
Software Quality Assurance and Testing
Lecture - 04

ABDUS SATTER

LECTURER

INSTITUTE OF INFORMATION TECHNOLOGY

UNIVERSITY OF DHAKA

WHITE BOX TESTING TECHNIQUES

Dynamic Testing

White Box Testing

White-box testing techniques are used for testing the
module for initial stage testing. Black-box testing is the
second stage for testing the software. Though test
cases for black box can be designed earlier than white-
box test cases, they cannot be executed until the code
is produced and checked using white-box testing
techniques. Thus, white-box testing is not an
alternative but an essential stage.

Logic Coverage Criteria

⚫Structural testing considers the program code, and
test cases are designed based on the logic of the
program such that every element of the logic is
covered. Therefore the intention in white-box testing
is to cover the whole logic. The basic forms of logic
coverage are
⚪ Statement Coverage

⚪ Decision or Branch Coverage

⚪ Condition Coverage

⚪ Decision/condition Coverage

Statement Coverage

Test case 1: x= y= n, where n is any
number
Test case 2: x= n, y= n’, where n and
n’ are different numbers.

Test case 3: x > y
Test case 4: x < y

Decision or Branch Coverage

Test case 1: x= y
Test case 2: x!= y
Test case 3: x < y
Test case 4: x > y

Condition Coverage

⚫Condition coverage states that each condition in a
decision takes on all possible outcomes at least once.
For example, consider the following statement:

while ((I <5) && (J <COUNT))

⚫In this loop statement, two conditions are there. So
test cases should be designed such that both the
conditions are tested for True and False outcomes.

⚫The following test cases are designed:
⚪ Test case 1: I <5, J <COUNT

⚪ Test case 2: I >5, J >COUNT

Decision/condition Coverage

⚫ if (A && B) is being tested, the condition coverage would
allow one to write two test cases:
⚪ Test case 1: A is True, B is False.
⚪ Test case 2: A is False, B is True.

⚫But these test cases would not cause the THEN clause of
the IF to execute (i.e. execution of decision). The obvious
way out of this dilemma is a criterion called
decision/condition coverage. It requires sufficient test
cases such that each condition in a decision takes on all
possible outcomes at least once, each decision takes on
all possible outcomes at least once, and each point of
entry is invoked at least once
⚪ Test case 1: A is True, B is True
⚪ Test case 1: A is False, B is False

Multiple Condition Coverage

⚫ In case of multiple conditions, even decision/condition
coverage fails to exercise all outcomes of all conditions. The
reason is that we have considered all possible outcomes of
each condition in the decision, but we have not taken all
combinations of different multiple conditions. Certain
conditions mask other conditions. For example, if an AND
condition is False, none of the subsequent conditions in the
expression will be evaluated. Similarly, if an OR condition is
True, none of the subsequent conditions will be evaluated.

⚫ For (A && B)
⚪ Test case 1: A= True, B= True
⚪ Test case 2: A= True, B= False
⚪ Test case 3: A= False, B= True
⚪ Test case 4: A= False, B= False

CFG

Cyclomatic Complexity

Independent Path & Test Cases

⚫(i) A-B-F-H

⚫(ii) A-B-F-G-H

⚫(iii) A-B-C-E-B-F-G-H

⚫(iv) A-B-C-D-F-H

Graph Matrix

Graph Matrix

Connection Matrix

Connection Matrix

Use Of Connection Matrix In Finding Cyclomatic
Complexity Number

Use Of Connection Matrix In Finding Cyclomatic
Complexity Number

Use of Graph Matrix to Find K-Link Paths

Loop Testing (Simple Loop)

⚫Check whether you can bypass the loop or not. If the test
case for bypassing the loop is executed and, still you
enter inside the loop, it means there is a bug.

⚫Check whether the loop control variable is negative.
⚫Write one test case that executes the statements inside

the loop.
⚫Write test cases for a typical number of iterations

through the loop.
⚫Write test cases for checking the boundary values of the

maximum and minimum number of iterations defined
(say min and max) in the loop. It means we should test
for min, min+1, min−1, max−1, max, and max+1 number
of iterations through the loop.

Loop Testing (Nested Loop)

⚫Adopt the approach of simple tests to test the nested
loops

⚫Start with the innermost loops while holding outer
loops to their minimum values

⚫Continue this outward in this manner until all loops
have been covered

Data Flow Testing

Potential Bug

State Of A Data Object

⚫ Defined (d): A data object is called defined when it is initialized,
i.e. when it is on the left side of an assignment statement. Defined
state can also be used to mean that a file has been opened, a
dynamically allocated object has been allocated, something is
pushed onto the stack, a record written, and so on [9].

⚫ Killed/Undefined/Released (k): When the data has been
reinitialized or the scope of a loop control variable finishes, i.e.
exiting the loop or memory is released dynamically or a file has been
closed.

⚫ Usage (u): When the data object is on the right side of assignment
or used as a control variable in a loop, or in an expression used to
evaluate the control flow of a case statement, or as a pointer to an
object, etc. In general, we say that the usage is either computational
use (c-use) or predicate use (p-use).

Data-Flow Anomalies

Data-Flow Anomalies

⚫~x: indicates all prior actions are not of interest to x.

⚫x~ : indicates all post actions are not of interest to x.

Data Flow Testing

Pattern Line Number Explanation

~d 3 Normal Case,
Allowed

du 3-4 Normal Case,
Allowed

uu 4-6, 6-7, 7-14, 4-
12, 12-14

Normal Case,
Allowed

uk 14-16 Normal Case,
Allowed

K~ 16 Normal Case,
Allowed

For Variable bs

Mutation Testing

⚫if (a > b)

⚫ x = x + y;

⚫else

⚫ x = y;

⚫printf(“%d”, x);

M1:x = x – y;
M2:x = x / y;
M3:x = x + 1;
M4:printf(“%d”, y);

Test
Case ID

x y Initial Program
Result

Mutant
Result

TD1 2 2 4 0 (M1)

TD2 4 3 7 1.4 (M2)

TD3 3 2 5 4 (M3)

TD4 5 2 7 2 (M4)

Mutation Testing

⚫Mutation testing is the process of mutating some
segment of code (putting some error in the code) and
then, testing this mutated code with some test data.
If the test data is able to detect the mutations in the
code, then the test data is quite good, otherwise we
must focus on the quality of test data. Therefore,
mutation testing helps a user create test data by
interacting with the user to iteratively strengthen the
quality of test data.

END OF CHAPTER

Thank You

