; therefore top-down and bottom-up integration testing cannot be adopted
straightaway. Inheritance is another issue which needs attention while testing, otherwise we will
end up with heavy testing of base class and derived classes. The techniques to deal with the
unit, integration, and system testing have been discussed.

469Testing Object-Oriented Software l

The UML model is another big support for testing the OO software. Since OO software can be
developed with the help of UML models in the form of graphical tools, these also help in testing
the OO software at various levels. The chapter also discusses them and elaborates system
testing with use-case model.

Let us review the important concepts described in this chapter:
 � Object-oriented software is not easy to test as it is different in nature from procedural

software.

 � The encapsulation and information hiding features are not easily understood the very
fi rst time.

 � There is dependency problem in OOS due to complex relationships, e.g. inheritance,
aggregation, association, template class instantiation, class nesting, dynamic object cre-
ation, member function invocation, polymorphism, and dynamic binding relationships.
These relationships imply that one class inevitably depends on another class.

 � The natural unit for test case design in OOS is a class.

 � The conventional white-box testing techniques cannot be applied on testing a class.

 � Object-oriented software testing is generally done bottom-up at four levels: Class-level,
method-level, cluster-level, and system-level.

 � Since OOS is largely dependent upon OOA and OOD models, it becomes important to
verify them. Thus, the verifi cation of OOS is largely to verify OOA and OOD models.

 � There are features of every class which can be prioritized for testing OO classes. This is
known as feature-based testing of OO classes.

 � State-based testing can also be adopted for the testing of object-oriented programs.

 � Incremental testing is the technique to test the inheritance wherein inheritance is defi ned
as an incremental hierarchy structure.

 � Integration testing of OOS is done at the following levels: inter-class level, cluster-level,
and inter-cluster level.

 � Thread-based testing is the integration testing method wherein testing a thread implies
testing interactions between classes according to a specifi c sequence of method
invocations.

 � Implicit control fl ow-based testing is the integration testing wherein we consider methods
invocations where the call is not obvious in the source code. There are three approaches
for this type of integration: optimistic, pessimistic, and balanced.

 � Use, case-based testing is a technique for generating test cases and recommended con-
fi gurations for system, level testing. The testers build a test model based on the standard
UML notions of use-cases, actors, and the relationships between these elements.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. Encapsulation is _____.

 (a) the ability to derive new class from existing classes

 Software Testing: Principles and Practices470

 (b) avoiding the accidental change in data such that no one can directly access the
object’s data

 (c) having many forms and implementations of a particular functionality

 (d) none of the above

 2. Inheritance is _____.

 (a) the ability to derive new class from existing classes

 (b) avoiding the accidental change in data such that no one can directly access the
object’s data

 (c) having many forms and implementations of a particular functionality

 (d) none of the above

 3. Polymorphism is _____.

 (a) the ability to derive new class from existing classes

 (b) avoiding the accidental change in data such that no one can directly access the
object’s data

 (c) having many forms and implementations of a particular functionality

 (d) none of the above

 4. A use-case is a _____.

 (a) scenario

 (b) test case

 (c) an actor

 (d) all of the above

 5. Use-case diagrams show the _____.

 (a) visual interaction between use-cases and test cases

 (b) visual interaction between use-cases and classes

 (c) visual interaction between use-cases and objects

 (d) visual interaction between use-cases and actors

 6. Dependency problem is caused by _____.

 (a) encapsulation and information hiding features

 (b) state dependent behaviours

 (c) the complex relationships that exist in an OOS

 (d) none of the above

 7. Understanding problem is caused by _____.

 (a) encapsulation and information hiding features

 (b) state dependent behaviours

 (c) the complex relationships that exist in an OOS

 (d) none of the above

471Testing Object-Oriented Software l

 8. State behaviour problem is caused by _____.

 (a) encapsulation and information hiding features

 (b) state dependent behaviours

 (c) the complex relationships that exist in an OOS

 (d) none of the above

 9. Method-level (or unit) testing refers to _____.
 (a) testing of interactions among the components of an individual class
 (b) the internal testing of an individual method in a class
 (c) testing of interactions among objects
 (d) external inputs and outputs visible to the users of a system

 10. Class-level testing refers to _____.
 (a) testing of interactions among the components of an individual class
 (b) the internal testing of an individual method in a class
 (c) testing of interactions among objects
 (d) external inputs and outputs visible to the users of a system

 11. Cluster-level testing refers to _____.
 (a) testing of interactions among the components of an individual class
 (b) the internal testing of an individual method in a class
 (c) testing of interactions among objects
 (d) external inputs and outputs visible to the users of a system

 12. System-level testing refers to _____.

 (a) testing of interactions among the components of an individual class

 (b) the internal testing of an individual method in a class

 (c) testing of interactions among objects

 (d) external inputs and outputs visible to the users of a system

 13. The features of a class can be categorized into _____ main groups.

 (a) 3

 (b) 5

 (c) 2

 (d) 6

 14. _____ feature must be tested fi rst in feature-based testing.

 (a) Destroy

 (b) Predicate

 (c) Modifi ers

 (d) Create

 15. _____ feature is an ideal candidate for use in the validation of other features.

 (a) Destroy

 Software Testing: Principles and Practices472

 (b) Predicate

 (c) Selectors

 (d) Create

 16. The modifi er features of a class are used to _____.

 (a) alter the state of the object from one valid state to another valid state.

 (b) alter the state of the class from one valid state to another valid state.

 (c) all of the above

 17. Inherited methods should be retested in the context of a _____.

 (a) superclass

 (b) subclass

 (c) objects

 (d) all of the above

 18. System testing can be performed with _____.

 (a) deployment diagrams

 (b) class diagram

 (c) package diagram

 (d) use case diagram

 19. Sequence diagrams are used for _____.

 (a) unit testing

 (b) integration testing

 (c) state testing

 (d) none of the above

 20. Package diagrams are used for _____.

 (a) unit testing

 (b) integration testing

 (c) state testing

 (d) none of the above

REVIEW QUESTIONS

 1. What is the major reason for discarding the structured approach?

 2. Differentiate an object and a class with example.

 3. What is the difference between testing a procedural software and an object-oriented
software?

 4. What are the testing and maintenance problems introduced with object-oriented
software?

 5. What steps would you take to verify a use-case model?

473Testing Object-Oriented Software l

 6. Take an OOS project and verify its use-case model.

 7. What steps would you take to verify a CRC model?

 8. Take an OOS project and verify its CRC model.

 9. What are the issues in testing a class?

 10. Make a software to calculate the salary of employees in an organization, assuming
the necessary details required using the object-oriented technology and prepare the
following:

 (a) Use-case diagram

 (b) Sequence diagram

 (c) Collaboration diagram

 (d) CRC model

 (e) Class diagram

 (f) Verify use-case model

 (g) Verify CRC model

 11. Perform feature-based testing on the classes identifi ed in Question 10.

 12. What is the role of invariants in class testing? Discuss with example.

 13. List the inheritance issues in testing the classes of Question 10.

 14. Identify inheritance relationship in the class identifi ed in Question 10 and show example
of every attribute in the incremental testing. Perform incremental testing on the classes
mentioning all the attributes.

 15. What are the integration testing levels of an OOS?

 16. What is the procedure for performing thread-based integration testing?

 17. Perform thread-based integration on the classes identifi ed in Question 10.

 18. What is the idea behind implicit control fl ow integration testing?

 19. Is it possible to perform implicit control fl ow integration testing on the classes identifi ed in
Question 10.

 20. Which UML diagrams are helpful in testing an OOS?

 21. Perform system testing based on the use-cases identifi ed in use-case model prepared in
Question 10.

 Software Testing: Principles and Practices474

Web-based systems have had a great impact on our
daily lives. These systems have evolved from small
website add-ons to large multi-tiered applications. The
computing environment for this rapidly growing web
technology is complex as Internet is heterogeneous,
distributed, and multi-platform. Besides the dynamic
computing environment for web-based systems,
user requirements for new features also add to the
complexity in designing and testing these systems.
 The growing number of web applications
combined with an ever-growing Internet user mass,
emphasizes the importance of developing high-quality
products. However, many attributes of quality web-
based systems such as ease of navigation, accessibility,
scalability, maintainability, usability, compatibility
and interoperability, security, readability, and
reliability are not given due consideration during
development. Therefore, proper testing of web-
based systems is needed in ensuring reliable, robust,
and high-performing operation of web applications.

The testing of web-based systems is a complex
task not only due to the overwhelming number of users on the web but there
is also a lot of difference between traditional systems and the web-based sys-
tems. Traditional testing techniques are not adequate for web-based systems
because they do not incorporate the problems associated with the computa-
tion environment, new features, and constraints of web-based applications.

17.1 WEB-BASED SYSTEM
The web-based software system consists of a set of web pages and components
that interact to form a system which executes using web server(s), network,

Chapter

17
Testing Web-based Systems

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � How the testing of a web-based system is

different from testing traditional software
 � Challenges in testing web-based systems
 � Web engineering based analysis and

design models which is the basis for
testing web-based systems

 � Interface testing
 � Usability testing
 � Content testing
 � Navigation testing
 � Confi guration/Compatibility testing
 � Security testing
 � Performance testing
 � Load testing
 � Stress testing

475Testing Web-based Systems l

HTTP, and a browser, and in which user input affects the state of the system.
Thus, web-based systems are typical software programs that operate on the
Internet, interacting with the user through an Internet browser. Some other
terms regarding these systems are given below:

 Web page is the information that can be viewed in a single browser window.
A website is a collection of web pages and associated software components

that are related semantically by content and syntactically through links and
other control mechanisms. Websites can be dynamic and interactive.

A web application is a program that runs as a whole or in part on one or
more web servers and that can be run by users through a website. Web ap-
plications require the presence of web server in simple confi gurations and
multiple servers in more complex settings. Such applications are called web-
 based applications. Similar applications, which may operate independent of any
servers and rely on operating system services to perform their functions, are
termed web-enabled applications. These days, with the integration of technolo-
gies used for the development of such applications, there is a thin line separat-
ing web-based and web-enabled applications, so we collectively refer to both of
them as web applications.

17.2 WEB TECHNOLOGY EVOLUTION

17.2.1 FIRST GENERATION/ 2-TIER WEB SYSTEM

The web systems initially were based on a typical client-server model. The
client is a web browser that people use to visit websites. The websites are on
different computers, the servers and the HTML fi les are sent to the client by a
software package called a web server. HTML fi les contain JavaScripts, which
are small pieces of code that are interpreted on the client. HTML forms gen-
erate data that are sent back to the server to be processed by CGI programs.
This 2-tier architecture consisting of two separate computers was a simple
model suitable for small websites but with little security.

17.2.2 MODERN 3-TIER AND N-TIER ARCHITECTURE

In the 2-tier architecture, it was diffi cult to separate presentation from busi-
ness logic with the growth of websites. Due to this, applications were not
scalable and maintainable. Moreover, having only one web server imposes a
bottleneck; if there is a problem on that server, then the users cannot access
the website (availability). Therefore, this simple client-server model was ex-
panded fi rst to the 3-tier model and then, to the N-tier model. To get quality

 Software Testing: Principles and Practices476

attributes, such as security, reliability, availability, scalability, and functional-
ity, application server has been introduced wherein most of the software has
been moved to a separate computer. Indeed, on large websites, the applica-
tion server is actually a collection of application servers that operate in paral-
lel. The application servers typically interact with one or more database servers,
often running a commercial database (Fig. 17.1). Web and application servers
often are connected by middleware, which are packages provided by software
vendors to handle communication, data translation, and process distribution.
Likewise, the application-database servers often interact through middleware.
The web server that implements CGI, PHP, Java Servlets, or Active Server
Pages (ASP), along with the application server that interacts with the database
and other web objects is considered the middle tier. Finally, the database
along with the DBMS server forms the third tier.

Middleware

Network

Web server

Middleware

Application
server

DB
server

ClientClientClient

Figure 17.1 Modern websites

In the N-tier model, there are additional layers of security between po-
tential crackers and the data and application business logic. Separating the
presentation (typically on the web server tier) from the business logic (on the
application server tier) makes it easier to maintain and expand the software
both in terms of customers that can be serviced and services that can be of-
fered. The use of distributed computing, particularly for the application serv-
ers, allows the web application to tolerate failures, handle more customers,
and allows developers to simplify the software design.

17.3 TRADITIONAL SOFTWARE AND WEB-BASED SOFTWARE

Web systems are based on client-server architecture wherein a client typically
enables users to communicate with the server. Therefore, these systems share
some characteristics of client-server architecture. However, there are a num-
ber of aspects of web systems that necessitate having different techniques to
test them. These are discussed below [147]:

 1. Clients of the traditional client-server systems are platform-specifi c. This
means that a client application is developed and tested for each supported

477Testing Web-based Systems l

client operating system. But the web client is operating within the web
browser’s environment. Web browsers already consist of operating system-
specifi c client software running on a client computer. But these browsers
need to support HTML, as well as active contents to display web page
information. For this purpose, browser vendors must create rendering
engines and interpreters to translate and format HTML contents. In
making these software components, various browsers and their releases
introduce incompatibility issues.

 2. Web-based systems have a more dynamic environment as compared
to traditional client-server systems. In client-server systems, the roles of
the clients and servers and their interactions are predefi ned and static as
compared to web applications where client side programs and contents
may be generated dynamically. Moreover, the environment for web ap-
plications is not predefi ned and is changing dynamically i.e. hardware
and software are changing, confi guration are ever-changing, etc. Web
applications often are affected by these factors that may cause incom-
patibility and interoperability issues.

 3. In the traditional client-server systems, the normal fl ow of control is not
affected by the user. But in web applications, users can break the normal
control fl ow. For example, users can press the back or refresh button in
the web browser.

 4. Due to the dynamic environment, web systems demand more frequent
maintenance.

 5. The user profi le for web systems is very diverse as compared to client-
server systems. Therefore, the load on web access due to this diversity
is not predictable.

17.4 CHALLENGES IN TESTING FOR WEB-BASED SOFTWARE

As discussed above, web-based software are different as compared to tra-
ditional systems. Therefore, we must understand the environment of their
creation and then test them. Keeping in view the environment and behaviour
of web-based systems, we face many challenges while testing them. These
challenges become issues and guidelines when we perform testing of these
systems. Some of the challenges and quality issues for web-based system are
discussed here:

Diversity and complexity Web applications interact with many components
that run on diverse hardware and software platforms. They are written in
diverse languages and they are based on different programming approaches
such as procedural, OO, and hybrid languages such as Java Server Pages

 Software Testing: Principles and Practices478

(JSPs). The client side includes browsers, HTML, embedded scripting
languages, and applets. The server side includes CGI, JSPs, Java Servlets,
and .NET technologies. They all interact with diverse back-end engines and
other components that are found on the web server or other servers.

Dynamic environment The key aspect of web applications is its dynamic nature.
The dynamic aspects are caused by uncertainty in the program behaviour,
changes in application requirements, rapidly evolving web technology itself,
and other factors. The dynamic nature of web software creates challenges
for the analysis, testing, and maintenance for these systems. For example, it
is diffi cult to determine statically the application’s control fl ow because the
control fl ow is highly dependent on user input and sometimes in terms of
trends in user behaviour over time or user location. Not knowing which page
an application is likely to display hinders statically modeling the control fl ow
with accuracy and effi ciency.

Very short development time Clients of web-based systems impose very short
development time, compared to other software or information systems projects.
For e.g. an e-business system, sports website, etc.

Continuous evolution Demand for more functionality and capacity after the
system has been designed and deployed to meet the extended scope and
demands, i.e. scalability issues.

Compatibility and interoperability As discussed above, there may also be
compatibility issues that make web testing a diffi cult task. Web applications
often are affected by factors that may cause incompatibility and interoperability
issues. The problem of incompatibility may exist on both the client as well
as the server side. The server components can be distributed to different
operating systems. Various versions of browsers running under a variety of
operating systems can be there on the client side. Graphics and other objects
on a website have to be tested on multiple browsers. If more than one browser
will be supported, then the graphics have to be visually checked for differences
in the physical appearance. The code that executes from the browser also has
to be tested. There are different versions of HTML. They are similar in some
ways but they have different tags which may produce different features.

17.5 QUALITY ASPECTS

Based on the above discussion on the challenges of web software, some of
the quality aspects which must be met while designing these systems are dis-
cussed here.

479Testing Web-based Systems l

Reliability It is an expected feature that the system and servers are available
at any time with the correct results. It means that the web systems must have
high availability to be a reliable system. If one web software fails, the customer
should be able to switch to another one. Thus, if web software is unreliable,
websites that depend on the software will lose customers and the businesses
may lose large amount of money.

Performance Performance parameters for web systems must also be tested. If
they are not tested, they may even lead to the total failure of the system. Perfor-
mance testing is largely on the basis of load testing, response time, download
time of a web page, or transactions performed per unit time.

Security Since web systems are based on Internet, there are possibilities of any
type of intrusion in these systems. Thus, security of web applications is another
challenge for the web applications developers as well as for the testing team.
Security is critical for e-commerce websites.

Tests for security are often broken down into two categories: testing the se-
curity of the infrastructure hosting the web application and testing for vulner-
abilities of the web application. Some of the points that should be considered
for infrastructure are fi rewalls and port scans. For vulnerabilities, there is user
authentication, cookies, etc. Data collected must be secured internally. Users
should not be able to browse through the directories in the server. A cookie is
a text fi le on a user’s system that identifi es the user. Cookies must always be
encrypted and must not be available to other users.

Usability This is another major concern while testing a web system. The users
are real testers of these systems. If they feel comfortable in using them; then the
systems are considered of high quality. Thus, usability also becomes an issue
for the testers. The outlook of the system, navigation steps, all must be tested
keeping the large categories of users in mind. Moreover, the users expect to
be able to use the websites without any training. Thus, the software must fl ow
according to the users’ expectations, offer only needed information, and when
needed, should provide navigation controls that are clear and obvious.

Scalability With the evolution of fast technology changes, the industry has
developed new software languages, new design strategies, and new commu-
nication and data transfer protocols, to allow websites to grow as needed.
Therefore, designing and building web software applications that can be eas-
ily scaled is currently one of the most interesting and important quality issues
in software design. Scalability is defi ned as the web application’s capacity to
sustain the number of concurrent users and/or transactions, while sustaining
suffi cient response times to its users. To test scalability, web traffi c loads must
be determined in order to obtain the threshold requirement for scalability.
Sometimes, existing traffi c levels are used to simulate the load.

 Software Testing: Principles and Practices480

Availability Availability not only means that the web software is available at
any time, but in today’s environment it also must be available when accessed
by diverse browsers. To be available in this sense, websites must adapt their
presentations to work with all browsers, which require more knowledge and
effort on the part of the developers.

Maintainability Web-based software has a much faster update rate. Mainte-
nance updates can be installed and immediately made available to customers
through the website. Thus, even small individual changes (such as changing
the label on a button) can be installed immediately. One result of this is that
instead of maintenance cycles of months or years, websites have maintenance
cycles of days or even hours.

17.6 WEB ENGINEERING (WEBE)
The diversity, complexity, and unique aspects of web-based software were
not recognized and given due consideration by the developers early in the de-
velopment of these systems. These systems also lack proper testing and evalu-
ation. As a result, they faced a web crisis or what is called a software crisis.

Many organizations are heading toward a web crisis in which they are unable
to keep the system updated and/or grow their system at the rate that is needed.
This crisis involves the proliferation of quickly ‘hacked together’ web systems that
are kept running via continual stream of patches or upgrades developed without
systematic approaches. [148]

Thus, to tackle the crisis in web-based system development, web engineer-
ing [150-156] as a new discipline has been evolved. This new discipline adopts
a systematic approach to development of high-quality web-based systems.

Web engineering is an application of scientifi c, engineering, and management principles
and disciplined and systematic approaches to the successful development, deployment,
and maintenance of high-quality web-based systems and applications. [149]

Web engineering activities involve all the aspects starting from the concep-
tion and development to the implementation, performance evaluation, and
continual maintenance. We will discuss web-based analysis and design and
then the testing of web-based systems in the subsequent sections.

17.6.1 ANALYSIS AND DESIGN OF WEB-BASED SYSTEMS

Various methods have been proposed in the recent years for modeling web-
based systems for analysis and design. Keeping in consideration the nature of
web applications, the design of these systems must consider the following:

481Testing Web-based Systems l

 � Design for usability—interface design, navigation.

 � Design for comprehension.

 � Design for performance—responsiveness.

 � Design for security and integrity.

 � Design for evolution, growth, and maintainability.

 � Design for testability.

 � Graphics and multimedia design.

 � Web page development.

It has been found that UML-based modeling [157-160] is more suitable
according to the dynamic and complex nature of these systems. Therefore,
we briefl y mention all the UML-based models for analysis and design as dis-
cussed by Koch and Kraus [161]. The purpose to discuss them here is to get
familiar with the analysis and design models in the context of web-based sys-
tems. Moreover, the understanding of these models will also help in testing
these systems. As we have seen in testing for object-oriented software, testing
of OO software was based on the models developed in analysis and design.
On the same pattern, we will fi rst understand UML-based analysis and design
models and then move to testing these systems.

 Conceptual Modeling
The conceptual model is a static view of the system that shows a collection of
static elements of the problem domain. To model this, class and association
modeling elements of UML are used. Additionally, role names, multiplicities,
different forms of associations supported by the UML like aggregation, in-
heritance, composition, and association class can also be used to improve the
modeling. If there are many classes in conceptual modeling, then packages
may also be used. Since the conceptual model will show the objects involved
in typical activities, use-cases with activity diagrams are also used for concep-
tual modeling.

 Navigation Modeling
There are two types of navigation modeling: navigation space model and naviga-
tion structure model. The navigation space model specifi es which objects can
be visited by navigation through the application. It is a model at the analysis
level. The navigation structure model defi nes how these objects are reached.
It is a model at the design level.

The navigation models are represented by stereotyped class diagrams con-
sisting of classes of those objects which can be visited by navigation through
the web application and the associations which specify which objects can be

 Software Testing: Principles and Practices482

reached through navigation. The main modeling elements are the stereotyped
class «navigation class» and the stereotyped association «direct navigability». How-
ever, navigation model considers only those classes of the conceptual model
that are relevant for navigation. Further, the navigation space model can be
enhanced.

 Presentation Modeling
This model transforms the navigation structure model in a set of models that
show the static location of the objects visible to the user, i.e. a schematic
representation of these objects. Using this presentation model, the discussion
regarding interface design can be discussed with the customer. The sketches
of these representations are drawn using a class diagram with UML composi-
tion notation for classes, i.e. containment represented by graphical nesting of
the symbols of the parts within the symbol of the composite.

 Web Scenarios Modeling
The dynamic behaviour of any web scenarios including the navigation sce-
narios are modeled here. The scenarios help in introducing more specifi ca-
tion details. The navigation structure model is detailed here showing all the
sequences of the behaviour of the objects, i.e. stimuli that trigger the transi-
tions and explicitly including the actions to be performed. This modeling is
done with the help of sequence interaction diagram/collaboration diagrams
and state chart diagrams.

 Task Modeling
The tasks performed by the user or system are modeled here. Basically, the
use-cases as tasks are refi ned here. Since use-cases are refi ned by activity dia-
grams in UML, these diagrams are used for task modeling. The modeling
elements for task modeling are those for activity diagrams, i.e. activities, tran-
sitions, branches, etc. A task hierarchy can also be represented from coarse to
fi ne-grained activities. The temporal order (with branches) between tasks is
expressed by transitions between activities.

Task modeling also comprises of the description of the objects–called refer-
ents–that the user will perceive. For this purpose, presentation and conceptual
objects are included in the task model. The relationship between tasks and
these objects is expressed as object fl ow visualized as directed dashed lines.
The ingoing presentation objects express user input through these presen-
tation objects and outgoing presentation objects express output to the user
through these presentation objects. The conceptual objects express input and
output of tasks.

483Testing Web-based Systems l

 Confi guration Modeling
Since web systems are diverse and complex in nature, we need to consider all
the confi guration and attributes that may be present on the client as well as on
the server side. Moreover, some complex issues like deployment of process
among multiple servers, compatibility with server OS, security issues, etc. are
also considered. Deployment diagrams are used for confi guration modeling.

17.6.2 DESIGN ACTIVITIES

Based on the discussion above, the following design activities have been iden-
tifi ed for a web-based system [116]:

Interface Design
It considers the design of all interfaces recognized in the system including
screen layouts. It also includes the types of navigation possible through the
web system. All the interface design and navigational design issues are fi rst
discussed with the end-user. Interfaces should be designed such that they are
fl exible, consistent, and readable.

Content Design
All the contents regarding the web application identifi ed as static elements
in the conceptual modeling are designed here. The objects identifi ed are
known as content objects. Thus, these content objects and their relationships are
designed here.

Architecture Design
The overall architecture of web applications is divided into the following
three categories:

 (i) An overall system architecture describing how the network and the
various servers (web servers, application servers, and database servers)
interact.

 (ii) Content architecture design is needed to create a structure to organize
the contents. Thus, this design is for structured presentation of the con-
tent objects. The content structure depends on factors like nature of the
application, nature of the information, etc.

 (iii) Application architecture is designed within the context of the devel-
opment environment in which the web application is developed. This
design provides an infrastructure so that functioning of the application
in the form of components is clearly understood.

 Software Testing: Principles and Practices484

Presentation Design
This design is related to the look and feel of the application. The usability is-
sues are considered here. The idea is that web application should be easy and
fl exible to use by its user. The design issues are related to layout of the web
pages, graphics to be inserted, colour schemes, typefaces, etc.

Navigation design
Navigational paths are designed such that users are able to navigate from
one place to another in the web application. The identifi ed content objects,
which are participating in navigation, become the navigation nodes and links
between them defi ne the navigation paths.

17.7 TESTING OF WEB-BASED SYSTEMS

 Web-based systems have a different nature as compared to traditional systems.
We have seen the key differences between them. Due to the environment dif-
ference and challenges of dynamic behaviour, complexity and diversity also
makes the testing of these systems a challenge. These systems need to be
tested not only to check whether it does what it is designed to do but also to
evaluate how well it appears on the (different) web browsers. Moreover, they
need to be tested for various quality parameters which are a must for these
systems like security, usability, etc. Hence, a lot of effort is required for test
planning and test designing.

Test cases should be written covering the different scenarios not only of the
functional usage but also the technical implementation environment condi-
tions such as network speeds, screen resolution, etc. For example, an applica-
tion may work fi ne on Broadband Internet users but may perform miserably
for users with dial-up connections. Web applications are known to give er-
rors on slow networks, whereas they perform well on high-speed connections.
Web pages don’t render correctly for certain situations but work fi ne with
others. Images may take longer to download for slower networks and the end-
user perception of the application may not be good.

There may be a number of navigation paths possible through a web appli-
cation. Therefore, all these paths must be tested. Along with multiple naviga-
tion paths, users may have varying backgrounds and skills. Testing should be
performed keeping in view all the possible categories of users in view. This
becomes the issues in usability testing.

Another issue of great concern is the security testing of web applications.
There are two cases. For Intranet-based applications, there are no such threats
on the application. However, in case of Internet-based applications, the users

485Testing Web-based Systems l

may need to be authenticated and security measures may have to be much
more stringent. Test cases need to be designed to test the various scenarios
and risks involved.

Traditional software must be tested on different platforms, or it may fail
in some platforms. Similarly, web-based software must be tested with all the
dimensions which are making it diverse. For example, users may have differ-
ent browsers while accessing the applications. This aspect also needs to be
tested under compatibility testing. If we test the application only on Inter-
net Explorer, then we cannot ensure that if works well on Netscape or other
browsers. Because these browsers may not only render pages differently but
also have varying levels of support for client side scripting languages such as
Java Script.

The strategy for testing web-based systems is the same as for other systems,
i.e. verifi cation and validation. Verifi cation largely considers the checking of
analysis and design models which have been described above. Various types
of testing derive from the design models only. However, the quality param-
eters are also important factors which form the other types of testing. We
discuss these various types of web testing in the following sections.

17.7.1 INTERFACE TESTING

Interface is a major requirement in any web application. More importantly,
the user interface with web application must be proper and fl exible. There-
fore as a part of verifi cation, present model and web scenarios model must be
checked to ensure all interfaces. The interfaces between the concerned client
and servers should also be considered. There are two main interfaces on the
server side: web server and application server interface and application server and
database server interface.
 Web applications establish links between the web server and the applica-
tion server at the onset. The application server in turn connects to the data-
base server for data retrieval, processing, and storage. It is an important factor
that these connections or interfaces work seamlessly without any failure or
degradation in performance of speed and accuracy. Testing should check for
appropriate error messages, roll back in case of failure to execute or user in-
terruption. The complexity of this test is in ensuring that the respective inter-
face, be it web server or application or database interface, captures the errors
and initiates the appropriate error messages to the web application.

Thus, in interface testing, all interfaces are checked such that all the interac-
tions between these servers are executed properly. Errors are handled prop-
erly. If database or web server returns any error message for any query by the
application server, then the application server should catch and display these

 Software Testing: Principles and Practices486

error messages appropriately to users. Check what happens if the user inter-
rupts any transaction in between? Check what happens if connection to web
server is reset in between? Compatibility of server with software, hardware,
network, and database should also be tested.

17.7.2 USABILITY TESTING

The presentation design emphasizing the interface between user and web ap-
plication gives rise to usability testing. The actual user of application should
feel good while using the application and understand every thing visible to
him on it. Usability testing is not a functionality testing, but the web applica-
tion is reviewed and tested from a user’s viewpoint. The importance of usabil-
ity testing can be realized with the fact that we can even lose users because
of a poor design. For example, check that form controls, such as boxes and
buttons, are easy to use, appropriate to the task, and provide easy navigation
for the user. The critical point for designers and testers in this attesting is that
web application must be as pleasant and fl exible as possible to the user.

Usability testing may include tests for navigation. It refers to how the user
navigates the web pages and uses the links to move to different pages. Besides
this, content should be logical and easy to understand. Check for spelling
errors. Use of dark colours annoy users and should not be used in the site
theme. You can follow some standards that are used for web page and con-
tent building. Content should be meaningful. All the anchor text links should
work properly. Images should be placed properly with the proper sizes.

For verifi cation of web application, the presentation design must be checked
properly so that most of the errors are resolved at the earlier stages only. Veri-
fi cation can be done with a technique called card-sorting technique given by Mi-
chael D. Levi and Frederick G. Conrad. According to this technique, a group
of end-users are given a set of randomly ordered index cards, each of which
is labeled with a concept from the task domain. The users scatter all the index
cards on the desk, sort them according to a category. Further arrange these
groups in broader category. Write a name for each of the larger groupings,
write it on a slip of paper, and attach each slip to the corresponding group.
After this process of sorting, compare the card sort results to the original pre-
sentation design of the application. In this comparison, we may fi nd several
areas where we can improve the underlying hierarchy so that users can easily
fi nd the information they were looking for.

For validation, a scenario-based usability testing can be performed. This
type of testing may take the help of use-cases designed in the use-case model
for the system. All the use-cases covering usability points can become the base
for designing test cases for usability testing. In this usability testing, some cat-
egories of users are invited to perform the testing. The testers meet the group

487Testing Web-based Systems l

of participants to describe the system in general terms, give an overview of
the process, and answer any questions. Participants are seated in front of a
desktop computer and asked to work through the scenario questions. At the
end of the session, a group discussion is held to note down the participants’
reactions and suggestions for improvement. The results of user testing can
also be taken from the participants in the form of a questionnaire. As they use
the application, they answer these questions and give feedback to the testers
in the end. Besides this, web server logs can also be maintained for the session
of usage by the participants. It provides the testers with a time-stamped record
of each participant’s sessions providing an excellent approximation of users’
journeys through a site.

The log mining method discussed above can be used for improvement in
application even after the release of the product. The actual user session logs
can be recorded and evaluated from the usability point. The general guide-
lines for usability testing are:

 1. Present information in a natural and logical order.

 2. Indicate similar concepts through identical terminology and graphics.
Adhere to uniform conventions for layout, formatting, typefaces, label-
ing, etc.

 3. Do not force users to remember key information across documents.

 4. Keep in consideration that users may be from diverse categories with
various goals. Provide understandable instructions where useful. Lay
out screens in such a manner that frequently accessed information is
easily found.

 5. The user should not get irritated while navigating through the web appli-
cation. Create visually pleasing displays. Eliminate information which is
irrelevant or distracting.

 6. Content writer should not mix the topics of information. There should
be clarity in the information being displayed.

 7. Organize information hierarchically, with more general information
appearing before more specifi c detail. Encourage the user to delve as
deeply as needed, but to stop whenever suffi cient information has been
received.

 8. Check that the links are active such that there are no erroneous or mis-
leading links.

17.7.3 CONTENT TESTING

The content we see on the web pages has a strong impression on its user. If
these contents are not satisfactory to him, he may not visit the web page again.

 Software Testing: Principles and Practices488

Check the completeness and correctness properties of web application con-
tent. Check that certain information is available on a given web page, links
between pages exist, or even check the existence of the web pages themselves
(completeness property). Furthermore, web application content may need to
be checked against semantic conditions to see if they meet the web document
(correctness property). Therefore the contents should be correct, visible, fl ex-
ible to use, organized, and consistent.

This type of testing targets the testing of static and dynamic contents of
web application. Static contents can be checked as a part of verifi cation. For
instance, forms are an integral part of any website. Forms are used to get in-
formation from users and to keep interacting with them. First, check all the
validations on each fi eld. Check for the default values of fi elds and also wrong
inputs to the fi elds in the forms. Options to create forms if any, form delete,
view, or modify the forms must also be checked.

Static testing may consider checking the following points:
 1. Various layouts.
 2. Check forms for their fi eld validation, error message for wrong input,

optional and mandatory fi elds with specifi ed length, buttons on the form,
etc.

 3. A table is present and has the expected number of rows and columns
and pre-defi ned properties.

 4. Grammatical mistakes in text description of web page.
 5. Typographical mistakes.
 6. Content organization.
 7. Content consistency.
 8. Data integrity and errors while you edit, delete, modify the forms.
 9. Content accuracy and completeness.
 10. Relationship between content objects.
 11. Text contents.
 12. Text fragments against formatting expectations. This differs slightly from

simple text checking in that the formatting tags can be located loosely
on the page as opposed to a fi xed string for text content.

 13. Graphics content with proper visibility.
 14. Media contents to be placed at appropriate places.
 15. All types of navigation links like internal links, external links, mail links,

broken links to be placed at appropriate places.
 16. All links on a web page are active.

A checklist for content verifi cation can be prepared as was seen in
Chapter 3.

489Testing Web-based Systems l

There may also be dynamic contents on a web page. Largely, dynamic test-
ing will be suitable in testing these dynamic contents. These dynamic contents
can be in many forms. One possibility is that there are constantly changing
contents, e.g. weather information web pages or online newspaper. Another
case may be that web applications are generated dynamically from informa-
tion contained in a database or in a cookie. Many web applications today
work interactively in the manner that in response to a user request for some
information, it interacts with some DBMS, extracts the relevant data, creates
the dynamic content objects for this extracted data, and sends these content
objects to the user for display. In the same manner, the information can be
generated dynamically from cookies also, i.e. dynamic content objects for
cookies are also there.

The problem in the design of these dynamic contents is that there may be
many errors due to its dynamic behaviour. Therefore, testing of these dynam-
ic contents becomes necessary to uncover the errors. Changing contents on
a web page must be tested whether the contents are appearing every time in
the same format. Moreover, there is consistency between the changed content
and static content.

Test all database interface-related functionality for all dynamic content ob-
jects. Check if all the database queries are executing correctly, data is re-
trieved correctly, and also updated correctly. Load testing or performance
testing can also be done on database.

Cookies are small fi les stored on the user machine. These are basically used
to maintain the session, mainly the login sessions. The testing of the entire in-
terface with these cookies must also be tested. Test the application by enabling
or disabling the cookies in browser options. Test if the cookies are encrypted
before writing to user machine. Check the effect on application security by
deleting the cookies.

17.7.4 NAVIGATION TESTING

We have checked the navigation contents in interface testing. But to ensure
the functioning of correct sequence of those navigations, navigation testing is
performed on various possible paths in the web application. Design the test
cases such that the following navigations are correctly executing:

 1. Internal links

 2. External links

 3. Redirected links

 4. Navigation for searching inside the web application

 Software Testing: Principles and Practices490

The errors must be checked during navigation testing for the following:

 1. The links should not be broken due to any reason.

 2. The redirected links should be with proper messages displayed to the
user.

 3. Check that all possible navigation paths are active.

 4. Check that all possible navigation paths are relevant.

 5. Check the navigations for the back and forward buttons, whether they
are working properly.

17.7.5 CONFIGURATION/COMPATIBILITY TESTING

Diversity in confi guration for web applications makes the testing of these sys-
tems very diffi cult. As discussed above, there may be various types of brows-
ers supporting different operating systems, variations in servers, networks,
etc. Therefore, confi guration testing becomes important so that there is com-
patibility between various available resources and application software. The
testers must consider these confi gurations and compatibility issues so that they
can design the test cases incorporating all the confi gurations. Some points to
be careful about while testing confi guration are:

 1. There are a number of different browsers and browser options. The
web application has to be designed to be compatible for majority of the
browsers.

 2. The graphics and other objects on a website have to be tested on mul-
tiple browsers. If more than one browser will be supported, then the
graphics have to be visually checked for differences in the physical ap-
pearance. Some of the things to check are centering of objects, table
layouts, colours, monitor resolution, forms, and buttons.

 3. The code that executes from the browser also has to be tested. There
are different versions of HTML. They are similar in some ways but they
have different tags which may produce different features. Some of the
other codes to be tested are Java, JavaScript, ActiveX, VBscripts, Cgi-
Bin Scripts, and Database access. Cgi-Bin Scripts have to be checked for
end-to-end operations and is most essential for e-commerce sites. The
same goes for database access.

 4. All new technologies used in the web development like graphics designs,
interface calls like different API’s, may not be available in all the operat-
ing systems. Test your web application on different operating systems
like Windows, Unix, MAC, Linux, Solaris with different OS fl avors.

491Testing Web-based Systems l

17.7.6 SECURITY TESTING

Today, the web applications store more vital data and the number of transac-
tions on the web has increased tremendously with the increasing number of
users. Therefore, in the Internet environment, the most challenging issue is to
protect the web applications from hackers, crackers, spoofers, virus launchers,
etc. Through security testing, we try to ensure that data on the web applica-
tions remain confi dential, i.e. there is no unauthorized access. Security testing
also ensures that users can perform only those tasks that they are authorized
to perform.

In a web application, the risk of attack is multifold, i.e. it can be on the web
software, client-side environment, network communications, and server-side
environments. Therefore, web application security is particularly important
because these are generally accessible to more users than the desktop ap-
plications. Often, they are accessed from different locations, using different
systems and browsers, exposing them to different security issues, especially
external attacks. It means that web applications must be designed and devel-
oped such that they are able to nullify any attack from outside. Therefore, this
issue is also related to testing of web application in terms of security. We need
to design the test cases such that the application passes the security test.

Security Test Plan
Security testing can be divided into two categories: testing the security of the
infrastructure hosting the web application and testing for vulnerabilities of
the web application. Firewalls and port scans can be the solution for security
of infrastructure. For vulnerabilities, user authentication, restricted and en-
crypted use of cookies, data communicated must be planned. Moreover, users
should not be able to browse through the directories in the server.

Planning for security testing can be done with the help of some threat mod-
els. These models may be prepared at the time of requirement gathering and
test plan can also be prepared correspondingly. These threat models will help
in incorporating security issues in designing and later can also help in security
testing.

Find all the component interfaces for performing security testing on a com-
ponent. This is because most of the security bugs can be found on the in-
terfaces only. The interfaces are then prioritized according to their level of
vulnerability. The high-priority interfaces are tested thoroughly by injecting
mutated data to be accessed by that interface in order to check the security.

While performing security testing, the testers should take care that they do
not modify the confi guration of the application or the server, services running
on the server, and existing user or customer data hosted by the application.

 Software Testing: Principles and Practices492

Various Threat Types and their corresponding Test cases

Unauthorized user/Fake identity/Password cracking When an unauthorized
user tries to access the software by using fake identity, then security testing
should be done such that any unauthorized user is not able to see the contents/
data in the software.

 Cross-site scripting (XSS) When a user inserts HTML/client-side script in the
user interface of a web application and this insertion is visible to other users,
it is called cross-site scripting (XSS). Attacker can use this method to execute
malicious script or URL on the victim’s browser. Using cross-site scripting,
attacker can use scripts like JavaScript to steal user cookies and information
stored in the cookies. To avoid this, the tester should additionally check the
web application for XSS.

Buffer overfl ows Buffer overfl ow is another big problem when handling mem-
ory allocation if there is no overfl ow check on the client software. Due to this
problem, malicious code can be executed by the hackers. In the application,
check the buffer overfl ow module and the different ways of submitting a range
of lengths to the application.

URL manipulation There may be chances that communication through HTTP
is also not safe. The web application uses the HTTP GET method to pass infor-
mation between the client and the server. The information is passed in param-
eters in the query string. Again, the attacker may change some information in
query string passed from GET request so that he may get some information or
corrupt the data. When one attempts to modify the data, it is known as fi ddling
of data. The tester should check if the application passes important information
in the query string and design the test cases correspondingly. Write the test
cases such that a general user tries to modify the private information.

 SQL injection Hackers can also put some SQL statements through the web
application user interface into some queries meant for querying the database.
In this way, he can get vital information from the server database. Even if the
attacker is successful in crashing the application, from the SQL query error
shown on the browser, the attacker can get the information they are looking
for. Design the test cases such that special characters from user inputs should
be handled/escaped properly in such cases.

Denial of service When a service does not respond, it is denial of service. There
are several ways that can make an application fail. For example, heavy load put
on the application, distorted data that may crash the application, overloading
of memory, etc. Design the test cases considering all these factors.

493Testing Web-based Systems l

17.7.7 PERFORMANCE TESTING

Web applications’ performance is also a big issue in today’s busy Internet envi-
ronment. The user wants to retrieve the information as soon as possible with-
out any delay. This assumes the high importance of performance testing of web
applications. Is application able to respond in a timely manner or is it ready to
take the maximum load or beyond that? These questions imply that web ap-
plications must also be tested for performance. Performance testing helps the
developer to identify the bottlenecks in the system and can be rectifi ed.

In performance testing, we evaluate metrics like response time, through-
put, and resource utilization against desired values. Using the results of this
evaluation, we are able to predict whether the software is in a condition to be
released or requires improvement before it is released. Moreover, we can also
fi nd the bottlenecks in the web application. Bottlenecks for web applications
can be code, database, network, peripheral devices, etc.

Performance Parameters
Performance parameters, against which the testing can be performed, are
given here:

Resource utilization The percentage of time a resource (CPU, Memory, I/O,
Peripheral, Network) is busy.

Throughput The number of event responses that have been completed over a
given interval of time.

Response time The time lapsed between a request and its reply.

Database load The number of times database is accessed by web application
over a given interval of time.

Scalability The ability of an application to handle additional workload, with-
out adversely affecting performance, by adding resources such as processor,
memory, and storage capacity.

Round-trip time How long does the entire user-requested transaction take,
including connection and processing time?

Types of Performance Testing
Performance tests are broadly divided into following categories:

 Load testing Can the system sustain at times of peak load? The site should
handle many simultaneous user requests, large input data from users,
simultaneous connection to DB, heavy load on specifi c pages, etc. When

 Software Testing: Principles and Practices494

we need to test the application with these types of loads, then load testing is
performed on the system. It focuses on determining or validating performance
characteristics of the system when subjected to workloads and load volumes
anticipated during production operations. It refers to how much load (the best
example of load in web application is how many concurrent users) you can put
on the web application and it will still serve fl awlessly.

There are a few types of load testing which we can be performed. We can
perform capacity testing to determine the maximum load the web service can
handle before failing. Capacity testing reveals the web services’ ultimate limit.
We may also perform scalability testing to determine how effectively the web
service will expand to accommodate an increasing load.

 Stress testing Generally, stress refers to stretching the system beyond its
specifi cation limits. Web stress testing is performed to break the site by giving
stress and check how the system reacts to stress and how the system recovers
from crashes. It focuses on determining or validating performance characteristics
of the system when subjected to conditions beyond those anticipated during
production operations. It also tests the performance of the system under stressful
conditions, such as limited memory, insuffi cient disk space, or server failure.
These tests are designed to determine under what conditions an application
will fail, how it will fail, and how gracefully it may recover from the failure.
Some examples of graceful failure are: the system saves state at the time of
failure and does not crash suddenly; On restarting it, the system recovers from
the last good state; the system shows meaningful error messages to the user.

SUMMARY

Web-based systems are specialized software where conventional testing is not applicable. We
need to understand the issues related to web-based system and applications in order to un-
derstand the testing issues and perform web-based testing. Web applications in today’s envi-
ronment are highly accessible by every type of users. Their uses demand available, reliable,
and secure web applications. Due to these considerations, testing of web software becomes a
challenge for the testers.
 Web applications interact with many components that run on diverse hardware and software
platforms. It is diffi cult to determine statically the application’s control fl ow because the control
fl ow is highly dependent on user input and sometimes in terms of trends on user behaviour over
time or user location. Web applications often are affected by factors that may cause incompat-
ibility and interoperability issues. The problem of incompatibility may exist on both the client as
well as the server side. Thus, web applications are diverse, complex, dynamic, and face the
problems of incompatibility and interoperability.

Web engineering is the solution for web-based systems like software engineering is for
general software. Web engineering is the systematic discipline which includes the process of

495Testing Web-based Systems l

analysing, designing, building, and testing the web-based systems. In this chapter, we have dis-
cussed the analysis and design models for the understanding of testing of web-based systems.
After this, web testing types have been categorized taking analysis and design models as the
base.

Let us review the important concepts described in this chapter:

 � The web-based software system consists of a set of web pages and components that
interact to form a system which executes using web server(s), network, HTTP, and a
browser, and in which user input affects the state of the system.

 � Web applications interact with many components that run on diverse hardware and soft-
ware platforms.

 � The key aspect of web applications is its dynamic nature. The dynamic aspects are
caused by uncertainty in the program behaviour, changes in application requirements,
rapidly evolving web technology itself, and other factors.

 � Clients of web-based systems impose very short development time, compared to other
software or information systems projects.

 � Testing of web-based systems needs techniques considering the different nature of web
software.

 � Web engineering is the application of scientifi c, engineering, and management principles
and disciplined and systematic approaches to the successful development, deployment,
and maintenance of high-quality web-based systems and applications.

 � Conceptual model is a static view of the system that shows a collection of static elements
of the problem domain.

 � The navigation space model specifi es which objects can be visited by navigation through
the application. It is a model at the analysis level.

 � Presentation modeling transforms the navigation structure model into a set of models that
show the static location of the objects visible to the user, i.e. a schematic representation
of these objects.

 � Web scenarios modeling models the dynamic behaviour of any web scenarios including
the navigation scenarios.

 � Task modeling models the tasks performed by the user or system. Basically, the use-
cases as tasks are refi ned here.

 � Confi guration modeling considers the entire confi guration and attributes that may be
present on the client as well as the server side.

 � Interface design considers the design of all interfaces recognized in the system including
screen layouts.

 � Content design considers the design of all the contents regarding the web application
identifi ed as static elements in the conceptual modeling.

 � Architecture design considers the design of the overall system architecture of the web
application, content architecture design needed to create a structure to organize the
contents, and application architecture designed within the context of the development
environment in which the web application is developed.

 Software Testing: Principles and Practices496

 � Presentation design considers the design related to the look and feel of the application.

 � Navigation design considers the design of navigational paths such that users are able to
navigate from one place to another in the web application.

 � Interface testing tests the user interface with web application, the interfaces between the
concerned client and servers, server and application server interface, and application
server and database server interface.

 � Usability testing ensures that web application is as pleasant and fl exible as possible to
the user.

 � Content testing checks that certain information is available on a given web page, links
between pages exist, and also the existence of the web pages themselves (complete-
ness property). Furthermore, web application content may need to be checked against
semantic conditions to see if they are met by the web document (correctness property).

 � Navigation testing ensures the functioning of correct sequence of navigations like inter-
nal links, external links, redirected links, navigation for searching inside the web applica-
tion, etc.

 � Confi guration/compatibility testing checks the compatibility between various available
resources and application software. The testers must consider these confi gurations and
compatibility issues so that they can design the test cases incorporating all the confi gura-
tions.

 � Security testing tests that data on the web applications remain confi dential. It also en-
sures that users can perform only those tasks that they are authorized to perform.

 � Performance testing helps the developer to identify the bottlenecks in the system that
can be rectifi ed.

 � Load testing focuses on determining or validating performance characteristics of the
system when subjected to workloads and load volumes anticipated during production
operations.

 � Stress testing is performed to break the site by giving stress and check how the system
reacts to the stress and how it recovers from crashes.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. Web-based systems impose very _______ development time, compared to other soft-
ware or information systems projects.

 (a) long

 (b) short

 (c) same

 (d) none of the above

 2. The problem of incompatibility may exist on the

 (a) client side only

497Testing Web-based Systems l

 (b) server side only

 (c) both client as well as server side

 (d) none of the above

 3. Conceptual model is a _______ view of the system that shows a collection of static ele-
ments of the problem domain.

 (a) static

 (b) dynamic

 (c) both

 (d) none of the above

 4. The navigation space model is at the _______.

 (a) analysis level

 (b) design level

 (c) testing level

 (d) none of the above

 5. Navigation structure model is at the _______.

 (a) analysis level

 (b) design level

 (c) testing level

 (d) none of the above

 6. Presentation modeling transforms the _______ model in a set of models that show the
static location of the objects visible to the user.

 (a) navigation structure

 (b) navigation space

 (c) object structure

 (d) none of the above

 7. When one attempts to _______ the data, this is known as fi ddling of data.

 (a) add

 (b) modify

 (c) delete

 (d) none of the above

 8. Web applications require the presence of web server in simple confi gurations and mul-
tiple servers in more complex settings. Such applications are more precisely called
_______.

 (a) web-enabled applications

 (b) website

 (c) web page

 (d) web-based applications

 Software Testing: Principles and Practices498

 9. Applications, which may operate independent of any servers and rely on operating sys-
tem services to perform their functions, are called _______.

 (a) web-enabled applications

 (b) website

 (c) web page

 (d) web-based applications

 10. Simple client-server model was expanded fi rst to _______ model and then the N-tier
later on.

 (a) 3-tier

 (b) 4-tier

 (c) 5-tier

 (d) none of the above

 11. A cookie is a _______ fi le on a user’s system that identifi es the user.

 (a) hyper-text

 (b) text

 (c) graphic

 (d) none of the above

 12. _______ is defi ned as the web application’s capacity to sustain the number of concurrent
users and/or transactions, while sustaining suffi cient response times to its users.

 (a) Availability

 (b) Maintainability

 (c) Scalability

 (d) none of the above

 13. Web-based software has a much _______ update rate.

 (a) faster

 (b) slower

 (c) normal

 (d) none of the above

 14. The navigation models are represented by stereotyped _______ diagrams.

 (a) activity

 (b) class

 (c) use-case

 (d) none of the above

 15. Web-scenario modeling is done with the help of _______ diagrams.

 (a) interaction diagrams

 (b) state chart diagrams

 (c) activity diagrams

 (d) none of the above

499Testing Web-based Systems l

REVIEW QUESTIONS

 1. What is the difference between web-based and web-enabled applications?

 2. What is the difference among 2-tier, 3-tier, and N-tier web system architecture?

 3. What is the difference between traditional software and web-based software?

 4. ‘Web-based systems are diverse, complex, and dynamic in nature’. Comment on this.

 5. What are the quality aspects to be considered in web testing?

 6. What is web crisis? Is it same as software crisis?

 7. What is web engineering? Is it same as software engineering?

 8. Take a web application project and prepare all the analysis and design models discussed
in this chapter.

 9. Consider all types of interfaces in the project taken in Question 8 and design the test
cases for interface testing.

 10. What will be the criteria for performing unit testing, integration testing, and system testing
of a web application?

 11. Design a checklist for verifi cation of a web-based software.

 12. List the quality aspects of a website and perform performance testing for it.

 13. What are the possible types of vulnerabilities in a web-based system? How do we handle
them in security testing?

 14. What is the difference between load and stress testing?

 15. Search material on testing tools used for various types of web testing. Prepare a com-
parison list of all of them.

 16. What is the difference among XSS, buffer overfl ow, URL manipulation, and SQL
injection?

The testing process ends with the successful fi nd-
ing of bugs. But this process is a waste if we do not
track this bug to fi nd the exact location of errors. It
means that the next immediate process after testing
is debugging, wherein the bug is tracked to its exact
location.
 However, debugging as a process has not been

given much attention. Due to this, debugging becomes a complex process. It is also said that
debugging is more an art than a technique. It may be possible that debugging as an art may
give better results sometimes, but not always. Moreover, the profi ciency to use it as an art
comes with experience. Thus, the time has come that we formalize the debugging methods as
techniques, rather than randomized tracking of bug. This part discusses this issue and several
debugging techniques.

This part will make ground for the following concepts:

 ∑ Debugging as an art or technique

 ∑ Debugging is a process

 ∑ Debugging techniques

 ∑ Debuggers

Tracking the Bug

Part

7
CHAPTER

Chapter 18:
Debugging

 Debugging is not a part of the testing domain.
Therefore, debugging is not testing. It is a separate
process performed as a consequence of testing.
But the testing process is considered a waste if de-
bugging is not performed after the testing. Testing
phase in the SDLC aims to fi nd more and more
bugs, remove the errors, and build confi dence in
the software quality. In this sense, testing phase can
be divided into two parts:

 1. Preparation of test cases, executing them, and
observing the output. This is known as testing.

 2. If output of testing is not successful, then a
failure has occurred. Now the goal is to fi nd
the bugs that caused the failure and remove
the errors present in the software. This is
called debugging.

Debugging is the process of identifi cation of the symptoms of failures, trac-
ing the bug, locating the errors that caused the bug, and correcting these errors.
Describing it in more concrete terms, debugging is a two-part process. It begins
with some indication of the existence of an error. It is the activity of [2]:

 1. Determining the exact nature of the bug and location of the suspected
error within the program.

 2. Fixing or repairing the error.

18.1 DEBUGGING: AN ART OR TECHNIQUE?
Since software testing has not reached a maturity-level discipline, debugging
is also an unplanned activity in most of the projects. Due to the lack of atten-
tion given to the debugging process, it has been developed as an art more

Chapter

18
Debugging

OBJECTIVES
After reading this chapter, you should be able to
understand:
 � Debugging is not testing and testing is

not debugging
 � Debugging is more an art than a

technique
 � Steps of a general debugging process
 � Debugging with Memory Dump
 � Debugging with Watch Points
 � Backtracking method
 � Debugging guidelines
 � Various types of Debuggers

 Software Testing: Principles and Practices504

than a technique. However, viewing the debugging process as an art has given
better results as compared to technique. The art of analysing the bug history
can help a lot in debugging. Similar projects, more often than not, have a his-
tory of being affected by similar bugs in the past. Moreover, thinking critically
in testing and debugging also supports debugging as an art. We start with the
symptoms of failures and critically examine every symptom that may lead to
the location of the actual error.

18.2 DEBUGGING PROCESS

As discussed, the goal of debugging process is to determine the exact nature
of failure with the help of symptoms identifi ed, locate the bugs and errors,
and fi nally correct it. The debugging process (see Fig. 18.1) is explained in the
following steps:

Regression
testing Corrections Locate errors

Cause of failure
not identified

Bug identified

Debugging

Failure Success

Result of
output

Executing test
cases

Preparation of
test cases

Additional
testing

Figure 18.1 Debugging process

 � Check the result of the output produced by executing test cases pre-
pared in the testing process. If the actual output matches with the ex-
pected output, it means that the results are successful. Otherwise, there
is failure in the output which needs to be analysed.

 � Debugging is performed for the analysis of failure that has occurred,
where we identify the cause of the problem and correct it. It may be
possible that symptoms associated with the present failure are not suf-

505Debugging l

fi cient to fi nd the bug. Therefore, some additional testing is required so
that we may get more clues to analyse the causes of failures.

 � If symptoms are suffi cient to provide clues about the bug, then the cause
of failure is identifi ed. The bug is traced to fi nd the actual location of the
error.

 � Once we fi nd the actual location of the error, the bug is removed with
corrections.

 � Regression testing is performed as bug has been removed with correc-
tions in the software. Thus, to validate the corrections, regression testing
is necessary after every modifi cation.

18.3 DEBUGGING IS DIFFICULT

Debugging is a time-consuming process and sometimes becomes frustrating if
you are not able to fi nd the cause of the failure. Here are some reasons why:

 � Debugging is performed under a tremendous amount of pressure which
may cause problems instead of leading to clues of the problem. This
pressure happens due to the following reasons:

 (i) Self-induced pressure to fi x the suspected bug as early as possible
since it is related to the individual performance and ego.

 (ii) Organizational time-bound pressure to fi x the bugs is always
there.

 � The gap between the faults and failures is very large in case of debug-
ging of software systems. Without examining the whole program, we
cannot locate the error directly. That is why, debugging starts with ob-
serving the failures for fi nding clues of the problem. With the clues, we
then trace the bug and error. Moreover, the symptoms are also not clear
after observing the failures. This makes debugging a time-consuming
process.

 � The complex design of the software affects the debugging process.
Highly coupled and low-cohesive module is diffi cult to debug.

 � Experience matters in the debugging process. A new member of the
team will fi nd it diffi cult or cumbersome as compared to experienced
members.

 � Sometimes, failures don’t happen. This does not mean that there is no
bug. What happens is that we are unable to reproduce that failure al-
ways. This type of bug consumes a lot of time.

 Software Testing: Principles and Practices506

18.4 DEBUGGING TECHNIQUES
18.4.1 DEBUGGING WITH MEMORY DUMP

In this technique, a printout of all registers and relevant memory locations
is obtained and studied. The storage locations are in octal or hexadecimal
format. The relevant data of the program is observed through these memory
locations and registers for any bug in the program. However, this method is
ineffi cient. This method should be used as the last option. Following are some
drawbacks of this method [2]:

 1. There is diffi culty of establishing the correspondence between storage
locations and the variables in one’s source program.

 2. The massive amount of data with which one is faced, most of which is
irrelevant.

 3. It is limited to static state of the program as it shows the state of the pro-
gram at only one instant of time.

18.4.2 DEBUGGING WITH WATCH POINTS

The program’s fi nal output failure may not give suffi cient clues about the bug.
It is possible that intermediate execution, at some points in the program, may
provide suffi cient cause of the problem. At a particular point of execution in
the program, value of variables or other actions can be verifi ed. These par-
ticular points of execution are known as watch points. Debugging with watch
points can be implemented with the following methods:

Output statements In this method, output statements can be used to check the
state of a condition or a variable at some watch point in the program. Therefore,
output statements are inserted at various watch points; program is complied
and executed with these output statements. Execution of output statements
may give some clues to fi nd the bug. This method displays the dynamics of a
program and allows one to examine information related to the program failure.
This method has the following drawbacks:

 (i) It may require many changes in the code. These changes may mask an
error or introduce new errors in the program.

 (ii) After analysing the bug, we may forget to remove these added statements
which may cause other failures or misinterpretations in the result.

Breakpoint execution This is the advanced form of the watch point used with an
automated debugger program. Breakpoint is actually a watch point inserted at var-
ious places in the program. But these insertions are not placed in the actual user
program and therefore need not be removed manually like output statements.

507Debugging l

The other difference in this method is that program is executed up to the
breakpoint inserted. At that point, you can examine whatever is desired. Af-
terwards, the program will resume and will be executed further for the next
breakpoint. Thus, breakpoints allow the programmer to control execution of
the program and specify how and where the application will stop to allow fur-
ther examination. Since there can be many breakpoints in the same program,
all breakpoints can also be viewed by the programmer. Breakpoints displayed
in the view show the source location of each breakpoint as well as its status.

Breakpoints have an obvious advantage over output statements. Some are
discussed here:

 (a) There is no need to compile the program after inserting breakpoints,
while this is necessary after inserting output statements.

 (b) Removing the breakpoints after their requirement is easy as compared
to removing all inserted output statements in the program.

 (c) The status of program variable or a particular condition can be seen
after the execution of a breakpoint as the execution temporarily stops
after the breakpoint. On the other hand in case of output statements, the
full program is executed and output is viewed after the total execution
of the program.

Breakpoints can be categorized as follows:

 (i) Unconditional breakpoint: It is a simple breakpoint without any condition
to be evaluated. It is simply inserted at a watch point and its execution
stops the execution of the program.

 (ii) Conditional breakpoint: On the activation of this breakpoint, one expres-
sion is evaluated for its Boolean value. If true, the breakpoint will cause
a stop; otherwise, execution will continue.

 (iii) Temporary breakpoint: This breakpoint is used only once in the program.
When it is set, the program starts running, and once it stops, the tem-
porary breakpoint is removed. The temporary nature is one of its attri-
butes. In other respects, it is just like other breakpoints.

 (iv) Internal breakpoint: These are invisible to the user but are key to debug-
ger’s correct handling of its algorithms. These are the breakpoints set by
the debugger itself for its own purposes.

Single stepping The idea of single stepping is that the users should be able to
watch the execution of the program after every executable instruction. After
every instruction execution, the users can watch the condition or status of vari-
able. Single stepping is implemented with the help of internal breakpoints.

Step-into It means execution proceeds into any function in the current source
statement and stops at the fi rst executable source line in that function.

 Software Testing: Principles and Practices508

Step-over It is also called skip, instead of step. It treats a call to a function
as an atomic operation and proceeds past any function calls to the textually
succeeding source line in the current scope.

18.4.3 BACKTRACKING

This is a logical approach for debugging a program. The following are the
steps for backtracking process (see Fig. 18.2):

Site where
symptoms are

uncovered

Source
code of
various
modules

Modular design

Figure 18.2 Backtracking

 (a) Observe the symptom of the failure at the output side and reach the site
where the symptom can be uncovered. For example, suppose you are
not getting display of a value on the output. After examining the symp-
tom of this problem, you uncover that one module is not sending the
proper message to another module. It may also be the case that function
X is not working. This can be uncovered using the above mentioned
techniques, e.g. using breakpoints.

 (b) Once you have reached the site where symptom has been uncovered,
trace the source code starting backwards and move to the highest level
of abstraction of design. The bug will be found in this path. For tracing
backwards, collect source code of all the modules which are related at
this point.

 (c) Slowly isolate the module through logical backtracking using data fl ow
diagrams (DFDs) of the modules wherein the bug resides.

 (d) Logical backtracking in the isolated module will lead to the actual bug
and error can thus be removed.

Backtracking requires that the person debugging must have knowledge re-
garding the design of the system so that he can understand the logical fl ow
of the program through DFDs. This method also requires the manual obser-
vation of the source code. This method is very effective as compared to the

509Debugging l

other methods in pinpointing the error location quickly, if you understand the
logic of the program.

18.5 CORRECTING THE BUGS

The second phase of the debugging process is to correct the error when it has
been uncovered. But it is not as easy as it seems. The design of the software
should not be affected by correcting the bug or due to new modifi cations. Be-
fore correcting the errors, we should concentrate on the following points:

 (a) Evaluate the coupling of the logic and data structure where corrections
are to be made. Highly coupled module correction can introduce many
other bugs. That is why low-coupled module is easy to debug.

 (b) After recognizing the infl uence of corrections on other modules or parts,
plan the regression test cases to perform regression testing as discussed
earlier.

 (c) Perform regression testing with every correction in the software to en-
sure that the corrections have not introduced bugs in other parts of the
software.

18.5.1 DEBUGGING GUIDELINES

Fresh thinking leads to good debugging Don’t spend continuous hours and
hours on debugging a problem. The continuous involvement in the problem
will collapse your effi ciency. So rest in between and start with a fresh mind to
concentrate on the problem.

Don’t isolate the bug from your colleagues It has been observed that bugs cannot
be solved in isolation. Show the problem to other colleagues, explain to them
what is happening, and discuss the solution. There will be a lot of clues that
have not been tried yet. It has also been observed that by just discussing the
problem with others may suddenly lead you to come up with some solution.
Therefore, it is always better to share the problem to others.

Don’t attempt code modifi cations in the fi rst attempt Debugging always starts
with the analysis of clues. If you don’t analyse the failures and clues and simply
change the code randomly with the view—‘let’s see what happens with this
change’, this thinking will lead you nowhere but with junk code added to the
software.

Additional test cases are a must if you don’t get the symptom or clues to solve the
problem Design test cases with the view to execute those parts of the program

 Software Testing: Principles and Practices510

which are causing the problem. This test case execution will provide symptoms
to be analysed.

 Regression testing is a must after debugging Don’t simply fi x the error and
forget about it. The process of debugging does not end with fi xing the error.
After fi xing the error, you need to realize the effects of this change on other
parts. Test cases must be designed to uncover any effects on bugs produced on
other parts. That is why regression testing is necessary after fi xing the errors.

Design should be referred before fi xing the error Any change in the code to
fi x the bug should be according to pre-specifi ed design of the software. While
making corrections, that design should not be violated by any means.

18.6 DEBUGGERS

In the process of debugging, the help of debugging tools can also be taken
to speed up the process. Debugger is a tool to help track down, isolate, and
remove bugs from the software program. It controls the application being
debugged so as to allow the programmer to follow the fl ow of program execu-
tion and at any desired point, stop the program and inspect the state of the
program to verify its correctness. Debuggers can be used to

 � Illustrate the dynamic nature of a program.

 � Understand a program as well as to fi nd and fi x the bugs.

 � Control the application using special facilities provided by the underly-
ing operating system to give the use very fi ne control over the program
under test.

18.6.1 TYPES OF DEBUGGERS

Kernel debugger It is for dealing with problems with an OS kernel on its own
or for interactions between heavily OS-dependent application and the OS.

Basic machine-level debugger It is used for debugging the actual running code
as they are processed by the CPU.

In-circuit emulator It emulates the system services so that all interactions
between an application and the system can be monitored and traced. In-
circuit emulators sit between the OS and the bare hardware and can watch
and monitor all processes and all interactions between applications and OS.

Interpretive programming environment debugger Debugger is well integrated
into the runtime interpreter and has very tight control over the running
application.

511Debugging l

SUMMARY

It is generally considered that debugging does not come under the domain of software testing.
However, testing is wasteful if you do not remove the bugs reported and perform debugging.
Therefore, debugging as a consequent process of testing is important to understand, both for
the developers and the testers. This chapter shows the importance of the debugging process
and its general process steps. Debugging has evolved with many techniques but it still gives
better results if performed as an art. Various debugging techniques and debuggers have been
discussed in this chapter along with the guidelines to perform the debugging.

Let us have a quick review of the important concepts described in this chapter:

 � Debugging is the process of identifi cation of symptoms of failures, tracing the bug, locat-
ing the errors that caused the bug, and correcting these errors.

 � In debugging with the memory dump technique, printout of all registers and relevant
memory locations is obtained and studied for any bug in the program.

 � In debugging with watch points, at a particular point of execution in the program, value of
variables or other actions can be verifi ed. These particular points of execution are known
as watch points.

 � Output statements can be used to check the state of a condition or a variable at some
watch point in the program.

 � Breakpoint is actually a watch point inserted at various places in the program. But these
insertions are not placed in the actual user program and therefore need not be removed
manually like output statements.

 � In single stepping, the users are able to watch execution of the program after every
executable instruction.

 � Debugger is a tool to help track down, isolate, and remove bugs from the software
program.

EXERCISES

MULTIPLE CHOICE QUESTIONS

 1. Debugging is a part of testing domain.

 (a) true

 (b) false

 (c) none of the above

 2. Viewing the debugging process as an art has given _______ results, as compared to
technique.

 (a) poor

 (b) better

 (c) satisfactory

 (d) none of the above

 Software Testing: Principles and Practices512

 3. The debugging process is to determine the exact nature of failure with the help of
_______ identifi ed.

 (a) symptoms
 (b) test cases
 (c) bugs
 (d) none of the above

 4. Highly coupled and low-cohesive module is _______ to debug.
 (a) easy
 (b) diffi cult
 (c) cannot be debugged
 (d) none of the above

 5. Technique in which a printout of all registers and relevant memory locations is obtained
and studied, is called _______.

 (a) debugging
 (b) backtracking
 (c) debugging with watch points
 (d) debugging with memory dump

 6. The technique in which the value of variables or other actions can be verifi ed at a par-
ticular point of execution in the program is called _______.

 (a) debugging
 (b) backtracking
 (c) debugging with watch points
 (d) debugging with memory dump

 7. Backtracking requires the debugger to have the knowledge of _______ of the system.
 (a) design
 (b) testing
 (c) code
 (d) none of the above

REVIEW QUESTIONS

 1. What is the importance of the debugging process?

 2. Discuss the steps required for performing a debugging process.

 3. Why is debugging considered a diffi cult process?

 4. Take a debugger and give examples of all breakpoints in it, if supported.

 5. Backtracking is considered an important debugging method. Take a project and list of its
reported failures. Solve these failures with the help of backtracking.

 6. Discuss various types of debuggers.

513Introduction to Case Study l

All the techniques learnt in this book can be practised using a case study. For this
purpose, a case study of Income Tax Calculator application has been taken. The
application has been designed and developed for the readers and all the test case
design techniques have been applied on it. However, the application presented
and implemented is only for illustrative purposes and it is not claimed that this
application is free from defects and can be used practically for calculating the in-
come tax of a person. The idea is only to present a working application and show
how to perform testing on it.

The case study has been presented in the following sequence:

Requirement Specifi cations and Verifi cation
The requirements for the case study have been collected and SRS ver 1.0 was
prepared initially. The tax slabs and other details in this case study have been
compiled from www.incometaxindia.gov.in. This draft of SRS was in a raw form.
After this, verifi cation on SRS ver 1.0 was performed and found that many fea-
tures were not present in SRS. During verifi cation on SRS, the checklist pre-
sented in Appendix has been used. The readers are advised that they should also
perform verifi cation using checklists and fi nd some more defi ciencies in SRS.
In this way, SRS ver 2.0 was prepared as a result of verifi cation on SRS ver 1.0.
Another round of verifi cation was performed on SRS ver 2.0 and fi nally we get
SRS ver 3.0.

Introduction to Case Study

Step

1

INCOME TAX CALCULATOR
A Case Study

 Software Testing: Principles and Practices514

The readers are advised to prepare an SDD of this application and perform
verifi cation exercises on it to and get a fi nal version of SDD.

Black-box Testing on SRS ver 3.0
Once the SRS is prepared, some black-box test cases have been designed using
the techniques studied in Chapter 4. The test cases can be executed on the imple-
mented executable application. The executable application can be directly taken
from the CD.

Source Code
The application based on SRS ver 3.0 has been implemented in C language.
There are two fi les: TaxCalculator.c and Taxcalculator.h. The readers can get these
fi les directly from the CD and use and modify them the way they want.

White-Box Testing
The source code of TaxCalculator.h has been tested using white-box testing tech-
niques. All the major white-box testing techniques have been applied on this
source code. The test cases can be executed on the implemented executable ap-
plication. The executable application along with the source code of application
can be taken directly from the CD.

The readers should follow this sequence for studying the full case study and
learn the testing techniques presented in this book. The case study provides the
way to learn the testing concepts and techniques in a practical way.

515Income Tax Calculator SRS ver 1.0 l

A system is proposed to calculate the income tax of a person residing in India,
provided his salary, savings, status, and donations are known. The system will
accept personal details, income details, savings details and calculate total salary,
net tax payable, educational cess, and hence the total tax payable.

Income Tax slabs 2009/2010 for Men

Income: up to 1.5 lacs NO INCOME TAX

Income : 1.5 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

Income Tax slabs 2009/2010 for Women

Income : up to 1.8 lacs NO TAX

Income : 1.8 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

Income Tax slabs 2009/2010 for Senior Citizen

Income : up to 2.25 lacs NO TAX

Income : 2.25 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

In addition to the income tax calculated according to the above income
tax slabs, a 3% of education cess will be charged on the total income tax paid
(not on the total taxable income). If the taxable income exceeds Rs 10 lacs, a
10% surcharge on the total income tax (not on the total taxable income) is also
charged.

Income Tax Calculator SRS ver 1.0

Step

2

 Software Testing: Principles and Practices516

Donations with 100% rebate

 � The Prime Minister’s National Relief Fund.

 � The Prime Minister’s Armenia Earthquake Relief Fund.

 � The Africa (Public Contributions-India) Fund.

 � The National Foundation for Communal Harmony.

 � A university or any educational institution of national eminence as may-
be approved by the prescribed authority. Please note that the prescribed
authority in case of a university or a non-technical institution of national
eminence is the Director-General (Income-Tac exemption) in concurrence
with the Secretary, UGC. In case of any technical institution of national
eminence, the prescribed authority is the Director-General (Income-Tax
Exemption) in concurrence with the Secretary, All India Council of Techni-
cal Education.

 � The Maharashtra Chief Minister’s Earthquake Relief Fund.

 � Any Zila Saksharta Samiti constituted in any district under the chairman-
ship of the Collector of that district for the purpose of improvement of pri-
mary education in villages and towns in such a district and for literacy and
post literacy activities.

 � The National Blood Transfusion Council or any State Blood Transfusion
council whose sole objective is the control, supervision, regulation, or en-
couragement in India of the services related to operation and requirements
of blood banks.

 � Any fund set up by a State Government to provide medical relief to the
poor.

 � The Army Central Welfare Fund or the Indian Naval Benevolent Fund or
the Air Force Central Welfare Fund established by the armed forces of the
Union for the welfare of the past and present members of such forces or
their dependants.

 � The Andhra Pradesh Chief Minister’s Cyclone Relief Fund, 1996.

 � The National Illness Assistance Fund.

 � The Chief Minister’s Relief Fund or the Lieutenant Governor’s Relief Fund
in any State or Union Territory.

 � The Government, or any local authority, institution or association as maybe
approved by the Central Government for the purpose of promoting family
planning.

517Verifi cation on Income Tax Calculator SRS ver 1.0 l

Verifi cation on Income Tax Calculator SRS ver 1.0 is presented here. The reader is advised
to use checklists provided in the Appendix while performing verifi cation and use his/her
intelligence. The missing features found in this verifi cation are highlighted.

A system is proposed to calculate the income tax of a person residing in India
provided his salary, savings, status, and donations are known. The system will
accept personal details, income details, savings details and calculate total salary,
net tax payable, educational cess, and hence total tax payable.

Is the software meant only for salaried person or for anyone? There is no mention about
the functional fl ow of the system about how it works. Who will interface with the system?
How are the savings considered in calculating the net tax? There is no high-level functional-
ity diagram representing interfaces and data fl ow.

Income Tax slabs 2009/2010 for Men

Income: up to 1.5 lacs NO INCOME TAX

Income : 1.5 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

Income Tax slabs 2009/2010 for Women

Income : up to 1.8 lacs NO TAX

Income : 1.8 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

Income Tax slabs 2009/2010 for Senior Citizen

Income : up to 2.25 lacs NO TAX

Income : 2.25 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

Verifi cation on Income Tax
Calculator SRS ver 1.0

Step

3

 Software Testing: Principles and Practices518

In addition to the income tax calculated according to the above income tax
slabs, a 3% of education cess will be charged on the total income tax paid (not on
the total taxable income). If the taxable income exceeds Rs 10 lacs, a 10% sur-
charge on the total income tax (not on the total taxable income) is also charged

Donations with 100% rebate
 � The Prime Minister’s National Relief Fund.

 � The Prime Minister’s Armenia Earthquake Relief Fund.

 � The Africa (Public Contributions-India) Fund.

 � The National Foundation for Communal Harmony.

 � A University or any educational institution of national eminence as maybe
approved by the prescribed authority. In case of any technical institution
of national eminence, the prescribed authority is the Director General (In-
come-Tax Exemption) in concurrence with the Secretary, All India Council
of Technical Education.

 � The Maharashtra Chief Minister’s Earthquake Relief Fund.

 � Any Zila Saksharta Samiti constituted in any district under the chairman-
ship of the Collector of that district for the purpose of improvement of
primary education in villages and towns in such a district and for literacy
and post literacy activities.

 � The National Blood Transfusion Council or any State Blood Transfusion
council whose sole objective is the control, supervision, regulation, or en-
couragement in India of the services related to operation and requirements
of blood banks.

 � Any fund set up by a State Government to provide medical relief to the
poor.

 � The Army Central Welfare Fund or the Indian Naval Benevolent Fund or
the Air Force Central Welfare Fund established by the armed forces of the
Union for the welfare of the past and present members of such forces or
their dependants.

 � The Andhra Pradesh Chief Minister’s Cyclone Relief Fund, 1996.

 � The National Illness Assistance Fund.

 � The Chief Minister’s Relief Fund or the Lieutenant Governor’s Relief Fund
in any State or Union Territory.

 � The Government, or any local authority, institution or association as maybe
approved by the Central Government for the purpose of promoting family
planning.

519Verifi cation on Income Tax Calculator SRS ver 1.0 l

What will be the rebate if the donation is not in the above list? In addition, the
following items are missing in the SRS which are necessary to avoid bugs and
misunderstanding:

 1. High-level diagrams depicting external and internal interfaces.

 2. The user interaction with the system.

 3. Software Functions/Features.

 4. Inputs and outputs formats and their ranges.

 5. Software/Hardware Requirements.

 Software Testing: Principles and Practices520

A system is proposed to calculate the income tax of a person residing in India
provided his income, savings, status, and donations are known. The system will
accept personal details, income details, and savings details, and calculate the total
salary, net tax payable, educational cess, and hence the total tax payable. The
user gets the information about total tax to be paid.

Personal
details

Income
details

Saving
details

Donation
details

Tax deductions
details

Tax payable
detailsTax calculator

system

The system will fi rst accept personal details, income, donations, and savings.
For donations, it provides a list of categories in which 100% rebate is provided.
The user will look for the option provided and inform the system whether the
donation lies in that list. If the donation lies in the list, 100% rebate will be pro-
vided, otherwise 50%. The system will check whether the savings are less than Rs
1 lac. If yes, then the whole amount will be deducted from the taxable income.
Otherwise, Rs 1 lac will be deducted. Then the system will calculate the total tax
and check if it exceeds Rs 10 lacs. If yes, a 10% surcharge on the total income tax
(not on the total taxable income) is also charged and a 3% of education cess will
be charged on the total income tax paid (not on the total taxable income). Finally,
the system will show the net tax as per the following details:

Income Tax Calculator SRS ver 2.0

Step

4

521Income Tax Calculator SRS ver 2.0 l

Income Tax slabs 2009/2010 for Men

Income: up to 1.5 lacs NO TAX
Income : 1.5 lacs to 3 lacs 10%
Income : 3 lacs to 5 lacs 20%
Income : above 5 lacs 30%

Income Tax slabs 2009/2010 for Women

Income : up to 1.8 lacs NO TAX
Income : 1.8 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

Income Tax slabs 2009/2010 for Senior Citizen

Income : up to 2.25 lacs NO TAX
Income : 2.25 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

Donations with 100% rebate
 � The Prime Minister’s National Relief Fund.
 � The Prime Minister’s Armenia Earthquake Relief Fund.
 � The Africa (Public Contributions-India) Fund.
 � The National Foundation for Communal Harmony.
 � A university or any educational institution of national eminence as maybe

approved by the prescribed authority. In case of any technical institution
of national eminence, the prescribed authority is the Director General (In-
come-Tax Exemption) in concurrence with the Secretary, All India Council
of Technical Education.

 � The Maharashtra Chief Minister’s Earthquake Relief Fund.
 � Any Zila Saksharta Samiti constituted in any district under the chairman-

ship of the Collector of that district for the purpose of improvement of pri-
mary education in villages and towns in such a district and for literacy and
post literacy activities.

 � The National Blood Transfusion Council or any State Blood Transfusion
council whose sole objective is the control, supervision, regulation, or en-
couragement in India of the services related to operation and requirements
of blood banks.

 � Any fund set up by a State Government to provide medical relief to the
poor.

 � The Army Central Welfare Fund or the Indian Naval Benevolent Fund or
the Air Force Central Welfare Fund established by the armed forces of the
Union for the welfare of the past and present members of such forces or
their dependants.

 Software Testing: Principles and Practices522

 � The Andhra Pradesh Chief Minister’s Cyclone Relief Fund, 1996.
 � The National Illness Assistance Fund.
 � The Chief Minister’s Relief Fund or the Lieutenant Governor’s Relief Fund

in any State or Union Territory.
 � The Government, or any local authority, institution or association as maybe

approved by the Central Government for the purpose of promoting family
planning.

Functional Requirements

Generate tax
payable details

Accept tax
deduction details

Accept savings
and donations

details

Accept income
details

Accept personal
details

User

Accept Personal Details
The function will accept the following details to be entered by user.

 � Name (3 to 15 alphabets with spaces in between)
 � Date of Birth (dd/mm/yyyy)
 � Permanent address (3 to 30 characters)
 � Sex (M/F one alphabet only)
 � Status: Salaried or not (Y/N one alphabet only)

If the user enters the answer Y (Yes) to the status entry, then the function will
display the following three entries, otherwise it will not.

 � Designation (if Salaried) (3 to 15 alphabets)
 � Name of the employer (if salaried) (3 to 25 alphabets with spaces)
 � Address of the employer (if salaried) (3 to 30 characters)
 � PAN number (10 characters including alphabets and digits 0–9)

523Income Tax Calculator SRS ver 2.0 l

 � TDS circle where annual return/statement under section 206 is to be fi led
(3 to 15 alphabets with spaces)

 � Period: From (dd/mm/yyyy)
 To (dd/mm/yyyy)
 Assessment year (yyyy-yy)

Accept Income Details
The function will enquire whether the user is a salaried person or has some other
source of income. If the user is not a salaried person, the system will ask for the
source of income. The user may enter various types of source of incomes as given
below:
Source of Income: (3 to 20 alphabets with spaces)
Amount: (positive real numbers with maximum two decimal places)

The function will aggregate all the amounts of income as gross total income.
If the person is salaried, the function asks for the following details:

 1. Gross Salary
 (a) Salary as per the provisions contained in the section 17(1)
 (b) Value of the prerequisites under section 17(2) (As per form number

12BA, wherever applicable)
 (c) Profi ts in lieu of salary under section 17(3) (As per form number 12BA,

wherever applicable)
 (d) Total (to be calculated by this function)

 2. Less allowance to the extent exempt under section 10
 This function will add the exempted allowances.

 3. Balance
 This function will calculate the difference of the gross salary and the ex-

empted allowances.

 4. Deductions
 � Entertainment allowance

 � Tax on employment

 5. Aggregate
 This function will calculate the aggregate of the deductions entered above.

 6. Income Chargeable Under The Head ‘Salaries’
 The function will calculate the difference of item 3–item 5.

 7. Add
 Any other item reported by the employee.
 User may enter multiple incomes. The function will add all these incomes.
 8. Gross Total Income
 The function will add item 6 and 7.
 All the amounts will be positive real numbers with maximum 2 decimal

places.

 Software Testing: Principles and Practices524

Accept Savings & Donations Details
The function will ask the user to enter the total savings and the donations in the
following format.
 Saving type (3 to 20 alphabets with spaces)
 Deductible amount (positive real numbers with maximum two decimal
places)

The user may enter multiple savings. The function will add all the deductible
amounts in aggregate deductible amount.

Accept Tax Deduction Details
If the person is salaried, then this function will accept the details if tax deducted
by the employer during the year is in the following format:

Amount of tax deposited (positive real numbers with maximum two decimal
places)
 Date (dd/mm/yyyy)
 Challan Number (5 to 20 characters)

The above details may be entered multiple times. The function will add all the
amounts of tax deposited.
 Amount of TDS (positive real numbers with maximum two decimal places)

The function will add all the amounts of tax deposited and the amount of TDS
in the total tax deducted.

Generate Tax Payable Details
This function calculates the tax payable by the person in the following format:
Taxable income Function will calculate this by taking difference of gross total
income in the function Accept Income Details and aggregate deductible amount
in the function Accept Savings & Donation Details.
Tax on taxable income Function will calculate this using the appropriate slab of
user as given above.
Surcharge Function will calculate the surcharge as if tax on taxable income
exceeds Rs 10 lacs, a 10% surcharge is charged.
Education cess Function will calculate the education cess as a 3% of tax on taxable
income.
Tax payable Function will sum up tax on taxable income, surcharge, and education
cess.
Relief under section 89 User will enter the amount, if applicable.
Tax payable after relief (if applicable) Function will deduct relief amount from
tax payable.
Total tax deducted Displayed from the function Accept Tax Deduction Details.
Tax payable/refundable The function will fi nd the difference of tax payable and
the total tax deducted. If the difference is positive, then this amount is the net tax
to be paid by the person, otherwise the amount is due on the government to be
refunded.

525Verifi cation on Income Tax Calculator SRS ver 2.0 l

Verifi cation on Income Tax Calculator SRS ver 2.0 is presented here. The reader is advised
to use checklists while performing verifi cation and use his/her intelligence. The missing
features found in this verifi cation are highlighted.

A system is proposed to calculate the income tax of a person residing in India
provided his income, savings, status, and donations are known. The system will
accept personal details, income details, savings details, and calculate total salary,
net tax payable, educational cess, and hence total tax payable. The user gets the
information about total tax to be paid.

Personal
details

Income
details

Saving
details

Donation
details

Tax deductions
details

Tax payable
detailsTax calculator

system

The system will fi rst accept personal details, income, donations, and savings.
For donations, it provides a list of categories in which 100% rebate is provided.
The user will look for the option provided and informs the system whether the
donation lies in that list. If the donation lies in the list, 100% rebate will be pro-
vided otherwise 50%. The system will check whether the savings are less than
Rs 1 lac. If yes, then whole amount will be deducted from the taxable income.
Otherwise, Rs 1 lac will be deducted. Then the system will calculate the total tax
and checks if it exceeds Rs 10 lacs, a 10% surcharge on the total income tax (not
on the total taxable income) is also charged and a 3% of education cess will be
charged on the total income tax paid (not on the total taxable income). Finally,
the system will show the net tax as per the following details:

Verifi cation on Income Tax
Calculator SRS ver 2.0

Step

5

 Software Testing: Principles and Practices526

Income Tax slabs 2009/2010 for Men

Income: up to 1.5 lacs NO TAX

Income : 1.5 lacs to 3 lacs 10 %

Income : 3 lacs to 5 lacs 20 %

Income : above 5 lacs 30 %

Income Tax slabs 2009/2010 for Women

Income : up to 1.8 lacs NO TAX

Income : 1.8 lacs to 3 lacs 10 %

Income : 3 lacs to 5 lacs 20 %

Income : above 5 lacs 30 %

Income Tax slabs 2009/2010 for Senior Citizen

Income : up to 2.25 lacs NO TAX

Income : 2.25 lacs to 3 lacs 10 %

Income : 3 lacs to 5 lacs 20 %

Income : above 5 lacs 30 %

Donations with 100% rebate

 � The Prime Minister’s National Relief Fund.

 � The Prime Minister’s Armenia Earthquake Relief Fund.

 � The Africa (Public Contributions-India) Fund.

 � The National Foundation for Communal Harmony.

 � A University or any educational institution of national eminence as maybe
approved by the prescribed authority. In case of any technical institution
of national eminence, the prescribed authority is the Director General (In-
come-Tax Exemption) in concurrence with the Secretary, All India Council
of Technical Education.

 � The Maharashtra Chief Minister’s Earthquake Relief Fund.

 � Any Zila Saksharta Samiti constituted in any district under the chairman-
ship of the Collector of that district for the purpose of improvement of pri-
mary education in villages and towns in such a district and for literacy and
post literacy activities.

 � The National Blood Transfusion Council or any State Blood Transfusion
council whose sole objective is the control, supervision, regulation, or en-
couragement in India of the services related to operation and requirements
of blood banks.

 � Any fund set up by a State Government to provide medical relief to the
poor.

527Verifi cation on Income Tax Calculator SRS ver 2.0 l

 � The Army Central Welfare Fund or the Indian Naval Benevolent Fund or
the Air Force Central Welfare Fund established by the armed forces of the
Union for the welfare of the past and present members of such forces or
their dependants.

 � The Andhra Pradesh Chief Minister’s Cyclone Relief Fund, 1996.

 � The National Illness Assistance Fund.

 � The Chief Minister’s Relief Fund or the Lieutenant Governor’s Relief Fund
in any State or Union Territory.

 � The Government, or any local authority, institution or association as maybe
approved by the Central Government for the purpose of promoting family
planning.

Functional Requirements

Generate tax
payable details

Accept tax
deduction details

Accept savings
and donations

details

Accept income
details

Accept personal
details

User

Accept Personal Details
The function will accept the following details to be entered by user.

 � Name (3 to 15 alphabets with spaces in between)
 � Date of Birth (dd/mm/yyyy)

 � Permanent address (3 to 30 characters)

The address should not contain any character. The allowed characters like alphabets, digits,
spaces, and commas should be mentioned.

 � Sex (M/F one alphabet only)

 � Salaried or not (Y/N one alphabet only)

 Software Testing: Principles and Practices528

 Designation (if Salaried) (3 to 15 alphabets)

 Name of the employer (if salaried) (3 to 25 alphabets with spaces)

 Address of the employer (if salaried) (3 to 30 characters)

 PAN number (10 characters including alphabets and digits 0-9)

Including means any character can be entered. The word should be consisting.

 TDS circle where annual return/ statement under section 206 is to be fi led
(3 to 15 alphabets with spaces)

 Period: From (dd/mm/yyyy)

 To (dd/mm/yyyy)

 Assessment year (yyyy-yy)

It is not clear whether the user can make a wrong entry and move ahead to the next entry or
he cannot move ahead until he enters a correct entry.

Accept Income Details
The function will enquire whether the user is a salaried person or has some other
source of income. If the user is not a salaried person, the system will ask for the
source of income. The user may enter various types of source of incomes as given
below:

Source of Income: (3 to 20 alphabets with spaces)

Amount: (positive real numbers with maximum two decimal places)

The function will aggregate all the amounts of income as gross total income.
If the person is salaried, the function asks for the following details:

 1. Gross Salary

 (a) Salary as per the provisions contained in the section 17(1)

 (b) Value of the prerequisites under section 17(2) (As per form number
12BA, wherever applicable)

 (c) Profi ts in lieu of salary under section 17(3) (As per form number 12BA,
wherever applicable)

 (d) Total (to be calculated by this function)

 2. Less allowance to the extent exempt under section 10

 This function will add the exempted allowances.

 3. Balance

 This function will calculate the difference of the gross salary and the ex-
empted allowances.

 4. Deductions

 Entertainment allowance

 Tax on employment

529Verifi cation on Income Tax Calculator SRS ver 2.0 l

 5. Aggregate

 This function will calculate the aggregate of the deductions entered above.

 6. Income Chargeable Under the Head ‘Salaries’

 The function will calculate the difference of item 3 – item 5.

 7. ADD

 Any other item reported by the employee

 User may enter multiple incomes. The function will add all these incomes.

 8. Gross Total Income

 The function will add item 6 and 7.

 All the amounts will be positive decimal numbers with maximum 2 deci-
mal places.

It is not clear whether the user can make a wrong entry and move ahead on the next entry or he
cannot move ahead until he enters a correct entry.

Accept Savings & Donations Details
The function will ask the user to enter the total savings and the donations in the
following format.

Saving Type: (3 to 20 alphabets with spaces)

Deductible amount: (positive real numbers with maximum two decimal
places)

The user may enter multiple savings. The function will add all the deductible
amounts in aggregate deductible amount.

It is not clear whether the user can make a wrong entry and move ahead to the next entry or
he cannot move ahead until he enters a correct entry.

Accept Tax Deduction Details
If the person is salaried, then this function will accept the details if tax deducted
by the employer during the year in the following format:

 Amount of tax deposited (positive real numbers with maximum two
decimal places)

 Date (dd/mm/yyyy)

 Challan Number (5 to 20 characters)

The above details may be entered multiple times. The function will add all
the amounts of tax deposited.

Amount of TDS The function will add all the amounts of tax deposited and amount
of TDS in total tax deducted.

It is not clear whether the user can make a wrong entry and move ahead to the next entry or
he cannot move ahead until he enters a correct entry.

 Software Testing: Principles and Practices530

Generate Tax Payable Details
This function calculates the tax payable by the person in the following format:

Taxable income The function will calculate this by taking difference of gross total
income in the function Accept Income Details and aggregate deductible amount
in the function Accept Savings & Donation Details.

Tax on taxable income The function will calculate this using the appropriate slab
of user as given above.

Surcharge The function will calculate the surcharge as if tax on taxable income
exceeds Rs 10 lacs, a 10% surcharge is charged.

Education cess The function will calculate the education cess as a 3% of tax on
taxable income.

Tax payable The function will sum up the tax on taxable income, surcharge, and
education cess.

Relief under section 89 User will enter the amount, if applicable.

Tax payable after relief (if applicable) The function will deduct the relief amount
from the tax payable.

Total tax deducted Displayed from the function Accept Tax Deduction Details.

Tax payable/refundable The function will fi nd difference of tax payable and total
tax deducted. If difference is positive, then this amount is the net tax to be paid by
the person, otherwise the amount is due on the government to be refunded.

User interface requirements and system requirements are not men-
tioned.

531Income Tax Calculatro SRS ver 3.0 l

A system is proposed to calculate the income tax of a person residing in India
provided his income, savings, status, and donations are known. The system will
accept personal details, income details, savings details and calculate total salary,
net tax payable, educational cess, and hence total tax payable. The user gets the
information about total tax to be paid.

Personal
details

Income
details

Saving
details

Donation
details

Tax deductions
details

Tax payable
detailsTax calculator

system

The system will fi rst accept personal details, income, donations, and savings.
For donations, it provides a list of categories in which 100% rebate is provided.
The user will look for the option provided and informs the system whether the
donation lies in that list. If the donation lies in the list, 100% rebate will be pro-
vided, otherwise 50%. The system will check whether the savings are less than Rs
1 lac. If yes, then the whole amount will be deducted from the taxable income.
Otherwise, Rs 1 lac will be deducted. Then the system will calculate the total tax
and checks if it exceeds Rs 10 lacs, a 10% surcharge on the total income tax (not
on the total taxable income) is also charged and a 3% of education cess will be
charged on the total income tax paid (not on the total taxable income). Finally,
the system will show the net tax as per the following details:

Income Tax Calculator SRS ver 3.0

Step

6

 Software Testing: Principles and Practices532

Income Tax slabs 2009/2010 for Men

Income: up to 1.5 lacs NO TAX

Income : 1.5 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

Income Tax slabs 2009/2010 for Women

Income : up to 1.8 lacs NO TAX

Income : 1.8 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

Income Tax slabs 2009/2010 for Senior Citizen

Income : up to 2.25 lacs NO TAX

Income : 2.25 lacs to 3 lacs 10%

Income : 3 lacs to 5 lacs 20%

Income : above 5 lacs 30%

Donations with 100% rebate
 � The Prime Minister’s National Relief Fund.
 � The Prime Minister’s Armenia Earthquake Relief Fund.
 � The Africa (Public Contributions-India) Fund.
 � The National Foundation for Communal Harmony.
 � A University or any educational institution of national eminence as maybe

approved by the prescribed authority. In case of any technical institution
of national eminence, the prescribed authority is the Director General (In-
come-Tax Exemption) in concurrence with the Secretary, All India Council
of Technical Education.

 � The Maharashtra Chief Minister’s Earthquake Relief Fund.
 � Any Zila Saksharta Samiti constituted in any district under the chairman-

ship of the Collector of that district for the purpose of improvement of
primary education in villages and towns in such a district and for literacy
and post literacy activities.

 � The National Blood Transfusion Council or any State Blood Transfusion
council whose sole objective is the control, supervision, regulation, or en-
couragement in India of the services related to operation and requirements
of blood banks.

 � Any fund set up by a State Government to provide medical relief to the
poor.

 � The Army Central Welfare Fund or the Indian Naval Benevolent Fund or
the Air Force Central Welfare Fund established by the armed forces of the

533Income Tax Calculatro SRS ver 3.0 l

Union for the welfare of the past and present members of such forces or
their dependants.

 � The Andhra Pradesh Chief Minister’s Cyclone Relief Fund, 1996.
 � The National Illness Assistance Fund.
 � The Chief Minister’s Relief Fund or the Lieutenant Governor’s Relief Fund

in any State or Union Territory.
 � The Government, or any local authority, institution or association as maybe

approved by the Central Government for the purpose of promoting family
planning.

Functional Requirements

Generate tax
payable details

Accept tax
deduction details

Accept savings
and donations

details

Accept income
details

Accept personal
details

User

Accept Personal Details (APD)
The function will accept the following details to be entered by the user. The user
cannot move to the next entry unless he enters the correct entry.

 � Name (3 to 15 alphabets with spaces in between)

 � Date of Birth (dd/mm/yyyy)

 � Permanent address (3 to 30 characters) The allowed characters are alpha-
bets, digits, spaces, and commas only.

 � Sex (M/F one alphabet only)

 � Status: Salaried or not (Y/N one alphabet only)

If the user enters the answer Y (Yes) to the status entry, then the function will
display the following three entries, otherwise it will not.

 Software Testing: Principles and Practices534

 � Designation (if salaried) (3 to 15 alphabets)

 � Name of the employer (if salaried) (3 to 25 alphabets with spaces)

 � Address of the employer (if salaried) (3 to 30 characters)

 � PAN number (10 characters consisting alphabets and digits 0–9)

 � TDS circle where annual return/statement under section 206 is to be fi led
(3 to 15 alphabets with spaces)

 � Period: From (dd/mm/yyyy)
 To (dd/mm/yyyy)
 Assessment year (yyyy-yy)

Accept Income Details (AID)
The function will enquire whether the user is a salaried person or has some other
source of income. If the user is not a salaried person, the system will ask for the
source of income. The user may enter various types of source of incomes as given
below. The user cannot move to the next entry unless he enters the correct entry.

Source of Income: (3 to 20 alphabets with spaces)

Amount: (positive real numbers with maximum two decimal places)

The function will aggregate all the amounts of income as gross total income.
If the person is salaried, the function asks for the following details:

 1. Gross Salary
 (a) Salary as per the provisions contained in the section 17(1)
 (b) Value of the perquisites under section 17(2) (As per form number

12BA, wherever applicable)
 (c) Profi ts in lieu of salary under section 17(3) (As per form number 12BA,

wherever applicable)
 (d) Total (to be calculated by this function)

 2. Less allowance to the extent exempt under section 10
 This function will add the exempted allowances.

 3. Balance
 This function will calculate the difference of the gross salary and the ex-

empted allowances.

 4. Deductions

 � Entertainment allowance (EA)

 � Tax on employment (TE)
 5. Aggregate
 This function will calculate the aggregate of the deductions entered above.

 6. Income Chargeable Under the Head ‘Salaries’
 The function will calculate the difference of item 3 – item 5.

535Income Tax Calculatro SRS ver 3.0 l

 7. Add
 Any other item reported by the employee
 User may enter multiple incomes. The function will add all these incomes.

 8. Gross Total Income
 The function will add item 6 and 7.
 All the amounts will be positive real numbers with maximum 2 decimal

places.

Accept Savings & Donations Details (ASD)
The function will ask the user to enter the total savings and the donations in the
following format.

Saving Type: (3 to 20 alphabets with spaces)

Deductible amount: (positive real numbers with maximum two decimal places)

The user may enter multiple savings. The function will add all the deductible
amounts in aggregate deductible amount.

The user cannot move to the next entry unless he enters the correct entry.

Accept Tax Deduction Details
If the person is salaried, then this function will accept the details if tax deducted
by the employer during the year in the following format:
 � Amount of TDS: (positive real numbers with maximum two decimal places)
 � Amount of tax deposited (positive real numbers with maximum two deci-

mal places)
 � Date (dd/mm/yyyy)
 � Challan Number (5 to 20 characters)

The above details may be entered multiple times. The function will add all the
amounts of tax deposited and amount of TDS in total tax deducted.

The user cannot move to the next entry unless he enters the correct entry.

Generate Tax Payable Details
This function calculates the tax payable by the person in the following format:
Taxable income Function will calculate this by taking difference of gross total
income in the function Accept Income Details and aggregate deductible amount
in the function Accept Savings & Donation Details.
Tax on taxable income Function will calculate this using the appropriate slab of
user as given above.
Surcharge Function will calculate the surcharge as if tax on taxable income exceeds
Rs 10 lacs, a 10% surcharge is charged.
Education cess Function will calculate the education cess as a 3% of tax on tax-
able income.
Tax payable Function will sum up tax on taxable income, surcharge, and educa-
tion cess.

 Software Testing: Principles and Practices536

Total tax deducted Displayed from the function Accept Tax Deduction Details.
Tax payable/refundable The function will fi nd difference of tax payable and total
tax deducted. If difference is positive, then this amount is the net tax to be paid by
the person, otherwise the amount is due on the government to be refunded.

USER INTERFACE REQUIREMENTS

Personal Detail Screen
The personal detail screen is displayed wherein the user can enter his various
details as given below:
 � Name
 � Date of Birth
 � Permanent address
 � Sex (M/F)
 � Status (Salaried or not): Y/N
If the user presses Y, then the following screen is displayed:
 � Designation
 � Name of the employer
 � Address of the employer
 � PAN number
 � TDS circle where annual return/statement under section 206 is to be fi led
 � Period: From (dd/mm/yyyy)
 To (dd/mm/yyyy)
 Assessment year (yyyy-yy)
If the user presses N, then the following screen is displayed:
 � PAN number
 � TDS circle where annual return/statement under section 206 is to be fi led
 � Period: From (dd/mm/yyyy)
 To (dd/mm/yyyy)
 Assessment year (yyyy-yy)

Income Details Screen
The income detail screen is displayed wherein the user can enter his various de-
tails as given below.

If the user is not a salaried person, the system will ask for the source of income in the
following screen:
 � Source of Income:
 � Amount:
 � Enter more? (Y/N)

537Income Tax Calculatro SRS ver 3.0 l

If the person is salaried, the function asks for the following details:

 1. Gross Salary
 (a) Salary as per the provisions contained in the section 17(1)
 (b) Value of the perquisites under section 17(2) (As per form number

12BA, wherever applicable)
 (c) Profi ts in lieu of salary under section 17(3) (As per form number 12BA,

wherever applicable)
 (d) Total (to be calculated by this function)

 2. Allowance to the extent exempt under section 10

 � Enter more? (Y/N)
 3. Deductions

 � Entertainment allowance (EA)

 � Tax on employment (TE)
 4. Income Chargeable Under the Head ‘Salaries’

 � Displayed by the system
 5. Any other item reported by the employee

 � Enter Income:

 � Enter more? (Y/N)
 6. Gross Total Income: Displayed by the system

Savings & Donations Details Screen
The saving detail screen is displayed wherein the user can enter his various de-
tails as given below:

Saving Type: (3 to 20 alphabets with spaces)

Deductible amount: Enter more? (Y/N)

Tax Deduction Details Screen
If the person is salaried, then tax deducted by the employer during the year in the
following format is entered:

 � Amount of tax deposited

 � Date

 � Challan Number

 � Enter more? (Y/N)

 � Amount of TDS:

Tax Payable Detail Screen
This screen is the report screen generated by the system, not modifi able by the user.

 Software Testing: Principles and Practices538

Black-Box Testing on various modules of Income Tax Calculator SRS ver 3.0 is presented
here. The details of the various modules have been reproduced to understand the functionality
of the module and later, the black-box test cases of modules have been given. The reader
is advised to execute these test cases on the running executable application provided in the
CD.

Accept Personal Details (APD)
The function will accept the following details to be entered by the user. The user
cannot move to the next entry unless he enters the correct entry.

 Name (3 to 15 alphabets with spaces in between)

 Date of Birth (dd/mm/yyyy)

 Permanent address (3 to 30 characters) The allowed characters are alpha-
bets, digits,

 Spaces, and commas only.

 Sex (M/F one alphabet only)

 Status: Salaried or not (Y/N one alphabet only)

If the user enters the answer Y (Yes) to the status entry, then the function will
display the following three entries, otherwise it will not.

 Designation (if salaried) (3 to 15 alphabets)

 Name of the employer (if salaried) (3 to 25 alphabets with spaces)

 Address of the employer (if salaried) (3 to 30 characters)

 PAN number (10 characters consisting alphabets and digits 0–9)

 TDS circle where annual return/statement under section 206 is to be fi led
(3 to 15 alphabets with spaces)

 Period: From (dd/mm/yyyy)

 To (dd/mm/yyyy)

 Assessment year (yyyy-yy)

This module will be tested with equivalence class partitioning methods.

Step

7
Black-Box Testing on Units/Modules

of Income Tax Calculator SRS ver 3.0

539Black-Box Testing on Units/Modules of Income Tax Calculator SRS ver 3.0 l

Using the information of the module, the following equivalence classes are
generated:

 C1 = {3 £ Name £ 15}

 C2 = {Name < 3}

 C3 = {Name > 15}

 C4 = {Name: Any invalid character other than alphabets and spaces be-
tween the alphabets}

 C5 = {Name: Blank}

 C6 = {Date of Birth: digits only}

 C7 = {Date of Birth: Any invalid character other than digit}

 C8 = {Date of Birth: Blank}

 C9 = {3 £ Permanent address £ 30}

 C10 = {Permanent address < 3}

 C11 = {Permanent address > 30}

 C12 = {Permanent address: Any invalid character other than alphabets, dig-
its, and spaces between them}

 C13 = {Permanent address: Blank}

 C14 = {Sex: M/F}

 C15 = {Sex: any character other than M/F}

 C16 = {Sex: Blank}

 C17 = {Status: Y/N}

 C18 = {Status: any character other than Y/N}

 C19 = {Status: Blank}

 C20 = {3 £ Designation £ 15}

 C21 = {Designation < 3}

 C22 = {Designation > 15}

 C23 = {Designation: Any invalid character other than alphabets and spaces
between the alphabets}

 C24 = {Designation : Blank}

 C25 = {3 £ Name of Employer £ 25}

 C26 = {Name of Employer < 3}

 C27 = {Name of Employer > 25}

 C28 = {Name of Employer: Any invalid character other than alphabets and
spaces between the alphabets}

 Software Testing: Principles and Practices540

 C29 = {Name of Employer: Blank}

 C30 = {Address of the employer < 3}

 C31 = {Address of the employer > 30}

 C32 = {Address of the employer: Any invalid character other than alpha-
bets, digits and spaces between them}

 C33 = {Address of the employer: Blank}

 C34 = {PAN number: 10 characters consisting of alphabets and digits only}

 C34 = {PAN number < 10}

 C34 = {PAN number > 10}

 C34 = {PAN number: 10 characters consisting of any invalid character other
than alphabets and digits only}

 C35 = {PAN number: Blank}

 C36 = {3 £ TDS Circle £ 15}

 C37 = {TDS Circle < 3}

 C38 = {TDS Circle > 15}

 C39 = {TDS Circle: Any invalid character other than alphabets and spaces
between the alphabets}

 C40 = {TDS Circle: Blank}

 C41 = {Period From: digits only}

 C42 = {Period From: Any invalid character other than digit}

 C43 = {Period From: Blank}

 C44 = {Period To: digits only}

 C45 = {Period To: Any invalid character other than digit}

 C46 = {Period To: Blank}

After preparing the classes for this function, one test case per class should be
designed as given below:

Test case
ID

Class
covered

Name Date of
Birth

Permanent
Address

… Expected Output

APD1 C1 Harish Normal behaviour

APD2 C2 Na Name too short

APD3 C3 Abdul Ghaf-
far Khan

Name too long

APD4 C4 ;’.,sfh’;.,s Name should contain only
alphabets and spaces.

APD5 C5 Please enter a valid name
entry.

541Black-Box Testing on Units/Modules of Income Tax Calculator SRS ver 3.0 l

APD6 C6 Harish 01/07/1984 Normal behaviour

APD7 C7 Harish Ab/07/qw12 Date should contain only
digits.

APD8 C8 Harish Please enter a valid Date
entry.

…. … … … … … …

Accept Income Details (AID)
The function will enquire whether the user is a salaried person or has some other
source of income. If the user is not a salaried person, the system will ask for the
source of income. The user may enter various types of source of incomes as
given below. The user cannot move to the next entry unless he enters the correct
entry.

Source of Income: (3 to 20 alphabets with spaces)

Amount: (positive real numbers with maximum two decimal places)

These two entries can be tested with equivalence class partitioning methods. The
classes are:

 C1 = {3 £ Source of Income £ 20}

 C2 = {Source of Income < 3}

 C3 = {Source of Income > 20}

 C4 = {Source of Income: Blank}

 C5 = {Amount: positive real numbers with maximum two decimal
places}

 C6 = {Amount: negative number or characters other than digit}

 C7 = {Amount: Blank }

After preparing the classes, one test case per class should be designed as given
below:

Test Case ID Class covered Source of Income Amount Expected Output

AID1 C1 Agriculture Normal behaviour

AID2 C2 Tc Entry too short

AID3 C3 Income from consultancy Entry too long

AID4 C4 Please enter the source of
income

AID5 C5 Agriculture 40000.00 Normal behaviour

AID6 C6 Agriculture Rs 23000.00 Please enter the positive real
numbers only

AID7 C7 Agriculture Please enter amount

 Software Testing: Principles and Practices542

The function will aggregate the total amount of income as gross total income.
If the person is salaried, the function asks for the following details:

 1. Gross Salary

 (a) Salary as per the provisions contained in the section 17(1)

 (b) Value of the perquisites under section 17(2) (As per form number
12BA, wherever applicable)

 (c) Profi ts in lieu of salary under section 17(3) (As per form number 12BA,
wherever applicable)

 (d) Total (to be calculated by this function)

The entries, a, b, c can also be tested with equivalence classes.

 C8 = {a: valid entry}

 C9 = {a: invalid entry}

 C10 = {a:blank}

 C11 = {b: valid entry}

 C12 = {b: invalid entry}

 C13 = {b:blank}

 C14 = {c: valid entry}

 C15 = {c: invalid entry}

 C16 = {c: blank}

Therefore, the test cases will be as follows.

Test Case ID Class covered a b c Expected Output
AID8 C8 2000.00 Normal Behaviour
AID9 C9 –1200 Please enter a valid entry.

AID10 C10 Please enter a valid amount.
AID11 C11 2000.00 1000.00 Normal Behaviour
AID12 C12 2000.00 Rs 200 Please enter a valid entry.
AID13 C13 2000.00 Please enter a valid amount.
AID14 C14 2000.00 1000.00 3000.00 Normal Behaviour
AID15 C15 2000.00 1000.00 Rs 200 Please enter a valid entry.

AID16 C16 2000.00 1000.00 Please enter a valid amount.

 2. Less allowance to the extent exempt under section 10

 This function will add the exempted allowances.

 3. Balance

 This function will calculate the difference of the gross salary and the ex-
empted allowances.

 4. Deductions

 � Entertainment allowance (EA)

 � Tax on employment (TE)

543Black-Box Testing on Units/Modules of Income Tax Calculator SRS ver 3.0 l

These two entries can be tested with equivalence class partitioning methods. The
classes are:

 C17 = {EA: valid entry}
 C18 = {EA: invalid entry}
 C19 = {EA: Blank}
 C20 = {TE: valid entry}
 C21 = {TE: invalid entry}
 C22 = {TE: Blank}

The test cases will be as follows:

Test Case ID Class covered EA TE Expected Output
AID17 C17 2000.00 Normal behaviour
AID18 C18 –200 Please enter a valid amount.
AID19 C19 Please enter a valid amount.
AID20 C20 2000.00 100.00 Normal behaviour
AID21 C21 2000.00 @12.00 Please enter a valid amount.
AID22 C22 2000.00 Please enter a valid amount.

 5. Aggregate
 This function will calculate the aggregate of the deductions entered above.

 6. Income Chargeable Under the Head ‘Salaries’
 The function will calculate the difference of item 3 – item 5.

 7. Add
 Any other item reported by the employee
 User may enter multiple incomes. The function will add all these incomes.

This entry can be tested with equivalence class partitioning methods. The classes
are:

 C23 = {Income: valid entry}

 C24 = {Income: invalid entry}

 C25 = {Income: Blank}

The test cases will be:

Test Case ID Class covered Income Expected Output
AID23 C23 200.00 Normal behaviour
AID24 C24 –1000 Please enter a valid amount.
AID25 C25 Please enter a valid amount.

 8. Gross Total Income
 The function will add item 6 and 7.

All the amounts will be positive real numbers with a maximum of two decimal
places.

 Software Testing: Principles and Practices544

Accept Savings & Donations Details (ASD)
The function will ask the user to enter the total savings and the donations in the
following format.

Saving Type: (3 to 20 alphabets with spaces)

Deductible amount: (positive real numbers with maximum two decimal places)

The user may enter multiple savings. The function will add all the deductible
amounts in aggregate deductible amount.

The user cannot move to the next entry unless he enters the correct entry.

These two entries can be tested with equivalence class partitioning methods. The
classes are:

 C1 = {3 £ Saving Type £ 20}

 C2 = {Saving Type < 3}

 C3 = {Saving Type > 20}

 C4 = {Saving Type: Blank}

 C5 = {Deductible amount: positive real numbers with maximum two deci-
mal places}

 C6 = {Deductible amount: negative number or characters other than digit}

 C7 = {Deductible amount: Blank }

After preparing the classes, one test case per class should be designed as given
below:

Test Case
ID

Class
covered

Saving
Type

Deductible
Amount

Expected Output

ASD1 C1 LIC Normal behaviour
ASD2 C2 MF Entry too short
ASD3 C3 National saving certifi cate Entry too long
ASD4 C4 Please enter the saving type
ASD5 C5 LIC 2000.00 Normal behaviour
ASD6 C6 LIC Rs 23000.00 Please enter the positive real

numbers only

ASD7 C7 LIC Please enter amount

Accept Tax Deduction Details (ATD)
If the person is salaried, then this function will accept the details if tax deducted
by the employer during the year is in the following format:

 � Amount of tax deposited (positive real numbers with maximum two
decimal places)

 � Date (dd/mm/yyyy)

 � Challan Number (5 to 20 characters)

545Black-Box Testing on Units/Modules of Income Tax Calculator SRS ver 3.0 l

The above details may be entered multiple times. The function will add the
total amounts of tax deposited.
The user cannot move to the next entry unless he enters the correct entry.

Amount of TDS: (positive real numbers with maximum two decimal places)

Testing of these entries can be done with equivalence class partitioning methods.
The classes are:

 C1 = {Amount of tax deposited: valid entry}

 C2 = {Amount of tax deposited: invalid entry}

 C3 = {Amount of tax deposited: Blank}

 C4 = {Date : digits only}

 C5 = {Date : Any invalid character other than digit}

 C6 = {Date : Blank}

 C7 = {5 £ Challan Number £ 20}

 C8 = {Challan Number < 5}

 C9 = {Challan Number > 20}

 C10 = {Challan Number: Blank}

Test
Case ID

Class
covered

Amount of tax
deposited

Date Challan
Number

Expected Output

ATD1 C1 2000 Normal behaviour

ATD2 C2 Rs 2000 Please enter the valid amount.

ATD3 C3 Blank Entry. Please enter the valid
amount.

ATD4 C4 2000 12/02/2009 Normal behaviour

ATD5 C5 2000 12/feb/2009 Please enter a valid date.

ATD6 C6 2000 Blank entry. Please enter a valid
date.

ATD7 C7 2000 12/02/2009 SDE345 Normal behaviour

ATD8 C8 2000 12/02/2009 SDE Challan number too short

ATD9 C9 2000 12/02/2009 Sdefrtg5667
89asdf5678

Challan number too long

ATD10 C10 2000 12/02/2009 Blank entry. Please enter challan
number.

The testing of date fi eld can be done separately with the help of BVA technique.
So, now we will test this fi eld with the following specifi cations:

1 £ mm £ 12

1£ dd £ 31

2009 £ yyyy £ 2099

 Software Testing: Principles and Practices546

Test Cases Using BVC
Month Day Year

Min value 1 1 2009
Min+ value 2 2 2010
Max value 12 31 2099
Max– value 11 30 2098
Nominal value 6 15 2060

Using these values, test cases can be designed as shown below:

Test Case ID Month Day Year Expected Output
1 1 15 2060 Normal behaviour
2 2 15 2060 Normal behaviour
3 11 15 2060 Normal behaviour
4 12 15 2060 Normal behaviour
5 6 1 2060 Normal behaviour
6 6 2 2060 Normal behaviour
7 6 30 2060 Normal behaviour
8 6 31 2060 Invalid input
9 6 15 2009 Normal behaviour

10 6 15 2010 Normal behaviour
11 6 15 2098 Normal behaviour
12 6 15 2099 Normal behaviour
13 6 15 2060 Normal behaviour

 Test Cases Using Robust Testing
Month Day Year

Min– value 0 0 2008
Min value 1 1 2009

Min+ value 2 2 2010
Max value 12 31 2099
Max– value 11 30 2098
Max+ value 13 32 3000
Nominal value 6 15 2060

Using these values, test cases can be designed as shown below:

Test Case ID Month Day Year Expected Output
1 0 15 2060 Invalid date
2 1 15 2060 Normal behaviour
3 2 15 2060 Normal behaviour
4 11 15 2060 Normal behaviour
5 12 15 2060 Normal behaviour
6 13 15 2060 Invalid date
7 6 0 2060 Invalid date
8 6 1 2060 Normal behaviour

547Black-Box Testing on Units/Modules of Income Tax Calculator SRS ver 3.0 l

9 6 2 2060 Normal behaviour
10 6 30 2060 Normal behaviour
11 6 31 2060 Invalid input
12 6 32 2060 Invalid date
13 6 15 2008 Invalid date
14 6 15 2009 Normal behaviour
15 6 15 2010 Normal behaviour
16 6 15 2098 Normal behaviour
17 6 15 2099 Normal behaviour
18 6 15 3000 Invalid date
19 6 15 2060 Normal behaviour

Test Cases Using Worst Case Testing
Month Day Year

Min value 1 1 2009
Min+ value 2 2 2010
Max value 12 31 2099
Max– value 11 30 2098
Nominal value 6 15 2060

Using these values, test cases can be designed as shown below:

Test Case ID Month Day Year Expected Output
1 1 1 2009 Normal behaviour

2 1 1 2010 Normal behaviour

3 1 1 2060 Normal behaviour

4 1 1 2098 Normal behaviour

5 1 1 2099 Normal behaviour

6 1 2 2009 Normal behaviour

7 1 2 2010 Normal behaviour

8 1 2 2060 Normal behaviour

9 1 2 2098 Normal behaviour

10 1 2 2099 Normal behaviour

11 1 15 2009 Normal behaviour

12 1 15 2010 Normal behaviour

13 1 15 2060 Normal behaviour

14 1 15 2098 Normal behaviour

15 1 15 2099 Normal behaviour

16 1 30 2009 Normal behaviour

17 1 30 2010 Normal behaviour

18 1 30 2060 Normal behaviour

19 1 30 2098 Normal behaviour

20 1 30 2099 Normal behaviour

21 1 31 2009 Normal behaviour

22 1 31 2010 Normal behaviour

 Software Testing: Principles and Practices548

23 1 31 2060 Normal behaviour

24 1 31 2098 Normal behaviour

25 1 31 2099 Normal behaviour

26 2 1 2009 Normal behaviour

27 2 1 2010 Normal behaviour

28 2 1 2060 Normal behaviour

29 2 1 2098 Normal behaviour

30 2 1 2099 Normal behaviour

31 2 2 2009 Normal behaviour

32 2 2 2010 Normal behaviour

33 2 2 2060 Normal behaviour

34 2 2 2098 Normal behaviour

35 2 2 2099 Normal behaviour

36 2 15 2009 Normal behaviour

37 2 15 2010 Normal behaviour

38 2 15 2060 Normal behaviour

39 2 15 2098 Normal behaviour

40 2 15 2099 Normal behaviour

41 2 30 2009 Invalid date

42 2 30 2010 Invalid date

43 2 30 2060 Invalid date

44 2 30 2098 Invalid date

45 2 30 2099 Invalid date

46 2 31 2009 Invalid date

47 2 31 2010 Invalid date

48 2 31 2060 Invalid date

49 2 31 2098 Invalid date

50 2 31 2099 Invalid date

51 6 1 2009 Normal behaviour

52 6 1 2010 Normal behaviour

53 6 1 2060 Normal behaviour

54 6 1 2098 Normal behaviour

55 6 1 2099 Normal behaviour

56 6 2 2009 Normal behaviour

57 6 2 2010 Normal behaviour

58 6 2 2060 Normal behaviour

59 6 2 2098 Normal behaviour

60 6 2 2099 Normal behaviour

61 6 15 2009 Normal behaviour

62 6 15 2010 Normal behaviour

63 6 15 2060 Normal behaviour

64 6 15 2098 Normal behaviour

65 6 15 2099 Normal behaviour

549Black-Box Testing on Units/Modules of Income Tax Calculator SRS ver 3.0 l

66 6 30 2009 Normal behaviour

67 6 30 2010 Normal behaviour

68 6 30 2060 Normal behaviour

69 6 30 2098 Normal behaviour

70 6 30 2099 Normal behaviour

71 6 31 2009 Invalid date

72 6 31 2010 Invalid date

73 6 31 2060 Invalid date

74 6 31 2098 Invalid date

75 6 31 2099 Invalid date

76 11 1 2009 Normal behaviour

77 11 1 2010 Normal behaviour

78 11 1 2060 Normal behaviour

79 11 1 2098 Normal behaviour

80 11 1 2099 Normal behaviour

81 11 2 2009 Normal behaviour

82 11 2 2010 Normal behaviour

83 11 2 2060 Normal behaviour

84 11 2 2098 Normal behaviour

85 11 2 2099 Normal behaviour

86 11 15 2009 Normal behaviour

87 11 15 2010 Normal behaviour

88 11 15 2060 Normal behaviour

89 11 15 2098 Normal behaviour

90 11 15 2099 Normal behaviour

91 11 30 2009 Normal behaviour

92 11 30 2010 Normal behaviour

93 11 30 2060 Normal behaviour

94 11 30 2098 Normal behaviour

95 11 30 2099 Normal behaviour

96 11 31 2009 Invalid date

97 11 31 2010 Invalid date

98 11 31 2060 Invalid date

99 11 31 2098 Invalid date

100 11 31 2099 Invalid date

101 12 1 2009 Normal behaviour

102 12 1 2010 Normal behaviour

103 12 1 2060 Normal behaviour

104 12 1 2098 Normal behaviour

105 12 1 2099 Normal behaviour

106 12 2 2009 Normal behaviour

107 12 2 2010 Normal behaviour

 Software Testing: Principles and Practices550

108 12 2 2060 Normal behaviour

109 12 2 2098 Normal behaviour

110 12 2 2099 Normal behaviour

111 12 15 2009 Normal behaviour

112 12 15 2010 Normal behaviour

113 12 15 2060 Normal behaviour

114 12 15 2098 Normal behaviour

115 12 15 2099 Normal behaviour

116 12 30 2009 Normal behaviour

117 12 30 2010 Normal behaviour

118 12 30 2060 Normal behaviour

119 12 30 2098 Normal behaviour

120 12 30 2099 Normal behaviour

121 12 31 2009 Normal behaviour

122 12 31 2010 Normal behaviour

123 12 31 2060 Normal behaviour

124 12 31 2098 Normal behaviour

125 12 31 2099 Normal behaviour

Generate Tax Payable Details
This function calculates the tax payable by the person in the following format:
Taxable income The function will calculate this by taking the difference of gross
total income in the function Accept Income Details and aggregate deductible
amount in the function Accept Savings & Donation Details.
Tax on taxable income The function will calculate this using the appropriate slab
of user as given above.

The following conditions are there for calculating the appropriate tax slab of
a person:

 � Is Sex Male?

 � Age > 65?

 � Income: up to 1.5 lacs

 � Income: up to 1.8 lacs

 � Income : 1.5 lacs to 3 lacs

 � Income : 1.8 lacs to 3 lacs

 � Income : 3 lacs to 5 lacs

 � Income : above 5 lacs

 � Income : up to 2.25 lacs

 � Income : 2.25 lacs to 3 lacs

551Black-Box Testing on Units/Modules of Income Tax Calculator SRS ver 3.0 l

The following outputs will be there:

 � No tax
 � 10%
 � 20%
 � 30%

The test cases for these conditions and outputs can be designed using a deci-
sion table, as given below:

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

Co
nd

iti
on

 S
tu

b

C1: Is Sex Male? T T T T F F F F I I I I

C2: Age > 60? F F T F F F F F T T T T

C3: Income: up to 1.5 lacs T F F F I F F F I F F F

C4: Income: up to 1.8 lacs F I F F T F F F I F F F

C5: Income : 1.5 lacs to 3 lacs F T F F F I F F I I F F

C6: Income : 1.8 lacs to 3 lacs F F F F F T F F I I F F

C7: Income : 3 lacs to 5 lacs F F T F F F T F F F T F

C8: Income : above 5 lacs F F F T F F F T F F F T

C9: Income : up to 2.25 lacs F I F F F I F I T F F F

C10: Income : 2.25 lacs to 3 lacs F I F F F I F F F T F F

Ac
tio

n
St

ub

A1: No Tax X X X

A2: 10% X X X

A3: 20% X X X

A4: 30% X X X

Surcharge The function will calculate the surcharge as: If tax on taxable income
exceeds Rs 10 lacs, a 10% surcharge is charged.

Education cess The function will calculate the education cess as a 3% of tax on
taxable income.

Tax payable The function will sum up the tax on taxable income, surcharge, and
education cess.

Relief under section 89 User will enter the amount, if applicable.

Tax payable after relief (if applicable) The function will deduct relief amount
from tax payable.

Total Tax deducted Displayed from the function Accept Tax Deduction Details.

Tax payable/refundable The function will fi nd the difference of tax payable and
the total tax deducted. If difference is positive, then this amount is the net tax
to be paid by the person, otherwise the amount is due on the government to be
refunded.

 Software Testing: Principles and Practices552

Here, we will discuss how the modules of Income Tax Calculator is tested us-
ing white-box testing techniques. The modules of TaxCalculator.h (refer CD) have
been reproduced here for understanding their functionality and coding details. The
reader is advised to refer to the full code for implementation details of the applica-
tion and execute these test cases on the running executable application provided
in the CD.

BASIS PATH TESTING ON income_details_non_sal()
Source Code of income_details_non_sal()

fl oat income_details_non_sal()

 {

1’ char source[20]=“abc”;

2’ fl oat amount,total =0;

3’ int fl ag1=1,fl ag2=1,i;

4’ char income_ch=‘y’;

1 while((income_ch==‘y’)||(income_ch==‘Y’))

2 {

3 while(fl ag1==1)

4 {

5 printf(“\nEnter SOURCE\t:”);

6 gets(source);

7 for(i=0;i<strlen(source);i++)

8 {

9 if(((toascii(source[i]) >= 65) && (toascii(source[i])
 <= 122)) || (toascii(source[i]) == 32))

10 {

11 fl ag1=0;

12 }

White-Box Testing on Units/Modules
of Income Tax Calculator

Step

8

553White-Box Testing on Units/Modules of Income Tax Calculator l

13 else

14 {

15 printf(“\nSource can contain only charcter Error at
 position number %d”,i);

16 fl ag1=1;

17 break;

18 }

19 }//end for

20 if((strlen(source)<3)||(strlen(source)>20))

21 {

22 printf(“\nSource can contain a max of 20 characters”);

23 fl ag1=1;

24 }

25 }

26 while(fl ag2==1)

27 {

28 printf(“\nEnter Amount\t:”);

29 scanf(“%f”,&amount);

30 if(amount>0)

31 {

32 fl ag2=0;

33 }

34 else

35 {

36 printf(“\nAmount cannot be less than or equal to 0”);

37 fl ag2=1;

38 }

39 }

40 printf(“\n\nPress any key to proceed”);

41 getch();

42 clrscr();

43 patt(“INCOME Details”);

44 printf(“\nSOURCE\t:%s”,source);

45 printf(“\nAMOUNT\t:%f”,amount);

46 total=total+amount;

47 printf(“\nDo you want to enter more(y/n)\t:”);

48 income_ch=getche();

49 fl ag1=1;

50 fl ag2=1;

51 }

52 printf(“\nTotal\t\t:%f”,total);

53 return(total);

54 }

 Software Testing: Principles and Practices554

DD Graph for Module income_details_non_sal()

1 4
,
–

,

1

2

3

52 54–

7

8

9

10,11,12

13 17–

19

20

21 24–

R2

4,5,6

N13

N14

N11

R6

N10

N9

N7

N5

N3

N1
N2

N23

R1

R7

R5

R4

26

27 29–

30

31 33–

34 38–

40 50–

51

39

N21

N18

N19

N17

N16

25

R3

N22

N4

N6

N8

N12

N15

N20

555White-Box Testing on Units/Modules of Income Tax Calculator l

Cyclomatic Complexity of income_details_non_sal()

 1. V(G) = e – n + 2P
 = 29 – 23 +2
 = 8

 2. V(G) = Number of predicate nodes + 1
 = 7 + 1
 = 8

 3. V(G) = No. of regions
 = 8

Independent Paths of income_details_non_sal()

Since the cyclomatic complexity of the graph is 8, there will be 8 independent
paths in the graph, as shown below:
 1. N1N2N23

 2. N1N2 N3 N4 N15 N21 N22 N2 N23

 3. N1N2 N3 N4 N5 N6 N12 N14 N4 N15 N21 N22 N2 N23

 4. N1N2 N3 N4 N5 N6 N7 N8 N10 N12 N14 N4 N15 N21 N22 N2 N23

 5. N1N2 N3 N4 N5 N6 N7 N8 N9 N11 N6 N12 N14 N4 N15 N21 N22 N2 N23

 6. N1N2 N3 N4 N5 N6 N7 N8 N9 N11 N6 N12 N13 N14 N4 N15 N21 N22 N2 N23

 7. N1N2 N3 N4 N15 N16 N17 N19 N20 N15 N21 N22 N2 N23

 8. N1N2 N3 N4 N15 N16 N17 N18 N20 N15 N21 N22 N2 N23

Test Case Design on income_details_non_sal() from the list of
Independent Paths

Test Case
ID

Inputs Expected Output Independent paths
covered by Test Case

Source Amount

1 Agriculture 400000 Source Agriculture
Amount 400000
Do you want to enter more(y/n) Y

1, 2, 3, 5, 8

Others 100000 Source Others
Amount 100000
Do you want to enter more(y/n) N

Total 500000

2 1234 Source can contain only character. 1, 2, 3, 4

3 Agriculture
and others

Source can contain a max of 20 charac-
ters.

1, 2, 3, 6

4 Agriculture 0 Amount cannot be less than or equal to 0 1, 2, 3, 5, 7

 Software Testing: Principles and Practices556

DATA FLOW TESTING ON income_details_non_sal()
Defi nition Nodes and Usage Nodes
Variable Defi ned At Used At

source 1’, 6 7, 9, 20, 44

amount 29 30, 45, 46

total 2’, 46 46, 52

fl ag1 3’, 11, 16, 23, 49 3

fl ag2 3’, 32, 37, 50 26

i 7 7, 9, 15

income_ch 4’, 48 1

du and dc paths

Variable du Path(beg-end) dc?

source

1’–7 No

1’–9 No

1’–20 No

1’–44 No

6–7 Yes

6–9 Yes

6–20 Yes

6–44 Yes

amount

29–30 Yes

29–45 Yes

29–46 Yes

total

2’–46 Yes

2’–52 No

46–46 Yes

46–52 Yes

fl ag1

3’–3 Yes

11–3 No

16-3 No

23–3 Yes

49–3 Yes

557White-Box Testing on Units/Modules of Income Tax Calculator l

fl ag2

3’–26 Yes

32–26 Yes

37–26 Yes

50–26 Yes

i

7–7 Yes

7–9 Yes

7–15 Yes

income_ch
4’–1 Yes

48–1 Yes

BASIS PATH TESTING ON income_details_sal()
Source code of income_details_sal()
double income_details_sal()

{

1’ fl oat t_d, d1, d2, sal1, sal2, sal3, t_sal, sal_all, sal_all_tot=0, ei,

 t_ei=0, net_t_sal=0, bal;

2’ char sal_ch=‘y’,ei_ch=‘y’;

3’ int f1=1,f2=1,f3=1,f4=1;

4’ double gross;

1 while(f2==1)

2 {

3 printf(“\n1.\tGROSS SALARY\t:”);

4 printf(“\n\ta) Salary as per the provisions contained in the sec-
tion 17(1)\t:”);

5 scanf(“%f”,&sal1);

6 printf(“\n\tb) Value of the perquisites under section 17(2)\n(As
per form number 12BA , wherever applicable)\t:”);

7 scanf(“%f”,&sal2);

8 printf(“\n\tc) Profi ts in lieu of salary under section 17(3)\n(As
per form number 12BA , wherever applicable)\t:”);

9 scanf(“%f”,&sal3);

10 if((sal1<0)||(sal2<0)||(sal3<0))

11 {

12 f2=1;

13 }

14 else

15 {

16 f2=0;

 Software Testing: Principles and Practices558

17 }

18 }

19 t_sal=sal1+sal2+sal3;

20 printf(“\n\td)\tTotal\n\t\t\t\t:%f”,t_sal);

21 sal_all_tot=0;

22 while((sal_ch==’y’)||(sal_ch==’Y’))

23 {

24 while(f1==1)

25 {

26 printf(“\n2.\tAllowance to the extent exempt under section
10\t:”);

27 scanf(“%f”,&sal_all);

28 if(sal_all<0)

29 {

30 printf(“\nEnter correct value”);

31 }

32 else

33 {

34 f1=0;

35 }

36 }

37 sal_all_tot=sal_all_tot+sal_all;

38 printf(“\nEnter more?(Y/N)\t:”);

39 sal_ch=getche();

40 if((sal_ch==’y’)||(sal_ch==’Y’)||(sal_ch==’n’)||(sal_ch==’N’))

41 {

42 f1=0;

43 }

44 else

45 {

46 printf(“\nPlease enter y or n”);

47 }

48 }

49 printf(“\nTotal allowance\t\t:%f”,sal_all_tot);

50 bal=t_sal-sal_all_tot;

51 printf(“\nBalance\t:%f”,bal);

52 while(f3==1)

53 {

54 printf(“\n3.\tDeductions\t:”);

55 printf(“\n\tEntertainment allowance(EA)\t:”);

56 scanf(“%f”,&d1);

559White-Box Testing on Units/Modules of Income Tax Calculator l

57 printf(“\tTax on employment (TE)\t:”);

58 scanf(“%f”,&d2);

59 if((d1<0)||(d2<0))

60 {

61 f3=1;

62 }

63 else

64 {

65 f3=0;

66 }

67 }

68 t_d=d1+d2;

69 printf(“\nTotal deductions\t:%f”,t_d);

70 net_t_sal=bal-t_d;

71 printf(“\n4.\tINCOME CHARGABLE UNDER THE HEAD SALARIES’\t:%f”,net_t_sal);

72 while((ei_ch==’y’)||(ei_ch==’Y’))

73 {

74 while(f4==1)

75 {

76 printf(“\n5.\tAny other income reported by the Employee\t:”);

77 printf(“\n\t\tEnter Income\t:”);

78 scanf(“%f”,&ei);

79 if(ei<0)

80 {

81 f4=1;

82 }

83 else

84 {

85 f4=0;

86 }

87 }

88 t_ei=t_ei+ei;

89 printf(“\n\t\tEnter more?(Y/N)\t:”);

90 ei_ch=getche();

91 }

92 gross=net_t_sal+t_ei;

93 printf(“\n6.Gross Total Income:\t%f”,gross);

94 return(gross);

95 }

 Software Testing: Principles and Practices560

DD Graph for Module income_details_sal()

1

2 9–

10

11 13–

14 17–

18

19

20 21–

22

23

24

25 27–

28

29 31–

32 35–

36

37 39– 40

41 43– 44 47–

48

N4

N5

N7

N2

N1

N8

N9 N23

N11

N10

N13

N19

N28

N26

N33

N24

N35

N41

N42

N39

N38

N22

N31

N20

N18

R7

R5

R2

R1

R8

49

50 51–

52

53 58–

59

60 62–

63 66–

67

68 71–

72

73

74

75 78–

79

80 82–

83 86–

87

88 91–

92

93 95–

1 –4¢

N17

R4

R3 R6

N3

N6

N12

N16

N15

N25

N27
N32

N29

R10

N34

N30
N36

N37

N40

N14

N21

R9

R11

561White-Box Testing on Units/Modules of Income Tax Calculator l

Cyclomatic Complexity of income_details_sal()

 1. V(G) = e – n + 2P

 = 52 – 42 +2

 = 12

 2. V(G) = Number of predicate nodes + 1

 = 11+ 1

 = 12

 3. V(G) = No. of Regions

 = 12

Independent Paths of income_details_sal()
Since the cyclomatic complexity of the graph is 12, there will be 12 indepen-
dent paths in the graph as shown below:

 1. N1 N2 N8 N9 N10 N23 N24 N25 N26 N32 N41 N42

 2. N1 N2 N3 N4 N6 N7 N2 N8 N9 N10 N23 N24 N25 N26 N32 N41 N42

 3. N1 N2 N3 N4 N5 N7 N2 N8 N9 N10 N23 N24 N25 N26 N32 N41 N42

 4. N1 N2 N8 N9 N10 N11 N12 N18 N19 N22 N21 N10 N23 N24 N25 N26 N32 N41
N42

 5. N1 N2 N8 N9 N10 N11 N12 N13 N14 N16 N17 N12 N18 N19 N22 N21 N10 N23
N24 N25 N26 N32 N41 N42

 6. N1 N2 N8 N9 N10 N11 N12 N13 N14 N15 N17 N12 N18 N19 N22 N21 N10 N23
N24 N25 N26 N32 N41 N42

 7. N1 N2 N8 N9 N10 N11 N12 N18 N19 N20 N21 N10 N23 N24 N25 N26 N32 N41
N42

 8. N1 N2 N8 N9 N10 N23 N24 N25 N27 N28 N30 N31 N25 N26 N32 N41 N42

 9. N1 N2 N8 N9 N10 N23 N24 N25 N27 N28 N29 N31 N25 N26 N32 N41 N42

 10. N1 N2 N8 N9 N10 N23 N24 N25 N27 N28 N30 N31 N25 N26 N32 N33 N34 N40
N32 N41 N42

 11. N1 N2 N8 N9 N10 N23 N24 N25 N27 N28 N30 N31 N25 N26 N32 N33 N34 N35
N36 N38 N39 N34 N40 N32 N41 N42

 12. N1 N2 N8 N9 N10 N23 N24 N25 N27 N28 N30 N31 N25 N26 N32 N33 N34 N35
N36 N37 N39 N34 N40 N32 N41 N42

 Software Testing: Principles and Practices562

Test Case Design on income_details_sal() from the list of Independent Paths

Test
Case
ID

Inputs

Expected Output

Independent path
covered by Test
Case

Sal1 Sal2 Sal3 Sal_all Enter
more?

EA TE Other
Income

1 2000 4000 9000 Total 15000

1, 2, 5, 7, 8, 10, 11

2000 Y

1000 n Total Allowance 3000
Balance 12000

200 300 Total deductions 500
Income under Head Salaries
11500

12000 Enter more? Y

12000 Enter more? N
Gross Total Income:
35500

2 2000 –300 500 2, 3

3 2000 4000 9000 Total 15000
2, 6

–300 Enter correct value

4 2000 4000 9000 Total 15000
2, 4, 5, 7

1000 t Please enter y or n

5 2000 4000 9000 Total 15000

2, 5, 7, 9
1000 n Total Allowance 1000

Balance 14000

–100 200

6 2000 4000 9000 Total 15000

2, 5, 7, 8, 10, 12

2000 Y

1000 n Total Allowance 3000
Balance 12000

200 300 Total deductions 500
Income under Head Salaries
11500

–1000

563White-Box Testing on Units/Modules of Income Tax Calculator l

DATA FLOW TESTING ON income_details_sal()
Defi nition nodes and Usage nodes

Variable Defi ned At Used At
t_d 68 69, 70
d1 56 59, 68
d2 58 59, 68

sal1 5 10, 19
sal2 7 10, 19
sal3 9 10, 19
t_sal 19 20

sal_all 27 28, 37
sal_all_tot 21, 37 37, 49, 50

ei 78 79, 88
t_ei 1’, 88 88, 92

net_t_sal 1’, 70 71, 92
bal 50 70

sal_ch 2’, 39 40
ei_ch 2’, 90 72

f1 3’, 34, 42 24
f2 3’, 12, 16 1
f3 3’, 61, 65 52
f4 3’, 81, 85 74

gross 92 93

du and dc paths

Variable du Path(beg-end) dc?

t_d
68–69 Yes
68–70 Yes

d1
56–59 Yes
56–68 Yes

d2
58–59 Yes
58–68 Yes

sal1
5–10 Yes
5–19 Yes

sal2
7–10 Yes
7–19 Yes

sal3
9–10 Yes
9–19 Yes

t_sal 19–20 Yes

sal_all
27–28 Yes
27–37 Yes

sal_all_tot 21–37 No

 Software Testing: Principles and Practices564

21–49 No
21–50 No
37–37 No
37–49 Yes
37–50 Yes

ei
78–79 Yes
78–88 Yes

t_ei

1’–88 No
1’–92 No
88–88 No
88–92 Yes

net_t_sal

1’–71 No
1’–92 No
70–71 Yes
70–92 Yes

bal 50–70 Yes

sal_ch
2’–40 No
39–40 Yes

ei_ch
2’–72 Yes
90–72 Yes

f1
3’–24 Yes
34–24 Yes
42–24 Yes

f2
3’–1 Yes
12–1 Yes
16–1 Yes

f3
3’–52 Yes
61–52 Yes
65–52 Yes

f4
3’–74 Yes
81–74 Yes

gross
85–74 Yes
92–93 Yes

BASIS PATH TESTING ON MODULE savings()

Source Code of module savings()

fl oat savings()
 {
1 char saving_type[20];
2 fl oat amount,total=0;
3 int fl ag1=1,fl ag2=1,i;
4 char sav_ch=‘y’;
5 while((sav_ch==‘y’)||(sav_ch==‘Y’))
6 {

565White-Box Testing on Units/Modules of Income Tax Calculator l

7 while(fl ag1==1)
8 {
9 printf(“\nEnter Saving type\t:”);
10 gets(saving_type);
11 for(i=0;i<strlen(saving_type);i++)
12 {
13 if(((toascii(saving_type[i])>= 65) && (toascii(saving_type[i])

<= 122)) || (toascii(saving_type[i]) == 32))
14 {
15 fl ag1=0;
16 }
17 else
18 {
19 printf(“\nSaving type can contain only charcter Error at posi-

tion number %d”,i);
20 fl ag1=1;
21 break;
22 }
23 }
24 if((strlen(saving_type)<3)||(strlen(saving_type)>20))
25 {
26 printf(“\nPlease enter between 3 to 20 characters ”);
27 fl ag1=1;
28 }
29 }
30 while(fl ag2==1)
31 {
32 printf(“\nEnter Amount\t:”);
33 scanf(“%f”,&amount);
34 if(amount>0)
35 {
36 fl ag2=0;
37 }
38 else
39 {
40 printf(“\nAmount cannot be less than or equal to 0”);
41 fl ag2=1;
42 }
43 }
44 printf(“\n\nPress any key to proceed”);
45 getch();
46 clrscr();
47 patt(“SAVING Details”);
48 printf(“\nSAVING TYPE\t:%s”,saving_type);
49 printf(“\nAMOUNT\t\t\t:%f”,amount);
50 total=total+amount;
51 printf(“\nDo you want to enter more(y for yes)\t:”);
52 sav_ch=getche();
53 fl ag1=1;

 Software Testing: Principles and Practices566

54 fl ag2=1;
55 }
56 printf(“\nTotal\t\t:%f”,total);
57 return(total);

58 }

DD Graph for Module savings()

5

6

7

8 10–

11

12

13

14 16–

17 21–

23

24

25 28–

29

30

31 33–

34

35 37–

38 42–

43

N3

N4

N5

N6

N7

N1

N8

N9

N10

N12

N13

N16

N20

N18

R6

R7

R2

R3

N17

44 54–

55

56 57– N23

N22

R1

R4

R5

1–4

N19

N21

N15

N14

N11

N2

567White-Box Testing on Units/Modules of Income Tax Calculator l

Cyclomatic Complexity of savings()

 1. V(G) = e – n + 2P

 = 29 – 23 +2

 = 8

 2. V(G) = Number of predicate nodes + 1

 = 7 + 1

 = 8

 3. V(G) = No. of regions

 = 8

Independent Paths of savings()
Since the cyclomatic complexity of the graph is 8, there will be 8 independent
paths in the graph, as shown below:

 1. N1 N2 N23

 2. N1 N2 N3 N4 N15 N21 N22 N2 N23

 3. N1 N2 N3 N4 N5 N6 N12 N14 N4 N15 N21 N22 N2 N23

 4. N1 N2 N3 N4 N5 N6 N7 N8 N10 N12 N14 N4 N15 N21 N22 N2 N23

 5. N1 N2 N3 N4 N5 N6 N7 N8 N9 N11 N6 N12 N14 N4 N15 N21 N22 N2 N23

 6. N1 N2 N3 N4 N5 N6 N12 N13 N14 N4 N15 N21 N22 N2 N23

 7. N1 N2 N3 N4 N15 N16 N17 N19 N20 N15 N21 N22 N2 N23

 8. N1 N2 N3 N4 N15 N16 N17 N18 N20 N15 N21 N22 N2 N23

Test Case Design on savings() from the list of Independent Paths

Test
Case ID

Inputs Expected Output Independent path
covered by Test Case

Saving Type Amount Enter more?

1

NSC 5000 Saving type NSC
Amount 5000

1, 2, 3, 5, 8
y

PPF 1200 Saving type PPF
Amount 1200

n Total 6200

2 123 Saving type can contain
only character

2, 3, 4

 Software Testing: Principles and Practices568

3 PF Please enter between 3 to
20 characters

2, 3, 6

4 PPF 0 Amount cannot be less
than or equal to 0.

2, 3, 7

DATA FLOW TESTING ON MODULE SAVINGS()
Defi nition and Usage nodes

Variable Defi ned At Used At

saving_type 10 11, 13, 24, 48

amount 33 34, 49, 50

total 2, 50 50, 56, 57

fl ag1 3, 15, 20, 27, 53 7

fl ag2 3, 36, 41, 54 30

i 11 11, 13, 19

sav_ch 4, 52 5

du and dc paths

Variable du Path(beg-end) dc?

saving_type

10–11 Yes

10–13 Yes

10–24 Yes

10–48 Yes

amount

33–34 Yes

33–49 Yes

33–50 Yes

total

2–50 No

50–50 No

50–56 Yes

50–57 Yes

fl ag1

3–7 Yes

15–7 No

20–7 No

27–7 Yes

53–7 Yes

fl ag2

3–30 Yes

36–30 Yes

41–30 Yes

54–30 Yes

569White-Box Testing on Units/Modules of Income Tax Calculator l

i

11–11 No

11–13 Yes

11–19 Yes

sav_ch
4–5 Yes

52–5 Yes

BASIS PATH TESTING ON MODULE tax_ded()
Source code of tax_ded()

fl oat tax_ded()

 {

1 char challan[20];

2 int fl ag=1,fl ag1=1,fl ag2=1,fl ag3=1,fl ag4=1,i,dd,mm,yyyy,choice=‘y’;

3 fl oat amount_tax,tot_amount_tax=0,amount_tds,tot;

4 while((choice==‘y’)||(choice==‘Y’))

5 { fl ag=1,fl ag1=1,fl ag2=1,fl ag3=1,fl ag4=1;

6 while(fl ag4==1)

7 {

8 printf(“\nEnter amount of Tax deposited\t:”);

9 scanf(“%f”,&amount_tax);

10 if(amount_tax<0)

11 {

12 printf(“\nAMOUNT CANNOT BE NEGATIVE”);

13 fl ag4=1;

14 }

15 else

16 {

17 fl ag4=0;

18 }

19 }

20 while(fl ag3==1)

21 {

22 fl ag3=0;

23 printf(“\nEnter DATE:\t:”);

24 printf(“\n\tEnter day(dd)\t:”);

25 scanf(“%d”,&dd);

26 if((dd>31)||(dd<=0))

27 {

28 fl ag3=1;

29 printf(“\nWrong date”);

30 }

 Software Testing: Principles and Practices570

31 printf(“\n\tEnter month\t:”);

32 scanf(“%d”,&mm);

33 if((mm<=0)||(mm>12)||((mm==2)&&(dd>29)))

34 {

35 printf(“\nWrong date/month”);

36 fl ag3=1;

37 }

38 printf(“\n\tEnter year\t:”);

39 scanf(“%d”,&yyyy);

40 if((yyyy<2009)||(yyyy>2099))

41 {

42 printf(“\nPlease enter a year between 2009 and 2099”);

43 fl ag3=1;

44 }

45 }

46 while(fl ag1==1)

47 {

48 printf(“\nEnter Challan Number\t:”);

49 gets(challan);

50 for(i=0;i<strlen(challan);i++)

51 {

52 if(((toascii(challan[i]) >= 65) && (toascii(challan[i]) <=
122)) || (toascii(challan[i]) == 32) || ((toascii(challan[i])
>= 48) && (toascii(challan[i]) <= 57)))

53 {

54 fl ag1=0;

55 }

56 else

57 {

58 printf(“\nChallan Number can contain only charcter Error at
 position number %d”,i);

59 fl ag1=1;

60 break;

61 }

62 }//end of for

63 if((strlen(challan)<5)||(strlen(challan)>20))

64 {

65 printf(“\nPlease enter correct Challan Number having 5 to 20
 characters”);

66 fl ag1=1;

67 }

68 }

69 printf(“\nAMOUNT OF TAX DEPOSITED\t:%f”,amount_tax);

571White-Box Testing on Units/Modules of Income Tax Calculator l

70 printf(“\nCHALLAN NUMBER\t\t:%s”,challan);

71 printf(“\nDATE\t\t\t:%d/%d/%d”,dd,mm,yyyy);

72 fl ag=1;

73 while(fl ag)

74 {

75 printf(“\nDo you want to enter more ?(y/n)”);

76 choice=getche();

77 if((choice==‘y’)||(choice==‘Y’)||(choice==‘N’)||(choice==‘n’))

78 {

79 fl ag=0;

80 }

81 else

82 {

83 printf(“\nPlease Enter y or n”);

84 fl ag=1;

85 }

86 }//end of inner while

87 tot_amount_tax=tot_amount_tax+amount_tax;

88 }

89 while(fl ag2==1)

90 {

91 printf(“\nEnter amount of TDS \t:”);

92 scanf(“%f”,&amount_tds);

93 if(amount_tds<0)

94 {

95 printf(“\nTDS AMOUNT CANNOT BE NEGATIVE”);

96 fl ag2=1;

97 }

98 else

99 {

100 fl ag2=0;

101 }

102 }

103 printf(“\n\nPress any key to proceed”);

104 getch();

105 clrscr();

106 patt(“TAX DEDUCTION”);

107 printf(“\nAMOUNT OF TAX DEPOSITED\t:%f”,tot_amount_tax);

108 printf(“\nAMOUNT OF TDS\t:%f”,amount_tds);

109 tot=tot_amount_tax+amount_tds;

110 printf(“\nTotal\t\t:%f”,tot);

111 return(tot);

112 }

 Software Testing: Principles and Practices572

DD Graph for Module tax_ded()

20

21–25

26

27–30

31–30

33

34–37

38–39

40

41–44

45

46

47–49

50

51

52

53–55

56–61

62

63

64–67

68

69–72

73

74–76

77

78–80

81–85

86

87

88

89

90–92

93

94–97

98–101

102

103–111

1–3

4

5

6

7–9

10

11–14

15–18

19

N20

N10

N7

N6

N4

N5

N3

N1

N12

N21

N17

N22

N23

N25

N24

N26

N28

N29

N33

N30

N32

N38

N35

N34

N37

N39

N40

N41

N42

N43

N47

N46

N45

R1

R2

R3

R6

R12

R7

R10

R5

R14

R4

R8

R11

R9

R15

R13

N9

N16

N15

N14

N13

N18

N19

N27

N31

N36

N44

N2

N8

N11

573White-Box Testing on Units/Modules of Income Tax Calculator l

Cyclomatic Complexity of tax_ded()

 1. V(G) = e – n + 2P

 = 61 – 47 +2

 = 16

 2. V(G) = Number of predicate nodes + 1

 = 15 + 1

 = 16

 3. V(G) = No. of regions

 = 16

Independent Paths of tax_ded()
Since the cyclomatic complexity of the graph is 16, there will be 16 independent
paths in the graph as shown below:

 1. N1 N2 N41 N47

 2. N1 N2 N3 N4 N10 N21 N32 N33 N39 N40 N2 N41 N47

 3. N1 N2 N3 N4 N5 N6 N8 N9 N4 N10 N21 N32 N33 N39 N40 N2 N41 N47

 4. N1 N2 N3 N4 N5 N6 N7 N9 N4 N10 N21 N32 N33 N39 N40 N2 N41 N47

 5. N1 N2 N3 N4 N10 N11 N12 N14 N15 N17 N18 N20 N10 N21 N32 N33 N39 N40 N2
N41 N47

 6. N1 N2 N3 N4 N10 N11 N12 N13 N14 N15 N17 N18 N20 N10 N21 N32 N33 N39 N40
N2 N41 N47

 7. N1 N2 N3 N4 N10 N11 N12 N13 N14 N15 N16 N17 N18 N20 N10 N21 N32 N33 N39
N40 N2 N41 N47

 8. N1 N2 N3 N4 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N10 N21 N32 N33
N39 N40 N2 N41 N47

 9. N1 N2 N3 N4 N10 N21 N22 N23 N29 N31 N21 N32 N33 N39 N40 N2 N41 N47

 10. N1 N2 N3 N4 N10 N21 N22 N23 N29 N30 N31 N21 N32 N33 N39 N40 N2 N41
N47

 11. N1 N2 N3 N4 N10 N21 N22 N23 N24 N25 N27 N28 N23 N29 N31 N21 N32 N33 N39
N40 N2 N41 N47

 12. N1 N2 N3 N4 N10 N21 N22 N23 N24 N25 N26 N28 N23 N29 N31 N21 N32 N33 N39
N40 N2 N41 N47

 13. N1 N2 N3 N4 N10 N21 N32 N33 N34 N35 N37 N38 N33 N39 N40 N2 N41 N47

 14. N1 N2 N3 N4 N10 N21 N32 N33 N34 N35 N36 N38 N33 N34 N35 N37 N38 N33 N39
N40 N2 N41 N47

 15. N1 N2 N3 N4 N10 N21 N32 N33 N39 N40 N2 N41 N42 N43 N45 N46 N41 N47

 16. N1 N2 N3 N4 N10 N21 N32 N33 N39 N40 N2 N41 N42 N43 N44 N46 N41 N47

 Software Testing: Principles and Practices574

Test Case Design on tax_ded() from the list of Independent Paths

Test
Case ID

Inputs Expected
Output

Independent
path covered
by Test Case

Tax
amount

day month year Challan
number

Enter
more?

TDS

1 5000 12 12 2009 Dfert56 AMOUNT OF
TAX DEPOS-
ITED 5000
CHALLAN
NUMBER
Dfert56
DATE 12 12
2009

1, 2, 3, 5, 9,
12, 14, 15

Y

2000 13 12 2009 Hgyt65 AMOUNT OF
TAX DEPOS-
ITED 2000
CHALLAN
NUMBER
Hgyt65
DATE 13 12
2009

n

1200 AMOUNT OF
TAX DEPOS-
ITED 7000
AMOUNT OF
TDS 1200
Total 8200

2 –200 AMOUNT
CANNOT BE
NEGATIVE

2, 3, 4

3 3000 32/0/-1 Wrong date 2, 3, 6

4 3000 31 -1/0/13 Wrong date/
month

2, 3, 7

5 3000 29 2 Wrong date/
month

2, 3, 7

6 3000 31 5 2008 Please enter a
year between
2009 and 2099

2, 3, 8

575White-Box Testing on Units/Modules of Income Tax Calculator l

7 4000 31 5 2009 !@#$ Challan number
can contain
only characters

2, 3, 5, 11

8 4000 31 5 2009 rty Please enter
correct challan
number having
5 to 20 char-
acters

2, 3, 5, 10

9 4000 31 5 2009 Rty456 n –234 TDS AMOUNT
CANNOT BE
NEGATIVE

2, 3, 5, 12,
14, 16

10 4000 31 5 2009 Rty456 t Please enter
y or n

2, 3, 5, 13

DATA FLOW TESTING ON MODULE tax_ded()
Defi nition and Usage nodes

Variable Defi ned At Used At

challan 49 50, 52, 63, 70

fl ag 2, 5, 72, 79, 84 73

fl ag1 2, 5, 54, 59, 66, 46

fl ag2 2, 5, 96, 100 89

fl ag3 2, 5, 22, 28, 36, 43 20

fl ag4 2, 5, 13, 17 6

i 50 50, 52, 58

dd 25 26, 33

mm 32 33

yyyy 39 40

choice 2, 76 77

amount_tax 9 10, 69, 87

tot_amount_tax 3, 87 87, 107, 109

amount_tds 92 93, 108, 109

tot 109 110, 111

 Software Testing: Principles and Practices576

du and dc paths

Variable du Path(beg-end) dc?

challan

49–50 Yes

49–52 Yes

49–63 Yes

49–70 Yes

fl ag

2–73 No

5–73 No

72–73 Yes

79–73 Yes

84–73 Yes

fl ag1

2–46 No

5–46 Yes

54–46 No

59–46 No

66–46 Yes

fl ag2

2–89 No

5–89 Yes

96–89 Yes

100–89 Yes

fl ag3

2–20 No

5–20 Yes

22–20 No

28–20 No

36–20 No

43–20 Yes

fl ag4

2–6 No

5–6 Yes

13–6 Yes

17–6 Yes

i

50–50 No

50–52 Yes

50–58 Yes

dd
25–26 Yes

25–33 Yes

mm 32–33 Yes

yyyy 39–40 Yes

choice 2–77 No

577White-Box Testing on Units/Modules of Income Tax Calculator l

76–77 Yes

amount_tax

9–10 Yes

9–69 Yes

9–87 Yes

tot_amount_tax

3–87 No

3–107 No

3–109 No

87–87 No

87–107 Yes

87–109 Yes

amount_tds

92–93 Yes

92–108 Yes

92–109 Yes

tot
109–110 Yes

109–111 Yes

BASIS PATH TESTING ON MODULE male_tax()
Source code of male_tax()

fl oat male_tax(fl oat taxable)
 {
 fl oat t;

1 if(taxable<=150000)
2 {
3 return 0;
4 }
5 else if((taxable>150000)&&(taxable<=300000))
6 {
7 t=10*taxable/100;
8 }
9 else if((taxable>300000)&&(taxable<=500000))
10 {
11 t=20*taxable/100;
12 }
13 else
14 {
15 t=30*taxable/100;
16 }
17 return t;
18 }

 Software Testing: Principles and Practices578

DD Graph for Module male_tax()

17–18

2–4 5–8 9–12 13–16

1

R1 R2 R3

N1

N2 N3 N4 N5

N6

Cyclomatic Complexity of male_tax()
 1. V(G) = e – n + 2P
 = 8 – 6 + 2
 = 4
 2. V(G) = Number of predicate nodes + 1
 = 3 + 1
 = 4
 3. V(G) = No. of regions
 = 4

Independent Paths of male_tax()
Since the cyclomatic complexity of the graph is 4, there will be 4 independent
paths in the graph, as shown below:

 1. N1 N2 N6

 2. N1 N3 N6

 3. N1 N4 N6

 4. N1 N5 N6

Test Case Design on male_tax() from the list of Independent Paths

Test Case ID Input
Taxable income

Expected Output Independent path covered by
Test Case

1 147000 return 0 1

2 123000 return 12300 2

3 340000 return 68000 3

4 620000 return 186000 4

579White-Box Testing on Units/Modules of Income Tax Calculator l

BASIS PATH TESTING OF MODULE fem_tax()
Source code of fem_tax()

fl oat fem_tax(fl oat taxable)
 {
 fl oat t;

1 if(taxable<=180000)
2 {
3 return 0;
4 }
5 else if((taxable>180000)&&(taxable<=300000))
6 {
7 t=10*taxable/100;
8 }
9 else if((taxable>300000)&&(taxable<=500000))
10 {
11 t=20*taxable/100;
12 }
13 else
14 {
15 t=30*taxable/100;
16 }
17 return t;
18 }

DD Graph for Module fem_tax()

17–18

2–4 5–8 9–12 13–16

1

R1 R2 R3

N1

N2 N3 N4 N5

N6

Cyclomatic Complexity of fem_tax()

 1. V(G) = e – n + 2P

 = 8 – 6 + 2

 = 4

 Software Testing: Principles and Practices580

 2. V(G) = Number of predicate nodes + 1

 = 3 + 1

 = 4

 3. V(G) = No. of regions

 = 4

Independent Paths of fem_tax()
Since the cyclomatic complexity of the graph is 4, there will be 4 independent
paths in the graph, as shown below:

 1. N1 N2 N6

 2. N1 N3 N6

 3. N1 N4 N6

 4. N1 N5 N6

Test Case Design on fem_tax() from the list of Independent Paths

Test Case ID Input
Taxable income

Expected Output Independent path covered by
Test Case

1 180000 return 0 1

2 270000 return 27000 2

3 430000 return 86000 3

4 620000 return 186000 4

BASIS PATH TESTING OF module senior_tax()
Source Code of senior_tax()

fl oat senior_tax(fl oat taxable)

 {

 fl oat t;

1 if(taxable<=225000)

2 {

3 return 0;

4 }

5 else if((taxable>225000)&&(taxable<=300000))

6 {

7 t=10*taxable/100;

8 }

9 else if((taxable>300000)&&(taxable<=500000))

10 {

581White-Box Testing on Units/Modules of Income Tax Calculator l

11 t=20*taxable/100;
12 }
13 else
14 {
15 t=30*taxable/100;
16 }
17 return t;
18 }

DD Graph for Module senior_tax()

17–18

2–4 5–8 9–12 13–16

1

R1 R2 R3

N1

N2 N3 N4 N5

N6

Cyclomatic Complexity of senior_tax()

 1. V(G) = e – n + 2P

 = 8 – 6 + 2

 = 4

 2. V(G) = Number of predicate nodes + 1

 = 3 + 1

 = 4

 3. V(G) = No. of regions

 = 4

Independent Paths of senior_tax()
Since the cyclomatic complexity of the graph is 4, there will be 4 independent
paths in the graph as shown below:

 1. N1 N2 N6

 2. N1 N3 N6

 3. N1 N4 N6

 4. N1 N5 N6

 Software Testing: Principles and Practices582

Test case design on senior_tax from the list of independent paths

Test Case ID Input Taxable income Expected Output Independent path covered by
Test Case

1 225000 return 0 1

2 228000 return 22800 2

3 430000 return 86000 3

4 620000 return 186000 4

BASIS PATH TESTING OF MODULE gtd()
Source code of gtd()

void gtd(fl oat gross_income,fl oat net_deductions,fl oat tax_ded)

 {

1 fl oat taxable_income,tax,edu_cess,surcharge=0,difference,total_tax;

2 taxable_income=gross_income-net_deductions;

3 printf(“\nTaxable Income\t\t:%f”,taxable_income);

4 if((s==‘m’)||(s==‘M’))

5 {

6 tax=male_tax(taxable_income);

7 printf(“\nTax\t\t\t:%f”,tax);

8 }

9 else if((s==‘f’)||(s==‘F’))

10 {

11 tax=fem_tax(taxable_income);

12 printf(“\n\Tax\t\t\t:%f”,tax);

13 }

14 else if((2009-yr1)>65)

15 {

16 tax=senior_tax(taxable_income);

17 printf(“\nTax\t\t\t:%f”,tax);

18 }

19 if(tax>1000000)

20 {

21 surcharge=10*tax/100;

22 printf(“\nSurcharge\t\t:%f”,surcharge);

23 }

24 edu_cess=3*tax/100;

25 printf(“\nEducational cess\t:%f”,edu_cess);

26 total_tax=tax+surcharge+edu_cess;

27 printf(“\nTax payable\t\t:%f”,total_tax);

28 printf(“\nTotal tax deducted\t:%f”,tax_ded);

583White-Box Testing on Units/Modules of Income Tax Calculator l

29 difference=total_tax-tax_ded;

30 if(difference>0)

31 {

32 printf(“\nTax payable\t\t:%f”,difference);

33 }

34 else if(difference<0)

35 {

36 printf(“\nRerfundable\t%f”,-1*difference);

37 }

38 else

39 {

40 printf(“\nNo tax”);

41 }

42 }

DD Graph for Module gtd()

19

5–8 9–13 14–18

4 N2

N3 N4 N5

N6

31–33

30

R4 R5

N9

N10 34–39 38–41

20–23

24–29

42

1–3 N1

N7

N8

N11 N12

N13

R1 R2

R3

 Software Testing: Principles and Practices584

Cyclomatic Complexity of gtd()

 1. V(G) = e – n + 2P

 = 17 – 13 + 2

 = 6

 2. V(G) = Number of predicate nodes + 1

 = 5 + 1

 = 6

 3. V(G) = No. of regions

 = 6

Independent Paths of gtd()
Since the cyclomatic complexity of the graph is 6, there will be 6 independent
paths in the graph as shown below:

 1. N1 N2 N3 N6 N8 N9 N10 N13

 2. N1 N2 N4 N6 N8 N9 N10 N13

 3. N1 N2 N5 N6 N8 N9 N10 N13

 4. N1 N2 N3 N6 N7 N8 N9 N10 N13

 5. N1 N2 N3 N6 N7 N8 N9 N11 N13

 6. N1 N2 N3 N6 N7 N8 N9 N12 N13

Test case design on gtd() from the list of independent paths
Test
Case

ID

Inputs Expected Output Independent
path covered by

Test Case
Gross_
income

Net_
deductions

Tax_ded Status Age

1 320000 2000 1000 male 34 Tax 30000
Educational cess 900
Tax payable 30900
Total Tax deducted 1000
Tax payable 29900

1

2 340000 2000 1000 female 34 Tax 32000
Educational cess 960
Tax payable 32960
Total Tax deducted 1000
Tax payable 31960

2

3 420000 2000 1000 male 67 Tax 84000
Educational cess 2520
Tax payable 86520
Total Tax deducted 1000
Tax payable 85520

1, 3

585White-Box Testing on Units/Modules of Income Tax Calculator l

4 12000000 2000 1000 male 34 Tax 3629400
Surcharge 362940
Educational cess 108882
Tax payable 4101222
Total Tax deducted 1000
Tax payable 4100222

1, 4

5 320000 2000 32000 male 34 Tax 30000
Educational cess 900
Tax payable 30900
Total Tax deducted 32000
Refundable 1100

1, 5

6 320000 2000 30900 male 34 Tax 30000
Educational cess 900
Tax payable 30900
Total Tax deducted 30900
No tax

1, 6

 References600

 1. Edward Kit, Software Testing in the Real World,
Pearson Education Pte. Ltd., Delhi, 2004

 2. G.J. Myers, The Art of Software Testing, John
Wiley & Sons, 1979

 3. Pankaj Jalote, CMM in Practice, Pearson Edu-
cation Pte. Ltd., Delhi, 2004

 4. William E. Perry, Effective Methods for Soft-
ware Testing, John Wiley & Sons (Asia) Pte.
Ltd., Second Edition, 2003

 5. Boehm B., Software Engineering Economics,
Prentice Hall, 1981

 6. Wallace, D.R. and R.U. Fujii, “Software Veri-
fi cation and Validation: An Overview”, IEEE
Software, May 1989

 7. Roger S. Pressman, Software Engineering: A
Practitioner’s Approach, McGraw-Hill Inter-
national Edition, Fifth Edition, 2001

 8. K.K. Aggarwal, Yogesh Singh, Software Engi-
neering, New Age International (P) Ltd., 2001

 9. Boris Beizer, Software Testing Techniques,
Dreamtech Press, Second Edition, 2004

 10. J.M. Voas, “PIE: A Dynamic Failure based
technique”, IEEE Trans. On Software Engg.,
Vol. 18, No. 8, Aug. 1992, pp717-727

 11. James A. Whittalcer, “What is Software Test-
ing? And why is it so hard?”, IEEE Software,
Ja/Feb 2000, pp 70-79

 12. Elfriede Dustin, Effective Software Testing: 50
specifi c ways to improve your testing, Pearson
Education Pte. Ltd., Delhi, 2004

 13. Renu Rajani, Pradeep Oak, Software Testing:
Effective Methods, Tools and Techniques, Tata
McGraw-Hill Publishing, 2004

 14. Pankaj jalote, An Integrated approach to Soft-
ware Engineering, Narosa Publishing House,
Second Edition, 2003

References

 15. Manna Z., and Waldinger R., “The Logic of
Complete Programming”, IEE Trans. On Soft-
ware Engg., 4:199-229. 1978

 16. Richard Fairley, Software Engineering Con-
cepts, Tata McGraw-Hill, 2003

 17. Carlo Ghezzi, Mehdi Jazayeri, Dino Mand-
rioli, Fundamentals of Software Engineering,
Prentice Hall of India, 1999

 18. IEEE Recommended Practice for Software re-
quirements Specifi cations IEEE Std 830-1998
(Revision of IEEE-Std 830-1993)

 19. IEEE Recommended Practice for Software
Design Descriptions, IEEE Std 1016-1998

 20. Software Testing: A Craftsman’s Approach,
CRC Press, Second Edition, 2002

 21. ANSI/IEEE Std 610.12-1990, IEEE Standard
Glossary of Software Engineering Terminol-
ogy, IEEE Computer Society Press

 22. Louise Tamres, Introducing Software Testing,
Pearson Education Pte. Ltd., Delhi, 2004

 23. Kenneth H. Rosen, Discrete Mathematics and
its applications, Tata McGraw-Hill, Forth Edi-
tion

 24. T. McCabe, “A Complexity Measure”, IEEE
Trans. On Software Engg., 2(4), 1976, pp308-
320

 25. Fabrizio Riguzzi, “A Survey of Software Met-
rics”, DEIS Tech. Report No. DEIS-LIA-96-
010, July 1996

 26. Basili V.R., Selby R.W., “Comparing the effec-
tiveness of Software Testing Strategies”, IEEE
Trans. On Software Engg., SE-13(12), 1278-96,
1987

 27. Gilb T., Graham D., Software Inspection, Ad-
dison Wesley, 1993

601References l

 28. Fagan M.E., “Advances in Software Inspec-
tions”, IEEE Trans. On Software Engg., SE-
12(7), 744-51

 29. Ian Sommerville, Software Engineering, Pear-
son Education Pte. Ltd., Delhi, Sixth Edition,
2004

 30. N.H. Petschenik, “Practical Properties in Soft-
ware Testing”, IEEE Software 2(5):18-23

 31. G.W. Jones, Software Engineering, Jon Wiley
and Sons, 1990

 32. Norman E. Fenton, Shari Lawrence Pfl eeger,
Software Metrics: A Rigorous and Practical
Approach, Brooks/Cole, Second Edition

 33. David Garmus, David Herron, Function Point
Analysis: Measurement Practices for Success-
ful software projects, Addison Wesley Informa-
tion Tech. series

 34. Paul Goodman, Practical Implementation of
Software Metrics, McGraw-Hill, 1993

 35. Ilene Burnstein, Practical Software Testing: A
Process oriented approach, Springer-Verlog,
New York, 2003

 36. Grady Booch, Object –Oriented Analysis and
Design with Applications, Pearson Education,
Second Edition, 2000

 37. Wendy Boggs, Michael Boggs, Mastering UML
with Rational Rose, BPB Publications, 2002

 38. M.J. Harrold, John D. McGregor and Kevin
J. Fitzpatrick, “Incremental Testing of Object-
Oriented Class Structures”, Proceedings of 14th
International Conference on Software Engg.,
1992

 39. P.B. Crisby, Quality is Free: The Art of mak-
ing Quality Certain, McGraw-Hill, New York,
1979

 40. J.M. Juran and F.M. Gryna, Quality Planning
and Analysis: Product Development through
use, McGraw-Hill, NewYork, 1970

 41. W. Humphrey, A Discipline for Software Engi-
neering, Addison Wesley, MA, 1995

 42. Stephan H. Kan, Metrics and Model in Soft-
ware Quality Engineering:, Pearson Educa-
tion, 2003

 43. M.E. Fagon, “Design and Code Inspections to
reduce errors in program development” IBM
System Journal, (3):182-211, 1976

 44. I.S.G. of Software Engg. Terminology, IEEE
Standards Collection, IEEE Std 610.12-1990,
Sep. 1990

 45. Akira K. Onoma, Wei-Tek Tsai, Mustafa
Poonawal and Hiroshi Suganuma, “Regression
Testing in an Industrial Environment”, Com-
munication of the ACM, 41(5):81-86, 1998

 46. Hiralal Agrawal, Joseph R. Horgan et al., “In-
cremental Regression Testing”, IEEE Confer-
ence on Software maintenance, Montreal Ca-
nal, 1993

 47. H. Lenng and L. White, “Insights into Regres-
sion Testing”, Proceedings of the conference
on Software maintenance, 1989

 48. Cem Kaner, Jack Falk, Hung Quoc Nguyen,
Testing Computer Software, Second Edition,
Wiley India, 2007

 49. B. Beizer, Software Testing and Quality As-
surance, Von Nostrand Reinhold, New York,
1984

 50. Rothermel and M.J. Harrold, “A Framework
for evaluating regression test selection tech-
niques”, Proceedings of 16th International
Conference on Software Engineering, IEEE
Computer Soceity Press, May 1994

 51. Rothermel and M.J. Harrold, “Analyzing re-
gression test selection techniques”, IEEE Trans-
actions on Software Engineering, 22(8):529-
551, Aug. 1996

 52. Rothermel and M.J. Harrold, “Empirical stud-
ies of a safe regression test selection technique”,
IEEE Transactions on Software Engineering,
24(6):401-419, June 1998

 53. K. Fischer, F. Raji, A. Chruscicki, “ A Meth-
odology for retesting modifi ed software”, Pro-
ceedings of National Tele. conference , B-6-3,
pp1-6, 1981

 54. M. Harrold and M. Soffa, “An incremental
approach to unit testing during maintenance”
Proceedings of the conference on Software
maintenance, pp 362-367, 1988

 55. G. Rothermel and M. Harrold, “A safe, ef-
fi cient regression test selection technique”,
ACM Transactions on Software Engg. And
Methodology, 6(2):173-210, 1997

 56. IEEE/ANSI (1983), IEEE Standard for Soft-
ware Test Documentation, (Reaff. 1991), IEEE
Std 829-1983

 57. D.N. Card, R.L. Glass, Measuring Software
Design Quality, Prentice-Hall, 1990

 58. G. Rothermel, R.H. Untch, Chengyun Chu,
M.J. Harrold, “Prioritizing test cases for Re-

 References602

gression Testing”, IEEE Trans. On Software
Engg., Vol. 27, Issue 10, Oct 2001

 59. Paulk, M, Curtis B., Chrissis M.B. and Weber,
C., Capability Maturity Model for Software, Soft-
ware Engineering Institute, Carnegie Mellon
University, 1993

 60. Burnstein I., Suwanassart T., and Carlson C.,
“Developing a Testing Maturity Model. Part
1”, Crosstalk, Journal of Defense Software Engi-
neering, 9, no. 8, 21–24, 1996, also available
on http://www.stsc.hill.af.mil/-crosstalk/1996/
aug/developi.asp

 61. Burnstein I., Suwanassart T., and CarlsonC.,
“Developing a Testing Maturity Model. Part
2”, Crosstalk, Journal of DefenseSoftware Engi-
neering, 9, no. 9, 19–26, 1996, also available
on http://www.stsc.hill.af.mil/-crosstalk/1996/
sep/developi.asp

 62. Gelperin D. and Hetzel B., “The Growth of
Software Testing”, Communications of the
ACM, 31, no. 6, 687–695, 1998

 63. Paulk, M., C. Weber, B. Curtis, and M. Chris-
sis, The Capability Maturity Model Guideline for
Improving the Software Process, Addison-Wesley,
Reading, Mass., 1995

 64. Thayer, R., “Software Engineering Project
Management, A Top Down View,” IEEE Tu-
torial, Software Engineering Project Management,
R. Thayer, ed., IEEE Computer Society Press,
Los Alamitos, Calif., 1990, pp. 15-53

 65. Jef Jacobs, Jan van Moll, and Tom Stokes,
“The Process of Test Process Improvement”,
XOOTIC MAGAZINE, Nov. 2000

 66. S.L. Pfl eeger, Software Engineering:Theory
and Practice, Pearson Education, Second Edi-
tion, 2003

 67. Firesmith, Donald G. “Testing Object-Ori-
ented Software,” published in Proceedings of
TOOLS, 19 March 1993

 68. David et al. “Developing an Object-Oriented
Software Testing Environment”, Communica-
tions of the ACM, Vol. 38, No. 10, pp. 75-87,
Oct. 1995

 69. Booch, G., Object Oriented Design With Applica-
tions, Benjamin Cummings, 1991,

 70. Harrison, R., Abstract Data Types in Modula-2, J.
Wiley & Sons, 1989

 71. C. D. Turner and D. J. Robson, “Guidance
for the Testing of Object-Oriented Programs”,
Technical Report No: TR 2/93 Computer

Science Division School of Engineering and
Computer Science (SECS) University of Dur-
ham Durham, England16 April, 1993

 72. T. J. Ostrand and M. J. Balcer, “The Category-
Partition Method for Specifying and Generat-
ing Functional Tests,” Comm. ACM, vol. 31,
no. 6, pp. 676–686, 1988.

 73. P. Wegner and S. B. Zdonik, ‘‘Inheritance as
an incremental modifi cation mechanism or
what like is and isn’t like,’’ Proceedings of
ECOOP’88, pp. 55-77, Springer-Verlag, 1988

 74. Arthur H.W., Thomas J. McCabe, “Structured
Testing: A Testing Methodology using the Cy-
clomatic Complexity metric”, NIST special
publication 500-235, sep. 1996

 75. P. Jorgensen and C. Erickson, Object-oriented
integration testing, Communications of the ACM,
37(9):30-38, Septenber 1994

 76. J. Overbeck, Integration Testing for Object
Oriented Software, PhD thesis, Vienna Uni-
versity of Technology, 1994.

 77. S. Kirani, Specifi cation and Verifi cation of
Object-Oriented Programs, PhD thesis, Uni-
versity of Minnesota, Minneapolis, Minnesota,
December 1994

 78. P. Jorgensen and C. Erickson, “Object-orient-
ed integration testing”, Communicationsof the
ACM, 37(9):30.38, September 1994

 79. D. Gelperin and B. Hetzel, “The Growth of
Software Testing”, Communications of the
ACM, Volume 31 Issue 6, June 1988, pp. 687-
695

 80. Lu Luo, “Software Testing Techniques: Tech-
nology Maturation and Research Strategies”,
Institute for Software Research International,
Class Report for 17-939A

 81. Software Testing 3.0:The Continuing Evolu-
tion of Software Testing, LogiGear Corpora-
tion white paper January 2008

 82. Bret Pettichord, Schools of Software Testing,
March 2007, www.pettichord.com

 83. James Bach, Explaining testing anybody, www.
satisfi ce.com

 84. Edward Miller, “Introduction to software test-
ing technology”, In Tutorial: Software Testing
& Validation Techniques, pages 4-16, IEEE
Computer Society Press, 1981.

 85. Cem Kaner, “Exploratory Testing”, Quality As-
surance Institute Worldwide Annual Software

603References l

Testing Conference, Orlando, FL, November
2006

 86. l.H. Fenton, “Response to the SHARE soft-
ware service task force report, IBM Corp.,
Kingston, NY, March 6, 1984

 87. Parnas, D. L. and Weiss, D. M., “Active Design
Reviews: Principles and Practices,” Proceed-
ings of the Eighth International Conference on
Software Engineering, August, 1985

 88. Johnson, P. M., “An Instrumented Approach to
Improving Software Quality Through Formal
Technical Review”, Proceedings of the 16th In-
ternational Conference on Software Engineer-
ing (ICSE-16), May 1994

 89. Gilb, T. and Graham, D., “Software Inspec-
tion”, Addison-Wesley, 1993

 90. Macdonald, F. and Miller, J., “Modeling Soft-
ware Inspection Methods for the Application
of Tool Support”, December, 1995

 91. Martin, J. and Tsai, W. T., “N-Fold Inspection:
A Requirements Analysis Technique”, Com-
munications of the ACM, V. 33, N. 2, Febru-
ary, 1990, pp. 225-232

 92. Knight, J. C., and Myers, E. A., “An Improved
Inspection Technique”, Communications of
the ACM, V. 36, N. 11, November, 1993, pp.
51-61

 93. Porter, A. & Votta, L.G., “An experiment to
assess different defect detection methods for
software requirements inspections”, In Pro-
ceedings of the 16th International Conference
on Software Engineering, Sorrento, Italy, Los
Alamitos: IEEE Computer Society Press, 103-
112, May 16-21, 1994

 94. Basili, V.R., Green, S., Laitenberger, O., Lanu-
bile, F., Shull, F., Soerumgaard, S. & Zelkowitz
M., “The empirical investigation of perspec-
tive-based reading”, Empirical Software Engi-
neering 1(2), 133-164, 1996

 95. Laitenberger, O. & DeBaud, J.-M., “Perspec-
tive-based reading of code documents at Rob-
ert Bosch GmbH”, Information and Software
Technology 39(11), 781-791, 1997

 96. Thelin, T., Runeson, P. & Regnell, B., “Usage-
based reading - An experiment to guide review-
ers with use cases” Journal of Information and
Software Technology 43(15), 925-938, 2001

 97. Thelin, T., Runeson, P. & Wohlin, C., “An ex-
perimental comparison of usage-based and

checklist-based reading”, IEEE Transactions
on Software Engineering 29(8), 687-704, 2003

 98. Thelin, T., Runeson, P., Wohlin, C., Olsson, T.
& Andersson, C., “Evaluation of usage-based
reading - Conclusions after three experiments”,
Empirical Software Engineering 9(1-2), 77-110,
2004

 99. Dunsmore A., Roper M. & Wood M., “System-
atic object-oriented inspection technique”, In
Proceedings of the 23rd International Confer-
ence on Software Engineering, Toronto, Cana-
da, May 12-19. Washington: IEEE Computer
Society, 123-144, 2001

 100. Dunsmore A., Roper M. & Wood M., “Further
investigations into the development and evalu-
ation of reading techniques for object-oriented
code inspection”, In Proceedings of the 24th
International Conference on Software Engi-
neering, Orlando, Florida, May 19-25. New
York: ACM Press, 47-57, 2002

 101. Dunsmore, A., Roper, M. & Wood, M., “The
development and evaluation of three diverse
techniques for object-oriented code inspec-
tion”, IEEE Transactions on Software Engi-
neering 29(8), 677-686, 2003

 102. Kelly, D. & Shepard, T., “Task-directed soft-
ware inspection”, Journal of Systems and Soft-
ware 73(2), 361-368, 2004

 103. Cheng, B. and Jeffrey, R., “Comparing In-
spection Strategies for Software Requirements
Specifi cations”, Proceedings of the 1996 Aus-
tralian Software Engineering Conference, pag-
es 203-211, 1996

 104. Basili, V., Green, S., Laitenberger, O., Lanu-
bile, F., Shull, F., Sorumgard, S., and Zelkow-
itz, M., “The Empirical Investigation of Per-
spective-based Reading”, Journal of Empirical
Software Engineering, 2(1):133-164, 1996

 105. Laitenberger, O., “Cost-Effective Detection
of Software Defects with Perspective-based
Inspection”, PhD-Thesis, University of Kaiser-
slautern, ISBN 3-8167-5583-6, 2000

 106. Edward Yourdon, Structured Walkthroughs,
Yourdon Press, 4th edition, 1989

 107. Laitenberger, O., “Studying the effects of code
inspection and structural testing on software
quality”, Proceedings of ninth International
Symposium o Software Relibility Engineering,
1998

 References604

 108. W. Humphrey, A Discipline for Software Engi-
neering, Addison-Wesley, Reading, MA, 1995

 109. J. Rakos, Software Project Management for
small to medium-sized projects, Prentice Hall,
Englewood Cliffs, NJ, 1990

 110. Y. Chernak, “Validating and improving test
case effectiveness”, IEEE Software, Vol. 16,
No.1, pp. 81-86, 2001

 111. Drs Eric P W M Van Veenendaal CISA, Ton
Dekkers, “Test Point Analysis: A Method for
Test Estimation”, Published in Project Control
for Software Quality, Shaker Publishing BV,
Maastricht, Netherlands, 1999

 112. S. R. Rakitin. Software Verifi cation and Vali-
dation for Practitioners and Managers. Artech
House Inc. Boston-London, 2001.

 113. QAI Consulting Organization. Emphasizing
Software Test Process Improvement, http://
www.qaiindia.com/Resources_Art/journal_
emphasizing.htm , September 2006.

 114. M. L. Hutcheson. Software Testing Fundamen-
tals: Methods and Metrics. John Willey & Sons,
2003

 115. K. Iberle, S. Bartlett. Estimating Tester to De-
veloper Ratios (or Not). Hewlett-Packard and
STEP Technology, www.kiberle.com/pnsqc1/
estimate.doc, November 2006

 116. R. S. Pressman. Software Engineering – A Prac-
titioner’s Approach. Sixth Edition, McGraw
Hill Education Asia, 2005.

 117. R. D. Craig, S. P. Jaskiel. Systematic Software
Testing. Artech House Publishers, Boston-Lon-
don, 2002.

 118. B. Berger. Evaluating Test Plans with Rubrics.
International Conference on Software Testing
Analysis and Review, 2004

 119. P. Piwowarski, M. Ohba, J. Caruso. Coverage
Measurement Experience During Function
Test. International Business Machines Cor-
poration. In IEEE Software Engineering Pro-
ceedings, 1993.

 120. M. Marre´, A. Bertolino. Using Spanning Sets
for Coverage Testing. In IEEE Transactions on
Software Engineering, Volume 29, Number 11,
November 2003.

 121. Afzal, W., Torkar, R., “Incorporating Metrics
in an Organizational Test Strategy”, Proc of
IEEE International Conference on Software
Testing Verifi cation and Validation Workshop,
April 2008

 122. David Garmus, David Herron, Function Point
Analysis: Measurement Practices for Success-
ful Software Projects, Addison Wesley, 2001

 123. www.ifpug.org
 124. R. S. Pressman. Software Engineering – A

Practitioner’s Approach. McGraw Hill Educa-
tion Asia, 2005.

 125. W. Dijkstra. Structured Programming. In
J.N.Buxton and B.Randell (eds.), Software
Engineering Techniques, Brussels, Belgium,
NATO Science Committee, 1970

 126. E. Miller. The Philosophy of Testing. In Pro-
gram Testing Techniques, IEEE Computer So-
ciety Press, 1977

 127. M. Shaw, “Abstraction techniques in Modern
Programming Languages”, IEEE Software,
vol. 1(4), 1984

 128. J.Musa, Software Reliability, New York, NY:
McGraw-Hill, 1999

 129. J.Musa, “Software-Reliability-Engineered Test-
ing”, IEEE Computer, vol. 29, pp. 61-68, Nov.
1996

 130. H. Agarwal, J.R. Horgan, E.W. Krauser, S.
London, “Incremental regression testing”,
IEEE International Conference on Software
Maintenance, pp. 348-357, 1993

 131. T. Gyimothy, A. Beszedes, I. Forgacs, “An ef-
fi cient relevant slicing method for debugging”,
ACM/SIGSOFT Foundations of Software En-
gineering, pp. 303-321, 1999

 132. B. Korel, J.Laski, “Algorithmic software fault
localization”, Annual Hawaii International
conference on system sciences”, pp. 246-252,
1991

 133. S. Elbaum, A. Malishevsky, G. Rothermel,
“Prioritizing test cases for regression testing”,
Proceedings of International symposium on
software testing and analysis, pp. 102-112, Aug.
2000

 134. G. Rothermel, R. Untch, C. Chu, M.J. Harrold,
“Test case Prioritization: an empirical study”,
Proccedings of International conference on
software maintenance, pp. 179-188, Aug. 1999

 135. S. Elbaum, A Malishevsky, G. Rothermel, “In-
corporating varying test costs and fault severi-
ties into test case prioritization”, Proceedings
of 23rd International conference on software
engineering, Ontario, Canada, May 2001

605References l

 136. H. Srikanth, L. Williams, J. Osborne, “Towards
the Prioritization of system test cases” North
Carolina State University TR-2005-44, 2005

 137. R.A. DeMillo, R.J. Lipton, F.G. Sayward,
“Hints on Test Data Selection: Help for the
practicing programmer”, Computer, 11(4):34-
41, April 1978

 138. R.G Hamlet, “Testing programs with the aid
of a compiler”, IEEE transactions on Software
engineering, SE-3(4):279-290, July 1977

 139. Dennis Jeffrey, Neelam Gupta, “Test Case Pri-
oritization using Relevant Slices”, Proceedings
of 30th Annual International Computer soft-
ware and applications conference (COMP-
SAC ’06), vol. 1, pp. 411-420, 2006

 140. Koomen, T. and Pol M., Test Process Improve-
ment: A practical step-by step guide to struc-
tured testing, ACM Press, London, England,
1999

 141. Sog04 TPI home pages, Sogeti Nederland
B.V., 2004. http://www.sogeti.nl/index.html?/
iospagina.cfm?uNr=150

 142. TMa04 TMap home pages, TMap - Sogeti
Nederland B.V., 2004, http://www.tmap.net

 143. www.gerrardconsulting.com
 144. Ericson, T., Subotic, A. and Ursing, S., “To-

wards a Test Improvement Model”, Proceed-
ingsof the Fourth European Conference on
Software Testing, Analysis & Review, Amster-
dam, December 2-6, 1996

 145. Jari Andersin, “TPI – a model for Test Pro-
cess Improvement”, Seminar on Quality Mod-
els for Software Engineering, Department of
Computer Science UNIVERSITY OF HEL-
SINKI, Helsinki, 5th October 2004

 146. Capers, Jones, Applied software measurement,
McGraw-Hill, 1996

 147. Ghulam Mustafa, Abad Ali Shah, et al, “A
Strategy for testing of web based software”,
Information Technology Journal, 6(1):74-81,
2007

 148. Dart, S., Containing the Web Crisis Using Con-
fi guration Management, Proc ICSE Workshop
on WebEngineering, 1999. http://fi stserv.mac-
arthur.uws.edu.au/san/icse99-webe/

 149. Murugesan, S. et al. “Web engineering: A New
Discipline for Development of Web based sys-
tems” In Proceedings of the First ICSE Work-
shop on Web Engineering, Los Angeles (pp.
1-9), 1999

 150. Deshpande, Y. et al., “ Web engineering”, Jour-
nal of Web Engineering, 1(1), 3-17, 2002

 151. Deshpande, Y., Ginige, A., Murugesan, S., &
Hansen, S., “Consolidating Web engineering
as a discipline.”, SEA Software, (April), 32-34,
2002

 152. Deshpande, Y., & Hansen, S., “Web engineer-
ing: creating a discipline among discipline”,
IEEE Multimedia, (April - June), 82-87, 2001

 153. Deshpande Y., Olsina, L., & Murugesan, S.,
“Web engineering.”, Report on the Third ICSE
Workshop on Web Engineering, ICSE2002,
Orlando, FL, USA, 2002.

 154. Ginige, A., & Murugesan, S., “Web engineer-
ing: An introduction”, IEEE Multimedia, 8(1),
14-18, 2001

 155. Ginige, A. & Murugesan, S., “The essence of
Web engineering: Managing the diversity and
complexity of Web application development”,
IEEE Multimedia, 8(2), 22-25, 2001

 156. Ginige, A., & Murugesan, S., “Web engineer-
ing: A methodology for developing scalable,
maintainable Web applications”, Cutter IT
Journal, 14(7), 24-35, 2001

 157. HENNICKER R. and KOCH N., “A UML-
based Methodology for Hypermedia Design”,
In Proceedings of the Unifi ed Modeling Lan-
guage Conference, UML´2000, Evans A. and
Kent S., Eds. LNCS 1939, Springer Verlag,
410-424, 2000

 158. KOCH N. , Software Engineering for Adap-
tive Hypermedia Applications, PhD. Thesis,
Reihe Softwaretechnik 12, Uni-Druck Publish-
ing Company, Munich, 2001

 159. KOCH N., KRAUS A. and HENNICKER
R., “The Authoring Process of the UML-based
Web Engineering Approach”, In First Interna-
tional Workshop on Web-Oriented Software
Technology IWWOST’2001, Valencia, 2001

 160. KRAUS A. and KOCH N. , “Generation of
Web Applications from UML Models using an
XML Publishing Framework”, Proceeding of
the Integrated Design and Process Technology
Conference, IDPT’2002, Pasadena, 2001

 161. Koch, Andreas Kraus, “The Expressive Power
of UML-based Web Engineering”, Ludwig-
Maximilians-Universität München. Germany
http://www.pst.informatik.uni-muenchen.de/
personen/kochn/IWWOST02-koch-kraus.pdf

587Answers to Multiple Choice Question l

Chapter 1

 1. (b) 2. (a) 3. (c) 4. (d) 5. (b)
 6. (b) 7. (a) 8. (a) 9. (b) 10. (c)

Chapter 2
 1. (b) 2. (a) 3. (d) 4. (d) 5. (c)
 6. (a) 7. (c) 8. (d) 9. (b) 10. (a)
 11. (b) 12. (a) 13. (c) 14. (b) 15. (b)

Chapter 3
 1. (c) 2. (c) 3. (a) 4. (b) 5. (c)
 6. (d) 7. (b) 8. (d) 9. (d) 10. (d)
 11. (a) and (c) 12. (c) 13. (b)

Chapter 4
 1. (b) 2. (a) 3. (d) 4. (b) 5. (c)
 6. (b) 7. (a) 8. (c) 9. (d) 10. (c)
 11. (a)

Chapter 5
 1. (b) 2. (b) 3. (a) 4. (b) 5. (c)
 6. (d) 7. (c) 8. (c) 9. (b) 10. (c)
 11. (b) 12. (a) 13. (b) 14. (a) 15. (d)

Chapter 6
 1. (a) 2. (b) 3. (b) 4. (d) 5. (a)
 6. (b) 7. (d) 8. (d) 9. (b) 10. (a)
 11. (a) and (c) 12. (b) 13. (c) 14. (b) 15. (d)
 16. (a) 17. (c) 18. (c) and (d) 19. (d) 20. (d)

Chapter 7
 1. (b) 2. (a) 3. (c) 4. (c) 5. (d)
 6. (a) 7. (c) 8. (a) 9. (a) 10. (b)
 11. (d) 12. (c) 13. (a) 14. (a) and (c) 15. (b)

Answers to Multiple Choice Questions

Appendix

A

APPENDICES

 Software Testing: Principles and Practices588

 16. (b) 17. (c) 18. (c) 19. (d) 20. (d)
 21. (b) 22. (a) 23. (c) 24. (c)

Chapter 8
 1. (b) 2. (a) 3. (b) 4. (c) 5. (b)
 6. (a) 7. (b) 8. (a) & (b) 9. (c) 10. (a)
 11. (b) 12. (d) 13. (c) 14. (a) 15. (b)
 16. (d)

Chapter 9
 1. (a), (c) and (d) 2. (b) 3. (c) 4. (a) and (b) 5. (a)
 6. (c) 7. (b) 8. (a) 9. (b) 10. (c)
 11. (d) 12. (a) 13. (d) 14. (a) and (b)

Chapter 10
 1. (a) 2. (a) 3. (a) 4. (b) 5. (c)
 6. (b) 7. (a)

Chapter 11
 1. (c) 2. (b) 3. (a) 4. (b) 5. (c)
 6. (a) 7. (a) 8. (b) 9. (c) 10. (d)
 11. (a) 12. (b)

Chapter 12
 1. (a) 2. (b) 3. (a) 4. (b) 5. (a)
 6. (b) 7. (a) 8. (c) 9. (c)

Chapter 13
 1. (d) 2. (b) 3. (a) 4. (b) 5. (a)
 6. (c) 7. (a) 8. (d) 9. (a) 10. (b)
 11. (c) 12. (a) 13. (b)

Chapter 14
 1. (b) 2. (d) 3. (a) 4. (c) 5. (d)
 6. (b) 7. (b) 8. (b) 9. (d) 10. (c)
 11. (a)

Chapter 15
 1. (a) 2. (c) 3. (a) 4. (d) 5. (c)
 6. (b) 7. (c) 8. (a) 9. (b)

Chapter 16
 1. (b) 2. (a) 3. (c) 4. (a) 5. (d)
 6. (c) 7. (a) 8. (b) 9. (b) 10. (a)
 11. (c) 12. (d) 13. (d) 14. (d) 15. (c)
 16. (a) 7. (b) 18. (a) and (d) 19. (b) 20. (b)

Chapter 17
 1. (b) 2. (c) 3. (a) 4. (a) 5. (b)
 6. (a) 7. (b) 8. (d) 9. (a) 10. (a)
 11. (b) 12. (c) 13. (a) 14. (b) 15. (a) and (b)

Chapter 18
 1. (b) 2. (b) 3. (a) 4. (b) 5. (d)
 6. (c) 7. (a)

589Software Requirement Specifi cation (SRS) Verifi caito Checklist l

S.No. Y/N/NA Remarks

1. Overview and System Functional Flow

Is the overview of high-level system mentioned?

Is the system’s functional fl ow clearly and completely described?

Has the high-level functionality of system depicted in a diagram like DFD
level 0?

Do the high-level diagrams depict internal and external interfaces and data
fl ows?

Are the software functions mentioned at a high-level with the viewpoint of
operational system?

Are the users of the software including other systems interacting with it
recognized?

2. Functional Requirements

Are the requirements traceable to customer?

Are the requirements defi ned separately?

Are the functionalities given proper name and unique number/ID?

Does each function fully defi ne its purpose and scope?

Does each function mention required inputs and outputs?

Do the requirements specify any method for exception handling or handling
any alternate functional logic fl ow?

Does each functional requirement mention the acceptance criteria, if any?

Have all the constraints (software / hardware) related to any functional
requirement mentioned?

Are the functional requirements prioritized and given an identifi er to indicate
its importance?

3. Non-functional (Performance, security, quality) requirements

Is the acceptable response time for each functionality mentioned?

Is the number of maximum users on the system mentioned?

Is the number of transactions / online transactions per user per unit time
mentioned?

Software Requirement Specifi cation (SRS)
Verifi cation Checklist

Appendix

B

 Software Testing: Principles and Practices590

S.No. Y/N/NA Remarks

Is the peak data fl ow volume mentioned?

Is the maximum size of the data transaction specifi ed?

Is the upper and lower control limits (tolerance criteria) specifi ed?

Is it mentioned what will be done by the system when it fails on exceeding
its capacity?

Are all the physical and operational security and safety requirements, if any,
mentioned?

Are quality requirements like reliability, portability, maintainability, etc.
mentioned?

Are quality requirements quantifi ed with the acceptable limit?

Are the non-functional requirements prioritized and given an identifi er to
indicate its importance?

4. Interface Requirements

Are all inputs to the system specifi ed, including their source, accuracy, range
of values, and parameters?

Are all screen formats specifi ed?

Are all report formats specifi ed?

Are all interface requirements between hardware, software, personnel, and
procedures included?

Are all communication interfaces specifi ed?

5. Resource Requirements

Are all hardware confi guration requirements mentioned?

Are all software confi guration requirements mentioned?

Are all memory requirements mentioned?

Are all software, hardware, memory requirements for interfaced systems
mentioned?

6. Correctness

Is each requirement in scope for the project?

Is each requirement free from content and grammatical errors?

Does the requirement make the clear understanding?

Is the requirement realistic under mentioned constraints?

7. Ambiguity

Has every requirement only one interpretation?

Is each characteristic of the fi nal product described using a single unique
term?

Is any requirement confl ict with other requirement?

8. Consistency

Is there any real world objects confl ict such that as one specifi cation
recommends mouse for input and another recommends ball tab?

Is there any logical confl ict between two specifi ed actions?

591Software Requirement Specifi cation (SRS) Verifi caito Checklist l

S.No. Y/N/NA Remarks

Are there any requirements that describe two or more actions that confl ict
temporally?

Are there any requirements describing the same object that confl ict with other
requirements with respect to terminology?

Is there any confl ict between the specifi ed requirement and project goals?

Are the timing and memory limits compatible with hardware constraints?

9. Completeness

Is there any missing requirement?

Are requirements in terms of input, output, functional, non-functional,
interfaces complete?

Is there any additional predicted capability for the system?

Are all requirements written at an appropriate level of detail?

Are assumptions and dependencies explicitly mentioned?

Are all sections, fi gures and tables labeled appropriately?

Are all fi gures and tables referenced appropriately?

Has every acronym, constant, variable, etc. been defi ned in the data
dictionary?

Is a dictionary for all data elements provided?

Is the data dictionary complete in all manners?

Are all documents to be referenced listed?

Are all units of measure needed defi ned?

10. Traceability

Is each functional requirement traceable to system functionality?

Has each requirement a unique name or reference number in all the
documents?

11. Standards Compliance

Is established standard or guidelines mentioned to be followed for the
document?

Does the document format conform to the specifi ed standard/guideline?

Are the standards and naming conventions followed according to the
standards throughout the document?

Y = Yes, N = No, NA = Not applicable

 Software Testing: Principles and Practices592

S.No. Y/N/NA Remarks

1. Data Design

Have the sizes of data structure been estimated appropriately?

Is there any provision of overfl ow in a data structure?

Are the data formats consistent with the requirements?

Is the data usage consistent with its declaration?

Are the relationships correct among data objects in data dictionary?

Are databases and data warehouses consistent with requirements in SRS?

Are the data structure names meaningful?

Is the database organization and content specifi ed?

Is the data model designed correct in all manners?

Are the database design rules listed?

Has the database model been described?

Are the logical data models of database, if any written clearly?

2. Architectural Design

Does the architecture consider every functional and non-functional
requirements specifi ed in SRS?

Is the architecture correct and unambiguous?

Is the functionality of sub-system traceable to the system functionality in SRS?

Is the hierarchy of subsystems correct?

Is dependency and interfaces between subsystems correctly designed?

Does the design consider all the constraints mentioned in SRS?

Is the coupling between subsystems low?

Is the cohesion between subsystems high?

Is the design fl exible enough for future extensions to the program?

Does the architecture consider all exception handling features?

Are all input-outputs for a subsystem correct and complete?

3. Interface Design

Have the possible interfaces been identifi ed?

High Level Design (HLD)
Verifi cation Checklist

Appendix

C

593High Level Design (HLD) Verifi cation Checklist l

S.No. Y/N/NA Remarks

Are the interfaces clear and well-defi ned?

Are the interfaces between modules according the to architecture design?

Is the required data passed at each interface?

Are the interfaces between software and other non-human producer and
consumer of information correct?

Are the interfaces between the user and software system correct?

Are the interfaces consistent?

Are the response time for all the interfaces within required ranges?

Is the representation of Help in its desired manner?

Does the user return to the normal interaction from Help?

Do the error messages clarify the problem?

Does the message provide constructive advice for recovering from the error?

Is the mapping between every menu option and corresponding command for
typed command interaction correct?

Y = Yes, N = No, NA = Not applicable

 Software Testing: Principles and Practices594

S.No. Criteria Y/N/NA Remarks

1. Is HLD traceable to LLD?

2. Is high level and low level abstraction consistent?

3. Is every subsystem detailed enough to be operational?

4. Does the pseudo-code of every subsystem follow the guidelines and syntax
rules of a program design language (PDL)?

5. Does the algorithm of every subsystem consistent with its defi ned
functionality?

6. Does the design notation for LLD support the development of modular
software?

7. Does the design notation for LLD support the means for interface
specifi cation?

8. Is the design notation able to represent local and global data?

9. Is the design notation able to modify the design representation easily?

10. Is the logic in each algorithm clear, correct, and complete?

11. Has the data been properly defi ned and initialized?

12. Are all the defi ned data used somewhere?

13. Is every detail of data available?

14. Is the data used consistently throughout the module and module interface?

15. Are any variables missing?

16. Have all interfaces been correctly considered and implemented in LLD?

17. Do the subsystems accept all data within the allowable range?

18. Is the data converted according to the correct format?

19. Has any consideration been given to the effects of round-off or truncation?

20. Are the indices valid in the subsystem pesudocode?

21. Is there any infi nite loop in the subsystem pesudocode?

22. Does the design address arithmetic overfl ow and underfl ow?

23. Are the physical data models of database, if any, written clearly?

Y = Yes, N = No, NA = Not applicable

Low Level design (LLD)
Verifi cation Checklist

Appendix

D

 Software Testing: Principles and Practices595

S.No. Criteria Y/N/NA Remarks

1. Does the design allow addition of more parameters, for example, number of
users?

2. Does the system allow addition of new data types?

3. What is the impact of adding new databases?

4. Can the design cope with technological changes?

5. Does every design decision documented in SDD have only a single
interpretation?

6. Is the SDD consistent with higher-level documents?

7. Is the SDD consistent with documents and models at the same level?

8. Is the SDD internally consistent in that all design decisions that it contains
are compatible?

9. Have all the design standards been followed?

10. Does SDD specify all signifi cant design decisions?

11. Is the Architecture design supported with a diagram?

12. Have the actual deployment environment of the architecture in terms of tools,
databases, and actual software used been mentioned?

Y = Yes, N = No, NA = Not applicable

General Software Design Document (SDD)
Verifi cation Checklist

Appendix

E

 Software Testing: Principles and Practices596

S.No. Y/N/NA Remarks

1. Data Declaration

Are all data considered in design declared in coding?

Are variable type and dimensions correctly declared?

Do all variables have proper type consistency?

Are declared variables initialized also? If so, are they correctly defi ned?

Are there any variables having same or similar name with any other library
function or reserved keywords?

Is there any variable declared, but not used?

Are all the pointer variables declared correctly?

Are all the global variables declared correctly?

Is Boolean variable declared correctly (if supported)?

Is Boolean variable declared directly (if not supported by language directly)?

Are the variables of user-defi ned type declared correctly?

2. Data Reference

Is there any variable referenced, but not declared?

Is there any variable referenced, but not initialized?

Are the subscript values for array references within the specifi ed limits?

Are the subscript values for array references of the type integer?

If a variable is passed as parameter in procedure, is it correctly and consistently
referred?

Are the pointer variables correctly referenced?

Is Boolean variable referenced correctly?

Are the variables of user-defi ned data type referenced correctly?

3. Interfaces

Is the order of parameters same in prototype, calling module, and called
module?

Do the types of parameters match in prototype, calling module, and called
module?

Generic Code Verifi cation Checklist

Appendix

F

597Generic Code Verifi cation Checklist l

S.No. Y/N/NA Remarks

Do the sizes of parameters match in prototype, calling module, and called
module?

Does the return type of module match in prototype, calling module, and called
module?

Does the called module after computation return the same type of data as expected?

Are the interfaces being implemented traceable to SDD and SRS?

Are the global variables referenced consistently?

Are the library fi les included correctly?

Are the called modules return to the calling module?

4. Computation

Are the data types of variables used in computation inconsistent?

Are the lengths of variables used in computation same?

Is the data type on both sides of computation same?

Is there any computation having divisor as zero?

Are the order of evaluation in computation correct?

Are the order of precedence of operators correct?

Are mixed-mode computations correct?

Is loop index variable used correctly?

Are bitwise operators used correctly in the computation?

Are logical operators used correctly in the computation?

If there is a computation such that on the right side, there is a module call and
the result returned is stored in the variable on the left side, then is the data type
of variable on the left side of computation same as of the data type of value
returned by the module call?

Are special operators used correctly in the computation?

5. Comparison

Are comparison operators used correctly?

Do the types of variables, for which comparison is made, match?

Are logical expressions expressed correctly?

Are the operands of Boolean operator Boolean?

6. Control Flow

Is there any infi nite loop?

Is there any loop which does not enter in its body?

Is there any loop which does not by-pass?

Is there any if-then-else/switch-case structure infi nite?

Is there any if-then-else/switch-case structure which does not enter in its body?

Is there any if-then-else structure which does not by-pass?

Are the nested control statements used correctly?

How many nested controls are there?

 Software Testing: Principles and Practices598

S.No. Y/N/NA Remarks

Is the expression blank in a loop?

Is any required expression missing in a loop?

Is each loop controlled by a different index?

Is one loop completely embedded within the other in case of nested loops?

Is the expression missing in an if-then-else structure?

Is the type of expression in switch-case structure an integer?

Are all Case labels in switch-case structure unique?

Does the control come out from each Case label group?

Is there any ‘goto’ statement?

Does every switch-case contain a default label?

7. Input/Output

Are the input statements according to the specifi ed format of language?

Are the specifi ed input ranges correct in input statement format?

Are the output statements according to the specifi ed format of language?

Are the specifi ed output ranges to be displayed as output correct in output
statement format?

Are the fi les declared correct?

Are the fi les opened before use?

Are the parameters in File Open specifi ed correctly?

Are all opened fi les closed?

Are End of File conditions detected?

Are the texts displayed to user on the screen are meaningful and appropriate?

Is there any spelling or grammatical mistake in the texts displayed to the user
on the screen?

8. Modules/Sub-systems

Is there any traceability between LLD and module code?

Are all modules coded which were considered in LLD?

Is there any module missing which was considered in LLD?

Does the module’s code match with the pseudo-code in the LLD?

Is there any logical mistake in the module code which contradicts its functional
specifi cation?

Is there any module which has not been referenced?

Is the implementation of module according to the language constraints complex?
If so, can it be restructured with modifi cations in pseudo-code?

9. General

Are there comments put appropriately in the code?

Are the comments put for complex logic of the code?

Are the comments meaningful and understandable?

Do all source code fi les mention the function number corresponding to which it
has been developed?

599Generic Code Verifi cation Checklist l

S.No. Y/N/NA Remarks

Are there proper indentations in the code?

Is there an ‘end’ brace for every ‘begin’ in all structures?

Is the code readable enough?

Can the compact code be replaced with the alternate code which is more
readable and understandable?

Does the code adhere to coding standards?

Are there any leftover stubs or test drivers in the code?

Is the code consistent in style?

Is there any unreachable code?

Is there any redundant code which can be replaced by the component library
module?

Have all the declared storage been used to their full limit or is there any storage
space wastage?

Is there any inconsistency in code and comments?

Y = Yes, N = No, NA = Not applicable

ixPreface l

I am thankful to God for making things possible at the right time always.

Big projects are not developed overnight. Some ideas always incubate in our subconscious and take a
defi nite shape gradually. However, these ideas are not developed by their own; they take shape as a
result of constant learning and interaction between individuals and great personalities. I would like to
acknowledge these personalities who have inspired me directly or indirectly to work on this book.

I would like to express my sincere gratitude to my school-time teacher, Sh. Girish Kumar who
had given me the base for my upcoming life at that time. He has always been a role model for me.
Next, I would like to thank my Guru, Pandit Priyadutt Shastri for realizing life with a totally different
viewpoint and caused a turning point in my life. The principles that I learnt from these two persons
will always be a moral support for me in any project.

The technical roots behind writing this book date back to the days when I was working in the Central
Research Laboratory (Bharat Electronics Ltd., Ghaziabad), where I learnt many practical techniques
of software testing. But for the critical learning support of Sh. K. Johri (Scientist at Central Research
Laboratory, Ghaziabad) I would not have learnt this discipline. Those learning have helped me a lot
in writing this book. He always used to say, ‘Welcome the bugs; do not hide them.’ While explaining
the psychology of software testing, I kept his saying in mind

I would like to express my profound gratitude to Dr A. K. Sharma, Chairman (Computer Engg.),
YMCA University of Science and Technology, Faridabad, who showed me the path of research and
technical writing during the research work performed under him. I am extremely grateful to all my
colleagues with whom I discussed many issues. Many thanks to my students, Sandeep Rana, Anita,
Harsh, InduBala, and all others for their contribution towards completing this book.

I am indebted to my family for their love, encouragement, and support throughout my education.
I am also thankful for all the support received from my parents-in-law.

I owe a lot to my dear wife, Anushree, who made many compromises to let me fi nish this book. I
am thankful for her never-ending patience, unconditional moral support, and peaceful environment
at home. Without her friendship and love, this book would not have been completed. I express my
heartfelt gratitude to my dear daughter, Smiti, for her love and encouragement.

Finally, I extend my gratitude to the editorial staff at Oxford University Press for their support.
Thanks to all of you!

 Naresh Chauhan

Acknowledgements

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

A

abstraction 447

abstract superclass 460

acceptance criteria 291

acceptance testing 81 197 245

 alpha testing 244

 beta testing 246

 types of 246

acceptance test plan 283 291

active design reviews 165

activity diagrams 449

actors 448 454 468

adjusted function point 313

adjustment factor 313

AFP 313

alpha testing 75

 entry criteria 246

 exit criteria 246

anomalies 246

APFD 365

 cost-cognizant 367

architectural design 238

assessment 273

authentication 238

authorization 435

automated script development 429

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

automated testing 436

 behavioral view 447

 environmental view 448

 guidelines 429

 implementation view 448

 structural view 447

 user view 447

automated testing tools 429 430

B

backlog management index 389

back tracking 508

based applications 475

baseline version 256

basis path testing 138

beta testing 247

 entry criteria 248

 exit criteria 247

 guidelines for 247

beta-versions 90

black-box testing 40 90 226

BMI 389

bottom-up integration 224 225

boundary value analysis 201

boundary value checking 35

brainstorm 222

breadth first integration 37 222

breakpoint 507

 conditional 507

 internal 507

 temporary 507

 unconditional 507

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

bug classification 90

 based on criticality 91

 based on SDLC 421

C

call graph 227 228 229

capability maturity model 392

capacity testing 494

capture/playback tools 433

card-sorting technique 486

cause-effect graph 126

checklist 205

 abstraction driven reading 205

 function-point based scenarios 204

 perspective-based reading 204

 scenario-based reading 205

 task driven reading 204

 usage-based reading 192

checklists 67

class diagrams 448

classes 446 450

class-level testing 452

class-responsibility-collaboration 449

client-server 476 477

client-server model 475

cluster-level testing 452 464

CMM structure 392

code comprehension 432

code coverage 326

code traceability 292

coding 195

cohesion 136

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

collaboration diagrams 454

commercial testing tools 437

configuration testing 243 490

complexity analysis tools 432

component diagrams 449

concatenated loops 141

confidentiality 238

configuration/compatibility testing 490

configuration management 435

connection matrix 326

content testing 487

control flow 142 195

conventional testing 450

coupling 355

coverage 352 353

coverage analysis tools 433

coverage criteria 262

coverage identification problem 343

coverage measures 284

CPM 141

CRC 449

CRC model index card 449

cross-site scripting 492

customer problem metrics 388

customer satisfaction metrics 388

D

database servers 476

data complexity 331

data design 74

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

data flow 164 165 326

 testing 164

 anomalies 165

dataflow techniques 263

data flow testing 166 352

 dynamic 169

 static 167

 terminology used in 166

data-member 446

DD graph 139

dead code 288

debuggers 510

debugging 503 505 509

debugging techniques 506

 memory dump 506

 watch points 506

decision node 139

decision table 120

 extended entry 120

 limited entry 120

 test case design using 120

decision table-based testing 119

decision-to-decision-graph 139

decomposition-based integration 219 228

 top-down 222

 types of 221

decomposition tree 220

defect age 323 341

defect-arrival pattern during testing 389

defect density 343 389

defect density metrics 388

defect fix time to retest 342

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

defect rate 374

defect-removal efficiency 323

defect removal percentage 321

defect spoilage 324

defect-tracking 438

defect trend analysis 342

definition-clear path 189

definition node 222

definition-use path 256

delta build 256

delta version 222

deployment diagram 449

depth first 214

depth first integration 292

design traceability 255

development effort estimation 328

development ratio method 328

development testing 217

DFDs 508

distributed computing 476

DMAIC 399

DRE 389

driver module 228

drivers 214 322 362

dynamic binding 451

dynamic contents 488

dynamic slice 336

dynamic testing 431

E

earned value tracking 344

effectiveness of test cases 323

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

EIF 310

encapsulation 446

equivalence classes 108

equivalence class testing 107

equivalent classes 108

 identification of 108

 valid 109

error 196

error detection efficiency 129

error guessing 195

error-prone modules 196

error-types 195

estimation of test cases 327

execution slice 361

exit criteria 321

external interface files 310

F

failure 33

failure impact 359

fan-in 332

fan-out 332

fault/defect/bug 33

fault-exposing-potential 358

fault-revealing test cases 263

FEP 358

finite state machine 115

fix backlog 389

fix response time 390

fix responsiveness 390

flow graph 139 197

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

formal inspection 197

 active design reviews 197

 FTArm 197

 Gilb inspection 197 200

 Humphrey’s inspection 197 201

 N-fold inspections 197

 phased inspection 197

 structured walkthrough 205 333

FP 205

FPA 114

FSM 115

FTArm 219

functional decomposition 67 289

functional design 89

functional testing 232 289

function coverage 232 333

function point analysis 333

function points 81 309 335

G

Gantt charts 284

glass-box testing 135

goal question metric 318

GQM 318

graph matrix 156 157

H

Halstead product metrics 308

high-level design 67

hitting set 354

HTTP 239

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

human testing 188

I

IBM rational SQA robot 438

IFPUG 194 309

incremental testing 221 461

information flow complexity 332

inheritance 447 451 460

inheritance testing 459

inherited methods 460

inspection process 191

 benefits of 194

 bug prevention 194

 bug reduction 194

 checklists 205 255

 cost of 196

 effectiveness of 196

 variants of 197

inspections 190 381

installation testing 82

integration strategies 452

integration testing 57 156 391

integration test plan 287

integrity 75

inter-class testing 464

inter-cluster testing 464

interface design 67

interface testing 485 489

internal design 310

internal logical files 390

internal testing 430

intrusive tools 436

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

J

junction node 139

junior test engineers 276

K

KLOC 308

KPAs 392 394 395

L

leaf nodes 219

lines of code 308

loadRunner 438

load testing 240 241 438 494

load tests 327

LOC 306

 private 307

 public metrics 307

logic coverage 137

 condition coverage 136

 criteria 137

 decision/condition coverage 137

 decision or branch coverage 138

 multiple condition coverage 136

 statement coverage 161

loop testing 67

M

maintenance testing 156

master schedule 284

master test plan 283

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

maturity levels 393 413

mean-time to failure 388

measurement program 318

measurements 305

memory testing tools 433

MEP 229 230

method-level testing 452

method-message path 464

metrics 304 319

middleware 476

Miller’s theorem 142

minimization techniques 263

MM-path 230 231

module 76

 cohesion 76

 coupling 174

MTTF 388

multi-tiered applications 474

mutants 174

 primary 177

 process 175

 secondary 174

N

navigation testing 489 490

neighborhood integration 228

nested loops 162

network-testing tools 434

N-fold inspection 202

non-repudiation 238

N-tier 476

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

O

object 446 450

object diagrams 449

object model 445

object-oriented modeling 447

object-oriented technology 445

object-oriented testing 450

P

pair-wise integration 228

path-based integration 229

 message 230

 module execution path 229

 sink node 229

 source node 229

path testing 140

 independent path 140

 terminology 140

 unit testing 156

 use of 159

percent delinquent fixes 390

performance testing 238 239 240 489

 493

PERT 284

phased inspection 202

polymorphism 447 451 452

PORT 365

prioritization 354 356

 based on requirements 364

 operational profiles 360

 regression test suite 356

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

prioritization (Cont.)

 system test suite 356

 techniques 356

prioritization scheme 355

prioritized test suite 365

probability of errors 331

problems per user month 388

procedure 335

process improvement 195

process maturity 396

process quality 374 375

product quality 374

program length 308

program monitors 431

program vocabulary 308

program volume 309

progressive testing 255

project management 379

project-staff ratio method 329

PUM 388

Q

quality assurance 377

quality control 377 421

quality cost 375

 failure costs 376

 prevention costs 379

quality factors 378

quality management 381

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

R

rate of fault detection 355

reading techniques 203

 ad hoc method 203

 checklists 203

realistic-size databases 240

recovery testing 235 236

recurrence ratio 342

redundant test cases 353

regions 139

regression bugs 259

regression number 258

regression testability 257 258

regression testing 256 257 258 505

 509 510

 objectives of 258

 problem 260

 techniques 260

 types 259

regression test prioritization 265

regression test problem 259

regression test selection 263

regression test suite 257

regressive testing 255

relevant slice 364

relevant slices 360

reliability 380

requirement coverage matrix 290

requirements 67

 gathering 91

 specification 120

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

requirement traceability 292 326

reviews 359 360

risk analysis 325

S

safe techniques 263

sandwich integration testing 225

scalability testing 494

SDLC phases 66 212 429

security requirements 236

security testing 237 238 491

security vulnerabilities 237

selective retest technique 261

sequence diagram 449

severity of impact 359

simple loops 162

simulated testing 430

sink nodes 229

six sigma 399

size metrics 308

slicing technique 361

 dynamic slice 362

 execution slice 361

 relevant slice 364

smoke test 290 324

SMP 376

software crisis 480

software maintenance 261

software measurement 305 307

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

software metrics 304 306

 classification 306

 computed metrics 306

 definition of 306

 line of code 306

 objective 306

 primitive 306

 subjective metrics 306

software quality 374 378 384

software quality metrics 387 388

software testing 5

 as a process 22

 economics of 39

 effective 16

 evolution of 5

 exhaustive 16

 goals of 10

 methodology 51

 model for 15

 myths and facts 8

 psychology for 13

 schools of 23

 STLC 46

 strategy 52

 techniques 57

 terminology 33

 testing definitions 14

software tools 430

spanning set 326

specialized environments 443

spoilage 324

SQA 378

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

SQA activities 381

SQA audit 382

SQA group 421

SQA models 390

SQA team 381

SQL injection 492

SRS 239

staff productivity 321

state-based testing 457 458

state chart diagrams 449

state graph 115

state table 116

state table-based testing 114 116

static contents 488

static program analysers 431

static testing 189 381

 benefits 58

 objectives 189

 types of 189

static testing tools 431

static test points 135 338

STQM 397

stress testing 241 494

structural complexity 57

structured walkthrough 322

stubs 215 220 288

subclass 460

superclass 459 460

suspension criteria for testing 255

SUT 321

SVVP 213

symptoms 505 508

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

system complexity 284

system-level testing 452

system testing 233 290 331

system test plan 289

T

task planning method 330

TCE 345

technical review 206

template class 451

test 34

 case 34

 design 47

 execution 49

 factors 52

 incident 35

 phase 52

 planning 47

 strategy matrix 52

 test oracle 35

 testware 35

testability 380

test automation 429

test case effectiveness metric 345

test case generator 433

test case prioritization 355

 coverage-based 356

 general test case prioritization 355

 types of 355

 version-specific 355

test case specifications 273

test coverage 326

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

test data generator 433

test design 215

TestDirector 438

TestStudio 434

test driver 274

test effort estimation 335

test enablers 430

test engineers 274 276

tester productivity measures 344

testers 275 276

test execution and evaluation tools 433

test harness 286 288 296

test incident report 43

testing 55

 life cycle model 59

 measurement objectives 318

 methodologies 43

 principles 57

 tactics 58

 tools 57

 unit testing 274

testing activity tools 432

testing cost estimation 322

testing efforts 327 332

testing group 275

testing improvement model 406

testing metrics 341

testing of OO classes 455

 feature-based testing of classes 455

 role of invariants in class testing 456

 state-based testing 457

 testing feature groups 456

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

testing of web-based systems 474 484

testing techniques 295 417

testing tools 429 430 431

 categorization 431

 costs incurred 435

 selection 434

test leader 273

test log 273

test management 275

 key elements of 273

test management tools 434

test manager 273

test maturity matrix 409 412 413

test maturity models 404 406 413

test monitoring 274

test organization 80 418

test organization model 408

test plan 80

 acceptance 80

 function 80

 integration 80

 system 277

 unit 277

test plan 212 398

 components 282

 hierarchy 228

test planning 295 417

test point analysis 335

test procedure method 295 329 330

test process 406

test process management 412

test process maturity 405

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

test process maturity models 405 406

test process optimization 421

test result specifications 274

test script language 437

test sessions 292

test specialist 273

test specifications 222 262

test suite 296 298 352 354

test suite prioritization 354

test suites 353

test summary report 308

test team size 330

test tools 338

testware 339

testware management 412

TIM 406

TMM 405

 assessment model 422

 components 413

TMM levels 415

token count 73

TOM level 408

top-down integration 222

total quality management 73

total test sessions 335

TPA 397

TPI 405

TPI model 409

TQM 232

traceability 289

 backward 320

 forward 437

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

U

UFP 312

UML 447 466 467 468

UML-based modeling 481

 conceptual modeling 481

 configuration modeling 483

 navigation modeling 481

 presentation modeling 482

 task modeling 482

 web scenarios modeling 482

UML-based OO testing 466

UML diagrams 467

UML modeling 448

unadjusted function point 312

unified modeling language 447

unit testing 213 331

unit test plan 286

unit validation testing 78

unit verification 163

unstructured loops 242

usability testing 166 486 487

usage node 166

 computation 166

 predicate 449

use-case diagram 448 454 467

use-case model 448

 actors 448

 use-case diagrams 448

 use-case templates 454

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

V

VAF 313

validation 54 284 419

 activities 79

 test plan 79

validation activities 282 454

validation plan 284

validation test execution 212

validation testing 66 284

validation test plan 285

value 313

verification 70 77 282

 activities 75

 of architectural design 75

 of data design 74

 of high-level design 76

 of low-level design 71

 of objectives 70

 of requirements 76

 of user-interface design 74

verification test plan 285

verify 77

 code 74

 high-level design 77

 low-level design 71

V-testing model 56 69

V&V diagram 285 378

W

walkthroughs 296 381 419

watch points 506

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

WBS 280

web applications 438 452 474 475

web-based applications 475

web-based software 476

web browsers 477

web crisis 480

web-enabled applications 475

web engineering 480

web page 475

website 475

web software 478

web technology 475

 3-tier 475

 first generation/2-tier 475

 N-tier 475

white-box testing 58 417

WinRunner 437

work breakdown structure 280 322

worst-case testing method 92

X

XSS 492

	Front Matter
	Dedication
	Preface
	Table of Contents
	Part I. Testing Methodology
	1. Introduction to Software Testing
	1.1 Introduction
	1.2 Evolution of Software Testing
	1.3 Software Testing - Myths and Facts
	1.4 Goals of Software Testing
	1.5 Psychology for Software Testing
	1.6 Software Testing Definitions
	1.7 Model for Software Testing
	1.8 Effective Software Testing vs. Exhaustive Software Testing
	1.9 Effective Testing is Hard
	1.10 Software Testing as a Process
	1.11 Schools of Software Testing
	1.12 Software Failure Case Studies
	Summary
	Exercises

	2. Software Testing Terminology and Methodology
	2.1 Software Testing Terminology
	2.1.1 Definitions
	2.1.2 Life Cycle of a Bug
	2.1.2.1 Bugs-in Phase
	2.1.2.2 Bugs-out Phase

	2.1.3 States of a Bug
	2.1.4 Why Do Bugs Occur?
	2.1.4.1 To Err is Human
	2.1.4.2 Bugs in Earlier Stages Go Undetected and Propagate

	2.1.5 Bugs Affect Economics of Software Testing
	2.1.6 Bug Classification Based on Criticality
	2.1.6.1 Critical Bugs
	2.1.6.2 Major Bug
	2.1.6.3 Medium Bugs
	2.1.6.4 Minor Bugs

	2.1.7 Bug Classification Based on SDLC
	2.1.7.1 Requirements and Specifications Bugs
	2.1.7.2 Design Bugs
	2.1.7.3 Coding Bugs
	2.1.7.4 Interface and Integration Bugs
	2.1.7.5 System Bugs
	2.1.7.6 Testing Bugs

	2.1.8 Testing Principles

	2.2 Software Testing Life Cycle STLC
	2.3 Software Testing Methodology
	2.3.1 Software Testing Strategy
	2.3.1.1 Test Factors
	2.3.1.2 Test Phase

	2.3.2 Test Strategy Matrix
	2.3.3 Development of Test Strategy
	2.3.4 Testing Life Cycle Model
	2.3.4.1 V-Testing Life Cycle Model

	2.3.5 Validation Activities
	2.3.5.1 Unit Testing
	2.3.5.2 Integration Testing
	2.3.5.3 System Testing

	2.3.6 Testing Tactics
	2.3.6.1 Software Testing Techniques
	2.3.6.2 Static Testing
	2.3.6.3 Dynamic Testing
	2.3.6.4 Testing Tools

	2.3.7 Considerations in Developing Testing Methodologies
	2.3.7.1 Determine Project Risks
	2.3.7.2 Determine the Type of Development Project
	2.3.7.3 Identify Test Activities According to SDLC Phase
	2.3.7.4 Build the Test Plan

	Summary
	Exercises

	3. Verification and Validation
	3.1 Verification and Validation V&V Activities
	3.2 Verification
	3.2.1 Verification Activities

	3.3 Verification of Requirements
	3.3.1 Verification of Objectives
	3.3.2 How to Verify Requirements and Objectives?
	3.3.2.1 Correctness
	3.3.2.2 Unambiguous
	3.3.2.3 Consistent
	3.3.2.4 Completeness
	3.3.2.5 Updation
	3.3.2.6 Traceability

	3.4 Verification of High-Level Design
	3.4.1 How to Verify High-Level Design?
	3.4.1.1 Data Design
	3.4.1.2 Architectural Design
	3.4.1.3 Interface Design
	3.4.1.4 Verification of Data Design
	3.4.1.5 Verification of Architectural Design
	3.4.1.6 Verification of User-Interface Design

	3.5 Verification of Low-Level Design
	3.5.1 How to Verify Low-Level Design?

	3.6 How to Verify Code?
	3.6.1 Unit Verification

	3.7 Validation
	3.7.1 Validation Activities
	3.7.1.1 Validation Test Plan
	3.7.1.2 Validation Test Execution

	Summary
	Exercises

	Part II. Testing Techniques
	4. Dynamic Testing: Black-Box Testing Techniques
	4.1 Boundary Value Analysis BVA
	4.1.1 Boundary Value Checking BVC
	4.1.2 Robustness Testing Method
	4.1.3 Worst-Case Testing Method

	4.2 Equivalence Class Testing
	4.2.1 Identification of Equivalent Classes
	4.2.2 Identifying the Test Cases

	4.3 State Table-Based Testing
	4.3.1 Finite State Machine FSM
	4.3.2 State Transition Diagrams or State Graph
	4.3.3 State Table
	4.3.4 State Table-Based Testing

	4.4 Decision Table-Based Testing
	4.4.1 Formation of Decision Table
	4.4.2 Test Case Design Using Decision Table
	4.4.3 Expanding the Immaterial Cases in Decision Table

	4.5 Cause-Effect Graphing Based Testing
	4.5.1 Basic Notations for Cause-Effect Graph
	4.5.1.1 Identity
	4.5.1.2 NOT
	4.5.1.3 OR
	4.5.1.4 AND
	4.5.1.5 Exclusive
	4.5.1.6 Inclusive
	4.5.1.7 One and Only One
	4.5.1.8 Requires
	4.5.1.9 Mask

	4.6 Error Guessing
	Summary
	Exercises

	5. Dynamic Testing: White-Box Testing Techniques
	5.1 Need of White-Box Testing
	5.2 Logic Coverage Criteria
	5.3 Basis Path Testing
	5.3.1 Control Flow Graph
	5.3.2 Flow Graph Notations for Different Programming Constructs
	5.3.3 Path Testing Terminology
	5.3.4 Cyclomatic Complexity
	5.3.4.1 Formulae Based on Cyclomatic Complexity
	5.3.4.2 Guidelines for Basis Path Testing

	5.3.5 Applications of Path Testing

	5.4 Graph Matrices
	5.4.1 Graph Matrix
	5.4.2 Connection Matrix
	5.4.3 Use of Connection Matrix in Finding Cyclomatic Complexity Number
	5.4.4 Use of Graph Matrix for Finding Set of All Paths

	5.5 Loop Testing
	5.6 Data Flow Testing
	5.6.1 State of a Data Object
	5.6.2 Data-Flow Anomalies
	5.6.3 Terminology Used in Data Flow Testing
	5.6.4 Static Data Flow Testing
	5.6.4.1 Static Analysis is Not Enough

	5.6.5 Dynamic Data Flow Testing
	5.6.6 Ordering of Data Flow Testing Strategies

	5.7 Mutation Testing
	5.7.1 Primary Mutants
	5.7.2 Secondary Mutants
	5.7.3 Mutation Testing Process

	Summary
	Exercises

	6. Static Testing
	6.1 Inspections
	6.1.1 Inspection Team
	6.1.2 Inspection Process
	6.1.3 Benefits of Inspection Process
	6.1.4 Effectiveness of Inspection Process
	6.1.5 Cost of Inspection Process
	6.1.6 Variants of Inspection Process
	6.1.6.1 Active Design Reviews
	6.1.6.2 Formal Technical Asynchronous Review Method FTArm
	6.1.6.3 Gilb Inspection
	6.1.6.4 Humphrey's Inspection Process
	6.1.6.5 N-Fold Inspection
	6.1.6.6 Phased Inspection
	6.1.6.7 Structured Walkthrough

	6.1.7 Reading Techniques
	6.1.8 Checklists for Inspection Process

	6.2 Structured Walkthroughs
	6.3 Technical Reviews
	Summary
	Exercises

	7. Validation Activities
	7.1 Unit Validation Testing
	7.2 Integration Testing
	7.2.1 Decomposition-Based Integration
	7.2.1.1 Non-Incremental Integration Testing
	7.2.1.2 Incremental Integration Testing
	7.2.1.3 Types of Incremental Integration Testing
	7.2.1.4 Top-down Integration Procedure
	7.2.1.5 Bottom-up Integration Testing
	7.2.1.6 Comparison between Top-down and Bottom-up Integration Testing
	7.2.1.7 Practical Approach for Integration Testing
	7.2.1.8 Pros and Cons of Decomposition-Based Integration

	7.2.2 Call Graph-Based Integration
	7.2.2.1 Pair-Wise Integration
	7.2.2.2 Neighbourhood Integration

	7.2.3 Path-Based Integration

	7.3 Function Testing
	7.4 System Testing
	7.4.1 Categories of System Tests
	7.4.1.1 Recovery Testing
	7.4.1.2 Security Testing
	7.4.1.3 Performance Testing
	7.4.1.4 Load Testing
	7.4.1.5 Stress Testing
	7.4.1.6 Usability Testing
	7.4.1.7 Compatibility/Conversion/Configuration Testing

	7.5 Acceptance Testing
	7.5.1 Alpha Testing
	7.5.1.1 Entry Criteria to Alpha
	7.5.1.2 Exit Criteria from Alpha

	7.5.2 Beta Testing
	7.5.2.1 Entry Criteria to Beta
	7.5.2.2 Guidelines for Beta Testing
	7.5.2.3 Exit Criteria from Beta

	Summary
	Exercises

	8. Regression Testing
	8.1 Progressive vs. Regressive Testing
	8.2 Regression Testing Produces Quality Software
	8.3 Regression Testability
	8.4 Objectives of Regression Testing
	8.5 When is Regression Testing Done?
	8.6 Regression Testing Types
	8.7 Defining Regression Test Problem
	8.7.1 Is Regression Testing a Problem?
	8.7.2 Regression Testing Problem

	8.8 Regression Testing Techniques
	8.8.1 Selective Retest Technique
	8.8.1.1 Strategy for Test Case Selection
	8.8.1.2 Selection Criteria Based on Code
	8.8.1.3 Regression Test Selection Techniques
	8.8.1.4 Evaluating Regression Test Selection Techniques

	8.8.2 Regression Test Prioritization

	Summary
	Exercises

	Part III. Managing the Test Process
	9. Test Management
	9.1 Test Organization
	9.2 Structure of Testing Group
	9.3 Test Planning
	9.3.1 Test Plan Components
	9.3.1.1 Test Plan Identifier
	9.3.1.2 Introduction
	9.3.1.3 Test-Item to be Tested
	9.3.1.4 Features to be Tested
	9.3.1.5 Features Not to be Tested
	9.3.1.6 Approach
	9.3.1.7 Item Pass/Fail Criteria
	9.3.1.8 Suspension Criteria and Resumption Requirements
	9.3.1.9 Test Deliverables
	9.3.1.10 Testing Tasks
	9.3.1.11 Environmental Needs
	9.3.1.12 Responsibilities
	9.3.1.13 Staffing and Training Needs
	9.3.1.14 Scheduling
	9.3.1.15 Risks and Contingencies
	9.3.1.16 Testing Costs
	9.3.1.17 Approvals

	9.3.2 Test Plan Hierarchy
	9.3.3 Master Test Plan
	9.3.3.1 Master Schedule
	9.3.3.2 Resource Summary
	9.3.3.3 Responsibilities
	9.3.3.4 Tools, Techniques, and Methodology

	9.3.4 Verification Test Plan
	9.3.5 Validation Test Plan
	9.3.5.1 Unit Test Plan
	9.3.5.2 Integration Test Plan
	9.3.5.3 Function Test Plan
	9.3.5.4 System Test Plan
	9.3.5.5 Acceptance Test Plan

	9.4 Detailed Test Design and Test Specifications
	9.4.1 Test Design Specification
	9.4.2 Test Case Specifications
	9.4.3 Test Procedure Specifications
	9.4.4 Test Result Specifications
	9.4.4.1 Test Log
	9.4.4.2 Test Incident Report
	9.4.4.3 Test Summary Report

	Summary
	Exercises

	10. Software Metrics
	10.1 Need of Software Measurement
	10.2 Definition of Software Metrics
	10.3 Classification of Software Metrics
	10.3.1 Product vs. Process Metrics
	10.3.2 Objective vs. Subjective Metrics
	10.3.3 Primitive vs. Computed Metrics
	10.3.4 Private vs. Public Metrics

	10.4 Entities to be Measured
	10.5 Size Metrics
	10.5.1 Line of Code LOC
	10.5.2 Token Count Halstead Product Metrics
	10.5.2.1 Program Vocabulary
	10.5.2.2 Program Length
	10.5.2.3 Program Volume

	10.5.3 Function Point Analysis FPA
	10.5.3.1 Process to Calculate Function Points
	10.5.3.2 Sizing Data Functions
	10.5.3.3 Sizing Transactional Functions
	10.5.3.4 Complexity and Contribution
	10.5.3.5 Calculating Unadjusted Function Point UFP
	10.5.3.6 Calculating Adjusted Function Point

	Summary
	Exercises

	11. Testing Metrics for Monitoring and Controlling the Testing Process
	11.1 Measurement Objectives for Testing
	11.2 Attributes and Corresponding Metrics in Software Testing
	11.3 Attributes
	11.3.1 Progress
	11.3.2 Cost
	11.3.3 Quality
	11.3.4 Size

	11.4 Estimation Models for Estimating Testing Efforts
	11.4.1 Halstead Metrics
	11.4.2 Development Ratio Method
	11.4.3 Project-Staff Ratio Method
	11.4.4 Test Procedure Method
	11.4.5 Task Planning Method

	11.5 Architectural Design Metric Used for Testing
	11.6 Information Flow Metrics Used for Testing
	11.6.1 Henry and Kafura Design Metric

	11.7 Cyclomatic Complexity Measures for Testing
	11.8 Function Point Metrics for Testing
	11.9 Test Point Analysis TPA
	11.9.1 Procedure for Calculating TPA
	11.9.2 Calculating Dynamic Test Points
	11.9.3 Calculating Static Test Points
	11.9.4 Calculating Primary Test Hours
	11.9.5 Calculating Total Test Hours
	11.9.5.1 Team Size
	11.9.5.2 Planning and Control Tools

	11.10 Some Testing Metrics
	Summary
	Exercises

	12. Efficient Test Suite Management
	12.1 Why Does a Test Suite Grow?
	12.2 Minimizing the Test Suite and its Benefits
	12.3 Defining Test Suite Minimization Problem
	12.4 Test Suite Prioritization
	12.5 Types of Test Case Prioritization
	12.6 Prioritization Techniques
	12.6.1 Coverage-Based Test Case Prioritization
	12.6.1.1 Total Statement Coverage Prioritization
	12.6.1.2 Additional Statement Coverage Prioritization
	12.6.1.3 Total Branch Coverage Prioritization
	12.6.1.4 Additional Branch Coverage Prioritization
	12.6.1.5 Total Fault-Exposing-Potential FEP Prioritization

	12.6.2 Risk-Based Prioritization
	12.6.3 Prioritization Based on Operational Profiles
	12.6.4 Prioritization Using Relevant Slices
	12.6.4.1 Execution Slice
	12.6.4.2 Dynamic Slice
	12.6.4.3 Relevant Slice

	12.6.5 Prioritization Based on Requirements

	12.7 Measuring the Effectiveness of a Prioritized Test Suite
	Summary
	Exercises

	Part IV. Quality Management
	13. Software Quality Management
	13.1 Software Quality
	13.2 Broadening the Concept of Quality
	13.3 Quality Cost
	13.4 Benefits of Investment on Quality
	13.5 Quality Control and Quality Assurance
	13.6 Quality Management QM
	13.7 QM and Project Management
	13.8 Quality Factors
	13.9 Methods of Quality Management
	13.9.1 Procedural Approach to QM
	13.9.1.1 Software Quality Assurance Activities
	13.9.1.2 SQA Relationships to other Assurance Activities
	13.9.1.3 Software Quality Assurance during SDLC

	13.9.2 Quantitative Approach to QM
	13.9.2.1 Paul Goodman Model for SMP
	13.9.2.2 Major Issues for Quantitative Approach

	13.10 Software Quality Metrics
	13.11 SQA Models
	13.11.1 ISO 9126
	13.11.2 Capability Maturity Model CMM
	13.11.2.1 CMM Structure
	13.11.2.2 Maturity Levels
	13.11.2.3 Key Process Areas
	13.11.2.4 Common Features
	13.11.2.5 Assessment of Process Maturity

	13.11.3 Software Total Quality Management STQM
	13.11.4 Six Sigma

	Summary
	Exercises

	14. Testing Process Maturity Models
	14.1 Need for Test Process Maturity
	14.2 Measurement and Improvement of a Test Process
	14.3 Test Process Maturity Models
	14.3.1 Testing Improvement Model
	14.3.1.1 Maturity Model
	14.3.1.2 Key Areas of TIM
	14.3.1.3 The Assessment Procedure of TIM

	14.3.2 Test Organization Model TOM
	14.3.2.1 Questionnaire
	14.3.2.2 Improvement Suggestions

	14.3.3 Test Process Improvement TPI Model
	14.3.3.1 Key Process Areas
	14.3.3.2 Lifecycle-Related Key Areas
	14.3.3.3 Techniques-Related Key Areas
	14.3.3.4 Infrastructure and Tools-Related Key Areas
	14.3.3.5 Organization-Related Key Areas
	14.3.3.6 Maturity Levels
	14.3.3.7 Test Maturity Matrix
	14.3.3.8 Checkpoints
	14.3.3.9 Improvement Suggestions

	14.3.4 Test Maturity Model TMM
	14.3.4.1 TMM Components
	14.3.4.2 TMM Levels
	14.3.4.3 The Assessment Model

	Summary
	Exercises

	Part V. Test Automation
	15. Automation and Testing Tools
	15.1 Need for Automation
	15.2 Categorization of Testing Tools
	15.2.1 Static and Dynamic Testing Tools
	15.2.2 Testing Activity Tools

	15.3 Selection of Testing Tools
	15.4 Costs Incurred in Testing Tools
	15.5 Guidelines for Automated Testing
	15.6 Overview of Some Commercial Testing Tools
	Summary
	Exercises

	Part VI. Testing for Specialized Environments
	16. Testing Object-Oriented Software
	16.1 OOT Basics
	16.1.1 Terminology
	16.1.2 Object-Oriented Modeling and UML

	16.2 Object-Oriented Testing
	16.2.1 Conventional Testing and OOT
	16.2.2 Object-Oriented Testing and Maintenance Problems
	16.2.3 Issues in OO Testing
	16.2.4 Strategy and Tactics of Testing OOS
	16.2.5 Verification of OOS
	16.2.5.1 Verification of OOA and OOD Models

	16.2.6 Validation Activities
	16.2.6.1 Unit/Class Testing
	16.2.6.2 Issues in Testing a Class

	16.2.7 Testing of OO Classes
	16.2.7.1 Feature-Based Testing of Classes
	16.2.7.2 Role of Invariants in Class Testing
	16.2.7.3 State-Based Testing

	16.2.8 Inheritance Testing
	16.2.8.1 Inheritance of Invariants of Base Class
	16.2.8.2 Incremental Testing

	16.2.9 Integration Testing
	16.2.9.1 Thread-Based Integration Testing
	16.2.9.2 Implicit Control Flow-Based Integration Testing

	16.2.10 UML-Based OO Testing
	16.2.10.1 UML Diagrams in Software Testing
	16.2.10.2 System Testing Based on Use-Cases

	Summary
	Exercises

	17. Testing Web-Based Systems
	17.1 Web-Based System
	17.2 Web Technology Evolution
	17.2.1 First Generation/2-Tier Web System
	17.2.2 Modern 3-Tier and N-Tier Architecture

	17.3 Traditional Software and Web-Based Software
	17.4 Challenges in Testing for Web-Based Software
	17.5 Quality Aspects
	17.6 Web Engineering WebE
	17.6.1 Analysis and Design of Web-Based Systems
	17.6.1.1 Conceptual Modeling
	17.6.1.2 Navigation Modeling
	17.6.1.3 Presentation Modeling
	17.6.1.4 Web Scenarios Modeling
	17.6.1.5 Task Modeling
	17.6.1.6 Configuration Modeling

	17.6.2 Design Activities
	17.6.2.1 Interface Design
	17.6.2.2 Content Design
	17.6.2.3 Architecture Design
	17.6.2.4 Presentation Design
	17.6.2.5 Navigation Design

	17.7 Testing of Web-Based Systems
	17.7.1 Interface Testing
	17.7.2 Usability Testing
	17.7.3 Content Testing
	17.7.4 Navigation Testing
	17.7.5 Configuration/Compatibility Testing
	17.7.6 Security Testing
	17.7.6.1 Security Test Plan
	17.7.6.2 Various Threat Types and Their Corresponding Test Cases

	17.7.7 Performance Testing
	17.7.7.1 Performance Parameters
	17.7.7.2 Types of Performance Testing

	Summary
	Exercises

	Part VII. Tracking the Bug
	18. Debugging
	18.1 Debugging: An Art or Technique?
	18.2 Debugging Process
	18.3 Debugging is Difficult
	18.4 Debugging Techniques
	18.4.1 Debugging with Memory Dump
	18.4.2 Debugging with Watch Points
	18.4.3 BackTracking

	18.5 Correcting the Bugs
	18.5.1 Debugging Guidelines

	18.6 Debuggers
	18.6.1 Types of Debuggers

	Summary
	Exercises

	Income Tax Calculator: A Case Study
	Step 1: Introduction to Case Study
	Step 2: Income Tax Calculator SRS ver 1.0
	Step 3: Verification on Income Tax Calculator SRS ver 1.0
	Step 4: Income Tax Calculator SRS ver 2.0
	Step 5: Verification on Income Tax Calculator SRS ver 2.0
	Step 6: Income Tax Calculator SRS ver 3.0
	Step 7: Black-Box Testing on Units/Modules of Income Tax Calculator SRS ver 3.0
	Step 8: White-Box Testing on Units/Modules of Income Tax Calculator

	References
	Appendices
	Appendix A: Answers to Multiple Choice Questions

	Appendix B: Software Requirement Specification SRS Verification Checklist
	Appendix C: High Level Design HLD Verification Checklist
	Appendix D: Low Level Design LLD Verification Checklist
	Appendix E: General Software Design Document SDD Verification Checklist
	Appendix F: Generic Code Verification Checklist
	Acknowledgements
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

